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Abstract
Background: Population-based investigations aimed at uncovering genotype-trait associations
often involve high-dimensional genetic polymorphism data as well as information on multiple
environmental and clinical parameters. Machine learning (ML) algorithms offer a straightforward
analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined
trait. The performance of these algorithms, however, in the presence of covariates is not well
characterized.

Methods and Results: In this manuscript, we investigate two approaches: Random Forests (RFs)
and Multivariate Adaptive Regression Splines (MARS). Through multiple simulation studies, the
performance under several underlying models is evaluated. An application to a cohort of HIV-1
infected individuals receiving anti-retroviral therapies is also provided.

Conclusion: Consistent with more traditional regression modeling theory, our findings highlight
the importance of considering the nature of underlying gene-covariate-trait relationships before
applying ML algorithms, particularly when there is potential confounding or effect mediation.

Background
The primary aim of many population-based genetic asso-
ciation studies is to characterize the relationship among
multiple single nucleotide polymorphisms (SNPs) and a
continuous or binary trait. Crucial to this endeavor is con-
sideration of environmental, demographic and clinical
factors that may themselves be associated with one
another, the genotype and/or the trait under considera-
tion. In this manuscript we consider several different
approaches to handling covariates in the context of apply-
ing two machine learning (ML) algorithms, random for-
ests (RFs) and multivariate adaptive regression splines
(MARS). Specific consideration is given to underlying
models of association and sensitivity of each approach for

detecting true effects. Measures of false discovery are also
reported.

RFs is a non-parametric approach, originally proposed by
Breiman, L. (2001) [1], and represents an extension of
classification and regression trees (CART) of Breiman, L.
et al. (1984) [2]. MARS [3] is a related procedure that is
theoretically more amenable than CART to underlying
additive structure, as noted by Hastie, T. et al. (2001) [4].
Notably, several other ML learning algorithms have been
described, including: support vector machines [5,6], neu-
ral networks [7], Bayesian variable selection [8,9] and k-
nearest neighbor method [4,10]. We focus on RFs and
MARS since they are being increasingly applied to popula-
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tion-based genetic association studies and may be prefer-
able in the case of large datasets with missing values,
mixed variable types and some irrelevant predictors [4].

Studies of the performance of ML algorithms include
investigations of additive effects, statistical interaction,
correlation among predictors, false positive rates and
instability resulting from slight perturbations of the data
[4,11-13]. Two recent review articles describe several
applications of ML algorithms to find genotype-trait asso-
ciations in the presence of covariates [14,15]; however,
within each of the applications presented, a single
approach to handling covariates is described. Typically,
genetic indicators and environmental factors are entered
into the ML algorithm as potential predictors. Stratified
and matched-pair analysis to account for potential con-
founders are also described [16,17]. Taioli, E. and Garte,
S. (2002) [18] highlight the importance of considering the
nature of gene-trait confounding in the context of meta-
bolic genes. Several recent manuscripts describe, for the
general regression setting, the potential error associated
with treating covariates as confounders when in fact they
are effect mediators [19-22]. Finally, a comparative analy-
sis of machine learning methods and logistic regression in
the context of association studies has been presented
recently [23]. To our knowledge, the existing literature
does not include a systematic overview of the relative per-
formance of ML algorithms across the many different
approaches for handling covariates and underlying mod-
els of association. The present manuscript characterizes
this for the application of two ML algorithms to popula-
tion-based genetic association studies.

We present results of a simulation study aimed at charac-
terizing the comparative performance and interpretation
of several approaches to handling covariates. Specifically,
we consider four strategies for handling covariates in the
context of uncovering genotype-trait associations: (1)
including covariates as predictors; (2) stratifying by cov-
ariates; (3) residualizing the outcome by covariates; and
(4) ignoring the covariates. Several underlying models are
also considered, namely additive models with and with-
out predictors that are themselves associated, models with
statistical interaction (i.e. effect modifiers) with and with-
out main effects, and models of conditional association.

We begin by briefly outlining our notation. Let Y = (y1,
y2,....yn)T be the vector of responses where n is the number
of individuals in our sample and suppose X is an n × p
matrix of genotype (SNP) variables with ith row given by
Xi = (xi1, xi2,..., xip) and corresponding to individual i, i =
1,..., n. Further suppose Z is an n × q matrix with ith row
given by Zi = (zi1, zi2,..., ziq) corresponding to the vector of
covariate values for individual i. We assume throughout
this manuscript that primary interest lies in correctly iden-

tifying associations between Y and X while accounting for
Z.

Random forests
Both classification and regression trees (CARTs) involve
recursively partitioning individuals in a tree-like structure.
The root node, consisting of all individuals in a sample, is
split based on the value of one of the predictor variables
into what are called left and right daughter nodes. Selec-
tion of the best predictor variable at each node is based on
minimizing the within-node impurity (prediction error)
in the resulting daughter nodes. In a classification tree for
a categorical Y, node impurity is typically measured by the
Gini index while for a regression tree on a continuous Y
impurity is often measured by the mean square error.
Splitting continues until a pre-specified criterion is
reached, usually a minimum number of observations in
terminal nodes. Finally, to obtain optimal trees that bal-
ance complexity and predictive power, some nodes may
be removed in a pruning process [2].

A random forest (RF) is comprised of an ensemble of
trees, each obtained via a recursive partitioning algorithm,
as described above. The trees of a random forest are built
such that at each node, a new random subset of all predic-
tors is drawn and from this, a splitting variable is selected.
This has the advantage of appropriately handling corre-
lated predictors and avoids over-fitting. A measure of var-
iable importance is obtained for each predictor based on
all of the trees in the forest. Typically, the rank order of the
importance score is reported [11,24,25]. A complete dis-
cussion of the RF methodology can be found in Breiman,
L. (2001) [1] and straightforward implementation is
achieved using the R package randomForest.

Multivariate adaptive regression splines
Multivariate adaptive regression splines (MARS) is an
alternative ML approach that involves fitting a series of
reflective basis functions and their products. A complete
discussion of model fitting and pruning is provided in
Friedman, J. (1991) [3] and Hastie, T. et al. (2001) [4]. In
this study, for ease of presentation, we consider a domi-
nant genetic model so that genotype predictors in the
form of SNPs are coded as indicators for the presence of at
least one variant allele. Other genetic models such as addi-
tive, recessive and co-dominant are reasonable and both
MARS and RF can be applied to these alternative settings.
Treating SNPs as 3-level factor variables has the advantage
of not requiring a prior knowledge of the underlying
genetic model. In this case, we can generate two binary
variables for each SNP and proceed in the same manner as
described below. Interestingly, in the case of binary pre-
dictor variables, MARS is closely related to CART as we
now illustrate.
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Suppose we are interested in the set of predictors given by
X1,..., Xp. As described in Hastie, T. et al. (2001) [4], MARS
begins by considering the model given by:

Y = α0 + α1(Xj - t)+ + α2(t - Xj)+ + ; (1)

where t ∈ {xj} for each j = 1,..., p. Here  is measurement
error, t is an element of the set of observed values xj of the
predictor Xj, and (·)+ denotes the positive component of
the argument within the parentheses. In the setting of
binary predictors, we have that t ∈ {0, 1} and thus Equa-
tion 1 reduces to:

Y = β0 + β1 Xj + . (2)

The best predictor  is defined as the variable that leads

to the greatest reduction in the residual sums of squares.
Notably, this first step is identical to the regression tree
approach described above. In MARS, a model set  is
then defined as the set of functions (in our case predic-
tors) given by {1, Xj}. The next step is to fit models that

involve products of the elements of  and the predictor
variables. That is, models of the form:

and

are considered for k = 1,..., p. The difference between CART
and MARS becomes apparent at this stage since CART
does not allow for models of the form given by Equation
3. That is, MARS is more conducive to modeling additive
structure across predictors. Again the best predictor is cho-

sen, this time of the form Xk or Xk, and then added to

the model set . The process is repeated recursively to
build a model of both additive and interaction terms.
Finally, a backward deletion procedure is applied to
reduce overfitting. MARS is also straightforward to imple-
ment using the R packages Earth and Mars.

Methods
In this section, we begin by describing several simple
models of association for genotypes, covariates and a sin-
gle quantitative trait. We then describe a few reasonable
approaches to handling covariates. Finally, a description
of the simulation approach is provided.

Models of association
Consideration is given to 6 underlying models of associa-
tion involving genotypes (Xi), covariates (Zi) and the
dependent continuous trait (Yi) where i = 1...n indicates
individuals. Notably Xi and Zi can each be scalars or vec-
tors, depending on the number of genotypes and covari-
ates under investigation. In all cases, the errors denoted i
are assumed to be independent and normally distributed
with mean 0 and variance σ2. The following models of
association are considered.

MODEL 1: ADDITIVE. An additive model is given by:

In this model, Xi and Zi are additive with effects on the
trait Y equal to β and γ respectively.

MODEL 2: ADDITIVE WITH CONFOUNDING. An additive
model with confounding is again described by Equation
5. In this case, however, the variables X and Z are assumed
to be correlated with one another.

MODEL 3: ADDITIVE WITH EFFECT MEDIATOR. An effect medi-
ator is defined as a variable that is within the causal path-
way to disease. For the third model of association, we
assume that the covariate Z is in the causal pathway
between the genotype X and the trait Y . This is described
formally by the following two models:

and

MODEL 4: INTERACTION. A model for statistical interaction
between the genotype (X) and the covariate (Z) has the
form:

Here (XZ) is used generically to denote one or more mul-
tiplicative terms involving both X and Z. The model
implies that the effect of the combination of X and Z,
given by ζ is greater than the sum of the effects of X and Z
alone.

MODEL 5: INTERACTION WITHOUT MAIN EFFECTS. A model for
interaction without main effects is given by:

This model assumes that there is no effect of X or Z unless
both X and Z are present.

X j
∗





Y X Xj k= + + +∗b b b0 1 2 ² (3)

Y X X Xj j k= + + +∗ ∗b b b0 1 2 ² (4)

X j
∗



Yi i
T

i
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Z Xi i
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Yi i
T
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i= +( )XZ zz ² (9)
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MODEL 6: CONDITIONAL ASSOCIATION. Finally, a model for
conditional association is given by:

This model implies that the genotype X affects the trait Y
only in the presence of the covariate Z, that is for Z > 0.
The strength of the relationship between Y and the predic-
tor variables in these models is measured by the effect
size, which is defined as the expected value of the regres-
sion coefficient β minus the hypothesized value, given by
0 in our setting, and divided by the common standard
deviation [26].

Approaches to handling covariates
We consider 4 approaches to handling covariates in the
application of a machine learning algorithm. Each of
these has been described previously in the literature.

APPROACH 1: INCLUDE AS PREDICTOR. One approach to han-
dling covariates is to include them as potential predictors
in the machine learning algorithm. That is, define the set
of potential predictor variables by (X1,..., Xp, Z1,..., Zq).

APPROACH 2: STRATIFY. A second approach is to first stratify
our sample by the value(s) of one or more covariates. For
example, suppose Z is an indicator variable for smoking
status. A stratified analysis involves first organizing our
data according to the level of Z so that smokers (Z = 1) are
in one group and non-smokers (Z = 0) are in another
group. Next, a machine learning algorithm can be applied
to both subgroups separately to determine the X variables
that are most predictive within smokers and non-smokers
respectively.

APPROACH 3: RESIDUALIZE. A third approach is to first
regress the outcome Y on the covariates Z by fitting a lin-
ear model of the form:

Yi = α + Zi β + i (11)

A new residualized Yi given by :

is calculated based on a model fitting procedure where 

and  are least squares estimates. The machine learning

algorithm is then applied to this new outcome,  with
potential predictors, X1,..., Xp.

APPROACH 4: IGNORE Finally, application of a machine
learning algorithm without regard to covariates is consid-

ered. In this case, only the set of predictors X1,..., Xp (and
not Z1,..., Zq) is used in the analysis.

Simulation approach

For our simulation study, we begin by generating 8 binary
genotype indicators, (Xj : j = 1,..., 8) and a single covariate

(Z). For example, Xj may be an indicator for the presence

of at least one variant allele at a given locus or across mul-
tiple loci within a gene and Z may be an indicator for
smoking status. Both binary and continuous covariates
are considered. Genotype frequencies of 0.50 and 0.25 are
assumed. This corresponds to variant allele frequencies of

0.293 = 1 -  and 0.134 = 1 - , respec-

tively. The trait Y is generated under each of the 6 models
described in Section. In each case a single genotype pre-
dictor is assumed to be associated with the trait and with-
out loss of generality we let this be X1. We assume a range

of effect sizes for this predictive genotype and the interac-
tion terms involving it, while the covariate effect size is

fixed at 0.5. That is, we vary values of β/σ and ζ/σ. In cases
where the underlying model has an interaction term, the
Earth function is run with the option degree = 2 which
allows for two-way interaction terms in the MARS model.
Samples of size n = 500 are generated in each of S = 1000
simulations per model and condition.

For MODEL 2, we use the method of Kang, S. and Jung, S.
(2001) [27] to generate correlated binary variables. Values
of the correlation between X and Z ranging from 0.2 to 0.9
are considered. In the case of a continuous covariate, the
discrete approach described by Tannenbaum, S. et al.
(2001) [28] is applied to induce correlation between X
and Z. For MODEL 3, we simulate a mediator binary varia-

ble Z via a logistic regression on X and let Z = 1 if ψ ≥ 

or Z = 0 if ψ <  where ψ is a uniform random number

between 0 and 1 and  is a predicted probability that Z =

1 conditional on X. In this case we let the effect size of X
(on Z) vary and set the effect of Z (on Y) to equal 2. When
Z is a continuous mediator variable, it is simulated by a
simple linear regression on X with normal errors with
mean 0 and variance equal to 1. In all other models, a
continuous Z is simulated from a normal distribution
with mean 0 and variance 1, and a binary Z is simulated
with a frequency of 0.5.

For the RF setting, the variable importance score is
recorded for all inputs. In the MARS setting, the set of
terms selected in the final model is recorded. We focus on
the true and false discovery rates for the genotype X1 in the

Yi i
T

i
T

i= + +Z XZbb zz( ) ² (10)

Yi

Y Y Y Y Zi i i i i= − = − +ˆ ( ˆ ˆ)a b (12)
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presence of a covariate. In the context of RFs, we define the
true discovery rate (TDR) as the proportion of simulations
in which the truly predictive genotype X1 is ranked highest
or second highest to Z. Under MARS, TDR is defined as the
proportion of simulations in which X1 is in the final
model set and is selected first, second to Z or in interac-
tion with Z. While similar to power, the term TDR is used
since formal testing is not performed. This term is
intended to reflect the exploratory nature of machine
learning algorithms. False discovery rate (FDR) is defined,
under the null model of no association of X or Z with Y,
as the maximum proportion of simulations in which any
of the inputs has the highest importance score given by RF
or is selected first in the final model set of MARS.

Results
Simulation study
The plots of changes in TDR as a function of the change in
effect size of X1 or (X1, Z) interaction are given in Figures
1 and 2, for RF and MARS respectively, and for each of the
models described above. These results are obtained based
on a binary covariate and genotype frequencies of 0.5. A
summary of these figures is given in Table 1. In most cases,
RF and ML have reasonable TDR to detect moderate gen-
otype effect sizes (≥ 0.5), with the notable exception of
Model 3. Under Model 3 in which the covariate (Z) is in a
causal pathway between the genotype (X1) and outcome
(Y), reasonable discovery rate is only achieved by ignoring
Z and for relatively high effect sizes. As expected, Model 4
which has main effects and interaction terms, shows high
TDR at very low effect sizes for all approaches to handling
the covariate. Under Models 5 and 6 in which the effect of
X on Y is only through an interaction with Z, RF appears
to have slightly lower discovery rate than MARS at moder-
ate effect sizes when using the residualize and ignore
approaches. When applying these ML algorithms under
the null model of no X or Z association with Y, we obtain
FDR of 13% for RF and 4% for MARS.

Plots of changes in TDR and FDR under MODEL 2 with
change is correlation between X1 and Z are given in Fig-
ures 3 and 4, for RF and MARS respectively. A summary of
these figures is given in Table 2. Under RFs, there is high
TDR to detect the genotype effect for all levels of correla-
tion when the include and ignore approaches are used;
however, these approaches also lead to high FDR with
increasing levels of correlation between predictors. Strati-
fying and residualizing result in a reduction in TDR at lev-
els of correlation ≥ 0.5, and consistently low FDR. Under
MARS, including, residualizing and ignoring Z result in
reasonable TDR to detect the genotype effect while strati-
fying results in reduction in TDR for correlation > 0.5.
FDR under MARS is consistently < 10% when including,
stratifying and residualizing but increases with level of
correlation when the ignore approach is used.

The simulations are carried out again with genotype fre-
quencies equal to 0.25, and the results (not shown) are
consistent with those for frequencies equal to 0.5, but
with relatively lower TDR. Lastly, the simulations with a
continuous Z are carried out for a fixed X1 and Z effect size
of 0.5 and the results are given in Table 3. In this case,
three of the four approaches to handling covariates are
applied, namely, including, residualizing and ignoring
covariates. For ease of interpretation, a summary of these
results is given in Table 4. We look at the comparative per-
formance of RF and MARS for this simulation for each
model in turn. Under MODEL 1, we have reasonable TDR
to detect genotype except when we include Z for MARS. In
this case, TDR is relatively low at 55%. Under MODEL 2
with confounding, reasonable TDR is achieved only when
include and residualize are applied under RF. Under
MODEL 3, reasonable TDR is achieved when Z is included
under RF; however we have lower TDR when ignoring Z
and residualizing reduces TDR to < 20%. Under MODEL
4 both RF and MARS show reasonable TDR to detect the
genotype in all cases. This is consistent with the result of
binary Z under this model. Under MODELS 5 and 6 rea-
sonable TDR is only achieved when Z is included for both
RF and MARS. When applying these ML algorithms under
the null model of no X or Z association with Y, given that
Z is continuous, we obtain an FDR of 13% for RF and 19%
for MARS.

HIV data example
We apply each approach to handling covariates using
both RF and MARS on a genetics data set of HIV-1 infected
individuals collected as part of the AIDS Clinical Trials
Group (ACTG) New Works Concept Sheet 224
(NWCS224). The data set includes 626 individuals who
are on combination anti-retroviral therapy (ARTs). We
focus on the level of high-density lipoprotein cholesterol
(HDL-c) as the trait (outcome) of interest, and consider 4
genes [Apolipoprotein C-III (ApoC-III), Apolipoprotein-E
(ApoE), Endothelial Lipase(EL) and Hepatic Lipase (HL)]
with 5, 2, 3 and 4 SNPs, respectively, as potential predic-
tors. First stage analysis results, including complete demo-
graphic and clinical information on this cohort are
presented in Foulkes, A. et al. (2006) [29]. An application
of the RF algorithm to these data within the context of
unobservable phase is presented in Nonyane, B. and
Foulkes, A. (2007) [30].

Our analysis is limited to n = 512 individuals with a
known duration of ART exposure and complete data in
HDL-c. Among these are 317 Whites/non-Hispanic, 92
Blacks/non-Hispanic and 103 Hispanics. Some studies
have shown that genetic variation plays a role in lipid dif-
ferences across various races or ethnic groups [31-33]. For
the ACTG data set, race/ethnicity was shown to be signifi-
cantly predictive of plasma lipids changes and there is
Page 5 of 13
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TDR to detect genotype effects under all approaches to handling covariates using Random ForestsFigure 1
TDR to detect genotype effects under all approaches to handling covariates using Random Forests: For all models Z effect is 
fixed at 0.5 except for Model 3 where Z = 2. For Model 2, corr(X1, Z) = 0.5. For Models 1–3 X1 effect is varied over [0.1,0.9] 
while for Models 4–6 the effect sizes of main effects, if a model has main effects, are fixed at 0.5 and the effect size of the inter-
action term is varied over [0.1,0.9].
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TDR to detect genotype effects under all approaches to handling covariates using MARSFigure 2
TDR to detect genotype effects under all approaches to handling covariates using MARS: Z and X1 effect sizes are as in Figure 
1.
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Table 1: Summary of TDR analysis for binary genotypes and covariates

Approach

Model Include Z Stratify by Z Residualize by Z Ignore Z

1. ADDITIVE +/+ +/+ +/+ +/+
2. ADDITIVE WITH CONFOUNDING ++/+ +/+ +/+ ++/++
3. ADDITIVE WITH EFFECT MEDIATOR - -/- - - -/- - - -/- - -/-
4. INTERACTION WITH MAIN EFFECTS ++/++ ++/++ ++/++ ++/++
5. INTERACTION WITH NO MAIN EFFECTS +/++ +/++ -/+ -/+
6. CONDITIONAL ASSOCIATION +/+ +/+ -/+ -/+

Summary of simulation results in Figures 1 and 2: Results are given in pairs corresponding to RF and MARS respectively; a "+" indicates reasonable 
TDR (≥ 80%) for detecting moderate effect sizes (≥ 0.5); "++" indicates reasonable TDR (≥ 80%) for detecting small effect sizes (≥ 0.3);"-" indicates 
lower TDR (50% to 80%) for moderate effect sizes; and '--" indicates very low TDR (< 20%) at moderate effect sizes. Correlation between X1 and 
Z is fixed at 0.5 for MODEL 2.

True and false discovery rates for genotype effects with correlated predictors using Random ForestsFigure 3
True and false discovery rates for genotype effects with correlated predictors using Random Forests: The first plot illustrates 
the effect of confounding on TDR when X1 and Z effects are fixed at 0.5, while the second plot illustrates FDR given that the Z 
effect is fixed at 0.5.
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some evidence of race/ethnic differences in the associa-
tion between lipid abnormalities and genotypes among
patients on ARTs [29]. We therefore carry out the analysis
with the expectation that RF and MARS may find a strong
effect of race/ethnicity as well as some evidence of con-

founding or interaction between this covariate and geno-
types in predicting HDL-c levels.

We begin by log transforming HDL-c and fitting a model
with all 14 SNPs as well as race/ethnicity as potential pre-
dictors of log(HDL-c) levels. Secondly, we fit a model in
which race/ethnicity is excluded from input. Thirdly, we
fit a model after residualizing by race/ethnicity and lastly,
we fit separate models for the three different ethnic
groups. The results are given in Table 5 for RF and 6 for
MARS. We run RF multiple times (M = 1000) to ensure
stability [11]. Table 5 lists the median standardized varia-
ble importance score and standard error for each predic-
tor. In the first approach, race/ethnicity is seen to have the
highest median ranking above all predictors, followed by
the ApoC-III [-482C/T (rs2854117)] SNP. Residualizing
and ignoring this covariate give similar SNP rankings and
results in the same ApoC-III SNP as the most important
one. Stratifying by race suggests that the gene-HDL-c rela-
tionship is potentially modified by this covariate since dif-
ferent SNP subsets are ranked highest in the 3 racial

True and false discovery rates for genotype effects with correlated predictors using MARSFigure 4
True and false discovery rates for genotype effects with correlated predictors using MARS: Z and X1 effect sizes are as in Figure 
3.
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Table 2: TDR and FDR under Model 2

RF MARS

Approach TDR FDR TDR FDR

1. Include Z + - + +
2. Stratify by Z - + - +
3. Residualize by Z - + + +
4. Ignore Z + - + -

Correlation between X1 and Z is varied as shown in Figures 3 and 4: 
"+" indicates reasonable TDR (> 80 for RF and > 70% for MARS) or 
low FDR (< 20% for RF and < 10% for MARS) for all levels of 
correlation; and "-" indicates decreasing TDR or increasing FDR as 
correlation increases.
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groups. This represents an example that supports the sim-
ulation findings for MODELS 5 and 6 with interaction
terms. Specifically, TDR is low for detecting SNPs ApoC-
III [Gly34GlyC/T rs4520], EL [rs12970066] and HL
[rs6084] unless a stratified analysis is performed. Notably,
for the Whites/non-Hispanic group, which makes up the
majority of the sample, the two most predictive SNPs
match those that were selected using other approaches.

Table 6 gives results of the analysis using MARS. Unlike
RF, multiple runs of MARS on the same data set produce
the same results and therefore we only run MARS once for
this data set. For each of the predictors that were selected
in the final model we report the order in which they were
selected during the model-fitting process. When two or
more predictors have the same ordering it implies that
they act in interaction with each other at the correspond-

ing model-fitting stage. Like in RF, race/ethnicity is
selected as the most predictive of all predictors in the first
approach. The SNPs selected using this approach differ
from RFs. Interestingly, MARS identifies the HL [rs6084]
SNP that RF only detected with the stratified analysis. This
result is consistent with the simulation study findings that
suggest MARS has a greater TDR for detecting genotype
effects that interact with the covariate (MODELS 5 and 6)
under the include approach. Interestingly, for the Hispan-
ics group, none of the SNPs are selected under MARS,
though several SNPs appear in the RF analysis. This may
reflect the loss in power associated with subset analyses.

Discussion
The aim of this investigation is to characterize the relative
performances of RF and MARS algorithms for different
models of association in genetic studies of unrelated indi-

Table 3: TDR for detecting genotype effects in the presence of a continuous covariate

Approach

MODEL Include Z Residualize by Z Ignore Z

MODEL 1: ADDITIVE

β/σ = γ/σ = 0.5 0.969/0.546 0.993/0.999 0.965/0.995

MODEL 2: ADDITIVE WITH CONFOUNDING

β/σ = γ/σ = 0.5 0.922/0.729 0.942/0.731 0.116/0.740

MODEL 3: ADDITIVE WITH EFFECT MEDIATION

β/σ = 0.5, γ/σ = 2 0.829/0.703 0.133/0.033 0.510/0.628

MODEL 4: INTERACTION

β/σ = γ/σ = ζ/σ = 0.5 0.999/0.909 0.995/0.998 0.930/0.984

MODEL 5: INTERACTION, NO MAIN EFFECTS

ζ/σ = 0.5 0.898/0.963 0.137/0.033 0.137/0.036

MODEL 6: CONDITIONAL ASSOCIATION

γ/σ = ζ/σ = 0.5 0.906/0.854 0.119/0.037 0.127/0.045

TDR is given in pairs corresponding to RF and MARS, respectively.

Table 4: Summary of results in Table 3

MODEL Include Z Residualize by Z Ignore Z

MODEL 1: ADDITIVE +/- +/+ +/+
MODEL 2: ADDITIVE WITH CONFOUNDING +/- +/- - -/-
MODEL 3: ADDITIVE WITH EFFECT MEDIATION +/- - -/- - -/-
MODEL 4: INTERACTION WITH MAIN EFFECT +/+ +/+ +/+
MODEL 5: INTERACTION WITH NO MAIN EFFECT +/+ - -/- - - -/- -
MODEL 6: CONDITIONAL ASSOCIATION +/+ - -/- - - -/- -

Results are given in pairs corresponding to RF and MARS, respectively:
"+" denotes reasonable TDR (> 80%) to detect genotype;
"-" denotes lower TDR (50% – 80%) to detect genotype;
and "--" denotes very low TDR (< 50%) to detect genotype.
Page 10 of 13
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viduals. Our study was motivated by the fact that even
though there exists extensive genetic epidemiology litera-
ture about applications of ML algorithms in this setting, it
is not well established how these algorithms perform
under different approaches to handling covariates and
various models of association. Overall, our investigation
found that for a binary covariate: (1) machine learning
algorithms perform relatively poorly in the context of
effect mediation and the best approach in this setting is to
ignore the mediator variable; (2) in the context of con-
founding, for high levels of correlation (> 0.5), it is best to
use MARS and include the confounder or residualize.
While TDR is lower for RF, MARS maintains control of
FDR in these cases and is preferable; and (3) in the pres-
ence of interaction with no main effects and conditional
association MARS performs better and it is best to include
or stratify by the covariate.

The results of a continuous covariate vary and suggest that
RFs perform better in most cases, though MARS and RFs
are equally powerful when there is interaction with main
effects. In a recent manuscript, Strobl, C. et al. (2007) [34]
demonstrate that RFs can result in biased predictions in
the case of both continuous and categorical predictors and
they propose an alternative implementation of RF. In the
analysis of the ACTG data set, both RF and MARS showed

a strong association between HDL-c and race/ethnicity
and evidence of underlying gene by race/ethnicity interac-
tion as was shown in previous studies. MARS provides for
uncovering gene by gene interaction both across and
within racial groups.

Notably, machine learning algorithms are highly amena-
ble to the analysis of a large number of input variables, as
documented in the literature referenced in the introduc-
tion. We found that the computational burden of RFs
using the randomForest package in R is greater than that
of MARS, using the earth package which is also imple-
mented in R. This is likely due to the fact that RFs involves
fitting an ensemble of trees while MARS fits the equivalent
of a single tree. This discrepancy will increase as the
number of inputs increases. In this manuscript, we limit
our simulation study to include 8 genotype indicators for
the purpose of a coherent presentation. We also limit our
analysis of the importance of genes and covariates to the
relative rankings in RF and appearance in the final MARS
model for ease of comparison between the two algo-
rithms. A formal test of significance can be achieved using
the robust inference approach described in van der Laan,
M. (2006) [35]. Control for multiple testing is imperative
for formal testing in this high-dimensional setting due to

Table 5: Random Forest results of the analysis of ACTG data with HDL-c levels as trait and SNPs from ApoCIII, ApoE, EL and HL 
genes and race/ethnicity as predictors

Include* Ignore* Residualize* White
(n = 317)

Stratify* Black
(n = 92)

Hispanic
(n = 103)

ApoC-III
-482C/T (rs2854117) 12.68(0.63) 11.81(0.60) 13.07(0.66) 13.05(0.66) -2.04(0.96) 1.19(0.97)
-455T/C (rs2854116) 9.04(0.66) 9.69(0.66) 10.13(0.67) 8.90(0.69) -0.57(0.98) 1.27(0.98)
intron 1 (466)G/C (rs2070669) 4.70(0.93) 5.85(0.88) 5.91(0.90) 4.55(0.91) -2.78(0.94) -2.62(1.00)
Gly34Gly C/T (rs4520) 8.86(1.12) 5.51(1.03) 4.77(1.07) 2.99(1.02) 0.91(0.99) 11.87(0.91)
exon 4 SstI 4348(5) C/G(rs5128) 0.60(1.01) 2.12(1.04) 2.34(1.04) 2.91(1.03) -3.20(0.97) 2.95(1.00)

ApoE
Arg112Cys T/C (rs429358) 4.87(1.08) 1.45(1.00) 2.29(1.06) 6.29(1.08) -5.22(0.96) 6.30(0.98)
Arg158Cys T/C (rs7412) 6.02(0.98) 7.49(1.00) 7.49(0.93) 5.08(0.92) -5.20(0.97) 2.69(0.98)

EL
rs12970066, 3.94(1.03) 4.00(0.97) 5.54(0.97) 1.12(0.97) 8.57(0.91) -1.81(1.05)
Asn396Ser, 7.06(1.03) 8.30(1.05) 8.39(1.10) 2.27(1.04) 5.93(0.90) 2.09(0.97)
rs3829632 (-1309A/G) -1.10 (0.99) 1.24(0.98) 2.25(1.04) -1.64(0.98) 0.00(0.00) -2.25(0.96)

HL
rs2070895 11.81(1.04) 7.86 (1.09) 5.54(0.99) 5.58(1.11) -1.73(0.95) 2.82(0.97)
rs12595191 -0.93(0.97) -1.77(1.00) -1.07(0.99) -3.62(1.00) -1.99(0.99) 0.07(0.99)
rs690 10.41(1.08) 1.28(0.99) 0.53(0.98) 3.93(1.05) -3.98(0.97) 9.61(0.96)
rs6084 7.42(1.01) 6.47(1.01) 6.27(1.06) -1.15(1.01) 9.31(0.86) 10.97(0.90)

Race/ethnicity 21.58(1.15) NA NA NA NA NA

" * " indicates the approach to handling the race/ethnicity covariate;
"NA" indicates that the predictor was not included in the analysis.
The two highest importance scores from RF are in bold.
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inflation of type-1 error, as evidenced in our simulation
under the global null model in the Results section.

For the purpose of a concise presentation, we focus our
approach and discussion on the evaluation of alternative
strategies for incorporating covariates. Several important
concepts require further consideration. Specifically, the
simulation study focuses on a quantitative trait as the pri-
mary outcome of interest; and the impacts of genotyping
errors, missing (genotype or covariate) data, variable pen-
etrance and allelic heterogeneity are not considered.
Extensive research supports the relevance of these factors
on TDRs and FDRs. We further note that genetic associa-
tion studies often involve a large number of SNPs. While
our simulation study involves a small number of geno-
type predictors for clarity of presentation, ML algorithms
have been widely applied to genetic studies of much
higher dimensions [11,14,15]. Finally, we present our
study in terms of gene-covariate interactions; however,
our findings with regard to categorical covariates are
equally applicable to gene-gene interactions that are
coded similarly.

Conclusion
In this manuscript we present the results of the study
whose main aim was to compare approaches for handling

the combination of SNPs and covariates within and across
two ML algorithms. Based on the simulation study and
the example, we conclude that both RFs and MARS are
powerful algorithms for selecting subsets of significant
predictors, but careful consideration of how to deal with
underlying gene-covariate-trait relationships is important,
particularly if confounding or effect mediation is likely.
This study may be easily extended to other existing ML
algorithms.
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