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Abstract

Coronary heart disease (CHD) is the leading cause of death in the UK. Re-
cent technological advances in metabolomics have the potential to contribute
to further the understanding of CHD, especially because they are facilitating
the collection of metabolomics data in large observational studies. However, the
high dimensionality of this type of information and its strong interdependencies
raise several analytical difficulties.

These difficulties were investigated, motivated by the study of 228 metabo-
lites acquired from blood samples as part of the British Womens Heart and
Health Study (BWHHS). Issues regarding transformations of the metabolomics
data and their reliability were examined. Analytical methods typically adopted
with high-dimensional data were reviewed, and then a more recently developed
method, differential networks, was examined in detail.

When investigating differential networks using simulations of three alternative
data generating scenarios, it was found that an edge between two nodes can be
induced if the effect of one node on disease is modified by another node, or if
the disease causes (or is associated with) a “breaking down” in the relationship
between the two nodes. The simulations focused on simplified settings but ex-
emplify the difficulties in interpreting differential networks and helped elucidate
the sample sizes required.

Further algebraic examination of likely data generating mechanisms identified
the potential pitfalls of relying on partial correlations in building differential
networks. This shows that, when important nodes influencing the correlation
structure are not measured, irrelevant edges may be selected, while relevant
ones may be missed.

Analysis of the BWHHS metabolite data flagged a small number of metabolites
that could potentially be associated with CHD, with small VLDL triglycerides
being the strongest candidate. Comparisons were made with the results ob-
tained using regression-based methods as these are more easily accessible to
epidemiologists. The fact that there was little overlap in identified biomarkers
is an indication of the complexity of this field of research.
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Chapter 1

Introduction

The amount of data accessible to medical researchers is increasing exponentially.
Data collection techniques are advancing, and computer processing power is ac-
celerating allowing more and more data to be acquired in a more cost effective
manner. Once these data are collected there still remains the task of making
sense of them. With such rich data available it is necessary to explore new
methods, to complement more traditional methods of data analysis, in order to
exploit this richness.

A dataset has been acquired from a cohort study of heart disease (the British
Women’s Heart and Health Study), where previously stored blood samples were
analysed using 1H-NMR spectroscopy providing over 200 new biomarkers which
can be investigated to identify any association with the disease. The high-
dimensionality of this dataset presents some difficulties in analysis, which pro-
vides the motivation for this thesis - can we exploit these data to gain a greater
understanding of the cohort and its relationship with coronary heart disease?
This leads to the two main aims of this thesis:

1. Describe the new metabolomic data and investigate its reliability

2. Investigate the use of a recently developed analysis method, differential
networks, critically reviewing the suitability of the method and applying
it to the cohort data available.

In chapter 2 the cohort study that provides the motivation for this research will
be introduced and the characteristics of the cohort described. This is followed
by a chapter describing in depth the metabolomic data that has been recently
made available. It includes a description the data structure and any data issues
arising, possible transformations of the data that could aid analyses, an inves-
tigation into how closely the metabolites measured using both 1H-NMR spec-
troscopy and standard methods agree and an investigation into the short-term
reliability of the metabolites measured using 1H-NMR spectroscopy, addressing
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aim 1. Chapter 4 then provides an overview of a few typical methods currently
used to analyse high-dimensional data, with each applied to the cohort data and
interpreted.

The subsequent chapters are all dedicated to addressing aim 2, chapter 5 in-
troduces the concept of network analysis and describes some of the basic terms
and network statistics involved. Chapter 6 introduces the concept of differential
network analysis and contains a short literature review on the topic, followed by
a detailed simulation study investigating the potential interpretations of a dif-
ferential network. Chapter 7 provides a more practical approach to differential
network analysis, highlighting some of the difficulties involved with the process
and describing its limitations before going on to apply the method to the cohort
data described in chapter 3. Differential network analysis has not previously
been attempted using time to event data, so chapter 8 expands the analysis
from the previous chapter to investigate this possibility. The final chapter aims
to provide an overview of the research described in this thesis and a discussion
of the findings.
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Chapter 2

British Women’s Heart and
Health Study

The motivation for this thesis is the investigation and development of methods to
be used in the analysis of high-dimensional metabolomic data, which is becoming
more widely available in epidemiological studies. The study that will be focussed
on is the British Women’s Heart and Health Study (BWHHS) which will be used
as an applied example of the methods discussed, with the outcome of interest
being CHD incidence. This chapter provides an overview of this study.

2.1 Introduction

The BWHHS is a prospective cohort study of heart disease, funded by the De-
partment of Health and the British Heart Foundation [1]. 4286 British women
between the ages of 60 and 79 were recruited from 23 British towns between
1999 and 2001 and the cohort subsequently followed up at regular intervals.
The data currently available covers a 12 year period of follow up. The data
from this cohort has been used in a wide range of research such as investigating
associations between socioeconomic position and cardiovascular disease (CVD)
[2, 3], geographical variations in CVD [4, 5], determinants of stroke and coro-
nary heart disease (CHD) [6–8], physical activity in older women [9, 10] and
also the investigation of novel risk factors for CHD [11, 12].

The study team visited each town involved for a two week period between 1999
and 2001 to collect baseline data. All women completed a questionnaire covering
lifestyle factors and medical history, followed by an interview with a nurse, who
asked in more detail about specific heart problems or symptoms the participant
may have had as well as gathering information relating to any medication taken.
A deprivation score (Carstairs Index) was derived for each participant based on
their area of residence at the time of data collection. Next a medical exam with
a second nurse took place where measurements of height, weight, blood pres-
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sure and lung function were made. A resting electrocardiogram was performed
and a fasting blood sample was taken from consenting participants. Finally, all
women interviewed during the first week of the two week period were asked if
they would be willing to return the following week to have a second medical
exam and provide another blood sample, for quality control purposes (neither
the questionnaire nor the interview were required on the second visit).

A third nurse had the sole responsibility of processing the blood samples ob-
tained. These samples were allowed to sit for 30 minutes prior to centrifuging
at 3500rpm for 10 minutes to separate, and were then aliquotted into tubes.
The aliquots were then snap frozen on dry ice and placed in a freezer at -20◦C
before being transferred for long term storage at -80◦C.

From the collected blood samples, 36 biomarker measurements were quantified
initially, and then in 2013 a further 228 biomarker measurements (specifically
metabolomic data, discussed in chapter 3) were made available after all the
serum samples were analysed using 1H-Nuclear Magnetic Resonance (NMR)
Spectroscopy by the computational medicine group based in Oulu, Finland.
Throughout this thesis I will refer to the 36 original biomarkers as the stan-
dard biomarkers and the 228 biomarkers obtained via 1H-NMR as the NMR
biomarkers or metabolites.

Since baseline, the cohort has been followed up approximately every 3 years
(2003, 2007, 2010 & 2013), where a self-administered questionnaire is com-
pleted by the individual along with reviews of GP records for non-fatal events
and Office for National Statistics records for identifying deaths [13]. Although
some individuals have not completed the repeat questionnaires, the CHD status
has been ascertained for every individual in the study up to 12 years (with the
linkage to status records being performed in 2013).

2.2 Participant Characteristics

There were a total of 4286 women recruited for the study, and although the
aim was to recruit women from ages 60-79, the age of the women included in
the study actually ranged from 59 to 80 at entry, with a mean age at entry
of 68.9 years (SD 5.5) and a mean body mass index (BMI) of 27.6 kg/m2 (SD
5.0). Women were recruited from 23 different towns across the UK, with the
number included from each town ranging from 140 (Bristol, Hartlepool) to 204
(Exeter). Mean systolic blood pressure was found to be 147.1 mmHg (SD 25.2)
and mean diastolic blood pressure was 79.4 mmHg (SD 11.7). Smoking status
was also measured for particpants with 2371 (55.6%) classed as never smokers,
1401 (32.8%) ex-smokers and 495 (11.6%) as current smokers (19 individuals
were missing smoking status). There were 201 (4.7%) participants who had
evidence of prevalent diabetes.
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A CHD event is defined as an individual having had a confirmed myocardial
infarction (fatal or non-fatal), or cardiac revascularization surgery (coronary
artery bypass graft (CABG) or percutaneous transluminal coronary angioplasty
(PTCA)). A participant is said to have prevalent CHD if their first CHD event
occurred prior to the date of entry into the study, and incident CHD if an event
occurred after entry into the study. A total of 159 (3.7%) study participants
had evidence of prevalent CHD. The complete list of baseline characteristics is
shown in table 2.1.

2.2.1 Inclusion Criteria

As the motivation for this thesis is to investigate methods to analyse metabolomic
data in relation to CHD incidence, the analyses performed will only include
women from whom a NMR metabolite profile has been obtained successfully.

A total of 4286 women were recruited in the BWHHS. No medical exam was
performed on 291 of the participants, and 72 of those examined did not give con-
sent to providing a blood sample, leaving 3923 women who provided a baseline
blood sample. Of these, a further 146 were excluded from the dataset to be used
for analysis, 136 because there was an insufficient set of blood samples to have a
sample measured for the NMR biomarkers and 10 because of technical problems
with the NMR assays, leaving 3777 women with a valid NMR metabolite profile.

Figure 2.1: Inclusion criteria

These 3777 women will all be used in the analysis in chapter 3, where the
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NMR biomarkers are looked at in depth. However, in chapters 4, 7 and 8 CHD
incidence will also be investigated, with respect to the NMR metabolite profiles
of the participants. In these analyses, all individuals who have prevalent CHD
at baseline will be excluded also. Out of the 3777 included women, 143 have
prevalent CHD so will therefore be excluded from the analyses in chapters 4, 7
and 8.

2.2.2 Representativeness

To check that there was not a systematic difference between the women included
in the analysis and the women excluded because of missing NMR metabolite
profiles, the characteristics have been stratified by inclusion status in table 2.1.
It is worth noting that one of the exclusion criteria was that no medical exam
was performed, so the variables for BMI, waist-hip ratio and blood pressure are
missing for 58% of the excluded participants, which could explain some of the
differences identified. There were also large differences between the proportion
excluded in each town, with three towns having over 30% of their participants
excluded (Gloucester, Merthyr Tydfil and Mansfield) and 1 town (Ayr) having
no excluded participants.

Table 2.1: Baseline patient characteristics for all participants, and stratified by
whether they will be excluded from analysis due to a missing NMR metabolite
profile. (BMI: Body Mass Index; SBP: Systolic Blood Pressure; DBP: Diastolic
Blood Pressure; Deprivation: Percentage in top quintile of Carstairs index of
deprivation )

All
(N=4286)

Included
(N=3777)

Excluded
(N=509)

Mean(SD) Mean(SD) Mean(SD)
or % or % or %

Age(years) 68.9 (5.5) 68.8 (5.5) 69.3 (5.7)
BMI (kg/m2) 27.6 (5.0) 27.5 (4.9) 28.6 (5.3)
Waist-Hip Ratio 0.82 (0.07) 0.82 (0.07) 0.82 (0.07)
SBP(mmHg) 147.1 (25.2) 147.0 (25.2) 149.0 (25.3)
DBP (mmHg) 79.4 (11.7) 79.4 (11.7) 79.0 (12.2)
Deprivation 23.6% 22.6% 30.8%
Ever Smoker 44.4% 43.8% 49.0%
Prevalent Diabetes 4.7% 4.5% 6.1%
Prevalent CHD 3.7% 3.8% 3.1%

After performing a logistic regression using whether a participant was included
or not as the outcome variable, there was some evidence to suggest women who
were excluded from the study were more likely to have a higher BMI, be more
deprived and more likely to be have ever been a smoker (although this evidence
should be viewed with caution, given the large numbers of missing data for
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some of these variables). The effect of deprivation is strongly tied in with the
differences found between towns, as deprivation is based on the participants’
postcode, after adjusting for town the evidence of an association between depri-
vation and exclusion disappears. There appears to be no association between
inclusion and prevalent CHD or diabetes.

2.2.3 Missing Data

The baseline data for the 3777 women to be included in the chapter 3 analyses
are fairly complete. Table 2.2 shows the number of missing values for each of
the baseline characteristics.

Table 2.2: Number of missing values for each of the baseline characteristics from
the BWHHS (BMI: Body Mass Index; SBP: Systolic Blood Pressure; DBP:
Diastolic Blood Pressure)

Number of Missing values
Age(years) 0
BMI (kg/m2) 33
Waist-Hip Ratio 43
SBP(mmHg) 24
DBP (mmHg) 24
Deprivation 15
Smoking Status 2
Prevalent Diabetes 0
Prevalent CHD 0

2.2.4 Outcomes

Of the 3777 women with a valid NMR metabolite profile, 143 had prevalent
CHD at baseline (3.8%). Of the 3634 women who did not have CHD at base-
line, 182 (5.0%) went on to have a CHD event in the 12 year follow up period
while 705 (19.4%) died within the follow up period without experiencing a CHD
event. The median time to CHD event was 5.3 years (IQR 2.7,8.2) and median
time to death was 7.3 years (IQR 4.5,9.6). A curve plotting the cumulative
incidence of both CHD and death is illustrated in figure 2.2.
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Figure 2.2: Cumulative incidence of non-CHD deaths (orange) and fatal/non-
fatal CHD events (navy blue) among the 3634 women without prevalent CHD
at baseline.

The focus of the next chapter will be the NMR metabolites measured on blood
taken at baseline, providing a brief description of what they are followed by a
detailed description of their observed distributions, before finally investigating
their internal reliability and, where the same metabolite had been quantified
previously using more traditional means, the agreement between the 1H-NMR
metabolite and the original measurement.
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Chapter 3

NMR biomarkers

The aim of this chapter is to introduce the topic of metabolomics and to provide
an in depth description of metabolomic data from the BWHHS, which includes
an assessment of the short term reliability of the biomarkers measured as well
as the agreement between biomarkers measured using two different techniques.

3.1 Introduction

Aetiological research in epidemiology is being increasingly complemented by
metabolomics [14]. Metabolomics is the study of the metabolome, which is the
collective name for the small molecules found in cells, tissues and biofluids [15].
These small molecules are referred to as metabolites. Measuring the metabolome
of an individual is of interest because it is closely related to environmental and
behavioural factors. i.e. the concentrations of certain metabolites will change
depending on what an individual eats or drinks or if they are exposed to drugs.
So measurement of the metabolome may help elucidate the causal pathways
from behaviour to disease [16]. This could also be considered a downside, as
it may be difficult to distinguish between transient effects (i.e. what the in-
dividual has just eaten) from more persistant exposures. It is also associated
with the genome so its knowledge can help uncover the pathways from geno-
type to disease phenotype [17], and since metabolites are the end product of
many cellular processes in the body they are considered to have a closer rela-
tionship to changes in the body due to disease than genomics, transcriptomics
and proteomics [18]. Metabolomics is also generally cheaper per sample than
proteomics and transcriptomics [16].

There are also two broad categories of metabolomics, one is ‘discovery based’
metabolomics, where the aim is to discover new metabolites that are potentially
markers or risk factors for a disease phenotype [19] with the other category being
the quantification of the concentrations of a specific set of known metabolites
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in a sample of tissue or fluid [20].

In recent years, technological developments have made it possible to measure
greater numbers of metabolites in large epidemiological cohorts in a more cost
effective and timely manner [21, 22]. The two main technologies used to do
this are Mass Spectrometry [23] and Proton Nuclear Magnetic Resonance (1H-
NMR) Spectroscopy [22, 24]. The analysis performed on the BWHHS data used
1H-NMR Spectroscopy on the participants’ blood samples to quantify the con-
centration of a set of known metabolites. (Throughout this thesis often “NMR”
is used as a shorthand for “1H-NMR”)

The protocol used to obtain the metabolite concentrations is described by Ala-
Korpela et al and Soinenen et al. [20, 22] but very briefly the aim of 1H-NMR
spectroscopy is to determine the structure of tissue or fluid using a magnetic
field. Subatomic particles have a characteristic spin [25] and by applying an
external magnetic field, some particles, such as Hydrogen-1 (1H), respond in
a predictable manner. Each compound containing 1H has its own unique re-
sponse, known as its chemical shift [26]. A sample (in the BWHHS, a sample of
plasma) is placed in the NMR spectrometer and a range of magnetic frequen-
cies is applied, resulting in a spectrum of responses, which are then converted to
metabolite concentrations. 1H NMR spectroscopy is a non-destructive method
[27], meaning that the sample can be preserved and potentially reused after
analysis.

3.1.1 NMR biomarkers in the BWHHS

The values for 149 biomarkers were quantified directly using 1H-NMR spec-
troscopy. Of these, 145 were the concentrations of metabolites found in the
serum samples, 3 were measurements of the mean diameter of lipoprotein par-
ticles in the serum samples (measured in nm) and 1 was the estimated degree
of unsaturation in total fatty acids. In addition to this, a further 79 biomarkers
were provided, which were ratios derived from the directly quantified concen-
trations of these metabolites. The metabolite concentrations were provided in
January 2015.

Table 3.5 illustrates the complete list of 228 biomarkers, including their units,
their untransformed mean, their range of values, how many observations are
missing and shorthand names for use in tables and figures throughout the the-
sis. The metabolites in this study can be categorised into 3 main groups, with
the metabolites from each group arising from 1 of 3 molecular windows [22].

1. The LIPO window - Albumin, liporotein subclasses and derived measures
(115 metabolites, 71 derived ratios)
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2. The LMWM window - Amino acids and other low molecular weight metabo-
lites (19 metabolites)

3. The LIPID window - Serum lipid extracts (15 metabolites, 8 derived ra-
tios)

3.1.1.1 LIPO window

The LIPO window contains the most metabolites (115) and of these, 98 are
measurements from lipoproteins that we class by their size and density. There
is a naming convention for these lipoprotein subclasses that is used throughout
this thesis. There are 4 different lipoproteins, named according to their density,
these are (density lowest to highest) :

(i) Very Low Density Lipoprotein (VLDL)

(ii) Intermediate Density Lipoprotein (IDL)

(iii) Low Density Lipoprotein (LDL)

(iv) High Density Lipoprotein (HDL)

VLDLs are the largest particles, followed by IDL, LDL and finally the smallest
set of particles among these are the HDLs. In addition to this, within each of
these 4 lipoproteins there are sub-types, classified according to their size (XXL
down to XS). So for example L–VLDL refers to the class of large, very low
density lipoproteins. S–HDL refers to small, high density lipoproteins. These
size classifications are not absolute, they are relevant within each lipoprotein,
so S–VLDL would be expected to have larger particles than L–HDL.

A VLDL lipoprotein particle is illustrated in figure 3.1, to show how the differ-
ent elements make up the overall structure. The core of the particle is made up
from triglycerides and cholesterol esters, and is surrounded by a surface layer of
free cholesterol, phospholipids and apolipoproteins.

For each lipoprotein subclass there are 7 measurements provided in the data,
each referred to by a unique suffix. These suffixes are:

(i) –P : Particle concentration

(ii) –L : Total lipids

(iii) –PL : Phospholipids

(iv) –TG : Triglycerides

(v) –C : Total cholesterol

(vi) –FC : Free cholesterol
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Figure 3.1: Structure of a VLDL particle [28]

(vii) –CE : Cholesterol esters

All measurements are made independently, however some of the metabolites are
components within other metabolites. For example, the total lipids concentra-
tion within a particular lipoprotein subclass is made from adding together the
concentrations of total cholesterol, phospholipids and triglycerides in that sub-
class. Total cholesterol is made up from free cholesterol and cholesterol esters.
Figure 3.2 shows this hierarchy of measurements.

Figure 3.2: Hierarchy of the lipoprotein subclasses

The observations for each lipoprotein measurement are the concentration in the
total serum sample. So for example an observation of 1 mmol/l of XL–HDL–C
means that in one litre of serum there is 1 mmol of total cholesterol embedded
in extra large HDL particles.

Within the remaining metabolites in the LIPO window (table 3.5) there are
a number of other metabolites that are a composition of two or more other
metabolites within the window. These are:
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• VLDL triglycerides - The total VLDL triglyceride concentration in the
serum sample. Equal to the sum of the 6 VLDL–TG concentrations from
each of the VLDL subclass sizes (VLDL–TG = XXL–VLDL–TG+XL–
VLDL–TG+L–VLDL–TG+M–VLDL–TG+S–VLDL–TG+XS–VLDL–TG)

• LDL triglycerides - The total LDL triglyceride concentration in the serum
sample. Equal to the sum of the 3 LDL–TG concentrations from each of
the LDL subclass sizes (LDL–TG = L–LDL–TG+M–LDL–TG+S–LDL–
TG)

• HDL triglycerides - The total HDL triglyceride concentration in the serum
sample. Equal to the sum of the 4 HDL–TG concentrations from each
of the HDL subclass sizes (HDL–TG = XL–HDL–TG+L–HDL–TG+M–
HDL–TG+S–HDL–TG)

• Serum triglycerides - made up from the above 3 triglyceride measure-
ments plus IDL triglycerides (Serum-TG - VLDL–TG+IDL–TG+LDL–
TG+HDL–TG)

• VLDL cholesterol esters- The total VLDL cholesterol esters concentration
in the serum sample. Equal to the sum of the 6 VLDL–CE concentra-
tions from each of the VLDL subclass sizes (VLDL–CE = XXL–VLDL–
CE+XL–VLDL–CE+L–VLDL–CE+M–VLDL–CE+S–VLDL–CE+XS–VLDL–
CE)

• LDL cholesterol esters- The total LDL cholesterol esters concentration in
the serum sample. Equal to the sum of the 3 LDL–CE concentrations
from each of the LDL subclass sizes (LDL–CE = L–LDL–CE+M–LDL–
CE+S–LDL–CE)

• HDL cholesterol esters- The total HDL cholesterol esters concentration in
the serum sample. Equal to the sum of the 4 HDL–CE concentrations
from each of the HDL subclass sizes (HDL–CE = XL–HDL–CE+L–HDL–
CE+M–HDL–CE+S–HDL–CE)

• VLDL free cholesterol - The total VLDL free cholesterol concentration
in the serum sample. Equal to the sum of the 6 VLDL-FC concentra-
tions from each of the VLDL subclass sizes (VLDL–FC = XXL–VLDL–
FC+XL–VLDL–FC+L–VLDL–FC+M–VLDL–FC+S–VLDL–FC+XS–VLDL–
FC)

• LDL free cholesterol - The total LDL free cholesterol concentration in the
serum sample. Equal to the sum of the 3 LDL–FC concentrations from
each of the LDL subclass sizes (LDL–FC = L–LDL–FC+M–LDL–FC+S–
LDL–FC)

• HDL free cholesterol - The total HDL free cholesterol concentration in
the serum sample. Equal to the sum of the 4 HDL–FC concentrations
from each of the HDL subclass sizes (HDL–FC = XL–HDL–FC+L–HDL–
FC+M–HDL–FC+S–HDL–FC)
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• VLDL cholesterol - The total VLDL cholesterol concentration in the serum
sample. Equal to the sum of the 6 VLDL–C concentrations from each of
the VLDL subclass sizes (VLDL–C = XXL–VLDL–C+XL–VLDL–C+L–
VLDL–C+M–VLDL–C+S–VLDL–C+XS–VLDL–C)

• LDL cholesterol - The total LDL cholesterol concentration in the serum
sample. Equal to the sum of the 3 LDL–C concentrations from each of
the LDL subclass sizes (LDL–C = L–LDL–C+M–LDL–C+S–LDL–C)

• HDL cholesterol - The total HDL cholesterol concentration in the serum
sample. Equal to the sum of the 4 HDL–C concentrations from each of the
HDL subclass sizes (HDL–C = XL–HDL–C+L–HDL–C+M–HDL–C+S–
HDL–C)

– HDL cholesterol is also the sum of HDL2 and HDL3 cholesterol
(HDL–C = HDL2+HDL3)

• Remnant cholesterol - made up from VLDL and IDL cholesterol (Remnant–
C = VLDL–C+IDL–C)

• Total serum cholesterol - made up from LDL, HDL and remnant choles-
terol (Serum–C = LDL–C+HDL–C+Remnant–C)

3.1.1.2 LMWM window

The low molecular weight metabolite window contains 19 metabolites, and un-
like the other 2 windows, these have no obvious hierarchy. The metabolites
from within this window are not as strongly correlated with one another as
metabolites from the other two windows are.

3.1.1.3 LIPID window

Of the 15 metabolites from the LIPID window 8 are related to fatty acids. As
with the lipproteins these also have a hierarchy, as shown in figure 3.3. Total
fatty acids is a sum of polyunsaturated, monounsaturated and saturated fatty
acids and polyunsaturated is made up from both Omega-3 and Omega-6 fatty
acids. 22:6, docosahexaenoic acid is a type of Omega-3 fatty acid and 18:2,
lioleic acid is a type of Omega-6 fatty acid. When taking decisions in analysing
these and the lipoprotein metabolites we need to consider their makeup to avoid
introducing collinearity into any statistical models we use.

3.2 Data description

3.2.1 Missing Data

The 3777 observations from the women with NMR metabolite profiles were
checked for any patterns of missing data. First only considering the 149 non-
ratio metabolites we find that 3390 (89.8%) individuals have no missing values in
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Figure 3.3: Hierarchy of the fatty acids

these metabolites (i.e. they are complete records). There are no missing values
in metabolites from the LIPO window. The majority of incomplete records
are due to 2 of the amino acids - Creatinine, which has 308 missing values, and
Glycerol, which has 78. Excluding these 2 metabolites, 3767 (99.7%) individuals
had no other missing values. The 10 who did can be broken down as follows
(again omitting Creatinine and Glycerol)

• 3 individuals are missing all values from the LMWM and LIPID windows
(32 missing values)

• 4 individuals are missing all LIPID values (15)

• 1 individual is missing all LIPID values and Pyruvate (16)

• 1 individual is missing values for Pyruvate and Glutamine (2)

• 1 individual is missing a value for 3-hydroxybutyrate (1)

There are only 2787 (73.8%) complete records when focussing on the 78 ratio
variables. However this is due to the fact that they are calculated from the
observed metabolite concentrations and there are two scenarios that lead to
missing data:

1. Since the fatty acid concentrations are missing in 8 individuals (those that
are missing all their LIPID measurements), the fatty acid ratios are also
therefore missing in those 8 individuals.

2. Some lipid ratios are missing for individuals who have a concentration of
zero for a particular lipoprotein or lipoproteins.

So in both these cases it is correct that the ratio is undefined. The number of
observations missing for each NMR metabolite is shown in the final column of
table 3.5.
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3.2.2 Biomarker Distributions

Many of the 149 (non-ratio) metabolites are highly skewed, particularly the low
and very low density lipoproteins and the majority of these are right-skewed.
The skewness ranges from -0.5 to 15.3 with a mean skewness of 1.36 and me-
dian skewness of 0.81, with 60 metabolites having a skewness greater than 1. A
histogram of the skewness of the metabolites is shown in figure 3.4a. Now con-
sidering the 79 biomarkers that are ratios, we can observe that the distributions
are different. The mean and median skewness is 0.07 and 0.17 respectively, with
skewnesses ranging from -2.86 to 4.63. The histogram of skewness is shown in
figure 3.4b. We do not see the extreme right skewness observed in the metabolite
concentrations, we see more moderately skewed data, both left and right.

Figure 3.4: Histograms of skewness of a) 149 Metabolite concentrations b) 79
Ratios

In the LIPO window it is in particular the larger VLDL particles that exhibit
the greatest skewness, a histogram of extremely large VLDL lipids illustrates a
distribution that is typical of this lipoprotein class (figure 3.5a). It shows the
majority of observations are equal to or close to zero but there is a very long
tail in the distribution where there are a low number of observations with very
high concentrations of this metabolite. In the smaller and denser lipoprotein
subclasses the distributions are still skewed, but to a lesser extent as shown in
figure 3.5b which illustrates the distribution of large HDL lipids. The metabo-
lites from the LIPID and LMWM windows in general are less skewed than the
lipoproteins, although the three metabolites with the greatest skewness were
from the LMWM window: Acetate, Citrate and Glucose (15.33, 6.00 and 5.29
respectively).

3.2.3 Zero values

One thing is apparent when observing the histogram of large HDL lipids is that
there is a peak at 0. Many of the lipoproteins have a number of observations
equal to 0, which could be due to the fact that the individual had none of
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Figure 3.5: Histograms of the distribution of a) XXL VLDL total lipids and b)
L HDL total lipids

that particular biomarker, or it could be due that the true concentration of the
metabolite in the sample was so small as to be below the threshold of detection.
If the particle concentration of concentration of total lipids of a lipoprotein sub-
class is equal to 0, all of the “children” (as per figure 3.2) of that lipoprotein are
also equal to 0. For example if the concentration of total cholesterol for a par-
ticular lipoprotein subclass was measured to be 0, then both the free cholesterol
and cholesterol esters for that subclass would also be equal to 0. Table 3.5 has
a column noting the number of zero values that there were for each biomarker.

3.2.4 NMR biomarker correlation structure

With 228 biomarkers there are 228(227)/2=25878 possible pairwise correlations.
In this section we will use Spearman correlations as our measure of association as
it is not as affected by outliers as Pearson correlation. The histogram of pairwise
Spearman correlations for the untransformed biomarkers is shown in figure 3.6
illustrating that a large number of the metabolites are highly correlated, with a
median correlation of 0.14 (IQR -0.11,0.41) and a median absolute correlation of
0.28 (IQR 0.13,0.51). In fact if you split the biomarkers into the ratio and non-
ratio metabolites it is possible to see that most of the metabolite concentrations
are positively correlated, whereas the distribution ratio biomarker correlations
are symmetric about 0 (figures 3.7a and b).
Figures 3.15 and 3.16 combine a dendrogram (based on hierarchical clustering
using centroid linkage) and a heatmap, with the metabolites sorted into groups
shown by the dendrogram at the edge of the grid, and the colour of each cell
representing the Spearman correlation of each pair of variables. Red represents
a positive correlation and blue a negative, with the intensity of colour repre-
senting the strength of association.

The first figure contains the 149 metabolites and two large groups of very
strongly correlated metabolites are immediately obvious, the group in the top
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Figure 3.6: Histogram of the distribution of Spearman correlation coefficients
for all NMR biomarkers

Figure 3.7: Histogram of the distribution of Spearman correlation coefficients
for a) Metabolite concentrations and b) ratio biomarkers

left, mostly made up of fatty acids, IDL, LDL and XS VLDL metabolites, and
the group in the centre, mostly made up from VLDL metabolites. Both these
groups have strong correlations within the group, and a weaker correlation be-
tween groups. Another group of metabolites that strongly correlated are the
HDL metabolites (towards the bottom right corner of the diagram) again these
are strongly correlated with each other but they are negatively correlated with
the VLDL group. The metabolites from the LMWM window tend not to be so
strongly correlated with any of the other metabolites.

Looking at the heatmap of the ratios there are fewer extremely high correla-
tions and the variables cluster as to their type (i.e. phospholipids, triglycerides,
cholesterol) rather than by their lipoprotein subclass e.g. the proportion of
triglycerides within the total lipids of each of VLDL, LDL, IDL and HDL are
correlated with each other.

When the concentrations and ratios are combined in a single heatmap (fig-
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ure 3.17) some interesting observations arise, although it can be difficult to
see clearly on the printed diagram due to the size of the image required. The
heatmap shows that the proportions of triglycerides are positively correlated
with the concentrations of VLDL metabolites. This suggests those that have
a higher concentration of VLDL metabolites also have a higher proportion of
triglycerides within those (and other) metabolites.

So to summarize a few of the points of interest identified by inspecting the
Spearman correlation matrix:

• Many of the metabolites are strongly positively correlated.

• Concentrations of cholesterol and phospholipids within lipoprotein sub-
types are strongly positively associated i.e. those with higher LDL phos-
pholipids are also likely to have higher LDL cholesterol (including choles-
terol esters and free cholesterol).

• Concentrations of triglycerides are positively associated with the other
metabolites within their lipoprotein subtype but are also positively corre-
lated with triglycerides from other lipoprotein types and fatty acids. i.e.
LDL triglycerides are positively associated with LDL phospholipids and
cholesterol, but are also associated with HDL triglycerides.

• HDL metabolites are strongly positively associated with one another but
negatively associated with the lower density lipoprotein metabolites.

• Metabolites from the LMWM window are less strongly associated with
any of the other metabolites.

• Proportions of triglycerides are associated across lipoprotein types and
are also associated with higher levels of VLDL lipoproteins i.e. those
with higher concentrations of VLDL metabolites are likely to have higher
proportions of triglycerides within any of the lipoprotein types.

3.3 Analytical considerations

3.3.1 Transformations

For some analyses it may be desirable to transform the skewed variables to make
them closer to a normal distribution. For example, many of the methods used in
chapters 5 and 6 are based around the correlation coefficient, with the Pearson
correlation coefficient having a greater power than the Spearman correlation co-
efficient if the assumptions underlying it are correct, one of these assumptions
being the variables are normally distributed.

First considering only the non-ratio metabolites which are mostly right-skewed,
two transformations which may be appropriate for many of the variables are
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the Y
1
3 (cube root) and the log(Y ) (log) transform. Either of these would

be appropriate for a number of, if not all, the metabolites. However, when
selecting a transformation, a decision must be made as to whether using the
same transformation on all metabolites is an appropriate approach, or whether
a transformation should be selected for each metabolite separately.

The former approach has the advantage that the metabolites will all be on the
same transformed domain, retaining some level of interpretability. However
this has the downside that it may not be an appropriate transformation for
all metabolites and may, in some cases, make things worse. By comparing the
different transformations for each metabolite and selecting the “best” we can
avoid these problems, however it will mean that some variables will represent
the concentration of a metabolite, some the log concentration and others the
cube root concentration. This results in us changing the relationship between
some metabolites and making interpretation more complicated.

Another issue to consider when transforming data is what happens when some
of the observations are equal to zeros. There are 98 metabolites that have a
number of observed values equal to zero, although in many of these there are
only a few zero values which doesn’t pose too much of a problem. However in
the large, very large and extremely large VLDL particles there are non-trivial
numbers of zero values (268, 585 and 356 zero observations in each, respec-
tively). A zero is a valid observation, an individual can plausibly have none of
a particular metabolite present in their serum sample, so we must consider this
when applying any transformation. Also, the log of zero is undefined, so if using
a log transform we will have to decide how to treat the zeroes. The zeroes could
also be due to the metabolite being below the limit of detection.

There are a number of methods of dealing with values below the limit of detec-
tion. A review by Hewitt and Ganser [29] described and evaluated four different
types of method based on maximum likelihood regression (MLE), log-probit re-
gression (LPR), non-parametric methods and substitution methods. Although
the MLE and LPR methods were the best performing in their review, the bias
introduced by simple substitution was moderate when the proportion of obser-
vations below the limit of detection was less than 50% and the sample size was
large, as is the case with our data (the variable with the greatest number of
zeroes still only has 15%). As the substitution method is the easiest method
to employ it is the method selected for use in this thesis. In this instance we
substitute the zero values with a value equal to half the smallest observation [30].

We compared the distributions of each metabolite using the log-transform (using
the above method of dealing with zeroes) with the untransformed and cube-root-
transformed distributions. Of the 149 metabolites 59 are least skewed if a log
transform is used, 64 if a cube-root transform is used and 26 are least skewed
if no transform is performed. The large VLDL particles strongly favour the
cube-root transform as the log transform tends to over compensate and the dis-
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tribution becomes left-skewed. Also, for both the cube-root and log transform
you get a peak at the left of the distribution, relating to the observations that
are equal to zero in the untransformed data. The log and cube-root transforms
were chosen as candidates as they are commonly used transformations for right-
skewed data.

Although there are a similar number of metabolites that favour each of the
log and cube-root transforms the metabolites that favour the log transform in
general are only slightly less skewed than when they are cube-root transformed
however some of the variables that favour the cube-root transform are not suit-
able for log-transformation. So if a single transformation was to be selected for
all metabolites the cube-root-transform is a more appropriate choice under the
criterion of reducing skewness. If per-metabolite transformations are selected
(i.e. rather than choosing a single transformation for all metabolites, the “best”
transformation is selected for each metabolite) this can have a consequence that
the metabolites are on different scales and affect interpretability of any estimates
obtained. However, in chapters 4-7 this strategy is selected, to maximise the
chance of univariate and pairwise bivariate normality, required for the analysis
in these chapters.

Finally, whether the metabolite is transformed or not, in our analyses we will
standardise them by subtracting their mean value and dividing by the standard
deviation, resulting in each of the standardized metabolites having a mean of
0 and standard deviation of 1. This allows all the NMR metabolites to exist
on the same scale and the interpretation of a change of 1 unit to be equal to
a change of 1 standard deviation of that metabolite (or of its transformed value).

The transformations discussed above are not suitable for left-skewed data. So
in order to transform the 79 ratio variables, a different transform would be
required, potentially the Y 2 or Y 3. This would mean that it would not be
appropriate to use a single transformation across all 228 biomarkers (i.e. the
concentrations and the ratios).

3.4 Repeated Measures, Reliability and Agree-
ment

A subset of the women in the BWHHS gave a second blood sample a week after
they provided their first, which provides us with an opportunity to assess the
short term reliability of the biomarkers measured. By short term reliability we
mean that we are investigating the consistency of biomarkers across different
samples from the same individual, with the variation in the two samples arising
from measurement error, sampling differences and biological changes. It was
planned that in each of the 23 towns 10 women would be randomly selected
among those who provided a baseline blood sample to provide a second sample
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1 week later. However, recruitment was successful in only 11 towns, with a total
of 45 women providing a second sample (19.6% of the desired total).

In addition to this, there were 6 biomarkers that were measured both using
standard techniques and 1H-NMR spectroscopy on all women. This also gives us
an opportunity to check the agreement between the two measurement methods
for those 6 biomarkers.

3.4.1 Methods

3.4.1.1 Representativeness

We compared the baseline attributes of women who provided repeat samples
with those who did not provide it using univariable logistic regression (where
the outcome was 1 if the participant provided two samples, 0 otherwise). The
variables we compared were all measured at entry into the cohort and were: age
(measured in years), body mass index (BMI; kg/m2), smoking status (never/ever),
coronary heart disease (no/yes), cardiovascular disease (no/yes), diabetes (no/yes),
and systolic blood pressure (mmHg). The joint effect of these variables was not
examined because of the low number of women who provided a second sample
(to avoid small sample bias [31]).

3.4.1.2 Transformations

As discussed in section 3.3.1 there are both left and right skewed data across
the 228 NMR biomarkers, so we need to assess the most appropriate method
of dealing with these, as the methods we use to assess reliability are based on
an assumption of normal distributions. In this analysis we are less concerned
with the interpretation of individual biomarkers, only that their measurement
is consistent across time. So to achieve this we measured the skewness of each
metabolite in the measurements taken from the first sample for all participants.
Four alternative transformations were considered to deal with right-skewed data:
Y

1
3 (cube root) and log(Y ) transform (where Y represents the original metabo-

lite). For left skewed data the Y 2 (square) and Y 3 (cube) transforms were
applied. To allow for values equal to zero in the log transform (since log(0) is
undefined) as discussed above zeroes were replaced with values half the size of
the minimum observation. The transformation that resulted in a skewness clos-
est to 0 was selected for each NMR biomarker. The values were then internally
standardized to allow comparisons between metabolites measured on different
scales.

3.4.1.3 Short-term reliability

To assess the short term reliability of both NMR and standard biomarkers the
intraclass correlation (ICC), often denoted by λ, was calculated [32]. This is to
assess the size of the variability of each measure in the population (the between
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individual variance: σ2
b ) relative to the amount of variability seen within an

individual (the within individual variance: σ2
w). Hence

λ =
σ2
b

σ2
b + σ2

w

λ takes values between 0 and 1, with 0 meaning that the measurement is highly
variable within an individual, and a value close to 1 means that the measure-
ment is stable within an individual. Fleiss [33] suggests a rule of thumb that an
ICC of less than 0.4 suggests poor reliability, 0.4 to 0.75 being fair to good and
greater than 0.75 being excellent.

Letting Yi1 and Yi2 denote respectively the first and second measurements of the
(possibly transformed) metabolite Y for participant i (i = 1, 2, . . . , n), and Y
the overall mean, an estimate of λ is obtained by first estimating its components:

σ̂2
w =

∑n
i=1(Yi1 − Yi2)2

2n
and

σ̂2
b = σ̂2 − σ̂2

w,

where,

σ̂2 =

∑n
i=1

∑2
j=1(Yij − Y )2

2n
.

Note that it is possible that σ̂2
b takes negative values. This may happen when

the variance between the participants’ means is smaller than expected given σ̂2
w

[32]. In this instance λ̂ is set equal to 0. Note also that the ICC estimated
on replicates not taken at the same time can be interpreted as a measure of
reliability only if the time interval between repeated samples can be reasonably
assumed not to matter. To investigate this we also tested whether the mean
difference between the first and second measurements (of women with both
measurements) was significantly different from zero (using a paired-t test [34]).

3.4.1.4 Agreement

Agreement between measures of the same biomarker obtained by standard meth-
ods and 1H-NMR Spectroscopy was assessed by comparison of the means via
a paired t-test, inspection of Bland-Altman plots [35] and comparison of asso-
ciation with incident CHD of each of the biomarkers from both methods, by
estimating the hazard ratio.

3.4.2 Results

3.4.2.1 Inclusions/Exclusions

Of the 45 repeat blood samples that were taken, 4 were incomplete, so 41 samples
were sent for NMR analysis, all resulting in a successful NMR metabolite profile.
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However, of these 41 samples, 4 did not have baseline NMR profiles (either due
to an incomplete set of blood samples or technical problems). This left 37
women who had an NMR profile both from a sample taken at baseline and from
a sample taken 1 week later and can therefore be used to estimate the short
term reliability. The flowchart in figure 3.8 lays out the samples included and
excluded.

Figure 3.8: Numbers of repeat samples to be included in analysis

Summary values for the 3777 participants with valid baseline NMR metabolite
profiles are shown in table 3.1, stratified by whether they provided two blood
samples or not. The odds ratios (OR) of providing a second sample are also
provided in the table, along with their related p-value. No individuals who had
prevalent CHD or diabetes provided a repeat sample so the odds ratios could
not be estimated, however a p-value from the χ2 test is provided. No strong
evidence was found of an association between any of the baseline characteristics
and the odds of providing a second sample.

Table 3.1: Baseline characteristics stratified by whether participant provided 1
or 2 samples. (SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure;
Deprivation score: In top quintile of Carstairs deprivation score) † p-values from
Fisher’s exact test

Baseline 1 sample 2 samples Odds ratio p-value
characteristics Mean(SD) Mean(SD) (95% CI)

n=3740 n=37
Age(years) 68.8 (5.5) 67.9 (5.0) 0.97 (0.91,1.03) 0.30
BMI (kg/m2) 27.6 (5.0) 26.7 (3.7) 0.96 (0.90,1.03) 0.30
Waist-Hip Ratio 0.82 (0.07) 0.80 (0.07) 0.02 (0.00,2.94) 0.12
SBP(mmHg) 147.1 (25.2) 141.2 (23.6) 0.99 (0.98,1.00) 0.16
DBP (mmHg) 79.4 (11.7) 79.6 (10.6) 1.00 (0.97,1.03) 0.94
Deprivation score 22.5% 35.1% 1.87 (0.95,3.69) 0.07
Ever Smoker 44.0% 32.4% 0.61 (0.31,1.22) 0.16
Prevalent Diabetes 4.6% 0.0% N/A 0.41†
Prevalent CHD 3.8% 0.0% N/A 0.40†
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3.4.2.2 Transformations

Of the 228 NMR biomarkers 38 were least skewed if left untransformed, 80 were
least skewed if a cube-root transform was applied. 78, 10 and 22 biomarkers were
least skewed using the log, square and cube transforms respectively. The intra-
class correlations were estimated using these transformed data. The transform
selected for each biomarker is shown in table 3.6.

3.4.2.3 Short term reliability of the 1H-NMR biomarkers

The ICC was estimated for all 228 NMR biomarkers, with estimates ranging
between 0 (Histidine and proportions of cholesterol and cholesterol esters in
extra large HDL) to 0.901 (apolipoprotein B by apolipoprotein A1). Details of
the 10 highest and 10 lowest estimated ICCs are shown in Table 3.2 and a full
list of all ICCs are provided in table 3.6. The distributions of the estimated
ICCs for each of the three metabolite windows are shown in figure 3.9.

Table 3.2: Highest and lowest ICCs

Biomarkers with highest ICC Window ICC (95% CI)
Apolipoprotein B by A1 LIPO 0.91 (0.85,0.96)
Mean Diameter of HDL Particles LIPO 0.90 (0.83,0.95)
Large HDL Total Cholesterol LIPO 0.89 (0.81,0.94)
Large HDL Cholesterol Esters LIPO 0.89 (0.81,0.94)
Large HDL Free Cholesterol LIPO 0.88 (0.80,0.94)
% of cholesterol esters in medium HDL LIPO 0.85 (0.74,0.92)
Extra large HDL Phospholipids LIPO 0.84 (0.73,0.92)
Large HDL Total Lipids LIPO 0.84 (0.73,0.92)
Large HDL Particle Concentration LIPO 0.83 (0.71,0.91)
% of monounsaturated fatty acids in total fatty acids LIPID 0.83 (0.71,0.91)
Biomarkers with lowest ICC Window ICC (95% CI)
Histidine LMWM 0.00 (0.00,1.00)
% of cholesterol esters in XL HDL LMWM 0.00 (0.00,1.00)
% of cholesterol in XL HDL LMWM 0.00 (0.00,1.00)
Albumin LIPO 0.07 (0.00,0.82)
Small HDL Cholesterol LIPO 0.10 (0.00,0.72)
Small HDL Cholesterol Esters LIPO 0.14 (0.01,0.63)
% of phospholipids in extra small VLDL LIPO 0.14(0.01,0.64)
Total Lipids in Small HDL LIPO 0.17 (0.02,0.61)
Particle concentration of Small HDL LIPO 0.18 (0.02,0.61)
Phospholipids in Medium HDL LIPO 0.24 (0.05,0.61)

Under the Fleiss criteria, the analysis resulted in 25(11.0%) metabolites classed
as having poor reproducibility, 135(59.2%) classed as fair to good and 68(29.8%)
classed as excellent. Looking at the 3 separate windows, the mean estimated
ICC for 186 metabolites in the LIPO window measures was 0.65, the mean ICC
for the 19 metabolites in the LMWM window was 0.46 and the mean ICC for
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Figure 3.9: Distribution of intra-class correlation coefficients, by biomarker type

the 23 metabolites in the LIPID window was 0.59. These results are shown in
table 3.3 along with their categories according to the Fleiss classification.

Table 3.3: Mean intra-class correlations for each group of biomarkers, along
with classifications (using Fleiss’ rule of thumb)

LIPO
Window

LMWM
Window

LIPID
Window

All NMR
Biomarkers

Standard
Biomarkers

N=186 N=19 N=23 N=228 N=37
Mean ICC 0.65 0.46 0.59 0.63 0.71
Poor 15(8.1%) 5(26.3%) 5(21.7%) 25(11.0%) 1(2.7%)
Fair 112(60.2%) 14(73.7%) 9(39.1%) 135(59.2%) 21(56.8%)
Excellent 59(31.7%) 0(0.0%) 9(39.1%) 68(29.8%) 15(40.5%)

The mean ICC in the LMWM window was markedly lower than the estimated
mean ICCs in the other two groups, and this difference persists even if Histi-
dine, which had the lowest ICC in the LMWM window, was excluded from the
analysis as a potential outlier. The poorer performance of biomarkers in the
LMWM window can also be seen looking at the categorisation, as 5 out of 19
biomarkers (26.3%) from this window are classed as having poor reproducibility
compared with 8.1% from the LIPO window respectively, and by viewing the
distributions in figure 3.9 where it shows that the 75th percentile of the ICCs in
the LMWM window is below the 25th percentile in the other two windows. Out
of the 10 highest estimated ICCs for the 137 NMR biomarkers, 9 were from the
LIPO window, 1 from the LIPID window and none from the LMWM window.
Measurements relating to large HDL particles account for 8 out of the 10 highest
ICCs, which was in contrast to small and medium sized HDL particles which
were among the lowest.
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3.4.2.4 Short term reliability of standard biomarkers

The mean estimated ICC for the 36 standard biomarkers was 0.71, with 16
(44.4%) being classed as excellent, 19 (52.7%) as fair to good and only 1 (2.8%)
classed as poor (Phosphate). It can be seen in figure 3.9 that the ICCs are gener-
ally higher than those for any of the 3 categories of NMR metabolites, although
the median estimated ICC of the LIPO window is close to that of the stan-
dard biomarkers. The highest ICC from the standard biomarker group is from
HDL cholesterol (0.96 95% CI 0.92,0.98), with Gamma-Glutamyl Transpepti-
dase, Urate, Creatinine and LDL Cholesterol close behind. Again, the full list
of ICCs can be found in table 3.6.

3.4.2.5 Agreement

Albumin, Creatinine, Glucose, HDL Cholesterol, LDL Cholesterol and Serum
Triglycerides were the 6 biomarkers measured both by standard techniques and
by NMR Spectroscopy. However for Albumin the reported unit in the two
methods are different with the standard measurement in g/l and the NMR
measurement unit described as “signal area”, with the two variables having
very different observed values, and as a result showing very poor agreement,
however the variables were retained for analysis as there was some association
between the two. LDL cholesterol measured by standard methods includes IDL
cholesterol, whereas the NMR biomarkers are separate. So for comparison the
NMR measures of IDL and LDL cholesterol are added together. Table 3.4
displays the means and standard deviations of these biomarkers for both mea-
surement methods, figure 3.10 shows a scatter plot of the standard and NMR
observations of each biomarker and figure 3.11 shows the Bland-Altman plots
(after transformation).

These illustrate a strong association between the standard and NMR measures
(correlation coefficient, r = 0.74-0.95) in all metabolites except Albumin, where
the association was weaker (r=0.34). In a previous publication [36], the associ-
ation between standard biomarkers and NMR obtained was investigated, with
LDL cholesterol found to have a Pearson correlation of 0.88 between standard
and NMR and HDL cholesterol having a correlation of 0.93. These are slightly
higher, but comparable to, the values obtained in our analysis of 0.81 and 0.82
respectively. However, no prior publications were found looking at the agree-
ment in the absolute concentrations of metabolites using this platform.

A t-test to assess the null hypothesis that the observed mean of each variable
is the same when measured by NMR and by standard methods yields a p-value
of less than 0.0001 for 5 out of the 6 variables, with HDL cholesterol resulting
in a p-value of 0.013. However, with a sample size of 3777 a small difference
in means can lead to a very low p-value, also the significance of the test refers
only to a shift in the mean which is just a single aspect of the distribution.
The Pearson correlation of the NMR and standard measurements in Albumin
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Table 3.4: Mean biomarker concentrations obtained using standard and 1H-
NMR techniques in the 3777 women who had a baseline NMR profile. To
ensure fair comparisons when using transformed data we force each pair of
measurements to have the same transform. The transformation that gives the
lowest mean skewness is selected. Untransformed means are in mmol/l, aprt
from Albumin which is measured in g/l for the standard measurement and
signal area for the NMR. Hazard ratios are crude estimates.

Biomarker Untransformed Transformed CHD Hazard Ratio ICC
(Method) Mean(SD) Mean(SD) for 1 SD change (95% CI)

(95% CI)
Creatinine (Stand) 0.08(0.01) -2.54(0.15) 1.34(1.17,1.53) 0.93(0.87,0.96)
Creatinine (NMR) 0.06(0.01) -2.82(0.22) 1.31(1.12,1.53) 0.75(0.59,0.87)
Glucose (Stand) 6.05(1.64) 1.78(0.19) 1.06(0.92,1.22) 0.83(0.71,0.92)
Glucose (NMR) 4.94(1.40) 1.57(0.20) 0.98(0.84,1.15) 0.47(0.24,0.71)
HDL Cholesterol (Stand) 1.66(0.46) 1.17(0.11) 0.69(0.59,0.81) 0.96(0.93,0.98)
HDL Cholesterol (NMR) 1.67(0.45) 1.18(0.11) 0.75(0.65,0.87) 0.74(0.57,0.86)
LDL Cholesterol (Stand) 4.14(1.08) 1.59(0.14) 1.10(0.95,1.28) 0.92(0.86,0.96)
LDL Cholesterol (NMR) 3.38(1.01) 1.49(0.14) 1.09(0.94,1.27) 0.64(0.44,0.81)
Serum Triglycerides (Stand) 1.86(0.96) 0.51(0.45) 1.34(1.16,1.54) 0.78(0.63,0.88)
Serum Triglycerides (NMR) 1.68(0.84) 0.41(0.45) 1.35(1.17,1.56) 0.76(0.60,0.87)
Albumin (Stand) 43.97(2.51) 43.97(2.51) 0.95(0.82,1.11) 0.72(0.53,0.82)
Albumin (NMR) 0.99(0.01) 0.99(0.01) 1.01(0.87,1.17) 0.07(0.00,0.82)

is 0.34 which is much lower than the correlation in the other 5 metabolites,
which range from 0.79 to 0.94). Another, potentially more informative method
of assessing agreement is to inspect the Bland-Altman plots of the difference.
From the plots we can see that there is better agreement between the standard
and NMR measurements for HDL cholesterol and Triglycerides than there is for
each of LDL cholesterol, Creatinine and Glucose where the standard measure-
ments were greater than the NMR measurements. We also estimated the hazard
ratios for CHD risk for each pair of measurements, using a Cox proportional
hazards model, to confirm if the estimates were similar. We found in all pairs of
measurements the estimates were relatively close and there was a large overlap
in the confidence intervals (table 3.4).

3.4.2.6 Discussion

The estimated ICCs for the NMR biomarkers do seem to be comparable with
the ICCs found in other studies on biomarkers obtained from more traditional
methods of blood serum analysis [37, 38] and on biomarkers obtained via Mass
Spectrometry [39, 40]. Two recent studies using mass spectrometry techniques
resulted in lower intra class correlations than we observed (i.e. poorer relia-
bility), however the time difference between observations was greater than in
our study (4 months and 1-2 years compared to 1 week) so the results are not
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Figure 3.10: Scatter plots of the 6 untransformed biomarkers obtained using
standard methods and 1H-NMR Spectroscopy, red line is the line of best fit

directly comparable [41, 42].

Overall in this study, the estimated ICCs from NMR data were lower than the
ICCs estimated for the biomarkers measured from the same women obtained
using more traditional means, although in most cases there was not a large dif-
ference. However some of the NMR biomarkers had very low estimated short
term reliability, Albumin, Histidine and the % of cholesterol and cholesterol
esters in XL HDL being the 4 lowest. If these findings are replicated in other
populations it will have implications on epidemiological findings based on these
1H-NMR quantified biomarkers.

One difference to note is that the samples analysed using 1H-NMR Spectroscopy
had been in storage between 11 and 13 years, which was longer than for any of
the samples used to estimate the concentrations of biomarkers using standard
methods. It is possible that the additional storage time may have led to some
extra degradation of the samples leading to greater variation within the sam-
ples. A future study would benefit from comparing samples that were analysed
using the two methods at the same point in time.

There is some disagreement between the two measurement methods when com-
paring the 5 biomarkers measured using 1H-NMR and standard methods. LDL
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Figure 3.11: Bland-Altman plots of 5 biomarkers obtained (excluding Albumin
as agreement between methods so poor) using standard methods and 1H-NMR
Spectroscopy (after transformation) The solid red line is the mean of the differ-
ences and the dashed red lines represent the 95% limits of agreement

cholesterol, Creatinine and Glucose have a small, but noticeable, difference.
The agreement could have been affected by the difference in storage times men-
tioned above. Also a factor that could influence the observed disagreement in
LDL cholesterol may be due to the fact that LDL cholesterol is not directly
measured in the standard techniques, it is derived from 3 other measurements,
whereas using NMR it is measured directly.

The lack of agreement is important when using a biomarker to make diagnosis
of diseases where a threshold is used, however, when using a biomarker to iden-
tify an association with disease the differences are less relevant. In this scenario
it is more relevant to ensure that both measurement methods have a similar
association with the disease.

This contribution provides an indication of which metabolites can be reason-
ably quantified from a single sample measurement in a population of women
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aged over 50 and are minimally affected by measurement error. The sample size
for estimation of the intraclass correlations is quite small resulting in imprecise
estimates. If further contributions on this subject could be made with both
genders, a wider age range and a range of sample storage times, it would allow
a more precise picture of the biological variability of these biomarkers to be
produced.

However, one issue that has not been covered in this chapter is that of measure-
ment error due to batch effects. Unfortunately data as to when each sample
was analysed using 1H-NMR was not provided so an in depth analysis of batch
effects was not possible. The closest proxy we had available to this was the town
where the sample was obtained, as the samples from each town would have been
collected in different weeks. This does not tell us anything about measurement
error introduced during spectroscopy, but as the blood samples were collected
on different weeks from each town it could be that different handling meth-
ods/times has introduced error. A principal component analysis was performed
and a regression using Principal Component 1 as an outcome and town as a
categorical exposure (Then repeated for PC2 as well), both of these result in a
p-value <0.0001 for the association, suggesting strong evidence of an associa-
tion between town and metabolite profile. The PCA score plots for each town
are illustrated in figure 3.12. However, we would expect individuals’ metabolite
profiles to differ between towns, for example Harrogate is a very wealthy town
and individuals from this town score highly on PC1 and PC2, whereas Falkirk
is poorer and the scores are lower. We would fully expect variability between
towns due to differing diets and behaviour, so this cannot necessarily be at-
tributed to measurement error.

However, it was observed when using the Bland-Altman plots of triglycerides
and glucose to check agreement that a number of observations were large out-
liers. If the observations that were outliers in triglycerides were the same as
those which were outliers in glucose, it might suggest that this group were af-
fected by measurement error. However, as can be seen in figures 3.13 and 3.14
it can be seen that those observations that are outliers in triglycerides are not
outliers in glucose and vice versa. So it does not provide evidence to support
the hypothesis that these outlying values are due to batch effects.
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Figure 3.13: Bland-Altman plots of triglycerides and glucose comparing stan-
dard methods and 1H-NMR Spectroscopy (after transformation) The solid red
line is the mean of the differences and the dashed red lines represent the 95%
limits of agreement. The 24 largest differences in triglycerides are highlighted
orange in both plots.

Figure 3.14: Bland-Altman plots of triglycerides and glucose comparing stan-
dard methods and 1H-NMR Spectroscopy (after transformation) The solid red
line is the mean of the differences and the dashed red lines represent the 95%
limits of agreement. The 30 largest differences in glucose are highlighted orange
in both plots.
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3.5 Summary

In this chapter the metabolomic data that will be used in examples throughout
this thesis has been introduced. It has been shown that there are very strong
associations between many of the metabolite concentrations and the hierarchy
of the metabolites has been described thoroughly. It is important to understand
this hierarchy as it can inform decisions on variable inclusion/exclusion when
perfoming analyses. It was identified that missing data was not a major problem
in this dataset, although 2 metabolites, creatinine and glycerol, were missing
in 8% and 2% of the sample - excluding these 2 variables meant that 99.7% of
individuals had complete records.

Many of the metabolites were quite skewed, so suitable transformations were
identified in the situation where an analysis method were to require a more nor-
mally distributed variable. It was also found that there were a number of zero
values for some metabolites, so these may need to be handled carefully when
performing analyses. The agreement between five metabolites measured using
both 1H-NMR Spectroscopy and standard methods was assessed finding excel-
lent agreement in two metabolites and poorer agreement in the remaining three.
Finally the reliability of the NMR metabolites were assessed using a subset of
individuals who had repeat blood samples taken, with 89% of NMR biomarkers
classed as having a good or excellent level of reliability and 97% of standard
biomarkers.

The next chapter will focus on describing some of the methods that are more
commonly applied to this type of metabolomic data, before applying them to
the data described in this chapter. The data will then be revisited in chapters
7 and 8 where it will be used in an application of differential network analysis.
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Table 3.5 - Summary of NMR biomarkers in the BWHHS sample

Type Window Variable Description Mean SD Min Max Skewness Kurtosis N Missing N zeroes

xxl_vldl_p Concentration of chylomicrons and XL VLDL particles  (mol/l) 1.56E-10 1.60E-10 0.00E+00 1.77E-09 3.19 20.54 0 356

xxl_vldl_l Total lipids in chylomicrons and extremely large VLDL   (mmol/l) 3.33E-02 3.46E-02 0.00E+00 3.83E-01 3.20 20.53 0 356

xxl_vldl_pl Phospholipids in chylomicrons and extremely large VLDL   (mmol/l) 3.95E-03 4.36E-03 0.00E+00 4.65E-02 3.18 20.27 0 356

xxl_vldl_c Total cholesterol in chylomicrons and extremely large VLDL   (mmol/l) 6.15E-03 6.67E-03 0.00E+00 7.83E-02 3.18 20.52 0 356

xxl_vldl_ce Cholesterol esters in chylomicrons and extremely large VLDL   (mmol/l) 3.73E-03 3.92E-03 0.00E+00 4.67E-02 3.11 20.47 0 356

xxl_vldl_fc Free cholesterol in chylomicrons and extremely large VLDL   (mmol/l) 2.42E-03 2.89E-03 0.00E+00 3.16E-02 3.22 20.34 0 356

xxl_vldl_tg Triglycerides in chylomicrons and extremely large VLDL   (mmol/l) 2.32E-02 2.37E-02 0.00E+00 2.59E-01 3.21 20.84 0 356

xl_vldl_p Concentration of very large VLDL particles  (mol/l) 8.00E-10 9.71E-10 0.00E+00 1.07E-08 3.06 18.64 0 585

xl_vldl_l Total lipids in very large VLDL   (mmol/l) 7.84E-02 9.49E-02 0.00E+00 1.05E+00 3.08 18.78 0 585

xl_vldl_pl Phospholipids in very large VLDL   (mmol/l) 1.39E-02 1.62E-02 0.00E+00 1.77E-01 3.02 18.54 0 585

xl_vldl_c Total cholesterol in very large VLDL   (mmol/l) 1.57E-02 1.96E-02 0.00E+00 2.30E-01 3.25 20.85 0 585

xl_vldl_ce Cholesterol esters in very large VLDL   (mmol/l) 8.03E-03 1.07E-02 0.00E+00 1.28E-01 3.34 21.65 0 585

xl_vldl_fc Free cholesterol in very large VLDL   (mmol/l) 7.72E-03 9.05E-03 0.00E+00 1.02E-01 3.08 19.33 0 585

xl_vldl_tg Triglycerides in very large VLDL   (mmol/l) 4.88E-02 5.96E-02 0.00E+00 6.44E-01 3.04 18.30 0 585

l_vldl_p Concentration of large VLDL particles  (mol/l) 5.68E-09 5.57E-09 0.00E+00 5.85E-08 2.60 14.35 0 268

l_vldl_l Total lipids in large VLDL   (mmol/l) 3.29E-01 3.24E-01 0.00E+00 3.41E+00 2.60 14.39 0 268

l_vldl_pl Phospholipids in large VLDL   (mmol/l) 6.28E-02 5.91E-02 0.00E+00 6.16E-01 2.53 13.95 0 268

l_vldl_c Total cholesterol in large VLDL   (mmol/l) 7.54E-02 7.67E-02 0.00E+00 8.33E-01 2.63 14.86 0 268

l_vldl_ce Cholesterol esters in large VLDL   (mmol/l) 4.04E-02 3.96E-02 0.00E+00 4.33E-01 2.56 14.55 0 268

l_vldl_fc Free cholesterol in large VLDL   (mmol/l) 3.50E-02 3.77E-02 0.00E+00 4.01E-01 2.72 15.43 0 268

l_vldl_tg Triglycerides in large VLDL   (mmol/l) 1.91E-01 1.89E-01 0.00E+00 1.97E+00 2.62 14.46 0 268

m_vldl_p Concentration of medium VLDL particles  (mol/l) 2.10E-08 1.46E-08 0.00E+00 1.44E-07 2.08 10.35 0 26

m_vldl_l Total lipids in medium VLDL   (mmol/l) 7.08E-01 4.88E-01 0.00E+00 4.78E+00 2.06 10.20 0 26

m_vldl_pl Phospholipids in medium VLDL   (mmol/l) 1.45E-01 9.40E-02 0.00E+00 9.06E-01 1.96 9.64 0 26

m_vldl_c Total cholesterol in medium VLDL   (mmol/l) 2.09E-01 1.31E-01 0.00E+00 1.25E+00 1.88 9.34 0 26

m_vldl_ce Cholesterol esters in medium VLDL   (mmol/l) 1.25E-01 7.15E-02 0.00E+00 7.02E-01 1.76 9.06 0 26

m_vldl_fc Free cholesterol in medium VLDL   (mmol/l) 8.42E-02 6.14E-02 0.00E+00 5.82E-01 2.00 9.75 0 26

m_vldl_tg Triglycerides in medium VLDL   (mmol/l) 3.53E-01 2.67E-01 0.00E+00 2.62E+00 2.16 10.80 0 26

s_vldl_p Concentration of small VLDL particles  (mol/l) 3.97E-08 1.73E-08 0.00E+00 1.49E-07 1.15 5.30 0 4

s_vldl_l Total lipids in small VLDL   (mmol/l) 7.86E-01 3.33E-01 0.00E+00 2.86E+00 1.09 5.07 0 4

s_vldl_pl Phospholipids in small VLDL   (mmol/l) 1.80E-01 7.09E-02 0.00E+00 5.89E-01 0.87 4.47 0 4

s_vldl_c Total cholesterol in small VLDL   (mmol/l) 3.08E-01 1.17E-01 0.00E+00 9.42E-01 0.79 4.21 0 4

s_vldl_ce Cholesterol esters in small VLDL   (mmol/l) 1.97E-01 7.29E-02 0.00E+00 5.73E-01 0.75 4.19 0 4

s_vldl_fc Free cholesterol in small VLDL   (mmol/l) 1.11E-01 4.70E-02 0.00E+00 3.69E-01 0.85 4.30 0 4

s_vldl_tg Triglycerides in small VLDL   (mmol/l) 2.98E-01 1.59E-01 0.00E+00 1.33E+00 1.43 6.40 0 4

xs_vldl_p Concentration of very small VLDL particles  (mol/l) 5.43E-08 1.51E-08 0.00E+00 1.29E-07 0.65 4.05 0 7

xs_vldl_l Total lipids in very small VLDL   (mmol/l) 6.87E-01 1.91E-01 0.00E+00 1.68E+00 0.62 4.05 0 7

xs_vldl_pl Phospholipids in very small VLDL   (mmol/l) 2.15E-01 6.05E-02 0.00E+00 5.59E-01 0.64 4.14 0 7

xs_vldl_c Total cholesterol in very small VLDL   (mmol/l) 3.26E-01 9.37E-02 0.00E+00 8.76E-01 0.44 4.11 0 7

xs_vldl_ce Cholesterol esters in very small VLDL   (mmol/l) 2.20E-01 6.23E-02 0.00E+00 6.02E-01 0.43 4.18 0 7

xs_vldl_fc Free cholesterol in very small VLDL   (mmol/l) 1.06E-01 3.47E-02 0.00E+00 2.74E-01 0.34 3.90 0 7
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xs_vldl_tg Triglycerides in very small VLDL   (mmol/l) 1.46E-01 5.56E-02 0.00E+00 4.42E-01 0.99 4.68 0 7

idl_p Concentration of IDL particles  (mol/l) 1.51E-07 3.89E-08 4.82E-08 3.97E-07 0.76 4.23 0 0

idl_l Total lipids in IDL   (mmol/l) 1.53E+00 3.99E-01 4.17E-01 4.08E+00 0.75 4.27 0 0

idl_pl Phospholipids in IDL   (mmol/l) 4.08E-01 1.03E-01 0.00E+00 1.06E+00 0.70 4.38 0 3

idl_c Total cholesterol in IDL   (mmol/l) 9.55E-01 2.67E-01 0.00E+00 2.70E+00 0.71 4.43 0 3

idl_ce Cholesterol esters in IDL   (mmol/l) 6.77E-01 1.89E-01 0.00E+00 1.91E+00 0.70 4.38 0 3

idl_fc Free cholesterol in IDL   (mmol/l) 2.78E-01 7.90E-02 0.00E+00 7.86E-01 0.67 4.44 0 3

idl_tg Triglycerides in IDL   (mmol/l) 1.63E-01 4.90E-02 0.00E+00 4.38E-01 1.05 4.82 0 3

l_ldl_p Concentration of large LDL particles  (mol/l) 2.58E-07 7.13E-08 0.00E+00 6.79E-07 0.77 4.13 0 1

l_ldl_l Total lipids in large LDL   (mmol/l) 1.83E+00 5.09E-01 0.00E+00 4.87E+00 0.76 4.15 0 1

l_ldl_pl Phospholipids in large LDL   (mmol/l) 4.38E-01 1.05E-01 0.00E+00 1.07E+00 0.73 4.17 0 1

l_ldl_c Total cholesterol in large LDL   (mmol/l) 1.25E+00 3.71E-01 0.00E+00 3.49E+00 0.74 4.18 0 1

l_ldl_ce Cholesterol esters in large LDL   (mmol/l) 9.09E-01 2.82E-01 0.00E+00 2.60E+00 0.75 4.13 0 1

l_ldl_fc Free cholesterol in large LDL   (mmol/l) 3.37E-01 9.01E-02 0.00E+00 8.97E-01 0.68 4.34 0 1

l_ldl_tg Triglycerides in large LDL   (mmol/l) 1.50E-01 4.60E-02 0.00E+00 4.09E-01 1.09 4.73 0 1

m_ldl_p Concentration of medium LDL particles  (mol/l) 2.13E-07 6.40E-08 0.00E+00 5.62E-07 0.79 4.07 0 1

m_ldl_l Total lipids in medium LDL   (mmol/l) 1.08E+00 3.22E-01 0.00E+00 2.85E+00 0.78 4.06 0 1

m_ldl_pl Phospholipids in medium LDL   (mmol/l) 2.70E-01 6.34E-02 0.00E+00 6.06E-01 0.75 4.00 0 1

m_ldl_c Total cholesterol in medium LDL   (mmol/l) 7.30E-01 2.39E-01 0.00E+00 2.08E+00 0.74 4.07 0 1

m_ldl_ce Cholesterol esters in medium LDL   (mmol/l) 5.44E-01 1.95E-01 0.00E+00 1.65E+00 0.74 4.08 0 1

m_ldl_fc Free cholesterol in medium LDL   (mmol/l) 1.86E-01 4.45E-02 0.00E+00 4.35E-01 0.73 4.12 0 1

m_ldl_tg Triglycerides in medium LDL   (mmol/l) 7.73E-02 2.83E-02 0.00E+00 2.31E-01 1.35 5.21 0 1

s_ldl_p Concentration of small LDL particles  (mol/l) 2.45E-07 7.25E-08 0.00E+00 6.21E-07 0.81 4.10 0 1

s_ldl_l Total lipids in small LDL   (mmol/l) 6.84E-01 2.02E-01 0.00E+00 1.74E+00 0.79 4.10 0 1

s_ldl_pl Phospholipids in small LDL   (mmol/l) 1.92E-01 4.71E-02 0.00E+00 4.16E-01 1.01 4.69 0 1

s_ldl_c Total cholesterol in small LDL   (mmol/l) 4.44E-01 1.45E-01 0.00E+00 1.25E+00 0.71 4.06 0 1

s_ldl_ce Cholesterol esters in small LDL   (mmol/l) 3.33E-01 1.18E-01 0.00E+00 9.99E-01 0.70 4.08 0 1

s_ldl_fc Free cholesterol in small LDL   (mmol/l) 1.12E-01 2.85E-02 0.00E+00 2.54E-01 0.76 4.10 0 1

s_ldl_tg Triglycerides in small LDL   (mmol/l) 4.82E-02 1.76E-02 0.00E+00 1.46E-01 1.15 4.70 0 1

xl_hdl_p Concentration of very large HDL particles  (mol/l) 5.13E-07 2.74E-07 0.00E+00 2.00E-06 0.78 4.41 0 167

xl_hdl_l Total lipids in very large HDL   (mmol/l) 5.19E-01 2.79E-01 0.00E+00 2.04E+00 0.77 4.38 0 167

xl_hdl_pl Phospholipids in very large HDL   (mmol/l) 2.59E-01 1.50E-01 0.00E+00 9.80E-01 0.73 3.97 0 167

xl_hdl_c Total cholesterol in very large HDL   (mmol/l) 2.43E-01 1.35E-01 0.00E+00 1.00E+00 0.68 4.09 0 167

xl_hdl_ce Cholesterol esters in very large HDL   (mmol/l) 1.77E-01 1.01E-01 0.00E+00 7.42E-01 0.66 3.85 0 167

xl_hdl_fc Free cholesterol in very large HDL   (mmol/l) 6.65E-02 3.84E-02 0.00E+00 2.62E-01 0.78 4.23 0 167

xl_hdl_tg Triglycerides in very large HDL   (mmol/l) 1.71E-02 9.55E-03 0.00E+00 8.04E-02 0.96 5.70 0 167

l_hdl_p Concentration of large HDL particles  (mol/l) 1.32E-06 6.80E-07 0.00E+00 4.29E-06 0.53 3.70 0 206

l_hdl_l Total lipids in large HDL   (mmol/l) 8.25E-01 4.34E-01 0.00E+00 2.74E+00 0.56 3.68 0 206

l_hdl_pl Phospholipids in large HDL   (mmol/l) 4.19E-01 1.98E-01 0.00E+00 1.28E+00 0.31 3.68 0 206

l_hdl_c Total cholesterol in large HDL   (mmol/l) 3.71E-01 2.28E-01 0.00E+00 1.40E+00 0.77 3.71 0 206

l_hdl_ce Cholesterol esters in large HDL   (mmol/l) 2.89E-01 1.74E-01 0.00E+00 1.07E+00 0.75 3.70 0 206

l_hdl_fc Free cholesterol in large HDL   (mmol/l) 8.19E-02 5.39E-02 0.00E+00 3.29E-01 0.81 3.71 0 206

l_hdl_tg Triglycerides in large HDL   (mmol/l) 3.51E-02 2.01E-02 0.00E+00 1.46E-01 0.70 4.22 0 206

m_hdl_p Concentration of medium HDL particles  (mol/l) 2.47E-06 5.70E-07 0.00E+00 5.20E-06 0.87 4.47 0 1

m_hdl_l Total lipids in medium HDL   (mmol/l) 1.04E+00 2.48E-01 0.00E+00 2.23E+00 0.85 4.42 0 1
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m_hdl_pl Phospholipids in medium HDL   (mmol/l) 4.90E-01 1.07E-01 0.00E+00 1.07E+00 0.83 4.49 0 1

m_hdl_c Total cholesterol in medium HDL   (mmol/l) 4.93E-01 1.41E-01 0.00E+00 1.21E+00 0.78 4.34 0 1

m_hdl_ce Cholesterol esters in medium HDL   (mmol/l) 3.94E-01 1.13E-01 0.00E+00 9.91E-01 0.79 4.41 0 1

m_hdl_fc Free cholesterol in medium HDL   (mmol/l) 9.94E-02 2.93E-02 0.00E+00 2.42E-01 0.72 4.23 0 1

m_hdl_tg Triglycerides in medium HDL   (mmol/l) 6.00E-02 2.06E-02 0.00E+00 1.95E-01 0.89 4.96 0 1

s_hdl_p Concentration of small HDL particles  (mol/l) 5.58E-06 8.45E-07 0.00E+00 9.78E-06 0.67 5.24 0 2

s_hdl_l Total lipids in small HDL   (mmol/l) 1.24E+00 1.90E-01 0.00E+00 2.17E+00 0.66 5.17 0 2

s_hdl_pl Phospholipids in small HDL   (mmol/l) 6.25E-01 1.08E-01 0.00E+00 1.26E+00 0.71 4.98 0 2

s_hdl_c Total cholesterol in small HDL   (mmol/l) 5.52E-01 1.02E-01 0.00E+00 9.76E-01 0.34 4.40 0 2

s_hdl_ce Cholesterol esters in small HDL   (mmol/l) 4.35E-01 8.76E-02 0.00E+00 8.31E-01 0.26 4.38 0 2

s_hdl_fc Free cholesterol in small HDL   (mmol/l) 1.17E-01 2.47E-02 0.00E+00 2.50E-01 0.26 4.50 0 2

s_hdl_tg Triglycerides in small HDL   (mmol/l) 6.00E-02 2.09E-02 0.00E+00 1.86E-01 0.87 4.78 0 2

serum_c Serum total cholesterol  (mmol/l) 5.98E+00 1.34E+00 2.17E+00 1.34E+01 0.73 4.08 0 0

vldl_c Total cholesterol in VLDL  (mmol/l) 9.41E-01 3.86E-01 2.30E-02 3.59E+00 1.20 5.88 0 0

remnant_c Remnant cholesterol (non-HDL, non-LDL -cholesterol)  (mmol/l) 1.90E+00 5.70E-01 4.40E-01 4.78E+00 0.77 4.01 0 0

ldl_c Total cholesterol in LDL  (mmol/l) 2.42E+00 7.52E-01 2.89E-01 6.83E+00 0.74 4.12 0 0

hdl_c Total cholesterol in HDL  (mmol/l) 1.67E+00 4.52E-01 4.57E-01 3.72E+00 0.58 3.54 0 0

hdl2_c Total cholesterol in HDL2  (mmol/l) 1.15E+00 4.21E-01 3.60E-02 3.03E+00 0.61 3.60 0 0

hdl3_c Total cholesterol in HDL3  (mmol/l) 5.20E-01 5.86E-02 1.89E-01 8.27E-01 -0.28 5.03 0 0

serum_tg Serum total triglycerides  (mmol/l) 1.68E+00 8.45E-01 3.42E-01 7.98E+00 1.85 8.77 0 0

vldl_tg Triglycerides in VLDL  (mmol/l) 1.07E+00 7.28E-01 1.10E-01 7.10E+00 2.12 10.55 0 0

ldl_tg Triglycerides in LDL  (mmol/l) 2.76E-01 9.03E-02 9.72E-02 7.86E-01 1.17 4.79 0 0

hdl_tg Triglycerides in HDL  (mmol/l) 1.75E-01 5.49E-02 4.88E-02 5.28E-01 1.00 5.09 0 0

apoa1 Apolipoprotein A-I  (g/l) 1.73E+00 2.75E-01 8.62E-01 3.12E+00 0.76 3.90 0 0

apob Apolipoprotein B  (g/l) 1.15E+00 2.90E-01 4.91E-01 2.57E+00 0.82 3.95 0 0

alb Albumin  (signal area) 9.92E-02 1.24E-02 5.86E-02 1.52E-01 1.10 3.86 0 0

vldl_d Mean diameter for VLDL particles  (nm) 3.63E+01 1.38E+00 3.34E+01 4.26E+01 0.71 3.56 0 0

ldl_d Mean diameter for LDL particles  (nm) 2.35E+01 1.57E-01 2.28E+01 2.44E+01 -0.54 4.63 0 0

hdl_d Mean diameter for HDL particles  (nm) 9.98E+00 2.73E-01 9.26E+00 1.11E+01 0.43 3.15 0 0

estc Esterified cholesterol  (mmol/l) 4.22E+00 9.74E-01 1.42E+00 9.58E+00 0.72 4.09 8 0

freec Free cholesterol  (mmol/l) 1.77E+00 3.77E-01 7.47E-01 3.93E+00 0.73 4.04 8 0

totpg Total phosphoglycerides  (mmol/l) 2.44E+00 5.15E-01 8.90E-01 5.09E+00 0.75 4.19 8 0

pc Phosphatidylcholine and other cholines  (mmol/l) 2.49E+00 4.80E-01 1.04E+00 5.05E+00 0.82 4.31 8 0

sm Sphingomyelins  (mmol/l) 6.05E-01 1.21E-01 2.66E-01 1.72E+00 1.02 6.50 8 0

totcho Total cholines  (mmol/l) 2.95E+00 5.46E-01 1.34E+00 5.80E+00 0.80 4.17 8 0

totfa Total fatty acids  (mmol/l) 1.34E+01 3.07E+00 4.58E+00 2.89E+01 0.98 4.63 8 0

dha 22:6, docosahexaenoic acid  (mmol/l) 3.02E-01 8.68E-02 0.00E+00 1.05E+00 1.26 6.98 8 1

la 18:2, linoleic acid  (mmol/l) 3.76E+00 8.26E-01 8.66E-01 7.73E+00 0.62 3.81 8 0

faw3 Omega-3 fatty acids  (mmol/l) 7.30E-01 2.15E-01 1.80E-01 2.21E+00 1.20 6.15 8 0

faw6 Omega-6 fatty acids  (mmol/l) 4.63E+00 9.67E-01 1.28E+00 8.82E+00 0.68 3.81 8 0

pufa Polyunsaturated fatty acids  (mmol/l) 5.36E+00 1.10E+00 1.64E+00 1.02E+01 0.69 3.79 8 0

mufa Monounsaturated fatty acids; 16:1, 18:1  (mmol/l) 3.13E+00 1.14E+00 8.58E-01 1.01E+01 1.27 5.81 8 0

sfa Saturated fatty acids  (mmol/l) 4.91E+00 1.22E+00 1.65E+00 1.26E+01 1.06 5.35 8 0

unsat Estimated degree of unsaturation 1.26E+00 8.49E-02 9.51E-01 1.66E+00 0.22 4.05 8 0

glc Glucose  (mmol/l) 4.94E+00 1.40E+00 2.26E+00 2.20E+01 5.29 42.10 3 0
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lac Lactate  (mmol/l) 1.64E+00 5.66E-01 6.75E-01 6.35E+00 2.13 10.78 3 0

pyr Pyruvate  (mmol/l) 9.77E-02 3.34E-02 3.36E-02 3.50E-01 1.38 6.15 5 0

cit Citrate  (mmol/l) 1.21E-01 2.63E-02 3.86E-02 8.50E-01 6.00 157.98 3 0

glol Glycerol  (mmol/l) 1.34E-01 4.72E-02 2.98E-02 3.94E-01 0.96 4.43 78 0

ala Alanine  (mmol/l) 3.34E-01 5.27E-02 2.09E-01 6.11E-01 0.76 4.25 3 0

gln Glutamine  (mmol/l) 4.94E-01 6.90E-02 2.11E-01 8.30E-01 0.40 3.68 4 0

gly Glycine  (mmol/l) 3.04E-01 6.49E-02 1.63E-01 6.89E-01 1.04 4.57 3 0

his Histidine  (mmol/l) 6.44E-02 1.04E-02 5.37E-03 1.05E-01 0.21 4.17 3 0

ile Isoleucine  (mmol/l) 5.86E-02 1.75E-02 2.22E-02 1.79E-01 1.49 7.09 3 0

leu Leucine  (mmol/l) 7.18E-02 1.62E-02 3.51E-02 1.84E-01 1.26 6.47 3 0

val Valine  (mmol/l) 1.65E-01 3.38E-02 7.80E-02 3.56E-01 0.83 4.54 3 0

phe Phenylalanine  (mmol/l) 8.39E-02 1.28E-02 5.03E-02 1.77E-01 0.77 4.48 3 0

tyr Tyrosine  (mmol/l) 5.17E-02 1.18E-02 2.23E-02 1.34E-01 1.13 6.05 3 0

ace Acetate  (mmol/l) 4.28E-02 1.56E-02 2.11E-02 4.97E-01 15.33 398.28 3 0

acace Acetoacetate  (mmol/l) 6.66E-02 4.43E-02 0.00E+00 4.18E-01 1.63 7.32 3 1

bohbut 3-hydroxybutyrate  (mmol/l) 1.95E-01 1.02E-01 2.57E-02 1.28E+00 1.91 10.12 4 0

crea Creatinine  (mmol/l) 6.08E-02 1.41E-02 2.81E-02 2.62E-01 2.03 19.99 308 0

gp Glycoprotein acetyls, mainly a1-acid glycoprotein  (mmol/l) 1.60E+00 3.90E-01 8.54E-01 5.80E+00 1.69 10.05 3 0

xxl_vldl_pl_pc Phospholipids to total lipds ratio in chylomicrons and XL VLDL   (%) 11.20 2.27 0.36 54.60 1.92 49.84 356 0

xxl_vldl_c_pc Total cholesterol to total lipids ratio in chylomicrons and XL VLDL   (%) 18.00 4.59 2.18 81.10 0.89 15.72 356 0

xxl_vldl_ce_pc Cholesterol esters to total lipids ratio in chylomicrons and XL VLDL   (%) 11.47 4.29 0.11 52.50 0.28 5.95 356 0

xxl_vldl_fc_pc Free cholesterol to total lipids ratio in chylomicrons and XL VLDL   (%) 6.52 2.33 0.24 45.40 2.04 33.89 356 0

xxl_vldl_tg_pc Triglycerides to total lipids ratio in chylomicrons and XL VLDL   (%) 70.82 5.16 10.70 96.10 -0.52 13.43 356 0

xl_vldl_pl_pc Phospholipids to total lipds ratio in very large VLDL   (%) 18.67 4.16 0.19 74.20 2.76 25.47 585 0

xl_vldl_c_pc Total cholesterol to total lipids ratio in very large VLDL   (%) 20.41 5.57 0.24 76.20 2.00 16.25 585 0

xl_vldl_ce_pc Cholesterol esters to total lipids ratio in very large VLDL   (%) 9.87 4.14 0.12 49.30 1.33 13.07 585 0

xl_vldl_fc_pc Free cholesterol to total lipids ratio in very large VLDL   (%) 10.54 3.70 0.11 59.20 2.80 23.59 585 0

xl_vldl_tg_pc Triglycerides to total lipids ratio in very large VLDL   (%) 60.94 7.93 0.17 98.90 -1.83 12.64 585 0

l_vldl_pl_pc Phospholipids to total lipds ratio in large VLDL   (%) 19.81 1.91 15.40 47.90 3.73 32.53 268 0

l_vldl_c_pc Total cholesterol to total lipids ratio in large VLDL   (%) 22.29 4.24 2.63 59.30 -0.18 8.88 268 0

l_vldl_ce_pc Cholesterol esters to total lipids ratio in large VLDL   (%) 12.54 3.75 0.18 38.70 0.17 5.75 268 0

l_vldl_fc_pc Free cholesterol to total lipids ratio in large VLDL   (%) 9.76 2.15 0.89 31.70 -0.76 9.17 268 0

l_vldl_tg_pc Triglycerides to total lipids ratio in large VLDL   (%) 57.91 4.44 6.34 79.40 -1.39 17.75 268 0

m_vldl_pl_pc Phospholipids to total lipds ratio in medium VLDL   (%) 21.04 1.15 18.50 32.60 1.58 10.13 26 0

m_vldl_c_pc Total cholesterol to total lipids ratio in medium VLDL   (%) 30.80 5.26 1.34 61.90 0.38 6.31 26 0

m_vldl_ce_pc Cholesterol esters to total lipids ratio in medium VLDL   (%) 19.26 5.27 0.12 54.20 0.69 5.49 26 0

m_vldl_fc_pc Free cholesterol to total lipids ratio in medium VLDL   (%) 11.54 1.20 1.10 20.20 -1.47 10.38 26 0

m_vldl_tg_pc Triglycerides to total lipids ratio in medium VLDL   (%) 48.17 6.11 14.60 77.70 -0.60 5.85 26 0

s_vldl_pl_pc Phospholipids to total lipds ratio in small VLDL   (%) 23.09 1.80 6.41 29.80 -1.04 7.61 4 0

s_vldl_c_pc Total cholesterol to total lipids ratio in small VLDL   (%) 40.14 5.71 5.17 62.10 0.03 4.22 4 0

s_vldl_ce_pc Cholesterol esters to total lipids ratio in small VLDL   (%) 26.02 5.26 1.66 58.30 0.33 4.17 4 0

s_vldl_fc_pc Free cholesterol to total lipids ratio in small VLDL   (%) 14.12 1.36 1.72 18.20 -2.65 15.70 4 0

s_vldl_tg_pc Triglycerides to total lipids ratio in small VLDL   (%) 36.79 6.42 14.70 77.60 0.31 4.11 4 0

xs_vldl_pl_pc Phospholipids to total lipds ratio in very small VLDL   (%) 31.28 2.09 16.60 50.70 0.45 8.61 7 0
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xs_vldl_c_pc Total cholesterol to total lipids ratio in very small VLDL   (%) 47.46 4.70 4.89 60.00 -1.46 8.55 7 0

xs_vldl_ce_pc Cholesterol esters to total lipids ratio in very small VLDL   (%) 32.21 4.16 3.00 45.30 -0.90 6.00 7 0

xs_vldl_fc_pc Free cholesterol to total lipids ratio in very small VLDL   (%) 15.25 2.10 1.89 19.40 -2.65 10.90 7 0

xs_vldl_tg_pc Triglycerides to total lipids ratio in very small VLDL   (%) 21.28 5.31 8.77 78.50 1.40 9.51 7 0

idl_pl_pc Phospholipids to total lipds ratio in IDL   (%) 26.81 0.72 22.60 30.90 0.02 5.62 3 0

idl_c_pc Total cholesterol to total lipids ratio in IDL   (%) 62.36 2.48 44.10 68.00 -1.11 5.51 3 0

idl_ce_pc Cholesterol esters to total lipids ratio in IDL   (%) 44.24 2.13 30.90 52.80 -0.95 5.20 3 0

idl_fc_pc Free cholesterol to total lipids ratio in IDL   (%) 18.12 1.15 4.32 20.70 -2.82 20.81 3 0

idl_tg_pc Triglycerides to total lipids ratio in IDL   (%) 10.85 2.52 5.21 33.40 1.18 6.38 3 0

l_ldl_pl_pc Phospholipids to total lipds ratio in large LDL   (%) 24.14 1.13 21.20 30.40 0.68 4.45 1 0

l_ldl_c_pc Total cholesterol to total lipids ratio in large LDL   (%) 67.57 2.17 48.40 72.90 -1.46 8.04 1 0

l_ldl_ce_pc Cholesterol esters to total lipids ratio in large LDL   (%) 49.10 2.18 35.60 55.00 -1.19 5.73 1 0

l_ldl_fc_pc Free cholesterol to total lipids ratio in large LDL   (%) 18.47 1.10 2.34 21.40 -2.86 29.90 1 0

l_ldl_tg_pc Triglycerides to total lipids ratio in large LDL   (%) 8.30 1.80 4.33 21.90 1.29 6.76 1 0

m_ldl_pl_pc Phospholipids to total lipds ratio in medium LDL   (%) 25.60 2.34 19.00 49.40 1.94 12.93 1 0

m_ldl_c_pc Total cholesterol to total lipids ratio in medium LDL   (%) 67.14 3.26 33.00 74.00 -2.18 14.39 1 0

m_ldl_ce_pc Cholesterol esters to total lipids ratio in medium LDL   (%) 49.59 4.17 14.40 60.20 -1.85 10.29 1 0

m_ldl_fc_pc Free cholesterol to total lipids ratio in medium LDL   (%) 17.56 1.41 13.30 25.80 0.80 4.73 1 0

m_ldl_tg_pc Triglycerides to total lipids ratio in medium LDL   (%) 7.27 1.77 3.78 20.00 1.31 6.27 1 0

s_ldl_pl_pc Phospholipids to total lipds ratio in small LDL   (%) 28.58 2.76 19.90 51.50 1.50 8.91 1 0

s_ldl_c_pc Total cholesterol to total lipids ratio in small LDL   (%) 64.30 3.91 19.70 72.80 -2.38 17.48 1 0

s_ldl_ce_pc Cholesterol esters to total lipids ratio in small LDL   (%) 47.77 4.56 2.65 60.10 -1.97 12.65 1 0

s_ldl_fc_pc Free cholesterol to total lipids ratio in small LDL   (%) 16.54 1.14 12.40 22.50 0.76 4.94 1 0

s_ldl_tg_pc Triglycerides to total lipids ratio in small LDL   (%) 7.13 1.90 3.60 29.70 2.26 17.24 1 0

xl_hdl_pl_pc Phospholipids to total lipds ratio in very large HDL   (%) 49.22 9.49 1.17 87.60 -1.74 8.56 167 0

xl_hdl_c_pc Total cholesterol to total lipids ratio in very large HDL   (%) 46.57 8.86 6.92 91.80 0.96 8.34 167 0

xl_hdl_ce_pc Cholesterol esters to total lipids ratio in very large HDL   (%) 33.96 9.73 0.14 87.80 1.79 9.76 167 0

xl_hdl_fc_pc Free cholesterol to total lipids ratio in very large HDL   (%) 12.61 2.24 1.13 26.90 -1.73 9.11 167 0

xl_hdl_tg_pc Triglycerides to total lipids ratio in very large HDL   (%) 4.22 4.11 0.12 61.10 4.63 38.39 167 0

l_hdl_pl_pc Phospholipids to total lipds ratio in large HDL   (%) 52.30 4.97 38.20 77.30 0.93 4.20 206 0

l_hdl_c_pc Total cholesterol to total lipids ratio in large HDL   (%) 43.08 6.34 8.52 59.70 -1.01 4.35 206 0

l_hdl_ce_pc Cholesterol esters to total lipids ratio in large HDL   (%) 33.80 4.52 6.49 48.00 -1.12 5.00 206 0

l_hdl_fc_pc Free cholesterol to total lipids ratio in large HDL   (%) 9.28 2.09 1.23 14.20 -1.13 4.23 206 0

l_hdl_tg_pc Triglycerides to total lipids ratio in large HDL   (%) 4.63 2.31 0.13 18.20 1.25 5.47 206 0

m_hdl_pl_pc Phospholipids to total lipds ratio in medium HDL   (%) 47.22 1.85 39.50 69.50 0.38 10.64 1 0

m_hdl_c_pc Total cholesterol to total lipids ratio in medium HDL   (%) 46.78 3.79 6.29 57.40 -1.19 8.65 1 0

m_hdl_ce_pc Cholesterol esters to total lipids ratio in medium HDL   (%) 37.38 3.42 1.32 47.50 -0.92 7.69 1 0

m_hdl_fc_pc Free cholesterol to total lipids ratio in medium HDL   (%) 9.40 0.77 2.47 11.10 -2.33 14.28 1 0

m_hdl_tg_pc Triglycerides to total lipids ratio in medium HDL   (%) 6.01 2.49 0.85 25.20 1.75 9.48 1 0

s_hdl_pl_pc Phospholipids to total lipds ratio in small HDL   (%) 50.55 4.07 29.70 73.10 0.20 4.32 2 0

s_hdl_c_pc Total cholesterol to total lipids ratio in small HDL   (%) 44.59 4.39 15.20 64.60 -0.68 5.57 2 0

s_hdl_ce_pc Cholesterol esters to total lipids ratio in small HDL   (%) 35.19 4.76 2.55 58.80 -0.52 5.53 2 0

s_hdl_fc_pc Free cholesterol to total lipids ratio in small HDL   (%) 9.40 1.05 3.58 12.80 -1.23 5.93 2 0

s_hdl_tg_pc Triglycerides to total lipids ratio in small HDL   (%) 4.87 1.68 0.66 19.10 1.40 8.11 2 0

apob_apoa1 Ratio of apolipoprotein B to apolipoprotein A-I 0.68 0.17 0.29 1.41 0.56 3.40 0 0
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tg_pg Ratio of triglycerides to phosphoglycerides 0.52 0.24 0.04 2.66 1.66 8.44 8 0

dha_fa Ratio of 22:6 docosahexaenoic acid to total fatty acids  (%) 2.28 0.54 0.00 9.33 1.44 13.19 8 1

la_fa Ratio of 18:2 linoleic acid to total fatty acids  (%) 28.42 4.19 9.56 45.20 -0.06 3.43 8 0

faw3_fa Ratio of omega-3 fatty acids to total fatty acids  (%) 5.53 1.42 1.47 19.60 1.37 9.05 8 0

faw6_fa Ratio of omega-6 fatty acids to total fatty acids  (%) 34.93 4.34 14.20 51.40 -0.15 3.39 8 0

pufa_fa Ratio of polyunsaturated fatty acids to total fatty acids  (%) 40.46 4.94 18.10 59.50 -0.15 3.43 8 0

mufa_fa Ratio of monounsaturated fatty acids to total fatty acids  (%) 22.98 4.47 8.93 42.90 0.44 3.62 8 0

sfa_fa Ratio of saturated fatty acids to total fatty acids  (%) 36.58 2.39 23.90 45.60 -0.18 3.71 8 0
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Table 3.6 - Results from ICC Analysis

Type Window Variable Description Mean SD Min

xxl_vldl_p Cube-root 0.67 0.66 0.49 (0.26 , 0.72)

xxl_vldl_l Cube-root 0.67 0.66 0.49 (0.26 , 0.72)

xxl_vldl_pl Cube-root 0.65 0.66 0.51 (0.28 , 0.73)

xxl_vldl_c Cube-root 0.66 0.72 0.54 (0.32 , 0.75)

xxl_vldl_ce Cube-root 0.66 0.74 0.56 (0.34 , 0.76)

xxl_vldl_fc Cube-root 0.63 0.68 0.54 (0.31 , 0.75)

xxl_vldl_tg Cube-root 0.68 0.64 0.47 (0.24 , 0.71)

xl_vldl_p Cube-root 0.51 0.87 0.74 (0.58 , 0.86)

xl_vldl_l Cube-root 0.52 0.87 0.74 (0.58 , 0.86)

xl_vldl_pl Cube-root 0.54 0.85 0.71 (0.54 , 0.85)

xl_vldl_c Cube-root 0.52 0.89 0.75 (0.59 , 0.87)

xl_vldl_ce Cube-root 0.50 0.91 0.77 (0.62 , 0.88)

xl_vldl_fc Cube-root 0.54 0.85 0.71 (0.54 , 0.85)

xl_vldl_tg Cube-root 0.51 0.87 0.75 (0.59 , 0.87)

l_vldl_p Cube-root 0.59 0.82 0.66 (0.46 , 0.82)

l_vldl_l Cube-root 0.59 0.82 0.66 (0.47 , 0.82)

l_vldl_pl Cube-root 0.61 0.81 0.64 (0.44 , 0.81)

l_vldl_c Cube-root 0.57 0.85 0.69 (0.50 , 0.83)

l_vldl_ce Cube-root 0.59 0.85 0.68 (0.49 , 0.83)

l_vldl_fc Cube-root 0.57 0.83 0.68 (0.49 , 0.83)

l_vldl_tg Cube-root 0.59 0.81 0.66 (0.46 , 0.82)

m_vldl_p Cube-root 0.46 0.84 0.77 (0.62 , 0.88)

m_vldl_l Cube-root 0.46 0.84 0.77 (0.61 , 0.88)

m_vldl_pl Cube-root 0.47 0.83 0.76 (0.61 , 0.87)

m_vldl_c Cube-root 0.48 0.81 0.74 (0.57 , 0.86)

m_vldl_ce Cube-root 0.47 0.79 0.74 (0.58 , 0.86)

m_vldl_fc Cube-root 0.50 0.85 0.75 (0.59 , 0.87)

m_vldl_tg Cube-root 0.45 0.85 0.78 (0.64 , 0.89)

s_vldl_p Cube-root 0.49 0.94 0.78 (0.64 , 0.89)

s_vldl_l Cube-root 0.50 0.93 0.78 (0.63 , 0.88)

s_vldl_pl Cube-root 0.48 0.91 0.78 (0.64 , 0.89)

s_vldl_c Cube-root 0.54 0.90 0.73 (0.57 , 0.86)

s_vldl_ce Cube-root 0.56 0.90 0.73 (0.56 , 0.85)

s_vldl_fc Cube-root 0.50 0.88 0.76 (0.60 , 0.87)

s_vldl_tg Cube-root 0.48 0.97 0.80 (0.67 , 0.90)

xs_vldl_p Log 0.53 0.92 0.75 (0.59 , 0.87)

xs_vldl_l Untransformed 0.61 1.08 0.76 (0.60 , 0.87)

xs_vldl_pl Untransformed 0.69 1.03 0.69 (0.51 , 0.84)

xs_vldl_c Untransformed 0.58 1.02 0.75 (0.60 , 0.87)

xs_vldl_ce Untransformed 0.58 1.00 0.75 (0.58 , 0.87)

xs_vldl_fc Untransformed 0.59 1.01 0.75 (0.59 , 0.87)

xs_vldl_tg Log 0.50 0.98 0.79 (0.65 , 0.89)

idl_p Log 0.69 0.95 0.66 (0.46 , 0.82)

idl_l Log 0.68 0.94 0.66 (0.46 , 0.82)

idl_pl Log 0.71 0.91 0.62 (0.42 , 0.80)

idl_c Log 0.65 0.94 0.68 (0.49 , 0.83)

idl_ce Log 0.65 0.95 0.68 (0.49 , 0.83)

idl_fc Untransformed 0.75 0.92 0.60 (0.39 , 0.78)

idl_tg Log 0.54 0.97 0.76 (0.61 , 0.87)

l_ldl_p Cube-root 0.71 0.88 0.61 (0.40 , 0.79)

l_ldl_l Cube-root 0.71 0.88 0.61 (0.4 0, 0.79)

l_ldl_pl Log 0.75 0.89 0.59 (0.37 , 0.78)

l_ldl_c Cube-root 0.70 0.89 0.62 (0.41 , 0.79)

l_ldl_ce Cube-root 0.70 0.89 0.62 (0.41 , 0.79)

l_ldl_fc Cube-root 0.69 0.86 0.61 (0.40 , 0.79)

l_ldl_tg Log 0.58 0.85 0.69 (0.50 , 0.83)

m_ldl_p Cube-root 0.69 0.87 0.62 (0.41 , 0.79)

m_ldl_l Cube-root 0.69 0.87 0.62 (0.41 , 0.79)

m_ldl_pl Log 0.74 0.89 0.59 (0.38 , 0.78)

m_ldl_c Cube-root 0.67 0.89 0.63 (0.43 , 0.80)

m_ldl_ce Cube-root 0.67 0.88 0.64 (0.44 , 0.81)

m_ldl_fc Log 0.69 0.93 0.64 (0.45 , 0.81)

m_ldl_tg Log 0.53 0.75 0.66 (0.47 , 0.82)

s_ldl_p Cube-root 0.64 0.87 0.65 (0.45 , 0.81)
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s_ldl_l Cube-root 0.64 0.87 0.65 (0.46 , 0.81)

s_ldl_pl Cube-root 0.61 0.78 0.62 (0.42 , 0.80)

s_ldl_c Cube-root 0.63 0.89 0.67 (0.48 , 0.82)

s_ldl_ce Cube-root 0.64 0.88 0.66 (0.47 , 0.82)

s_ldl_fc Log 0.59 0.93 0.71 (0.54 , 0.85)

s_ldl_tg Log 0.57 0.80 0.67 (0.48 , 0.82)

xl_hdl_p Untransformed 0.43 0.86 0.80 (0.67 , 0.90)

xl_hdl_l Untransformed 0.43 0.86 0.80 (0.66 , 0.89)

xl_hdl_pl Untransformed 0.37 0.86 0.84 (0.73 , 0.92)

xl_hdl_c Untransformed 0.51 0.81 0.72 (0.54 , 0.85)

xl_hdl_ce Untransformed 0.52 0.76 0.68 (0.49 , 0.83)

xl_hdl_fc Untransformed 0.45 0.87 0.79 (0.64 , 0.89)

xl_hdl_tg Untransformed 0.67 0.61 0.45 (0.22 , 0.70)

l_hdl_p Untransformed 0.39 0.86 0.83 (0.71 , 0.91)

l_hdl_l Untransformed 0.37 0.87 0.84 (0.73 , 0.92)

l_hdl_pl Untransformed 0.45 0.84 0.78 (0.63 , 0.88)

l_hdl_c Untransformed 0.32 0.90 0.89 (0.81 , 0.94)

l_hdl_ce Untransformed 0.32 0.90 0.89 (0.81 , 0.94)

l_hdl_fc Untransformed 0.32 0.89 0.88 (0.80 , 0.94)

l_hdl_tg Untransformed 0.73 0.69 0.47 (0.24 , 0.71)

m_hdl_p Log 0.92 0.54 0.26 (0.06 , 0.61)

m_hdl_l Log 0.91 0.58 0.29 (0.08 , 0.62)

m_hdl_pl Log 0.92 0.52 0.24 (0.05 , 0.61)

m_hdl_c Cube-root 0.83 0.72 0.43 (0.20 , 0.69)

m_hdl_ce Cube-root 0.81 0.77 0.47 (0.24 , 0.71)

m_hdl_fc Cube-root 0.86 0.55 0.29 (0.08 , 0.62)

m_hdl_tg Cube-root 0.71 0.77 0.54 (0.32 , 0.75)

s_hdl_p Log 1.01 0.47 0.18 (0.02 , 0.61)

s_hdl_l Log 1.01 0.46 0.17 (0.02 , 0.61)

s_hdl_pl Log 0.82 0.75 0.46 (0.23 , 0.70)

s_hdl_c Untransformed 1.08 0.35 0.10 (0.00 , 0.72)

s_hdl_ce Untransformed 1.04 0.42 0.14 (0.01 , 0.63)

s_hdl_fc Untransformed 0.85 0.57 0.31 (0.10 , 0.63)

s_hdl_tg Cube-root 0.52 0.90 0.75 (0.59 , 0.87)

serum_c Log 0.74 0.87 0.58 (0.36 , 0.77)

vldl_c Cube-root 0.51 0.90 0.75 (0.60 , 0.87)

remnant_c Cube-root 0.62 0.96 0.70 (0.53 , 0.84)

ldl_c Cube-root 0.69 0.90 0.63 (0.43 , 0.80)

hdl_c Cube-root 0.51 0.86 0.74 (0.57 , 0.86)

hdl2_c Cube-root 0.47 0.87 0.77 (0.63 , 0.88)

hdl3_c Untransformed 0.64 0.67 0.52 (0.30 , 0.74)

serum_tg Log 0.54 0.95 0.76 (0.60 , 0.87)

vldl_tg Log 0.51 0.97 0.78 (0.64 , 0.88)

ldl_tg Log 0.57 0.82 0.68 (0.49 , 0.83)

hdl_tg Log 0.77 0.68 0.44 (0.21 , 0.69)

apoa1 Log 0.79 0.69 0.43 (0.20 , 0.69)

apob Log 0.63 0.97 0.70 (0.52 , 0.84)

alb Log 1.23 0.34 0.07 (0.00 , 0.82)

vldl_d Log 0.47 0.84 0.76 (0.61 , 0.87)

ldl_d Cube 0.34 0.70 0.81 (0.68 , 0.90)

hdl_d Log 0.31 0.95 0.90 (0.83 , 0.95)

estc Log 0.73 0.88 0.59 (0.38 , 0.78)

freec Log 0.77 0.84 0.55 (0.33 , 0.76)

totpg Log 0.81 0.55 0.31 (0.09 , 0.63)

pc Log 0.83 0.56 0.31 (0.09 , 0.63)

sm Log 0.80 0.73 0.45 (0.22 , 0.70)

totcho Log 0.85 0.57 0.31 (0.09 , 0.63)

totfa Log 0.80 0.65 0.40 (0.17 , 0.67)

dha Cube-root 0.73 0.71 0.49 (0.26 , 0.72)

la Cube-root 0.71 0.77 0.54 (0.32 , 0.75)

faw3 Log 0.68 0.78 0.57 (0.35 , 0.77)

faw6 Log 0.74 0.74 0.50 (0.27 , 0.73)

pufa Log 0.77 0.74 0.48 (0.25 , 0.72)

mufa Log 0.62 0.83 0.64 (0.44 , 0.81)

sfa Log 0.80 0.52 0.30 (0.08 , 0.62)

unsat Cube-root 0.40 0.75 0.78 (0.64 , 0.89)

glc Log 0.58 0.54 0.47 (0.24 , 0.71)
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lac Log 0.79 0.70 0.44 (0.21 , 0.70)

pyr Log 0.68 0.79 0.57 (0.36 , 0.77)

cit Log 0.68 1.00 0.68 (0.50 , 0.83)

glol Log 0.88 0.88 0.50 (0.27 , 0.73)

ala Log 0.86 0.70 0.40 (0.17 , 0.67)

gln Cube-root 0.79 0.85 0.53 (0.31 , 0.75)

gly Log 0.62 1.07 0.75 (0.59 , 0.87)

his Untransformed 0.95 0.00 N/A

ile Log 0.74 0.64 0.42 (0.19 , 0.68)

leu Log 0.84 0.58 0.32 (0.10 , 0.63)

val Log 0.75 0.73 0.48 (0.25 , 0.72)

phe Log 0.90 0.52 0.25 (0.05 , 0.61)

tyr Log 0.71 0.81 0.57 (0.35 , 0.77)

ace Log 0.63 0.61 0.48 (0.25 , 0.72)

acace Cube-root 0.70 0.51 0.35 (0.13 , 0.65)

bohbut Log 0.70 0.64 0.46 (0.23 , 0.70)

crea Log 0.48 0.83 0.75 (0.59 , 0.87)

gp Log 0.80 0.52 0.30 (0.09 , 0.63)

xxl_vldl_pl_pc Cube-root 0.52 0.50 0.49 (0.24 , 0.74)

xxl_vldl_c_pc Cube-root 0.45 0.62 0.65 (0.45 , 0.82)

xxl_vldl_ce_pc Untransformed 0.43 0.76 0.76 (0.59 , 0.88)

xxl_vldl_fc_pc Cube-root 0.71 0.67 0.48 (0.23 , 0.73)

xxl_vldl_tg_pc Untransformed 0.61 0.66 0.54 (0.31 , 0.76)

xl_vldl_pl_pc Cube-root 0.46 0.76 0.73 (0.53 , 0.87)

xl_vldl_c_pc Cube-root 0.52 0.61 0.58 (0.34 , 0.79)

xl_vldl_ce_pc Cube-root 0.78 0.60 0.37 (0.11 , 0.72)

xl_vldl_fc_pc Cube-root 0.38 0.71 0.78 (0.61 , 0.90)

xl_vldl_tg_pc Square 0.38 0.72 0.78 (0.62 , 0.89)

l_vldl_pl_pc Log 0.83 0.84 0.51 (0.27 , 0.75)

l_vldl_c_pc Untransformed 0.57 0.77 0.65 (0.43 , 0.82)

l_vldl_ce_pc Untransformed 0.82 0.65 0.38 (0.14 , 0.68)

l_vldl_fc_pc Untransformed 0.73 0.69 0.48 (0.22 , 0.74)

l_vldl_tg_pc Square 0.38 0.77 0.80 (0.65 , 0.90)

m_vldl_pl_pc Log 0.55 0.87 0.71 (0.54 , 0.85)

m_vldl_c_pc Untransformed 0.44 0.83 0.78 (0.64 , 0.88)

m_vldl_ce_pc Untransformed 0.44 0.93 0.81 (0.69 , 0.90)

m_vldl_fc_pc Square 0.74 0.61 0.40 (0.17 , 0.67)

m_vldl_tg_pc Square 0.40 0.82 0.81 (0.68 , 0.90)

s_vldl_pl_pc Cube 0.50 0.58 0.58 (0.36 , 0.77)

s_vldl_c_pc Untransformed 0.58 0.90 0.71 (0.53 , 0.84)

s_vldl_ce_pc Untransformed 0.59 0.95 0.72 (0.55 , 0.85)

s_vldl_fc_pc Cube 0.39 0.42 0.54 (0.31 , 0.75)

s_vldl_tg_pc Cube-root 0.58 0.91 0.71 (0.54 , 0.85)

xs_vldl_pl_pc Cube-root 0.67 0.27 0.14 (0.01 , 0.64)

xs_vldl_c_pc Cube 0.59 0.82 0.66 (0.47 , 0.82)

xs_vldl_ce_pc Square 0.64 0.82 0.62 (0.42 , 0.80)

xs_vldl_fc_pc Cube 0.39 0.47 0.59 (0.37 , 0.78)

xs_vldl_tg_pc Log 0.48 0.92 0.79 (0.64 , 0.89)

idl_pl_pc Untransformed 0.52 0.74 0.67 (0.48 , 0.82)

idl_c_pc Cube 0.41 0.89 0.82 (0.70 , 0.91)

idl_ce_pc Cube 0.48 0.83 0.75 (0.58 , 0.87)

idl_fc_pc Cube 0.47 0.74 0.71 (0.53 , 0.85)

idl_tg_pc Log 0.44 0.95 0.83 (0.70 , 0.91)

l_ldl_pl_pc Log 0.45 0.86 0.79 (0.65 , 0.89)

l_ldl_c_pc Cube 0.46 0.89 0.79 (0.65 , 0.89)

l_ldl_ce_pc Cube 0.52 0.90 0.75 (0.59 , 0.87)

l_ldl_fc_pc Cube 0.50 0.79 0.71 (0.54 , 0.85)

l_ldl_tg_pc Log 0.41 0.86 0.81 (0.68 , 0.90)

m_ldl_pl_pc Log 0.52 0.79 0.70 (0.52 , 0.84)

m_ldl_c_pc Cube 0.50 0.87 0.75 (0.59 , 0.87)

m_ldl_ce_pc Cube 0.57 0.87 0.70 (0.52 , 0.84)

m_ldl_fc_pc Log 0.63 0.77 0.59 (0.38 , 0.78)

m_ldl_tg_pc Log 0.40 0.82 0.81 (0.68 , 0.90)

s_ldl_pl_pc Log 0.61 0.84 0.66 (0.47 , 0.82)

s_ldl_c_pc Cube 0.51 0.85 0.73 (0.57 , 0.86)

s_ldl_ce_pc Cube 0.60 0.84 0.67 (0.48 , 0.82)

s_ldl_fc_pc Log 0.76 0.66 0.43 (0.20 , 0.69)
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s_ldl_tg_pc Log 0.45 0.86 0.79 (0.64 , 0.89)

xl_hdl_pl_pc Square 0.51 0.56 0.55 (0.33 , 0.76)

xl_hdl_c_pc Cube-root 0.77 0.00 N/A

xl_hdl_ce_pc Cube-root 0.79 0.00 N/A

xl_hdl_fc_pc Square 0.59 0.56 0.48 (0.24 , 0.73)

xl_hdl_tg_pc Log 0.72 0.73 0.51 (0.27 , 0.74)

l_hdl_pl_pc Log 0.49 0.94 0.79 (0.64 , 0.89)

l_hdl_c_pc Cube 0.49 0.98 0.80 (0.66 , 0.90)

l_hdl_ce_pc Cube 0.50 0.99 0.80 (0.66 , 0.90)

l_hdl_fc_pc Cube 0.53 0.94 0.76 (0.59 , 0.87)

l_hdl_tg_pc Cube-root 0.60 0.96 0.72 (0.54 , 0.86)

m_hdl_pl_pc Log 0.56 0.77 0.65 (0.45 , 0.81)

m_hdl_c_pc Cube 0.49 0.99 0.81 (0.68 , 0.90)

m_hdl_ce_pc Cube 0.42 0.99 0.85 (0.74 , 0.92)

m_hdl_fc_pc Cube 0.76 0.65 0.42 (0.19 , 0.68)

m_hdl_tg_pc Log 0.51 1.04 0.81 (0.67 , 0.90)

s_hdl_pl_pc Cube-root 0.49 0.99 0.80 (0.67 , 0.90)

s_hdl_c_pc Square 0.57 0.82 0.68 (0.49 , 0.83)

s_hdl_ce_pc Square 0.56 0.88 0.71 (0.54 , 0.85)

s_hdl_fc_pc Cube 0.37 0.71 0.79 (0.64 , 0.89)

s_hdl_tg_pc Log 0.48 0.95 0.79 (0.66 , 0.89)

apob_apoa1 Cube-root 0.34 1.10 0.91 (0.85 , 0.96)

tg_pg Log 0.52 0.98 0.78 (0.63 , 0.88)

dha_fa Cube-root 0.39 0.83 0.82 (0.69 , 0.90)

la_fa Untransformed 0.48 0.86 0.76 (0.60 , 0.87)

faw3_fa Log 0.40 0.87 0.82 (0.70 , 0.91)

faw6_fa Untransformed 0.46 0.84 0.77 (0.62 , 0.88)

pufa_fa Untransformed 0.45 0.85 0.78 (0.64 , 0.89)

mufa_fa Cube-root 0.42 0.93 0.83 (0.71 , 0.91)

sfa_fa Square 0.43 0.80 0.78 (0.63 , 0.88)

White blood cell count Log 0.53 0.71 0.64 (0.45 , 0.81)

Haemoglobin Cube 0.48 0.91 0.78 (0.63 , 0.88)

Platelets Cube-root 0.42 1.00 0.85 (0.74 , 0.92)

Urea Log 0.53 0.93 0.75 (0.59 , 0.87)

Potassium Cube-root 0.52 0.53 0.51 (0.29 , 0.74)

Sodium Square 0.52 0.58 0.55 (0.33 , 0.76)

Creatinine Log 0.26 0.92 0.93 (0.87 , 0.96)

Urate Log 0.27 0.95 0.93 (0.87 , 0.96)

Magnesium Untransformed 0.37 0.75 0.81 (0.67 , 0.90)

Calcium Log 0.40 0.75 0.78 (0.64 , 0.89)

Phosphate Cube-root 0.59 0.48 0.39 (0.16 , 0.67)

Protein Untransformed 0.67 0.64 0.48 (0.25 , 0.72)

Albumin Square 0.51 0.81 0.72 (0.53 , 0.86)

Bilirubin Log 0.62 0.86 0.66 (0.46 , 0.82)

ALP level Log 0.24 0.80 0.92 (0.85 , 0.96)

Aspartate transaminase level Log 0.53 0.85 0.72 (0.55 , 0.85)

Alanine aminotransferase level Log 0.52 0.78 0.69 (0.51 , 0.84)

Gamma-glutamyl transpeptidase level Log 0.18 0.82 0.95 (0.92 , 0.98)

HDL cholesterol Log 0.20 0.95 0.96 (0.92 , 0.98)

LDL cholesterol Cube-root 0.27 0.94 0.92 (0.86 , 0.96)

Triglycerides Log 0.46 0.86 0.78 (0.63 , 0.88)

Glucose Log 0.29 0.64 0.83 (0.71 , 0.92)

Insulin Log 0.57 0.61 0.53 (0.31 , 0.74)

Fibrinogen clotting assay Cube-root 0.66 0.73 0.55 (0.33 , 0.76)

FVII Untransformed 0.37 1.09 0.90 (0.82 , 0.95)

FVIII Untransformed 0.58 0.76 0.63 (0.43 , 0.80)

FVIX Untransformed 0.64 1.01 0.71 (0.53 , 0.85)

Activated partial thromboplastin time Log 0.33 0.47 0.66 (0.44 , 0.84)

Activated partial thromboplastin time ratio Cube-root 0.65 0.55 0.41 (0.15 , 0.72)

Plasma viscosity Log 0.53 0.70 0.64 (0.43 , 0.81)

D-dimer Log 0.56 0.70 0.61 (0.41 , 0.79)

Tissue plasminogen activator Cube-root 0.49 0.72 0.68 (0.49 , 0.83)

Von Willebrand factor Cube-root 0.38 0.78 0.81 (0.68 , 0.90)

C-reactive protein Log 0.47 0.82 0.75 (0.59 , 0.87)

IL 6 Log 0.74 0.87 0.58 (0.36 , 0.78)

Vitamin C Untransformed 0.53 0.83 0.71 (0.52 , 0.85)

Vitamin E Cube-root 0.64 0.82 0.63 (0.40 , 0.82)
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Figure 3.15: Heatmap showing the strength of Spearman correlations in the
149 metabolite concentrations. Red = positive correlation, blue = negative
correlation
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Figure 3.16: Heatmap showing the strength of Spearman correlations in the 79
metabolite ratios. Red = positive correlation, blue = negative correlation
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Figure 3.17: Heatmap showing the strength of Spearman correlations in the 228
NMR biomarkers. Red = positive correlation, blue = negative correlation



Chapter 4

Methods for
high-dimensional exposures

4.1 Introduction

Before moving on to the use of network analysis methods which will form the
core part of this thesis, we present a short review of some of the methods more
commonly applied to high dimensional epidemiological data. For a more de-
tailed source, Chadeau-Hyam et al [43] give a comprehensive overview of the
statistical methods used for the analysis of -OMICS data and provide an ex-
cellent resource of references for this chapter. Similarly, Witten and Tibshirani
[44] review statistical methods used in high dimensional situations, specifically
applied to survival analysis.

One of the purposes of obtaining the concentrations of the NMR metabolites
from the blood samples of the BWHHS cohort is to understand whether any
of these metabolites are associated with rates of coronary heart disease. When
analysing data with a large number of exposures we encounter a problem - mul-
tiple hypothesis testing [45]. In this chapter we describe this problem and how
to account for it when drawing inferences. In addition to this, two alterna-
tive analysis methods commonly used for data of this type will be described -
principal components regression and penalised regression. Each of these three
approaches will be applied to the BWHHS dataset for illustration, using coro-
nary heart disease by the end of the follow up period as the outcome of interest.

4.2 Overview of methods

4.2.1 Standard methods and multiple testing

The simplest approach to identifying which of the metabolites are associated
with the outcome is to consider each metabolite individually. For each metabo-
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lite a linear regression (for a continuous outcome), a logistic regression (binary
outcome) or a Cox proportional hazards model (time to event outcome) can be
fitted to the data and a p-value for the association calculated. This p-value
can be compared to a defined threshold (α) and if it is below that threshold
then it can be said that evidence has been found to reject the null hypothesis
that the metabolite is not associated with the outcome of interest. Or to say
more simply, there is evidence of an association between the metabolite and the
outcome of interest. However, when testing a high number of metabolites the
typically chosen thresholds of α = 0.05 or α = 0.01 are often too lenient for
determining “statistical significance” when multiple tests are viewed jointly.

For a single hypothesis test a p-value of 0.05 represents a 5% probability of
rejecting the null hypothesis if the null hypothesis is true (i.e. there is no
association between the metabolite and the outcome of interest). Incorrectly
rejecting the null hypothesis is called a type I error or, alternatively, a false
positive. If many tests are performed, and viewed jointly, the probability of ob-
taining a false positive increases, so the threshold at which we consider a p-value
low enough to provide strong evidence of an association between predictor and
outcome should be reduced. The two main methods of adjusting the threshold
are to control the familywise error rate (FWER) or to control the false discovery
rate (FDR). The FWER is the probability of at least 1 false positive occurring
amongst all the tests that take place. The FDR is the expected proportion of
false positives among all positive results obtained, which results in a less strin-
gent threshold compared with FWER methods.

Table 4.1 illustrates a situation where m hypothesis tests have been performed
and m0 of the null hypotheses are true. Each cell contains the number of results
observed for each possible scenario - U and S represent the ideal test results with
U giving the number of tests where the null hypothesis has been correctly not
rejected and S giving the number of tests where the null hypothesis has been
correctly rejected. V represents the number of false positives (type I errors)
and T the false negatives (type II errors). By reducing the threshold at which
the null hypothesis is rejected the probability of false positives is reduced, but
at the expense of potentially introducing some false negatives. From this table
we can obtain the FWER and FDR - the FWER is the probability that V is
greater than or equal to 1 and the FDR is the expected value of V/(V+S).

Table 4.1: Possible results from a set of m hypothesis tests [46]

Null hypothesis Null hypothesis
not rejected rejected

Null hypothesis is true U V m0

Null hypothesis is false T S m−m0

m-R R m
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4.2.2 Multiple testing adjustment

The most common method of adjusting the threshold is by a Bonferroni correc-
tion, which is achieved simply by dividing the original threshold (e.g. 0.05) by
the number of tests performed [47]. Bonferroni is the most conservative thresh-
old adjustment, it ensures that the FWER is less than or equal to 0.05. That
is, of all the tests performed, there is at most a 5% chance that one or more of
them results in a false positive, when the Bonferroni correction is applied.

When analysing data where the tests are not independent (i.e. the variables
being tested are correlated) the Bonferroni adjustment is overly conservative.
Alternative methods have been developed to take into account the dependence
between tests. One of these methods was defined by Westfall and Young and
is based on permutations [48]. It can be performed by randomly permuting the
outcome variable z times, and following each permutation m hypothesis tests
are performed and a p-value for each test is calculated. Under this scenario we
know that there is no true association between the metabolites and the out-
come, so if we were to set the threshold equal to the lowest p-value from the m
tests we would say that this was the maximum threshold at which we detect no
false positives. We then get the lowest p-value from each of the z permutations
and we can identify the 5th percentile of this distribution and set this as our
corrected threshold, i.e. in 5% of the z permutations performed a p-value was
obtained that was lower than this threshold. If we use this as our corrected
threshold we expect that 5% of the time we will obtain at least one false pos-
itive result among the m tests, i.e. our estimated FWER will now be 5%. If
the tested hypotheses are strongly dependent it has been shown that use of this
method gives a large gain in power over the Bonferroni correction and that the
adjustment is asymptotically optimal as m increases [49].

The ultimate aim of performing a series of hypothesis tests is to correctly iden-
tify which variables are associated with the outcome of interest. As mentioned
above, controlling the FWER reduces the probability of identifying a single
false-positive amongst all tests performed. However, it may be the case that the
aim of analysis is to identify a set of candidate variables from a much larger list
and that finding some false positives is acceptable in order to be able to retain
enough power to detect some true positives. In this case it may be preferable
to adjust the FDR as opposed to the FWER.

Benjamini and Hochberg [46] defined the most commonly used method of con-
trolling the FDR. The method is performed by ordering the p-values from the m
hypothesis tests performed from the smallest to largest, p1 to pm. If we define
α as the uncorrected threshold and k as the largest i for which

pi ≤
i

m
α
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then we define α∗ as

α∗ =
k

m
α

and use this as our new threshold.

This method assumes that the tests are independent, and as mentioned previ-
ously this is often not the case. An updated method by Benjamini and Yekutieli
[50] adjusts this method to allow for positive dependence among the tests per-
formed.

4.2.3 Other methods

Alternative methods can be used in place of performing separate hypothesis
tests for each of the possible exposures, adjusting for multiple testing. Methods
for analysing high-dimensional data are usually split into two main categories
[44]: supervised (where the data reduction takes place based on the outcome)
and unsupervised (where the data reduction takes place before any considera-
tion of the outcome is made) . In this thesis we are interested in analysing an
outcome (the rate of CHD), so we will concentrate on supervised methods.

Within supervised methods there is a further distinction to be made between
dimension reduction (or feature extraction) and variable selection. In dimension
reduction methods the objective is to describe the high dimensional data using
fewer dimensions, whereas with variable selection the objective is to choose a
subset of the exposure variables. In this chapter we will focus on one method
from each of these categories. An example of a variable selection method (lasso
regression) is described below. One of the most commonly applied method of
dimension reduction is principal component analysis (PCA), which is an unsu-
pervised method. In this section we will describe its extension to a supervised
method, principal component regression (PCR).

Table 4.2: Selected methods for analysing high-dimensional data

Supervised Unsupervised

Dimension reduction

Ridge regression
Elastic net
Principal component regression
Partial least squares

Principal component analysis

Variable selection
Lasso
Support vector machine

Factor analysis
Hierarchical clustering
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4.2.3.1 Principal Component Regression

Principal component regression consists of two steps, first a PCA of the explana-
tory variables is performed, followed by a regression on the outcome. The aim
of PCA is to transform a set of correlated variables into a set of uncorrelated
variables, called components. The new components are calculated so that the
first component describes as much of the joint variance in the variables as pos-
sible, and subsequent components each describing gradually less and less of the
variance. In doing this is it is often possible to describe most of the variation
within a dataset using a smaller set of these components, reducing the dimen-
sionality of the dataset and therefore simplifying any subsequent data analysis
[51].

To carry out a PCA, the eigenvectors and eigenvalues of the covariance ma-
trix of the variables of interest must be calculated [51]. The eigenvector that
corresponds to each component defines the direction of that component with
its terms called “loadings” capturing how the original values contribute to that
component. The eigenvalue defines the amount of variation contained within
that component and describes how much variability is explained by that compo-
nent. By ordering the components from the one with the largest eigenvalue to
the the one with the smallest, we derive how much of the overall is cumulatively
due to them.

A decision that must be made in PCA is to choose how many components to
select. Bartholomew et al. [52] suggest four possible criteria to be used when
making this decision:

1. Keep enough components so that a large amount of the variation is re-
tained (70-80%)

2. Retain components with an eigenvalue greater than 1

3. Examine a scree plot and retain components prior to the elbow of the plot

4. Identify if the components have any useful interpretation

In the second step, once the number of components to include has been cho-
sen, these components can then be treated as any other variable would be in
a multivariable regression analysis. One option is for the outcome of interest
to be regressed upon all of the selected components, with those that are most
strongly associated with the outcome selected using threshold for inclusion.

A difficulty with PCR is interpretation. When a component is found to be a
risk or protective factor investigating its loadings to aid interpretation is rarely
straightforward. So the method may be more useful for outcome prediction than
for identifying which metabolites are most strongly associated with disease.
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4.2.3.2 Lasso regression

Lasso regression is one of a group of methods known as penalised regression and
belongs to the class of variable selection methods. The aim of variable selec-
tion is to select the subset of variables that are most strongly associated with
the outcome of interest from a larger set of candidate variables. Standard for-
ward and backwards stepwise selection includes or excludes variables based on
their conditional association with the outcome, but the results can be unstable
when there are a large number of predictor variables and particularly so if those
variables are strongly correlated [53]. Ridge regression is a form of penalised
regression, which penalises the estimated model coefficients by limiting the sum
of the squared values of the regression coefficients [54], shrinking them towards
zero. However, the original number of variables remain and so the model can
be difficult to interpret. Lasso regression [55] combines the stability of ridge
regression with the interpretability of subset selection because some of the co-
efficients are shrunk to exactly 0, giving a more parsimonious (and therefore
interpretable) model. It does this by limiting the sum of the absolute (as op-
posed to the squared) values of the regression coefficients. For example, if the
outcome variable is a continuous variable, a linear regression can be defined as:

E(yi|x1i, x2i, ...x1K)) = β0 + β1xi1 + β2xi2...+ βKxiK (4.1)

Where K is the number of exposure variables, xi1-xiK are the observed exposure
variables for individual i, β1-βK are the regression coefficients and yi is the
observed outcome variablefor individual i.
Ordinary least squares estimation of the parameters β1-βK is obtained by min-
imising the residual sum of squares:

n∑
i=1

(yi − ŷi)2 (4.2)

Where n is the number of observations and ŷi is the (model) predicted outcome
variable for individual i (given the exposure variables) . However, the lasso adds
another criterion to this:

K∑
j=1

∣∣βs
j

∣∣ ≤ s (4.3)

Where s is a tuning parameter and the βs
j values are standardized. The smaller s

is, the smaller the estimated β coefficients will be. If s is set very large, then the
coefficient estimates will be the same as those estimated using the OLS method,
and if s is set equal to zero then all β coefficients are set to 0. So selecting the
value of s is key to how many parameters are estimated to be non-zero.

The value of s is often selected in a data driven manner and a common method
of acquiring it is by cross-validation. The data are split into m subsamples,
m− 1 of these subsamples are used to develop a lasso model each for a range of
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values of s. The resulting estimated parameters of each of these models are then
used to predict the outcome on the unused subsample as a validation dataset
and the mean square error corresponding to each value of s is calculated. This
process is repeated m times, with each repetition using a different subsample
as the validation set. The mean square errors are then averaged across the m
folds to get the mean cross-validated error for each value of s. The value of s
that provides the minimum mean cross-validated error can then be used as the
selected s for the lasso regression.

4.3 Methods for BWHHS

We now apply the three methods described in the previous section to the
BWHHS cohort data in order to highlight their main features. Each of the
methods described are generalisable to any form of regression, however given
the nature of our data (and the analysis presented in the next chapters) we use
two different types of regression models: logistic regression and Cox (propor-
tional hazard regression).

4.3.1 Logistic regression

Logistic regression is appropriate when the outcome of interest is binary in na-
ture. In terms of our cohort data the outcome is defined as having suffered or
not suffered a CHD event within the 12 year follow up period. Only women who
either survived the whole 12 year follow up period or had a recorded CHD event
at any time during the 12 years of follow-up are included in the analysis because
of the bias that may be introduced by counting losses to follow-up as non-events
(given the 12-year interval considered here). Those that died during follow up
without having had a CHD event are excluded. This may introduce another
source of bias, to deal with this the results will be interpreted as conditional on
survival until the event or the end of the follow up period. Also, all observations
are assumed to be independent.

The general form of the logistic regression model is

log(
πi

1− πi
) = β0 + β1xi1 + β2xi2...+ βKxiK

Where K is the number of exposure variables, πi is the probability of an indi-
vidual i having the outcome of interest (a CHD event within the 12 year follow
up period), xi1-xiK are the observed exposure variables for individual i and
β1-βK are the regression coefficients [56].Each coefficient can be interpreted as
the expected increase in the log odds of the outcome of interest for a one unit
increase of the exposure, holding constant all other variables in the model. Al-
though the BWHHS is a cohort study and therefore a survival analysis is the
most appropriate analytical approach, we also examine logistic regression here
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in order to draw some parallels with the differential network analysis studied in
later chapters.

Method 1: Simple logistic regression, with adjustment for multiple
testing A logistic regression model will be applied to the data using each of
the 149 directly quantified metabolites in turn as our predictor variable. In
addition to this, the model should be adjusted for potential confounders (ex-
cluding any other metabolites). In order to ensure that none of the potential
confounders are on the causal pathway, only age will be adjusted for in this
chapter. For each regression performed, the logistic model only including age
as a predictor will be compared with a model including age, the metabolite and
the metabolite squared (to allow for any non-linear effect of the metabolite)
using a likelihood ratio test, with the null hypothesis being that the model with
age alone describes the data as well as the model including the metabolite values.

The p-value for each hypothesis test is then compared to the Westfall & Young
(controlling the family-wise error rate) and Benjamini & Yekutieli (controlling
the false discovery rate) adjusted thresholds, as these both take into account
the non-independence of the tests performed. The estimated odds ratios of the
metabolites that result in a p-value below these thresholds will be reported.

Method 2: Principal components regression A principal components
analysis will be performed on the BWHHS metabolite data, retaining all com-
ponents where the eigenvalue is greater than 1. Then a logistic regression will
be performed using the selected principal components as explanatory variables
in the model with CHD events in the follow-up defining the outcome. Age will
also be included in the model as an a priori confounder. The components that
are most strongly associated with the outcome will be retained, using a thresh-
old for inclusion of p <0.05 (while age will forced to be retained in the model).

Method 3: Lasso regression Logistic regression with lasso will be per-
formed using the all metabolites as predictor variables (along with age), with
the level of penalization determined by cross-validation. The logistic regression
model will include all the metabolites as well as all their pairwise interactions.
The model with the interactions will be obtained using the GLINTERNET pack-
age from R. This package ensures that when an interaction effect is included in
the model, the main effects are also included. However this package only allows
the use of a logistic (or linear)regression, so when performing a Cox regression
the pairwise interactions are obtained by multiplying each pair of metabolites
together and using these products as normal in a lasso regression. This has
the problem that it does not guarantee the inclusion of main effects when the
interaction is selected. Therefore to allow some comparison between the logistic
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and Cox methods this method will also be done for the logistic lasso regression,
providing two sets of results for the logistic analysis.

4.3.2 Cox regression

A better exploitation of the available data focusses on the time to CHD event
as the outcome of interest, with individuals who died from other causes during
follow-up, or were known to be alive and CHD free at the end of their follow-up,
treated as censored events. Survival analysis can be implemented on these data
with parametric and semi-parametric models as standard choices of analysis. In
the following we will use Cox regression modelling of the hazard function, i.e.
of the instantaneous conditional probability of the event.

The general form of the Cox regression model is

hi(t) = h0i(t)exp(

K∑
k=1

βkxki)

where h0i(t) is the baseline hazard for individual i, hi(t) is the time-varying
hazard for individual i, K is the number of covariates and βk is log hazard ratio
corresponding to a unit increase in xk controlling for the other variables in the
model [57].
In a Cox regression model the baseline rate is allowed to change over time,
however there is an assumption that the ratio of hazards between individuals
with different exposure values is constant (proportional hazards assumption)
and that individual observations are independent. For example the hazard of
CHD may vary across the follow up period, but the ratio relating the hazard
in smokers and the hazard in non-smokers is assumed to be constant across the
period.

The other assumption required for Cox regression is that of non-informative
censoring. That is, all individuals who are lost to follow up prior to the end of
the follow up and have not had the event of interest are considered to have a
similar chance of survival as those that remain in the study. If those who are
lost to follow up are different in some way to those who remain in the study, the
interpretation of the model’s parameters needs to be refined. In this study, all
the individuals do not have a CHD event and leave the study prior to the end of
the follow up period are lost due to (non-CHD related) death thus it is unlikely
that this assumption would hold. The estimated hazard ratios reported below
should therefore be interpreted as being conditional on surviving other causes
of death.

Method 1: Simple Cox regression, with adjustment for multiple test-
ing The process for this analysis is exactly the same as for the analyses per-
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formed for the logistic regression, except a Cox regression model is used. The
assumption of proportional hazards will be checked for each fitted model by
performing a Schoenfeld test [58].

Methods 2 and 3: Principal components regression and lasso regres-
sion These will be performed in exactly the same manner as the analyses
using logistic regressions, but using time to CHD event as the outcome in a Cox
regression model instead of the logistic regression model. Also only one set of
results will be provided for the Cox lasso model as the GLINTERNET package
is not available for time to event data.

4.4 Data preparation

Variable selection For this, and subsequent chapters, we will concentrate
on the use of the metabolite concentrations, rather than the ratio biomark-
ers, meaning 149 metabolites are eligible for inclusion in our analysis. For the
univariable analysis, all 149 metabolites are analysed. However, as described
in section 3.1.1, many of the 149 biomarkers are exact sums of others, which
would cause collinearity problems in the PCA and lasso regressions, where all
metabolites are analysed together. For example, within lipoprotein classes, total
lipids are equal to the sum of cholesterol, triglycerides and phospholipids. So
if the association between total lipids and cholesterol was estimated, adjusting
for triglycerides and phospholipids, we would get a resulting partial correlation
of 1, because if phospholipids and triglycerides are held constant, any rise in
cholesterol would raise the total lipids by the exact same amount. Similarly, the
partial correlation of cholesterol and triglycerides adjusting for phospholipids
and total lipids would be equal to -1, because for any increase in cholesterol,
there would have to be a corresponding decrease in triglycerides to keep the
other variables constant.

So given total cholesterol is the sum of cholesterol esters and free cholesterol,
its measurements will be excluded, along with the measurements of total lipids
as discussed above. In section 3.1.1 there is a list of metabolites whose con-
centrations are exact sums of other metabolites. In each case the metabolite
that is a combination of the others will be excluded, while retaining the lower
level metabolites. This results in a total of 94 variables to be eligible for analysis.

Also, as both Creatinine and Glycerol have large numbers of missing values (292
and 73 respectively) these are also excluded from the PCA and lasso analyses,
as any individuals with an incomplete record of data will be excluded, so includ-
ing these variables will lead to a large reduction in the sample size. Finally, in
the previous chapter, the intraclass correlation of each of the metabolites were
estimated using the repeat samples and a number of metabolites were identified
as having poor reliability. If there is little agreement between the concentra-
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tions of a metabolite in an individual measured 2 weeks apart, it is unlikely to
be a reliable feature for indicating CHD risk in a 12 year follow up period, so
a decision was made to exclude any metabolite that exhibited an ICC of less
than 0.4 (classified as poor reliability), which led to a further 14 metabolites
being excluded. So a final set of 78 metabolites were selected to be used in the
PCA and lasso regressions. Since the simple analysis treats all the metabolites
separately, the analysis can be performed on the metabolites with poor relia-
bility, however the results should be interpreted bearing their reliability in mind.

Transformations As many of the metabolites are strongly right-skewed, the
same transformations applied to the 149 metabolite concentrations for the re-
liability analysis (section 3.4.1) will be applied in the analyses in this chapter
(i.e. where the best transformation from cube-root, square-root, log, square and
cube transforms is selected for each metabolite, “best” meaning the transfor-
mation resulting in the distribution with the skewness closest to 0). For details
see table 3.5.

Study size As per figure 2.1, all women with prevalent CHD at baseline
(n=143) were excluded from the analyses in this chapter (and subsequent chap-
ters), resulting in a sample size of 3634 women.

For the logistic regression analyses, only women who had a CHD event in the
12-year follow-up or survived until the end of follow-up were included, so only
2929 women were included in these analyses. For the Cox regression analyses
all 3634 women who were CHD free at baseline were included. Censoring was
defined as a non-CHD related death prior to the end of the 12-year follow-up
period, or being event free at the end of follow-up.

Complete case analysis was carried out, leading in particular to the exclusion of
nine (out of the 3634) women who had missing values in at least one metabolite.
Hence in the Cox analyses the data were restricted to 3625 participants. Seven
of these nine women with missing values were in the sample for the logistic
regression, so the sample size for that was restricted to 2922.

The PCA and lasso regression analyses also require a complete set of obser-
vations, so for both these analyses the sample size was also 3625 in the Cox
analyses and 2922 in the logistic analyses. The numbers involved with the sep-
arate simple analyses vary by the completeness of the observed data for each
metabolite, with the number of observations missing for each metabolite avail-
able in table 3.5. Age was not affected by missingness.
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4.5 Results

4.5.1 Simple analyses, with adjustment for multiple test-
ing

Logistic regression The estimated odds ratios, each estimated separately,
for the linear effects of the 149 metabolites ranged from 0.67 to 1.44. For the
square term in each of the tests (included to allow or non-linear effects), the odds
ratios ranged from 0.90 to 1.14 (which can not be interpreted independently of
the odds ratios from the linear effects). Of the 149 hypothesis tests, testing
the null hypothesis that including a linear and quadratic effect of a metabolite
provided no improvement over a model only including age, 92 (62%) resulted
in a p value less than the uncorrected threshold of 0.05. The high proportion
of low p-values suggests that there is some association between the metabolome
and the odds of CHD during the follow-up period. The distribution of p-values
can be seen in figure 4.1.

Figure 4.1: Distribution of p-values from simple logistic regression of 149 NMR
metabolites

For the 149 tests we performed on the data the Bonferroni corrected threshold
is 0.00033. There are 27 metabolites that have a p-value less than 0.00033, so
one way of presenting these results would be to say that there is evidence of
an association between each of these 27 metabolites and the odds of a CHD
event in a 12-year follow-up period (after adjusting for age), significant at the
Bonferroni adjusted threshold of p <0.00033 and conditional on survival until
the CHD event or the end of the follow up period. However, as this procedure
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does not take account of the dependence between tests it is likely to be an overly
conservative adjustment. To that end a new threshold can be identified based
on the Westfall and Young method which leads to a new corrected threshold
of p <0.00095, leading to a further 11 metabolites being identified as having a
significant association. So it can be said that there is evidence supporting the
association of 38 metabolites to the odds of CHD in the follow up period, signif-
icant at the Westfall-Young corrected threshold of p <0.00095, which controls
the family wise error rate to 5%. These metabolites are listed in table 4.3 along
with their estimated odds ratios and the joint p-value for the likelihood ratio
test of the inclusion of including both linear and quadratic terms (adjusted for
age) compared with only age in the model.

From inspection of the results, it appears that the concentration of large HDL
cholesterol metabolites are associated with a reduced odds of CHD in the follow
up period with monounsaturated fatty acids, triglycerides and very large VLDL
metabolites being associated with increased odds. If instead of the FWER, the
FDR was to be controlled for, the Benjamini-Yekutieli corrected threshold is
0.0038, with 64 metabolites falling below this threshold.

Cox regression The estimated hazard ratios, each estimated separately, for
the linear effects of the 149 metabolites ranged from 0.69 to 1.38. For the square
term in each of the tests, the hazard ratios ranged from 0.92 to 1.12. Of the
149 hypothesis tests, testing the null hypothesis that including a linear and
quadratic effect of a metabolite provided no improvement over a model only
including age, 81 (54%) resulted in a p value less than the uncorrected thresh-
old of 0.05. The high proportion of low p-values suggests that there is some
association between the metabolome and the hazard of CHD. The distribution
of p-values can be seen in figure 4.2.

As before the Bonferroni corrected threshold is 0.00033, with 15 metabolites hav-
ing a p-value below this threshold. The Westfall and Young corrected threshold
was this time found to be 0.00088, resulting in an additional 11 metabolites
identified as significant. So there is evidence supporting the association of
26 metabolites to time to CHD event, significant at the Westfall-Young cor-
rected threshold of 0.00088 (table 4.4). If instead of the FWER, the FDR was
controlled for, the Benjamini-Yekutieli corrected threshold is 0.0028, with 47
metabolites falling below this threshold.

The Schoenfeld test, which tests the null hypothesis that the hazards are pro-
portional, was performed after each Cox regression. No evidence was found to
reject the null hypothesis for the metabolites that were found to be associated
with the outcome so we can say that the assumption of proportional hazards is
consistent with the results observed. There was also little evidence to suggest
that any of the quadratic terms included in the models had any effect on the
outcome. All the metabolites identified as associated with CHD hazard in the
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Figure 4.2: Distribution of p-values from simple Cox regression of 149 NMR
metabolites

Cox regression analysis had previously been identified as being associated with
odds of CHD in the logistic regression analysis.
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Table 4.3: Metabolites associated with the odds of CHD in the follow up period,
statistically significant at the Westfall-Young corrected threshold of p <0.00095,
ordered by p-value of the joint test of significance of the main and squared terms
in the model. Metabolites have been standardized, so odds ratios relate to a
one standard deviation change in the metabolite concentration.

Main term Square term Joint p-value
Variable Odds Ratio (95% CI) Odds Ratio (95% CI)
Free cholesterol in large HDL 0.67 (0.56,0.79) 1.14 (1.03,1.26) <0.0001
Total cholesterol in large HDL 0.67 (0.57,0.79) 1.13 (1.02,1.25) <0.0001
Cholesterol esters in large HDL 0.68 (0.58,0.80) 1.12 (1.02,1.24) <0.0001
Phospholipids in XL HDL 0.69 (0.58,0.80) 1.10 (1.01,1.21) <0.0001
Monounsaturated fatty acids 1.36 (1.16,1.59) 1.05 (0.95,1.15) <0.0001
Total lipids in large HDL 0.71 (0.61,0.83) 1.08 (0.98,1.19) <0.0001
Creatinine 1.19 (1.02,1.37) 1.12 (1.04,1.20) <0.0001
Concentration of large HDL 0.72 (0.62,0.84) 1.08 (0.98,1.18) <0.0001
Total cholesterol in HDL2 0.72 (0.61,0.86) 1.01 (0.93,1.09) <0.0001
Total cholesterol in HDL 0.73 (0.62,0.85) 1.03 (0.93,1.14) 0.0001
Mean diameter for HDL particles 0.73 (0.63,0.85) 1.08 (0.97,1.19) 0.0001
Serum total triglycerides 1.39 (1.17,1.65) 1.00 (0.90,1.12) 0.0001
Triglycerides in very small VLDL 1.41 (1.18,1.68) 0.99 (0.89,1.10) 0.0001
Free cholesterol in XL HDL 0.71 (0.60,0.83) 1.09 (1.00,1.19) 0.0001
Triglycerides in VLDL 1.37 (1.17,1.61) 1.02 (0.92,1.14) 0.0001
Triglycerides in small VLDL 1.39 (1.17,1.65) 0.99 (0.90,1.10) 0.0001
Triglycerides in medium VLDL 1.41 (1.18,1.68) 0.98 (0.88,1.08) 0.0002
Concentration of XL HDL particles 0.72 (0.62,0.84) 1.08 (0.99,1.17) 0.0002
Phospholipids in large HDL 0.74 (0.63,0.86) 1.04 (0.94,1.14) 0.0002
Triglycerides in IDL 1.37 (1.15,1.64) 0.99 (0.90,1.10) 0.0002
Total lipids in XL HDL 0.72 (0.62,0.84) 1.08 (0.99,1.17) 0.0002
Triglycerides in small LDL 1.27 (1.09,1.48) 1.08 (0.97,1.19) 0.0002
Triglycerides in large VLDL 1.40 (1.18,1.65) 1.01 (0.92,1.11) 0.0002
Estimated degree of unsaturation 0.79 (0.68,0.91) 1.06 (0.98,1.15) 0.0003
Concentration of medium VLDL 1.40 (1.17,1.68) 0.97 (0.88,1.08) 0.0003
Concentration of large VLDL 1.39 (1.18,1.64) 1.01 (0.92,1.11) 0.0003
Total lipids in large VLDL 1.39 (1.18,1.64) 1.01 (0.92,1.11) 0.0003
Bonferroni threshold
Phospholipids in large VLDL 1.39 (1.18,1.64) 1.02 (0.93,1.12) 0.0003
Total lipids in medium VLDL 1.40 (1.17,1.67) 0.97 (0.88,1.08) 0.0004
Free cholesterol in medium VLDL 1.39 (1.17,1.66) 0.98 (0.88,1.08) 0.0004
Phospholipids in medium VLDL 1.39 (1.16,1.66) 0.98 (0.89,1.08) 0.0004
Triglycerides in XL VLDL 1.33 (1.14,1.55) 1.06 (0.96,1.18) 0.0005
Glycoprotein acetyls 1.44 (1.20,1.74) 0.92 (0.83,1.03) 0.0005
Free cholesterol in large VLDL 1.36 (1.16,1.60) 1.01 (0.92,1.12) 0.0005
Concentration of XL VLDL 1.32 (1.13,1.54) 1.06 (0.96,1.18) 0.0006
Triglycerides in large HDL 0.78 (0.67,0.91) 1.13 (1.05,1.21) 0.0006
Total lipids in XL VLDL 1.32 (1.13,1.54) 1.06 (0.96,1.18) 0.0006
Total cholesterol in large VLDL 1.36 (1.16,1.60) 1.01 (0.91,1.11) 0.0008
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Table 4.4: Metabolites associated in survival analysis with CHD hazard, sta-
tistically significant at the Westfall-Young corrected threshold of p <0.00088,
ordered by p-value of the joint test of significance of the main and squared terms
in the model. Metabolites have been standardized, so odds ratios relate to a
one standard deviation change in the metabolite concentration.

Main term Square term Joint p-value
Variable Hazard Ratio (95% CI) Hazard Ratio (95% CI)
Total cholesterol in large HDL 0.70 (0.60,0.82) 1.11 (1.01,1.23) <0.0001
Free cholesterol in large HDL 0.69 (0.59,0.81) 1.12 (1.02,1.24) <0.0001
Cholesterol esters in large HDL 0.70 (0.60,0.82) 1.11 (1.00,1.22) <0.0001
Creatinine 1.20 (1.03,1.40) 1.05 (1.00,1.10) 0.0001
Monounsaturated fatty acids 1.32 (1.14,1.54) 1.04 (0.94,1.14) 0.0001
Phospholipids in very large HDL 0.72 (0.62,0.84) 1.08 (0.98,1.19) 0.0001
Total lipids in large HDL 0.74 (0.63,0.85) 1.07 (0.97,1.17) 0.0001
Concentration of large HDL 0.74 (0.64,0.86) 1.06 (0.97,1.17) 0.0001
Total cholesterol in HDL2 0.75 (0.63,0.88) 1.00 (0.93,1.08) 0.0002
Triglycerides in very small VLDL 1.38 (1.17,1.63) 1.00 (0.89,1.11) 0.0002
Serum total triglycerides 1.36 (1.15,1.61) 0.99 (0.89,1.10) 0.0002
Mean diameter for HDL 0.75 (0.65,0.87) 1.06 (0.96,1.18) 0.0003
Triglycerides in VLDL 1.34 (1.15,1.57) 1.01 (0.91,1.13) 0.0003
Triglycerides in small VLDL 1.37 (1.15,1.62) 0.99 (0.89,1.09) 0.0003
Total cholesterol in HDL 0.75 (0.64,0.88) 1.02 (0.92,1.12) 0.0003
Bonferroni threshold
Triglycerides in medium VLDL 1.38 (1.16,1.65) 0.97 (0.88,1.07) 0.0004
Concentration of medium VLDL 1.38 (1.15,1.65) 0.97 (0.88,1.07) 0.0005
Triglycerides in large VLDL 1.36 (1.16,1.60) 1.01 (0.92,1.10) 0.0005
Triglycerides in IDL 1.34 (1.13,1.57) 1.00 (0.90,1.10) 0.0006
Total lipids in medium VLDL 1.38 (1.15,1.65) 0.97 (0.88,1.07) 0.0006
Phospholipids in large HDL 0.75 (0.65,0.88) 1.03 (0.93,1.13) 0.0006
Free cholesterol in medium VLDL 1.37 (1.15,1.63) 0.97 (0.88,1.08) 0.0006
Concentration of large VLDL 1.36 (1.16,1.59) 1.01 (0.92,1.10) 0.0007
Phospholipids in medium VLDL 1.37 (1.15,1.64) 0.98 (0.88,1.07) 0.0007
Phospholipids in large VLDL 1.36 (1.16,1.59) 1.01 (0.93,1.10) 0.0007
Total lipids in large VLDL 1.35 (1.15,1.59) 1.01 (0.92,1.10) 0.0007
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4.5.2 Principal Components Regression

The PCA was performed on the 78 metabolites measured in 3625 women with
complete records included in this analysis, generating 78 components. The first
component explains 39.1% of the variation in the data, the second component
explains a further 22.6%. So the first 2 components alone explain just under
62% of the variation in the dataset. Overall 12 terms had an eigenvalue greater
than 1 (figure 4.3), accounting for just over 90% of the total variation. Follow-
ing Bartholomew’s second criterion, these were retained as predictor variables
in the logistic and Cox regressions.

Figure 4.3: Scree plot of eigenvalues against each component

Logistic regression The selected components were used as predictor vari-
ables, alongside participants’ age, in a multivariable logistic regression using
CHD event as the outcome variable. Linear effects were assumed and no inter-
actions were included. Those components with the strongest association with
the odds of CHD by 12 years were retained in the model, using the threshold for
inclusion of p <0.05. It should be noted that the components are independent
of one another by definition, although are controlled for age. The results from
the final selected model can be seen in table 4.5. There were 4 components that
were retained in the final model, the first 3 components as well as component 7.

Controlling for age, component 1 was associated with increased odds of a CHD
event (estimated odds ratio of 1.05; 95% CI 1.02,1.08) as was component 7 (es-
timated OR 1.15; 1.05,1.29). Components 2 and 3 were associated with reduced
odds of a CHD event with ORs of 0.96 (0.92,0.99) and 0.92 (0.86,0.99) respec-
tively. There was no strong evidence identified of a non-linear effect of any of
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Table 4.5: Results from final multivariable logistic regression model, chosen by
including any component with p <0.05 out of the 12 principal components,
N=2922

Variable Odds Ratio (95% CI) p-value
Component 1 1.05 (1.02, 1.08) <0.001
Component 2 0.96 (0.92, 0.99) 0.016
Component 3 0.92 (0.86, 0.99) 0.026
Component 7 1.15 (1.02, 1.29) 0.018

the components.

Components do not necessarily have a straightforward interpretation. However,
the component loadings can be inspected to provide some insight as to what
they represent. Figure 4.4 shows a chart of each of the 4 components loading
profile, with each bar in the chart representing the loading attributed to one of
the 78 metabolites considered in these analyses. There is no particular order of
the metabolites, however they have been grouped by their window, and within
the LIPO window the lipoproteins have been grouped by density.

Component 1 has consistently high positive loadings on the VLDL and LDL
lipoproteins and was identified as a risk factor for CHD, adjusting for age.
Component 2 has negative loadings of most of the VLDL components and posi-
tive loadings for the other metabolites from the LIPO and LIPID windows and
was identified as a protective factor for CHD. This could possibly be interpreted
as individuals who have higher concentrations of LDL/HDL/other lipoproteins
and low VLDL metabolite concentrations have a reduced odds of CHD. Com-
ponent 3 is also estimated to be a protective factor for CHD, and suggests that
those who have high concentrations of HDL metabolites relative to the con-
centration of LDL metabolites are of lower risk of CHD. It is not at first clear
from inspecting the profile of the loadings of component 7 what it represents,
but in fact the individual large “spikes” seen in the LDL section of the chart,
i.e. the large positive loadings, are all measures of LDL triglycerides concen-
tration. The large green peaks are lactate, pyruvate and citrate. This suggests
that individuals who have higher concentrations of LDL triglycerides as well as
these amino acids, relative to the concentrations of all other lipoproteins, have
increased odds of CHD.

Cox regression As would be expected, the results from the Cox regression
are very similar to that from the logistic regression, but are presented here for
completeness. The 12 components were again used as predictor variables, along-
side participants’ age, in a multivariable Cox regression on time to first CHD
event, retaining the components with the strongest association with CHD haz-
ard (using the threshold p <0.05). The results from the final selected model can
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Figure 4.4: Component loadings for the first, second, third and seventh prin-
cipal components from PCA of the metabolite dataset. Each bar represents
the component loading attributable to a single metabolite, the metabolites are
grouped by colour. 66



be seen in table 4.6. The same results as the logistic regression were obtained,
although the evidence for the inclusion of component 7 in the model was slightly
weaker (p=0.06) so did not quite meet the criteria for inclusion. However, it
has been included in the table of results for comparison of the effect estimates
with those from the logistic regression (including or excluding it has little effect
on the other estimates). Again, no evidence was identified of a non-linear asso-
ciation between any of the components and the outcome.

Table 4.6: Results from final multivariable Cox regression model, chosen by
including any component with p <0.05 out of the 12 principal components,
N=3625

Variable Hazard Ratio (95% CI) p-value
Component 1 1.05 (1.02, 1.08) <0.001
Component 2 0.96 (0.93, 1.00) 0.045
Component 3 0.92 (0.86, 0.99) 0.019
Component 7 1.11 (0.99, 1.25) 0.061

Principal component regression can be a useful tool in predicting the odds or
hazard in individuals when a large number of predictor variables are available
and most of the information stored within them can be summarised by a few
components. The interpretation of the results of the regression are not necessar-
ily straightforward though, so it may not be as informative about the aetiology
of disease as some of the other methods described in this chapter. We made some
speculative assessments about what each of the components of the regression
may represent, and the components identified did seem to have some sensible
interpretations, however that is not always the case. In the simple analysis we
were able to assess how each predictor variable was associated with the out-
come, however the results were open to confounding by the other metabolites.
In the PC regression we were able to use all the provided data to perform a
single logistic or Cox regression, however the interpretation of the predictors is
not straightforward.

4.5.3 Lasso Regression

Logistic regression A logistic regression with lasso was performed using the
78 metabolites (and age), resulting in 15 metabolites where the estimated re-
gression coefficient was estimated as non-zero. These are listed in table 4.7 along
with the estimated penalised odds ratios for each, ordered by the direction of
effect and effect size. Age was also estimated as a non-zero coefficient (1.07)
but is excluded from the table of results.

There are some overlaps with the results from the simple analysis, with monoun-
saturated fatty acids and VLDL triglycerides being identified as risk factors for
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Table 4.7: Metabolites with non-zero effect estimates from lasso logistic regres-
sion, ordered by direction of effect and effect size, where 78 metabolites and age
were used as candidate predictor variables

Variable Odds Ratio
Risk factors
18:2, linoleic acid 1.37
Free cholesterol in IDL 1.24
Triglycerides in large VLDL 1.12
Monounsaturated fatty acids; 16:1, 18:1 1.09
Lactate 1.04
Triglycerides in medium VLDL 1.04
Protective factors
Apolipoprotein A-I 0.82
Cholesterol esters in medium HDL 0.83
Cholesterol esters in XXL VLDL 0.84
Triglycerides in small LDL 0.87
Triglycerides in large HDL 0.87
Glycine 0.91
Glutamine 0.93
Pyruvate 0.93
Alanine 0.95

CHD. Interestingly, in the simple analysis all triglycerides were identified as risk
factors for CHD by 12 years, however, in the lasso multivariable model, small
LDL and large HDL triglycerides have been identified as potentially protective
factors. This may be a chance finding, or may illustrate that after adjusting for
all other metabolites, it is in fact the VLDL triglycerides that are associated
with the increased odds of a CHD event in the follow up period i.e. amongst
people with similar levels of triglycerides, those whose triglycerides are mostly
contained within VLDL particles are at greater risk of CHD than those whose
triglycerides are mostly found in small HDL and large HDL.

Following this, the analysis was repeated, this time including all interaction
terms (which may be useful when drawing parallels to the differential network
method in later chapters). Using the GLINTERNET package in R, 24 metabo-
lites were included as main effects and 13 interactions were identified 4.9. Of
the metabolites identified as main effects three were risk factors for CHD, mo-
nounsaturated fatty acids, glucose and IDL triglycerides, and HDL cholesterol
2 was identified as a protective factor (estimated OR 0.85). The other main
effects had estimated ORs very close to 1 (in the range 0.99-1.01).

The table 4.10 is also included to provide a paralell to the Cox regression, rather
than using the GLINTERNET package, the interaction terms were created man-
ually by calculating the product of each pair of metabolites. Only 3 main effects
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were identified and 20 interaction terms (11 not included previously, 9 match-
ing). Four interaction terms were identified using GLINTERNET but not here.
Of the three metabolites identified as main effects two were risk factors for CHD,
monounsaturated fatty acids and IDL triglycerides, and HDL cholesterol 2 was
identified as a protective factor (estimated OR 0.85). These were also previ-
ously picked up as associated with the outcome in the simple analysis. Note
that although all the interaction terms have no associated main effect reported,
in fact the main effects are included in the model, but they have an estimated
coefficient equal exactly to 0 (an OR of 1).

Cox regression A Cox regression with lasso was performed using the 78 se-
lected metabolites (and age) as predictor variables resulting in 12 metabolites
with non-zero coefficients. The selected predictors are listed in table 4.8 along
with the estimated hazard ratios for each.

Table 4.8: Metabolites with non-zero effect estimates from lasso Cox regression,
ordered by direction of effect and effect size, where 78 metabolites and age were
used as candidate predictor variables

Variable Hazard Ratio
Risk factors
18:2, linoleic acid 1.17
Free cholesterol in IDL 1.16
Monounsaturated fatty acids; 16:1, 18:1 1.02
Protective factors
Triglycerides in small LDL 0.91
Apolipoprotein A-I 0.91
Cholesterol esters in medium HDL 0.92
Glycine 0.93
Glutamine 0.93
Phospholipids in small HDL 0.95
Pyruvate 0.98
Tyrosine 0.98
Triglycerides in large HDL 0.99

As might be expected these results are very close to the results from the lo-
gistic regression with lasso, with lineolic acid and free cholesterol in IDL being
identified as the strongest risk factors for time to CHD in the model where only
main effects were included. Similar results were also obtained when all pairwise
interactions were included in the model as well (table 4.11).
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4.6 Summary

In this chapter, three different methods of analysis were adopted to illustrate
typical approaches to the analysis of large metabolomic datasets. Each method
was applied using both a logistic regression model and a Cox model, although
the latter model is more appropriate for analysis of the BWHHS data, we have
used both to provide a reference for the differential network analysis that is
the topic of later chapters. Overall, and reassuringly, the results from the two
approaches were similar. Adopting the first method we identified a number of
metabolites that had evidence of an association with either the odds of a CHD
event by 12 years (among the survivors) or time to CHD event. However, as
this was a minimally adjusted analysis (only adjusting for age) these results may
include spurious associations between metabolites and the outcome either due to
correlation with the other metabolites or other CHD risk factors, such as BMI.
We have not controlled for such health factors, however, because of concerns
they may lie on the causal pathway between metabolites and the outcome.
In these analyses we have only considered age as a source of confounding, BMI
was not included as a confounder due to concerns it may lie on the causal path-
way between metabolites to the outcome.

An alternative approach we have adopted consisted of a 2-stage analysis where
first PCA was applied to the metabolomic data, then the components from this
PCA were used as predictors in regression models. This used all the informa-
tion provided by the measured metabolites in the model, however the model
was difficult to interpret although it may be more useful for predicting risk.

Finally one-stage multivariable analyses were performed, allowing all metabo-
lites to be included in the model, with the lasso method used to select a subset
of the metabolites as being associated with time to CHD event (Cox regression)
or the odds of a CHD event in the follow up period (logistic regression).

Each of these methods are based on the same set of information (although
the simple multiple hypothesis testing was performed on a greater number of
metabolites). In the logistic regression analyses, there were three metabolites
identified as risk factors in both the simple and lasso analyses; triglycerides in
large VLDL, triglycerides in medium VLDL and monounsaturated fatty acids,
the two triglyceride metabolites were also important contributors to the compo-
nents selected in the PCR. There was one metabolite identified as a protective
factor in the simple and lasso analyses - triglycerides in large HDL. When the
Cox model was used only monounsaturated fatty acids was identified as asso-
ciated with the outcome in both the simple and lasso analyses, again as a risk
factor.
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Table 4.9: Results from logistic regression with lasso, including all pairwise inter-
actions using the GLINTERNET R package ensuring main effects are included
when a metabolite is involved in a selected interaction.

Variable Odds Ratio
Main terms
Triglycerides in IDL 1.08
Total cholesterol in HDL2 0.88
Monounsaturated fatty acids; 16:1, 18:1 1.07
Acetate 0.99
Glucose 1.12
Cholesterol esters in XXL VLDL 1.00
Free cholesterol in small LDL 1.00
Citrate 1.00
Triglycerides in large VLDL 1.00
Glycine 1.00
Cholesterol esters in medium LDL 1.00
Free cholesterol in medium LDL 1.00
Triglycerides in very large HDL 1.00
Cholesterol esters in small LDL 1.00
Triglycerides in small LDL 1.00
Valine 1.00
Phospholipids in very large HDL 0.97
Tyrosine 0.97
Estimated degree of unsaturation 0.99
Cholesterol esters in very large HDL 1.00
Alanine 1.00
Pyruvate 1.00
18:2 lineolic acid 0.99
Mean diameter for VLDL particles 1.01
Interaction Terms
Cholesterol esters in XXL VLDL Free cholesterol in small LDL 1.01
Cholesterol esters in XXL VLDL Citrate 1.00
Triglycerides in large VLDL Glycine 1.00
Cholesterol esters in medium LDL Monounsaturated fatty acids; 16:1, 18:1 0.99
Free cholesterol in medium LDL Triglycerides in very large HDL 1.01
Cholesterol esters in small LDL Monounsaturated fatty acids; 16:1, 18:1 1.01
Triglycerides in small LDL Valine 1.00
Phospholipids in very large HDL Tyrosine 1.04
Phospholipids in very large HDL Estimated degree of unsaturation 1.01
Cholesterol esters in very large HDL Alanine 1.01
Total cholesterol in HDL2 Pyruvate 1.00
18:2 lineolic acid Valine 0.99
Tyrosine Mean diameter for VLDL particles 0.98
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Table 4.10: Results from logistic regression with lasso, including all pairwise
interactions. Table included as it uses the same method as in the Cox lasso
regression (main effects not necessarily included if interaction term is)

Variable Odds Ratio
Main terms
Triglycerides in IDL 1.03
Total cholesterol in HDL2 0.85
Monounsaturated fatty acids; 16:1, 18:1 1.10
Interaction Terms
Cholesterol esters in XXL VLDL Free cholesterol in small LDL 1.06
Cholesterol esters in XXL VLDL Citrate 0.95
Triglycerides in XXL VLDL Mean diameter for LDL particles 0.98
Free cholesterol in very large VLDL Valine 0.99
Free cholesterol in very large VLDL Tyrosine 0.96
Triglycerides in large VLDL Glycine 0.97
Cholesterol esters in small VLDL Glucose 0.96
Free cholesterol in medium LDL Triglycerides in very large HDL 1.04
Phospholipids in small LDL Mean diameter for LDL particles 0.99
Triglycerides in small LDL Valine 0.99
Phospholipids in very large HDL Tyrosine 1.01
Phospholipids in very large HDL Mean diameter for LDL particles 1.01
Phospholipids in very large HDL Estimated degree of unsaturation 1.02
Cholesterol esters in very large HDL Triglycerides in very large HDL 1.02
Cholesterol esters in very large HDL Alanine 1.05
Omega-6 fatty acids Valine 0.99
Glucose Citrate 1.04
Citrate Tyrosine 0.97
Glycine Isoleucine 0.99
Tyrosine Mean diameter for VLDL particles 0.98
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Table 4.11: Results from Cox regression with lasso, including all pairwise inter-
actions.

Variable Odds Ratio
Main terms
Triglycerides in IDL 1.05
Total cholesterol in HDL2 0.87
Monounsaturated fatty acids; 16:1, 18:1 1.08
Interaction Terms
Cholesterol esters in XXL VLDL Free cholesterol in small LDL 1.07
Cholesterol esters in XXL VLDL Citrate 0.94
Triglycerides in XXL VLDL Mean diameter for LDL particles 0.98
Free cholesterol in very large VLDL Tyrosine 0.94
Triglycerides in large VLDL Glycine 0.99
Cholesterol esters in small VLDL Glucose 0.93
Free cholesterol in IDL Triglycerides in very large HDL 1.01
Phospholipids in small LDL Valine 0.98
Phospholipids in very large HDL Mean diameter for LDL particles 1.01
Phospholipids in very large HDL Estimated degree of unsaturation 1.03
Cholesterol esters in very large HDL Triglycerides in very large HDL 1.01
Cholesterol esters in very large HDL Alanine 1.05
Citrate Tyrosine 0.99
Glycine Isoleucine 0.99
Tyrosine Mean diameter for VLDL particles 0.98
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Chapter 5

Networks

In the previous chapter we looked at some of the more commonly applied tech-
niques for analysis of high-dimensional data. In this chapter we will concentrate
on the use of networks as an analytic tool for exploring metabolomic data, which
is a method used less frequently within epidemiology. In this chapter network
theory will be introduced along with some of the basic terminology and features
used to describe networks. This will be followed in chapters 6, 7 and 8 by an
exploration of the emerging method differential network analysis.

5.1 Introduction

Network science is not a new discipline, the use of networks within the mathe-
matical branch of graph theory has dated back from the 18th century [59], but
has become particularly popular since the 1990s [60]. A network, in its most
general form, is a graphical representation of a set of objects that are connected
in some way [61]. A network (sometimes also called a graph) is made up of two
key elements

• Nodes (sometimes called vertices) - the objects represented in the network.

• Edges (sometimes called links) - the connections between pairs of nodes.

In graph theory the elements are usually referred to as vertices and edges, in
network science they are usually referred to as nodes and links [59] however in
this thesis we will use the terms node and edge to reflect the terminology often
used in epidemiological literature [62].

Figure 5.1 shows a classic example of a social network commonly used to intro-
duce the concept of networks. It is a network of karate club members who were
studied by Zachary in the 1970s [63], where each node represents an individual
from the karate club with an edge drawn between a pair of nodes if the two
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individuals had a friendship outside of the karate club (friendship being deter-
mined by the number of common activities that pairs of individuals took part
in).

Figure 5.1: Zachary’s karate club. Numbers inside each node are just node IDs,
colours represent two groups identified.

From inspection of the network, it is possible to see that there are a few nodes
that are highly connected (1, 2, 33, 34), and that most of the other nodes are
connected to these nodes. In network terminology these nodes are said to be
central to the network and are often called hubs. It also appears that two groups
(coloured blue and red) have been identified centred around nodes 1 and 34. By
a group we mean that there appears to be a set of nodes that are highly con-
nected within each other but not with other groups. This is a concept called
modularity. In Zachary’s study, there was a disagreement within the club result-
ing in it splitting up into two separate karate clubs - the individuals that went
to each of the two resulting clubs were split exactly as the groupings identified
by the network analysis, barring 1 individual.

Another example network is that characterized by Goh et al [64], which defined
a network of related diseases, with diseases connected by an edge if the diseases
are associated with mutations in a common gene. In performing this network
analysis, Goh found that the genetic origin of many diseases are shared, with the
network modules illustrating groups of diseases with similar origins. A subset
of this network is shown in figure 5.2.

A final example network (figure 5.3) is a correlation network of patient data
from 4197 participants in the FinnDiane study [65]. Each of the nodes repre-
sents one of 39 patient characteristics, an edge is drawn between nodes if the
Spearman correlation between the two variables is strong enough. The blue
edges represent a negative correlation and the red a positive correlation, with
the intensity of the colour representing the strength of that correlation.
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Figure 5.2: Subset of human disease network [64], colours representing the net-
work modules

This network helps highlight the patient characteristics that tend to be more
closely associated with one another. On the right hand side of the network the
lipoproteins are all highly connected, at the top the weight, waist, hip and BMI
nodes are all connected. This is similar information as to what can be found in a
correlation heatmap, but is potentially in a format that would be easier for some
readers to interpret, and also allows the network analysis methods described in
this chapter to be applied, providing a different insight into the data.

These three examples have shown that networks can be used to summarise a
range of different data types. For example in Zachary’s network the nodes rep-
resented the 34 individuals in the study and the edges represented associations
between those individuals. Within epidemiology, networks of this type are of-
ten used to investigate the spread of diseases between individuals [66–68]. The
human disease network described used diseases as the nodes, and an edge rep-
resented when those diseases were associated with a common genetic mutation.

However in the FinnDiane study example, the nodes represented variables in
the study, not the participants, with the edges representing associations be-
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Figure 5.3: Network of patient characteristics from a study of 4,197 type-1
diabetes patients [65]

tween those variables (i.e. the Spearman correlation of the pair of variables in
the 4197 participants). It is networks of this type, where variables are the nodes
of interest, that we will be focussing on in this thesis. Much of the epidemio-
logical literature on this type of network is from genetic epidemiology [69, 70],
with some more recent literature covering their use in metabolomics [71, 72],
which is our specific area of interest.

We will use network analysis on our dataset of 228 metabolites to develop
our understanding of the metabolome and investigate associations between the
metabolome and disease. But first I will describe some of the basic terms and
features that are used in the analysis of networks.

5.2 Network Basics

5.2.1 Nodes and Edges

So far two new terms have been introduced as the basis for any network analy-
sis: the node and the edge. Edges can either be directed or undirected, they are
directed if the association between the nodes has a specific direction, however
we will only be focussing on undirected networks. Edges can also have a weight
attached to them, relating to the strength of the association between the nodes
connected by a particular edge. For example in figure 5.3 the edges represented
a Spearman correlation, so the magnitude of this correlation could be used as
a weight for the edge. Unweighted networks can be considered a special case
of a weighted network, with all edges having a weight equal to 1. We will look
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at both unweighted and weighted networks, but unweighted edges will be used
unless specified. Figure 5.4 shows a basic, small, unweighted network that we
will use as an example to introduce some network concepts.

Figure 5.4: Example network 1, with nodes identified by the letters A to G

5.2.2 Connectivity

The simplest feature that can be used to describe a network is the network size,
which is just the number of nodes in the network. The size of the network in
figure 5.4 is 7. For a network of size p the maximum number of edges possible
(in an undirected network) is

Emax =
p(p− 1)

2

If every node was connected to every other node we would call it a fully connected
network. The network in figure 5.4 has 8 edges out of a possible 21 which can
be used to calculate the network density, D. The network density is the ratio
of edges in a network compared to total possible edges. So the density of the
network in figure 5.4 is 8/21 = 0.38. More formally the network density can be
defined by :

D =
2E

p(p− 1)

where E is the number of edges in the network and p is the network size. The
network density gives an idea of how “connected” the network is. A density of
1 means the network is fully connected, a density equal to 0 means that there
are no edges connecting any nodes.

The number of edges connected to a node I is referred to as its degree, denoted
by ki. In the network in figure 5.4 node A has a degree of 2 i.e. kA = 2, also
kB = 5 and kC = 1. Two other network characteristics related to the degree
can be calculated. The average degree is the mean number of edges each node
is connected to, which is simply the number of edges divided by the number of
nodes, multipled by 2 (since each edge is connected to 2 nodes):
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k̄ =
2E

p

The degree distribution describes the proportions of nodes within a network
having each particular degree. P(k) is the probability that a randomly selected
node in the network has a degree k [73]. Table 5.1 shows each of the degrees in
the network shown in figure 5.4, along with how many nodes exhibit that degree
and therefore the proportion of nodes in the network. The degree distribution
can then be plotted (figure 5.5).

Degree Nodes Proportion
0 0/7
1 C, F 2/7
2 A, E, G 3/7
3 D 1/7
4 0/7
5 B 1/7

Table 5.1: Degree distribution of example network from figure 5.4

Figure 5.5: Plot of degree distribution of example network from figure 5.4

5.2.3 Adjacency Matrix

If a pair of nodes in a network are connected via an edge they are said to be
adjacent and an adjacency matrix is a means of representing the edges in a
network. If the network is of size p, then a p× p matrix is used, with the rows
and columns referring to the nodes, a 1 representing an edge between a pair of
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nodes and a 0 representing the absence of an edge. The adjacency matrix for
the network in figure 5.4 can be seen in figure 5.6. The matrix is symmetric as
if A has an edge to B then B also has an edge to A. However in the example of a
directed network it would be possible to use one half of the matrix to represent
the edges directed one way and the other half to represent the edges directed
the other way. Also, in the case of a weighted network, the matrix cells could
represent the strength of the edge rather than just representing whether there
is an edge or not.



A B C D E F G

A 0 1 0 0 0 1 0
B 1 0 1 1 1 0 1
C 0 1 0 0 0 0 0
D 0 1 0 0 1 0 1
E 0 1 0 1 0 0 0
F 1 0 0 0 0 0 0
G 0 1 0 1 0 0 0


Figure 5.6: Adjacency matrix for network in figure 5.4

5.2.4 Paths

A path is a series of edges that connect 2 nodes to one another, with the path’s
length being defined as the number of edges traversed [74]. For example in figure
5.4 there is a path from E to F that goes E-B-A-F which has a length of 4. The
shortest path between a pair of nodes is defined as being the path between nodes
that has the shortest length, for example there is a path from A to D (A-B-D)
of length 3 and also paths (A-B-E-D) and (A-B-G-D) of length 4, with the path
of length 3 being the shortest path.

A network is called connected if a path exists between every pair of nodes in
the network [59], such as in the network in figure 5.4. In figure 5.7 the network
is disconnected as there are no paths connecting nodes A and F to the other
nodes.

5.2.5 Node centrality

The centrality of a node is a measure of its relative “importance” in a network
[75]. Consider the network in figure 5.4. Node F is only connected to one node
so we might say it is not particularly integral to the network. Node B on the
other hand is connected to 5 other nodes so we might consider it an important
node in the network. Calculating a node’s centrality is a formal method of
assigning it an importance, and there are different measures of centrality that
represent different characteristics of the network.
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Figure 5.7: Example network 2 - example of a disconnected network

5.2.5.1 Degree Centrality

The most straightforward measure of a nodes centrality in a network is degree
centrality. Each node’s centrality is simply set equal to its degree, as defined in
section 5.2.2. These can be standardised to between 0 and 1 by dividing it by
the maximum degree observed in the network.

5.2.5.2 Betweenness Centrality

Betweenness centrality is another measure of a node’s centrality within a net-
work, based on the concept of shortest paths. A node’s betweenness centrality
is equal to the proportion of shortest paths that go through that node. It is
estimated using the following steps for all nodes in the network:

1. Select a node that we want to calculate the betweenness centrality for
(we’ll refer to it as the node of interest)

2. For all other pairs of nodes in the network identify the shortest path
between each pair

3. For each of the shortest paths that travel through the node of interest,
add 1 to the betweenness centrality score

4. If there are two or more paths that are equally short between a pair
of nodes, add the proportion of these paths that go through the node
of interest to the betweenness centrality score. e.g. the shortest path
between E and G is of length 2, and there are 2 different routes of that
length (E-B-G) and (E-D-G), if node D was our node of interest we would
add 1/2 to the betweenness centrality score

5. Scale result to between 0 and 1 by dividing the score computed in steps
1-4 by the number of possible node pairs involved. So the denominator
here is ((p− 1)(p− 2)/2)

This sounds a little more complicated than it actually is so to make it clearer
we apply it to network 1 from figure 5.4 to calculate the betweenness centrality
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of node A. There are 5 pairs of nodes that have a shortest path through A,
these are (B,F), (C,F), (D,F), (E,F) and (F,G). There are 6 nodes in the graph,
excluding A, which means 6×5

2 = 15 pairs of nodes. So betweenness centrality
of node A is 5

15 = 0.33. Node B has a betweenness centrality of 0.77 and nodes
C, F, E and G have a betweenness centrality of 0.

Node No. Shortest Paths Betweenness Centrality
A 5 0.33
B 11.5 0.77
C 0 0
D 0.5 0.03
E 0 0
F 0 0
G 0 0

Table 5.2: Betweenness centrality of example network in figure 5.4

5.2.5.3 Closeness Centrality

Closeness centrality is a measure of how close each node is to all other nodes.
If we describe the distance between a pair of nodes as the length of the shortest
path between those two nodes then we can calculate the mean distance from a
node to all other nodes in the network by summing all the distances together
and dividing by the number of nodes. We want to measure the closeness rather
than the distance, so we take the reciprocal of this value which will provide a
value between 0 and 1.

One limitation of closeness centrality is that it can only be calculated for con-
nected networks [76]. For example in network 2 nodes A and F are not connected
to any other nodes, so their distance from every other node is infinity. There-
fore the mean distance for all nodes will be infinity, and the closeness will be 0.
We can calculate the closeness centrality for each node in the example network
from figure 5.4. Table 5.3 shows the distance between each node and provides
the closeness centrality for each node. As might be expected node B has the
largest closeness centrality, node C has a greater closeness centrality than node
F despite having the same degree, so this feature captures the fact that F is
more isolated than C.

5.2.5.4 Eigenvector Centrality

Eigenvector centrality is based on the principle that a central node in the net-
work will not only itself be highly connected but also be connected to other
more central nodes, so the eigenvector centrality of a node is a function of the
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Node Distance Mean Distance Closeness Centrality
A B C D E F

A 1 2 2 2 1 2 1.67 0.60
B 1 1 1 1 2 1 1.17 0.86
C 2 1 2 2 3 2 2.00 0.50
D 2 1 2 1 3 1 1.67 0.60
E 2 1 2 1 3 2 1.83 0.55
F 1 2 3 3 3 3 2.50 0.40
G 2 1 2 1 2 3 1.83 0.55

Table 5.3: Closeness centrality of example network from figure 5.4

centrality of its adjacent nodes. To calculate the eigenvector centrality of all
nodes in a network we use the following iterative process:

1. As a starting point the eigenvector centrality of each node can be initially
set to be equal to its degree centrality

2. An updated eigenvector centrality is calculated for each node by adding
together all the centralities set in step 1 from adjacent nodes

3. This new centrality is scaled by dividing it by the largest centrality in the
network, resulting in centralities for all nodes between 0 and 1

4. Repeat steps 2 and 3 until all the centralities stabilise (i.e. stop changing
according to a preset amount, say τ = 0.001)

A table of the eigenvector centralities for example network 1 (figure 5.4) is shown
in table 5.4, alongside each of the other centralities calculated for comparison.
Nodes E and G have the same centralities in all cases as they both have identical
edges (2 edges, connected to nodes B and D). Node F has the lowest (or joint
lowest) centrality in each case, which is understandable from inspection of the
network, where it only has 1 edge and is not connected to the hub node B.
Comparing nodes A and G is interesting as they have the same degree centrality
(both have a degree of 2), but G has a higher eigenvector centrality whereas A
has higher betweenness and closeness centralities. Both are connected to node
B so those effects cancel each other out, but the other edge of G is connected
to D which is a fairly central node in the network, and he other edge for A is
connected to node F, the least central node in the network. However, in terms
of betweenness, any path that connects node F with any other node must pass
through node A, whereas node G has no shortest paths passing through it, hence
A has a higher betweenness centrality. Also, as F is more “distant” from G than
A is from any other node, the closeness centrality of G is therefore smaller.
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Node Eigenvector Degree Betweenness Closeness
centrality centrality centrality centrality

A 0.40 0.40 0.33 0.60
B 1.00 1.00 0.77 0.86
C 0.35 0.20 0.00 0.50
D 0.80 0.60 0.03 0.60
E 0.64 0.40 0.00 0.55
F 0.14 0.20 0.00 0.40
G 0.64 0.40 0.00 0.55

Table 5.4: Each of the 4 centrality measures for example network 1 (figure 5.4)

5.2.6 Community Structure

Within networks it is common to see groups of nodes where members densely
connected with each other, but not with members of other groups [77]. This
property is referred to as the community structure or modularity of the network.
Figure 5.8 illustrates a network where there are 3 sets of nodes densely inter-
connected within their groups, but only a few connections between groups. We
will refer to a group of nodes like this as a network module.

Figure 5.8: Example of a network with 3 modules

Identification of these modules could be useful e.g identification of groups of
metabolites that act together confirming some a priori knowledge or identifica-
tion of new, previously unknown structures. There are parallels to hierarchical
cluster analysis, where closely related nodes are grouped together.
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The basis of most algorithms that aim to identify community structure is the
modularity, Q. This feature quantifies the proportions of edges that exist within
communities compared with the number of edges that would be expected within
a community if the edges were randomly distributed. A value of Q close to 1
(high modularity) would mean that the groups are very densely connected, with
very few edges linking different communities, a value close to 0 (low modularity)
would mean that the connections within a community are as dense as you would
expect if all the edges were randomly allocated across the network. The formula
for Q was defined by Newman and Girvan [77] and is as follows:

Q =
∑
ci∈C

∣∣Ein
ci

∣∣
|E|

−

(
2
∣∣Ein

ci

∣∣+
∣∣Eout

ci

∣∣
2 |E|

)2


Where ci indexes the ith community and C the set of all communities. E is
the total number of edges in the network, Ein

ci is the number of edges that exist
between all the nodes within community ci and Eout

ci is the number of edges
that exist from nodes within community ci to nodes in other communities.

There are many procedures used to identify network modules, with the main
focus of recent algorithms being to reduce the computation time, as the proce-
dure tends to be computationally intensive [78]. In this thesis we will not review
different methods of detecting network modules, I will use the method that is
built into the visualisation tool, Gephi, used to draw the network diagrams in
this thesis. The algorithm is described in the paper by Blondel et al [79], a brief
overview is given here. The aim of the algorithm is to maximise the Q-statistic
defined above and is an iterative algorithm with the following steps:

1. Initially each node is defined as an individual community, so the number
of communities is equal to the number of nodes and Q is calculated.

2. Each node in the network is then considered in turn. It is sequentially
moved into each of its neighbours’ communities, and for each of these
new set of communities the resulting change in modularity (∆Q), if any
is calculated.

3. If any of these moves results in a positive increase in modularity, then the
node is allocated into the community that resulted in the largest increase
in modularity.

4. Steps 2 and 3 are repeated until the communities are stable and another
pass of the process results in no change to the community structure.

5. Then, the identified communities are collapsed down to create a new net-
work, with each node in the new network representing a community iden-
tified in the previous iteration. The weight of the edges between nodes is
equal to the number of edges connecting those communities in the original
network.
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6. Steps 2,3 and 4 are carried out on the new collapsed network.

7. This process is repeated until the maximum value of Q is found.

5.3 Network analysis of BWHHS data

5.3.1 Methods

Having given an introduction to a few of the basic terms involved in a network
analysis we now want to use the data from the BWHHS to allow us to revisit
these concepts in a real setting, illustrating practical difficulties and the statis-
tical issues encountered. However, before we can describe a network we need to
generate the network in the first place.

The basic steps required to generate a network are as follows:

1. Define what the nodes are going to be, and select which ones are to be
included.

2. Choose the metric of association which will define whether an edge exists
(or the weight of the edge) between two nodes. e.g. Pearson’s correlation
or Spearman correlation, marginal or partial correlation etc.

3. Estimate the metrics of association from the available data and draw net-
work.

4. Sometimes the network will be too interconnected to do any reasonable
inference. In this case it may help to make the network more sparse by
‘thinning out’ the network, retaining only the more important edges.

5. Present and discuss the network.

Our primary interest is in creating a network that represents the associations
between the NMR biomarkers. We define the nodes in the network as the NMR
biomarkers and an edge between each pair of nodes by a correlation. We will
discuss the different methods of correlation that can be used in section 5.3.1.1.
We also define the criteria for inclusion of an edge in the network via the p-value
of the selected correlation coefficient (with the null hypothesis being that the
correlation between the pair of variables is 0) used to determine inclusion. The
method of calculating the p-value will depend on the measure of association
chosen, but for example if the Pearson correlation is chosen then the p-value
would be calculated using equations 5.5 and 5.6. The threshold at which an
edge is included in the network will be the p-value at which we can control the
FDR to 5%. This is chosen ahead of controlling the FWER to ensure we include
most of the “true” edges since we are prepared to accept that, in expectation,
5% of the edges generated to be false positives.
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5.3.1.1 Defining an edge

As discussed in the introduction, edges can be defined using alternative mea-
sures of association among nodes. In the following we will consider only Pearson
correlations to define such measures. The observations drawn however extend
directly to Spearman correlations (since the latter are Pearson’s correlation cal-
culated on ranks).

Correlation The Pearson correlation coefficient is a well established statisti-
cal method of measuring a linear association between a pair of variables x and
y [80]. It is defined as:

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2

where x̄ and ȳ are the variables population means and N is the population size.

Assumptions underlying the Pearson’s correlation coefficient are

1. There is a linear relationship between the variables

2. The variables should be approximately normally distributed

3. The distribution of each variable has constant variance for given values of
the other (homoscedasticity)

If we use the Pearson correlation coefficient as a measure of association between
pairs of biomarkers (i.e. as edges in the network) we measure the overall as-
sociation between the biomarkers. These edges then represent both direct and
indirect associations between variables and, since metabolomic datasets are gen-
erally highly correlated [81], there will be many indirect associations included.
This would result in an extremely dense network, providing little insight into the
structure of the metabolome. By instead using the partial correlation coefficient
as a measure of association, we focus on the direct association between pairs of
biomarkers, i.e. the association between a pair of biomarkers conditional on all
other variables in the network.

The partial correlation is a way of measuring the correlation adjusted for all
other variables in the network [80]. One way to estimate the partial correlation
of a pair of nodes A and B, adjusting for a vector of variables Z, is to perform
a linear regression of A on Z and also of B on Z, then calculate a standard
Pearson correlation on the estimated set of residuals from each regression. The
resulting correlation coefficient will be the partial correlation coefficient relating
A and B adjusting for Z.
It is also possible to estimate the partial correlations of a set of variables from
their covariance matrix, Σ, provided the covariance matrix is invertible. This
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method requires less computational time if the number of variables is large. If
we define the inverse of the covariance matrix as Σ−1 and each element within
that inverse covariance matrix as sij and the partial correlation between variable
i and variable j as pij , then the partial correlations are related to the inverse
covariance matrix using equation (5.1) [80],

pij = −sij/
√
siisjj (5.1)

Shrinkage Method When the number of variables is high relative to the
number of observations the covariance matrix is estimated imprecisely. Also, if
the number of variables is greater than the number of observations, the covari-
ance matrix cannot be inverted. Strimmer and Schäfer propose an improved
estimation of the covariance matrix using shrinkage methods [82], which ad-
dresses these problems.

This method is based on combining two estimates of the covariance matrix. The
first, U, is the empirical estimate of the covariance matrix (i.e. calculated from
the observed data), which is unbiased but has a high variance. The second is
a proposed, constrained estimate of the covariance matrix, T, which will have
a lower variance but will potentially be a biased estimate of the true covari-
ance matrix (it can be thought of as a ‘prior’ covariance matrix). A weighted
combination of these provides a new (and hopefully improved) estimate of the
covariance matrix, U*

U∗ = λT + (1− λ)U (5.2)

λ is the shrinkage intensity, so if λ = 0 then the estimated covariance matrix
will be equal to the empirical covariance matrix, and if λ = 1 the estimated
covariance matrix will be equal to the constrained covariance matrix. As the
shrinkage intensity increases, more bias is introduced, but it is offset by the
reduction in the variance of U*.

So there are two steps involved in the shrinkage. First choose the constrained
matrix, then calculate the shrinkage intensity. In the original paper, 6 poten-
tial constrained matrices are suggested for use in common situations. We are
actually only interested in shrinking the covariances (we’re not interested in the
variances), so we select the constrained covariance matrix where the covariances
are equal to 0 and the variances are equal to the sample variances, with the tar-
get matrix T shown below. The resulting matrix U* will have covariances that
have been shrunk towards 0.
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T =


v11 0 · · · 0
0 v22 · · · 0
...

...
. . .

...
0 0 · · · vKK

 (5.3)

Where vii is the variance of the i-th variable and K is the number of variables.

The shrinkage intensity λ should be chosen to give an appropriate balance be-
tween reducing the variance of the estimated covariance matrix while trying to
retain as little bias as possible. The derivation of an appropriate value of λ is
provided in detail by Ledoit and Wolf [83], with the aim being to reduce the
sum of the squared differences between each element of the sample and true
covariance matrices. The algebra simplifies down to show that selection of λ is
based on the variance of the sample covariances. The formula is:

λ =

∑
i 6=j V̂ ar(sij)∑

i 6=j s
2
ij

(5.4)

So if the sum of the variances of the estimated covariances is large compared to
the value of the sum of the estimated covariances (squared) then the shrinkage
intensity, λ will be large. If the sum of the variance of the estimated covari-
ances is relatively small, the shrinkage intensity will be small. Or to put it more
simply, if the number of observations, n, is much larger than the number of
variables, p, then λ will be very small. As p increases in size, relative to n, then
λ will increase. A detailed explanation of how to calculate the variance of the
correlation coefficients is found in the paper by Schafer [82].

We can also calculate the p-value for the partial correlations using Fisher’s z-
transformation [84] using equations:

zij =
1

2
ln

(
1 + pij
1− pij

)
(5.5)

Z =
zij√

1
N−p−3

(5.6)

Packages to estimate these statistics are available in R and for the purposes of
the analyses performed in this thesis, functions were written in Stata.

Node inclusion In chapter 3 the NMR biomarkers were described and it was
identified that many of these are highly collinear and some are composites of
other biomarkers. The same approach as was taken for the PCA and lasso anal-
yses in chapter 4 will be applied here, removing those metabolites that are exact
sums of other metabolites, removing metabolites that have a large proportion
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of missing data and removing those metabolites identified as having poor relia-
bility in chapter 3. This results in a final set of 78 metabolites to be used.

Network Visualisation The software Gephi [85] has been used to visualise
the networks in this thesis. Gephi requires the user to provide it with the list
of nodes and a list of edges that are to be included in the network, and also to
select the algorithm which generates the network layout. The algorithm used
for generating the networks in figures 5.9, and 5.10 is the Force Atlas 2 algo-
rithm [86]. Briefly, it works by starting in a random configuration, then setting
a repulsive force to act between all nodes, but if an edge exists between a pair
of nodes an attractive force works in the opposite direction to this repulsion (if
the edge is weighted the attractive force is relative to the weight of the edge).
The algorithm then works iteratively, moving unconnected nodes apart, while
pulling connected nodes closer together. This has the effect that nodes more
closely co-located on the network graph are more closely related to one another,
either because they have a strong connection or they are both connected to a
similar set of nodes. This method of laying out the graph allows us to observe
if the nodes cluster and can give some visual intuition as to the structure of
the data. The method may result in different final configurations depending on
the starting positions of the nodes, however when the algorithm was applied in
practice on the BWHHS data, the starting positions made no material difference
to the final structure.

5.3.2 Results

Figure 5.9 shows the network that is generated using partial Pearson correlation
coefficients (the partial correlation being the correlation between a pair of nodes
adjusted for all other nodes in the network) with unweighted edges, using the 78
metabolite concentrations (using the same selection process as in chapter 4) as
the network nodes, no other pre-filtering of nodes was performed,. As described
earlier we estimate the partial correlation of each pair of nodes and retain an
edge between a pair if the p-value of that partial correlation is less than that
required to keep the FDR at 5%.

Very little can be inferred from visually inspecting this network, it is dense
(density D = 56%, average degree k̄ = 42.9), although by running the modu-
larity algorithm 5 modules are detected - the green module is mainly extremely
large VLDL lipoproteins, the yellow module mainly the small to large VLDL
lipoproteins and some triglycerides, the orange module contains mainly LDL
metabolites and the blue mainly HDL lipoproteins. The red module is a bit
more detached from the others and contains the amino acids and fatty acid
metabolites. Edges representing a positive partial correlation are depicted in
black, with negative correlations shown in red, however, given the density of
this network it is not easy to see these clearly as it just appears as a large mesh
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of edges.

Applying the shrinkage method described in section 5.3.1 we find the network
shown in figure 5.10. There are fewer edges (D = 43%, k̄ = 32.7) with 4 modules
identified, and all VLDL particles are combined into a single module.

The networks above can be useful for describing a dataset and gaining a greater
insight into the associations between metabolites, however they do not provide
any information relating to an outcome/disease of interest. To investigate this
we can begin to look at the concept of differential networks, discussed in the
next chapter.
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Figure 5.9: Network of 78 metabolites from the BWHHS defined using the
Pearson partial correlation coefficient as a measure of association. Node size
is proportional to node degree. Node colour represents the different groups of
metabolites (LIPO window VLDL = purple, LIPO window LDL = blue, LIPO
window IDL = dark green, LIPO window HDL = light green, LIPO window
other = grey, LMWM window = red, LIPID window = orange.)
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Figure 5.10: Network of 94 metabolites from the BWHHS defined using the
shrunk Pearson partial correlation coefficient as a measure of association, after
shrinkage of the covariance matrix. Node size is proportional to node degree.
Node colour represents the different groups of metabolites (LIPO window VLDL
= purple, LIPO window LDL = blue, LIPO window IDL = dark green, LIPO
window HDL = light green, LIPO window other = grey, LMWM window = red,
LIPID window = orange.)
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Chapter 6

Differential networks

In this chapter the topic of differential networks will be introduced, including
a brief literature review on the topic. Then a detailed simulation study will be
described, illustrating potential scenarios that can give rise to an edge in the
network.

6.1 Background

The term “differential network” refers to a method of analysis that compares
two, or possibly more, networks, which represent two, or more, subgroups allow-
ing a description of how the two networks differ to be made. It does not refer
to a single standard method, rather it is an umbrella term for any method that
compares networks derived from different groups. For example we can compare
the metabolomic network formed by a set of diseased individuals with the net-
work formed by a set of disease-free individuals.

Since 2005 there have been academic papers using the term differential networks
to mean a number of different types of analyses. However, in the literature re-
view provided here, only research that uses differential networks to compare the
differences between networks generated from data representing two (or more)
different biological states will be reviewed.

One of the earliest examples of the use of differential networks in this way was
described by Fuller et al in 2007 [87]. In this instance they used genotype data
from 135 mice to create a gene coexpression network, with the nodes in the
network representing gene expressions and an edge between nodes represent-
ing a Pearson correlation between a pair of gene expressions. To construct the
differential network they took the 30 leanest mice and 30 heaviest mice and
constructed a gene coexpression matrix for each set of mice. For each node
in the network the weighted degree centrality was estimated and the difference
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between this in the lean and heavy mouse groups was estimated. A total of
61 genes were identified as being differentially connected (in terms of their ex-
pression), and of those 12 had previously been identified as causal factors for
obesity in mice. The information from the difference in degree centrality was
also combined with the results of a standard set of t-tests comparing the gene
expression levels between the two groups to further refine the group of genes to
be identified as potentially associated with mouse weight.

This was an early, informal, example of network comparison and the authors
were careful not to over interpret their results, and were mainly used to strengthen
the evidence already found from using the more standard differential expression
analysis (univariate t-tests). If a gene was found to be both differentially ex-
pressed (on average) AND differentially connected (in the network) then greater
evidence that this gene is associated with mouse weight would be provided than
if only differential expression was identified.

The first paper that provided a formal approach to differential network analysis
was by Gill et al [88] “A statistical framework for differential network analysis”.
They expanded on the idea of comparing how the network structure of genetic
microarray data changes between two (or more) biological states by proposing
three novel statistical tests to address the following questions:

• Does the network structure differ overall across different states?

• Does the network structure of a particular network module differ across
states?

• Does the connectivity of a single gene differ across different states?

The proposed method involves generating a network of “healthy” individuals
and a network of “diseased” individuals, and testing their difference using the
three tests corresponding to the bullet points above. Within each network a node
represents a gene and an edge between the nodes represents a weighted measure
of association. They propose three measures (correlation, partial correlation
and partial least squares) as possible statistics for quantifying the association,
although in their simulations they concentrate on correlations. To test the dif-
ference in connectivity of a single gene, every weighted edge (weighted using the
coefficient of the chosen association measure) in one network is subtracted from
the corresponding weighted edge in the second network, then for every node,
the mean value of the difference in edges surrounding it is calculated. This gives
the node a differential connectivity score. Similarly this score can be estimated
for a network module, or the network as a whole.

To assess the significance of these statistics, a permutation test is performed.
The observed data are randomly assigned to the “healthy” or “diseased” groups
and the scores recalculated for each gene, module and the overall network. This
can be repeated a number of times (in the paper 1000 times) and a distribution
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of scores created. Then the original scores from the observed data can be com-
pared to the permuted distributions and p-values obtained for each.

To investigate the method’s potential, the authors perform a series of simu-
lations and report the results, although only for the final of the 3 proposed
statistical tests (connectivity of single genes). The simulations are performed
for a network size of 20 and of 100, and in each case 10 genes are defined as
being “important”, that is they are associated with each other in the “case”
network and not associated in the “control” network. So the control network
is based on a network where no genes are thought to be associated and the
case network is one where 10 genes are associated with one another and the
rest are not. The tests are performed using a cut-off for “significance” at the
unadjusted threshold of 5% and also adjusted using the Benjamini-Hochberg
adjustment [46]. The results from the simulations suggest that the method is
promising, in terms of sensitivity, specificity, true discovery rate and true non-
discovery rate which in most scenarios are found to be adequate, although the
sensitivity of the test reduces to 34% when 100 genes are used, on a sample size
of 50 and the correlations of the “important” genes are set to the lowest level
tested, 0.5.

This paper provided a rigorous, formal procedure for testing differences in net-
works, and in performing a series of simulations it attempted to assess the
quality of the method in achieving its stated aims, however it is difficult to sim-
ulate a comprehensive range of scenarios, given the complex nature of the data
that they were trying to simulate. The control network they chose was a set of
fully independent genes, and the case network had 10 highly associated genes
(the smallest correlation they used was ρ = 0.5). A wider range of simulations
may have provided a greater understanding of benefits and limitations of the
method, however the method used was very computationally expensive so this
also constrained the ability to investigate further scenarios. Nevertheless this
paper was able to produce evidence that the method worked as expected on a
small number of idealised scenarios. The researchers were also careful to note
that these statistics should only be used as exploratory method of analysis, and
recommended it as a potential first step to filter out less interesting genes and
provide a subset of genes that can be further explored. More recently in 2015,
Kujala et al [89] expanded these methods to be able to deal with missing obser-
vations by performing multiple imputation. The methods were then applied to
an observational study comparing a group of patients who suffered a fatal CVD
event to those who had not.

In 2010 de la Fuente [90] produced a review piece describing the move from dif-
ferential gene expression to differential networking and it seems at around this
time the concept of differential networking was becoming a wider research topic.
Ideker and Krogan [91] performed a review of differential network biology two
years later where they argue that “differential network mapping, which allows
for the interrogation of previously unexplored interaction spaces, will become a
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standard mode of network analysis in the future”.

In 2011 Valcarcel et al [71] applied a differential network method to metabolomic
data, in this instance the outcome of interest was pre-clinical diabetes, measured
by raised (cases) or normal (non-cases) fasting glucose levels. Separate networks
were estimated for the cases and non-cases, with the network nodes being 60
metabolites, and the edges defined by the partial correlation between pairs of
metabolites. To estimate the differential network, the difference between each
edge in the two networks was calculated and a permutation test used to derive
a p-value for each differential edge. A cut-off of p <0.01 was used for inclusion
of an edge in the differential network. This method was later applied a study
of Caenorhabditis elegans DAF-2 mutants by Castro et al [92]. Also in a sub-
sequent analysis in 2014 Valcarcel et al combined their earlier method with a
genome-wide correlation analysis, to identify if any of the differential correla-
tions detected were associated with any genetic variants [72].

Walley et al [93] and Chu et al [94] propose similar methods to the above, with
the former using Kendall’s tau correlation as the measure of association and
the latter using a Bayesian approach and estimating a posterior odds ratio of
connectivity for each pair of nodes in the network.

Odibat and Reddy [95] expanded the methods previously suggested by moving
beyond what they term “differential connectivity” (differential degree central-
ity) to “differential centrality” (differential betweenness centrality). These are
illustrated in figures 6.1 and 6.2 respectively. The examples described so far look
at all the edges emanating from a node and how they compare across the two
networks from each biological state, which is closer to the definition of “differen-
tial connectivity” in this context. Whereas the differential centrality proposed
by Odibat and Reddy estimates a statistic measuring the “importance” of each
node within the overall network.

Bockmayr et al [96] take a similar approach, defining two protocols (which they
call DCloc and DCglob, short for “Differential Connectivity Local” and “Dif-
ferential Connectivity Global”) which compare the local and global topologies
of the two correlation networks, however their specific methods of doing so are
quite different from those proposed previously. In DCglob, first the disease-
specific networks are derived, using the Fisher-transformed Pearson correlation
of each pair of genes as the measure of association. Rather than using an arbi-
trary cut-off for inclusion of an edge, 200 cut-off levels are used, ranging from
0 to the maximum value of Fisher-transformed Pearson correlation (which was
2.5), to create 200 potential networks for both the cases and non-cases (i.e. when
the threshold was 0, every possible edge was included in the network, when the
threshold was 2.5, there were no edges). Then at each of these 200 cut-offs the
case and non-case networks were compared. Any genes that are connected to
at least 2 other genes in both networks are excluded from the analysis, as are
genes not connected to at least two other genes(i.e. connected to one or zero
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Figure 6.1: Illustration of differential connectivity. Node 4 has 4 edges in net-
work A and 2 in network B while all other nodes have at most 3 edges in A
and at most 2 in B, therefore node 4 has a high differential connectivity score
compared to the other nodes in the network.

other genes) in both networks, leaving the set of genes that are determined to
be “differentially connected”. The definition of a gene being differentially con-
nected is that in one group (either cases or non-cases) the gene is connected
to two or more different genes and in the other group the gene is connected to
fewer than two genes (either one or zero). The set of differentially connected
genes can then be defined for each of the 200 potential cut-offs.

In DCloc, the process is the same up to the point where the 200 comparison
networks have been obtained. At this point each gene is taken in turn and at
each threshold level the difference in its degree is measured. The average differ-
ence in degree is taken as the measure of differential local connectivity.

These methods proposed by Bockmayr et al have an advantage over previous
ones in that the threshold at which an edge is included is not arbitrarily set.
However the results are difficult to interpret, which the authors acknowledge
themselves in their discussion, and also the methods have not been statistically
evaluated, but only applied to a real dataset.

Gambardella et al [97] take a practical approach to the problem, developing a
procedure called DINA (DIfferential Network Analysis) aimed at testing known
pathways and identifying whether they differ across different disease states,
rather than identifying novel pathways.

Danaher et al [98], Zhao et al [99] and Xia et al [100] have investigated methods
of increasing the efficiency of the estimation of differential networks, with the
first paper investigating the use of the joint graphical lasso and the latter two
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Figure 6.2: Illustration of differential centrality (The red dashed line represents
the edge that differs in the two networks). Node 3 is central to network A, but
in network B it is less central. It would have a high differential centrality score.

proposing their own novel methods of estimation, directly identifying the dif-
ferential network rather than estimating two separate networks to be compared.

Each of these authors agree that quantifying the differences in associations be-
tween variables across biological states can potentially provide useful informa-
tion, although all are cautious when interpreting the results. No-one is proposing
differential network analysis is yet ready to be a first port of call when doing
an analysis of high dimensional data, rather that it may be a useful process to
carry out when performing exploratory analysis on a suitable dataset. A num-
ber of different methods are proposed, with different measures of association,
measures of difference and statistical tests used in each.

However, one element that is lacking from the literature to date is an assess-
ment of the scenarios that give rise to a difference in the associations in the
networks. A few of the papers show simple examples of what correlations in the
cases and non-cases look like when they differ, such as the one shown in figure
6.3, with no mention of the data generating model that is assumed that would
give rise to such data. Without understanding this, the interpretation of what
a differential network is doing is difficult. In the rest of this chapter we aim
to take one of these methods, the method proposed by Valcarcel [71] (reviewed
above), and investigate what joint distributions of data might induce an edge
between a pair of variables in a differential network. This method was chosen
as it appeared to be the method with the simplest definition of an edge in the
differential network - a difference in the partial correlations (or shrunk partial
correlation) of a pair of variables between the two networks. We will refer to
this as “correlation based differential networks”.
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Figure 6.3: Example of a scatter plot of observations from a pair of variables,
with data points coloured by groups - blue: healthy individuals, red: unhealthy

6.2 Correlation based differential networks

For each pair of variables in the differential network a difference defined in
terms of the partial correlations of the two original networks is estimated along
with a p-value testing the null hypothesis that the difference is equal to 0. A
network diagram can then be created, by setting a threshold for the p-value and
including only those edges that have a p-value below that threshold. Going into
more detail on the process for estimating an edge between a pair of nodes i and
j, which we will define as δij , the process defined in [71] is as follows:

Step 1 Estimating δij

• Estimate the (shrunk) Pearson partial correlation in the cases only

• Estimate the (shrunk) Pearson partial correlation in the non-cases
only

• Subtract the partial correlation coefficient in the non-cases from the
coefficient in the cases to give the estimated difference, δ̂ij

Step 2 Non-parametric inference for δ̂ij

• Randomly permute the observations to be cases or non-cases (with
the same number of cases and non-cases as in the original data) a
preselected number of times.

• For each permutation p = 1, 2...P repeat step 1 to get a permuted
value for δij , denoted δpij
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• Calculate the proportion of the permuted values where δpij is greater

in magnitude than the estimated δ̂ij

• This proportion is the p-value for the null hypothesis that δij = 0

Using this process a differential network was generated for the BWHHS data
using the women with no prevalent CHD at baseline and a complete metabolite
profile. The inclusion criteria for metabolites and individuals in the network
was the same as in the PCR/lasso sections in chapter 4. with the outcome of
interest specified as having a CHD event in the 12 year follow up, and those
who died of a non-CHD cause are excluded, resulting in a sample size of 2922.
There were 182 CHD events, so two networks were created, one using the 2740
women who did not have an event and the other using the 182 women who
experienced an event. The same 78 metabolites were used as per the inclusion
criteria in chapter 4. The differential network obtained is shown in figure 6.4,
using a p-value of 0.01 as the threshold for edge inclusion as per the Valcarcel
paper.

Each edge could represent a feature of the data that is associated with disease.
So in figure 6.4 we see that 44 edges reach the p-value threshold of p <0.01,
and investigating further the data that have given rise to these edges could pro-
vide some insight into the onset of the disease. For example, there is an edge
between Valine (val) and Isoleucine (ile), so it may be that the relationship be-
tween these two metabolites could provide information about CHD risk. Also,
nodes that have many edges could be important variables in this process because
their association with a number of other variables changes across disease states.
For example, the nodes with the highest degree are small VLDL triglycerides
(s vldl tg), large LDL cholesterol esters (l ldl ce), small LDL free cholesterol
(s ldl fc) and VLDL diameter (vldl d) which all have a degree of 5, so it could
be that these lipoprotein subclasses could have an important associations with
CHD. However, in practice it is difficult to interpret what this network actu-
ally represents, as we don’t have a detailed understanding about what an edge
represents and the threshold of p <0.01 for edge inclusion is arbitrary. These
results will be revisited in chapter 7.

6.2.1 Edge selection and interpretation

The Benjamini-Hochberg FDR adjustment (setting FDR to 5%) was also used
to identify significant edges but yielded a network with no edges, suggesting
that the power to detect edges in this study is very low (or there are no true
edges). In the original Valcarcel paper an unadjusted threshold of p <0.01 was
used, albeit in a smaller network size (60 nodes) and a larger sample size (4931).
If we use this threshold we identify 44 edges in the differential network (which is
the network illustrated in figure 6.4). So one issue identified with applying this
method is a lack of power to detect differences in correlations. The power to
detect edges is based on the overall sample size, and specifically on the sample
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Figure 6.4: Differential network of 78 metabolites from the BWHHS defined
using the difference in the Pearson partial correlation coefficient as a measure
of association and a cut-off threshold for edge inclusion of p <0.01. Node size
is relative to the degree of the node in the differential network, larger nodes
indicate higher degree. Edge thickness is relative to δ̂ij . Nodes with no edges
are excluded from the diagram.

size of the diseased and non-diseased groups. In this instance there were only
182 women in the diseased group, so the correlations between pairs of variables
in that group are imprecisely estimated leading to low power in the final results.

A practical method used within the field of Gaussian graphical modelling to
select edges is the SINful procedure [101, 102], where a conservative network is
produced using the usual stringent threshold and another set of edges are iden-
tified, deemed as having an “intermediate” significance (defined by the user), so
the more conservative network or the more liberal can be selected, depending
on the which is more appropriate to the analysis being performed.

As well as the issue with power, there are questions about the interpretation of
the results. What does a difference in correlation between a pair of variables
mean? We can see there are a few pairs of nodes that appear to be differ-
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entially correlated, and it may be that this indicates a difference in the way
these metabolites interact in diseased and non-diseased individuals. However,
conceptually it is quite difficult to interpret what the meaning of an edge in a
differential network is, even before going into what it might mean biologically.
In the overall networks an edge was a measure of association between nodes,
but in differential networks an edge carries several levels of information.

These two issues will be addressed in the rest of this chapter, where simulations
will be run to

1. Generate data using a known model and investigate the results that ap-
plying differential networks to those data will obtain, with the purpose of
aiding the interpretation of an edge

2. Investigate the sample sizes required to give the method sufficient power
to detect true edges

6.3 Simulations

The literature to date makes little specific reference as to what a difference in
the partial correlations represents, so the aim of this chapter is to simulate data
that would arise from 3 different settings and in each of these describe the re-
sults obtained from a differential network analysis. Each of these settings has a
set of nodes X1, X2, X3, representing the metabolome, a node D representing a
binary disease indicator, and, depending on the setting/scenario, nodes U and Z
representing other possible causes of disease and potential sources of correlation
of the metabolites.

The three scenarios considered are :

(A) X1 and X2 are joint causes of disease

(B) Disease modifies the joint distribution of X1 and X2

(C) There is a common cause of the disease and of the joint distribution of X1

and X2

These scenarios were chosen because they are the most likely data generating
processes leading to associations between the metabolome and the disease.

6.3.1 Scenarios

6.3.1.1 Scenario A

This scenario is consistent with a cohort study where metabolomics data are
measured at baseline, cohort members are followed up until a later point in time
when a disease may or may have been diagnosed. We consider the metabolites
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(X1, X2 and X3) to be causes of disease (with potential effect modification ex-
isting between them) and to possibly be correlated because of a common set of
causes U, which may also be a cause of D. We then consider a range of settings
and investigate whether edges would be potentially identified in a differential
network.

The use of differential networks in this context could help suggest causal path-
ways to disease, by identifying the difference in the associations between metabo-
lites in those individuals that go on to develop a disease (cases) and those that
do not (non-cases) by a selected time point. This model is depicted in figure
6.5, where letters represent variables and arrows causal effects.

At this point it is important to be clear that we are not proposing that identifi-
cation of an edge in a differential network would imply that there was a causal
effect, rather we are investigating the reverse, whether a causal effect from a
pair of variables leads to identification of an edge in a differential network.

Figure 6.5: Hypothesized scenario A

6.3.1.2 Scenario B

Rather than X1 and X2 being causes of disease (together with X3 and U), the
relationship may be the other way round, the disease may influence the joint
distribution of X1 and X2. More specifically, and for simplicity, we consider the
setting where X1 causes X2 and X3 and disease influences the strength of the
X1 −X2 relationship.

This would correspond to a situation where there is a process in the body that
influences an individual’s level of a certain pair of metabolites. This process
leads to these metabolites being correlated in a group of healthy individuals,
however it may be that this association is distorted somehow by the presence
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of the disease with the possible extreme scenario being that the original corre-
lation disappears in diseased individuals. In this case an edge between X1 and
X2 may be identified in a differential network. This data generating model is
shown in figure 6.6.

Figure 6.6: Hypothesized scenario B. The D*X1 node represents the product of
D and X1, so when D=0 there is no association between X1 and X2 and when
D=1 there is an association between X1 and X2.

6.3.1.3 Scenario C

In this scenario X1 is a cause of X2 and X3, and there is an unmeasured vari-
able Z which influences the association between X1 and X2 and also causes D.
This scenario is very similar to B, but does not make the assumption that an
individuals disease status is already set. This model is shown in figure 6.7.

In the following sections we will describe each of the scenarios in detail and then
the steps used to simulate data corresponding to these scenarios, specifying the
corresponding parametric models and then discuss which scenarios would lead
to discovery of an edge (for a given sample size) in the differential network.
The parameter values in each of the data generating models are specific to each
scenario.

6.3.2 Methods

6.3.2.1 Data generation - Scenario A

We shall simulate data of this type based on the data generation model shown
in figure 6.8. We take all variables involved to be univariate and sequentially

105



Figure 6.7: Hypothesized scenario C - The Z*X1 node represents the product
of Z and X1, so when Z=0 there is no association between X1 and X2 and when
Z=1 there is an association between X1 and X2

generate U , then X1-X3, then D. U is generated as standardized normal; Xj ,
for j = 1, 2, 3, are generated as normally distributed variables according to

Xj = λjU + ej

where ej is a normally distributed variable generated with mean 0 and standard

deviation equal to
√

1− λj2. This choice of standard deviation guarantees that

X1-X3 are also standardized normal (i.e. have mean 0 and standard deviation
1).

Since D is a binary variable we generate it according to a logistic distribution
with

logit{Prob (D = 1)} = αD + βuU + β1X1 + β2X2 + β3X3+

γ12X1X2 + γ13X1X3 + γ23X2X3 (6.1)

Given that all the explanatory variables in this equation are standardized nor-
mal, the intercept αD represents the log-odds of disease when all variables are
at their mean value.

In our simulations we will vary the values of λ1, λ2, λ3, β1, β2, β3, γ12, γ13

and γ23, then describe the results obtained from a differential network analysis
in each setting, as well as investigating the impact of different sample sizes.
It should be noted that these simulations only includes such a low number of
metabolites (3) to aid the interpretation of the results (which is the aim of this
chapter); there would be no reason in practice to use the differential network
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Figure 6.8: Data generation model, corresponding to scenario A. The bold black
lines represent deterministic effects (because the nodes representing the inter-
action terms are the direct product of two random variables)

method with such a low number of variables, however the principles hold when
extending the data generating model to include many more metabolites, which
is a more realistic situation.

For a given simulated dataset of a selected sample size, we estimate the Pearson
partial correlation of X1 and X2 within the cases and separately within the non-
cases and then draw inference with regards to their difference, δ̂12 as described
in section 6.1. We do not use the shrinkage method in estimating the partial
correlation coefficients, because we are only using 3 variables.

The steps we follow are:

1. Specify the parameters of the data generating model (i.e. λj , βj and γkl
for j = 1, 2, 3 and kl = 12, 13, 23) and the sample size

2. Generate realizations of the data generating model

3. Estimate δ12
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4. Calculate the p-value corresponding to a test of δ̂12 = 0. The method for
calculating the p-value is given in the section 6.3.2.4

5. Repeat steps 1-4 500 times

6. Count how many times the p-value is less than 0.01. This critical value
was selected to reflect the p-value used in the original differential network
paper by Valcarcel et al [71].

Primarily we will investigate plausible ranges for the data generating parame-
ters, however we will also consider more extreme, unrealistic scenarios, as this
can aid our understanding as to what is happening. The plausible ranges of
values used in the simulations are:

• αD will range from -4 to 0 (equivalent to an expected risk of disease of
1.7% to 50%, when all other variables = 0)

• β1 and β2 will range from -0.5 to 0.5 (equivalent to odds ratios of 0.6-1.6),
moving in steps of 0.05

• γ12 will range from -0.5 to 0.5 (equivalent to odds ratios of 0.6-1.6), moving
in steps of 0.05

• the sample size N will be set to 10,000 unless specified otherwise

Note that in these simulations X3 represents all other possible metabolites in
the model. If X3 is not associated with X1 and X2 at all, then the partial
correlation of X1 and X2 will be equal to their marginal correlation. If X3 is
strongly associated with both X1 and X2 then the partial correlation of X1 and
X2 will be substantially different from their marginal correlation.

6.3.2.2 Data Generation - Scenario B

We shall simulate data of this type based on the data generation model shown
in figure 6.9. Again D is the disease indicator (taking a value of 0 for non-cases
and 1 for cases), however the proportion of individuals who have D = 1 is set
first using the very simple generating model.

logit{Prob (D = 1)} = αD (6.2)

X1 is generated as a standardized normal variable then X2 is generated as:

X2 = λ1X1 + e2 if D = 0

X2 = e2 if D = 1
(6.3)

where e2 is a normally distributed variable generated with mean 0 and standard

deviation equal to
√

1− λ1
2 if D = 0 and equal to 1 if D = 1. This choice of
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standard deviation guarantees that X2 is also standardized normal within each
disease group. This in effect means if an individual has D = 0 their value of X2

is picked at random from a distribution associated with X1, however if D = 1
their value of X2 is picked at random from a standard normal distribution.

Figure 6.9: Data generation model for scenario B. The bold black lines represent
deterministic effects (because the nodes representing the interaction term are
the direct product of two random variables)

As before X3 is a variable representing all other metabolites, it is associated
with X1 (and hence X2) and is generated as:

X3 = λ2X1 + e3 (6.4)

where e3 is a normally distributed variable generated with mean 0 and standard

deviation equal to
√

1− λ2
2. When simulating this model, and model C, the

process for analysing the results will be the same as for model A.

The ranges of values for the parameters will be:

• λ1 will range between 0 - 0.8 in steps of 0.04

• λ2 will be set to 0 and 0.8

• Total sample size will be set to 500, 1000 and 10,000

• Number of cases will be set to 50, 100 and 500

6.3.2.3 Data Generation - Scenario C

Scenario C is very similar to B, except that rather than D itself switching on and
off the path from X1 to X2, a binary indicator Y does this, with the distribution
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of Y depending on a continuous variable Z which is also a cause of D, with the
relationships described as follows:

logit{Prob (Y = 1)} = αY + βY Z

logit{Prob (D = 1)} = αD + βDZ
(6.5)

Due to the similarities between scenario B and C, scenario C will only be briefly
investigated. As before X3 is a variable representing all other metabolites, it is
associated with X1 (and hence X2) and is generated as:

X3 = λ2X1 + e3 (6.6)

where e3 is a normally distributed variable generated with mean 0 and standard

deviation equal to
√

1− λ2
2. So in practice the data generating models B and

C are similar, although in B the disease “switches off” the association between
X1 and X2 and it precedes it, whereas in C there is no temporal ordering and
the relationship is associational, those with the disease are more likely to have
the association between X1 and X2 “switched off” (figure 6.10).

Figure 6.10: Data generation model for scenario C. The bold black lines repre-
sent deterministic effects (because the nodes representing the interaction term
are the direct product of two random variables)

The same steps and sample sizes as those described for the simulations of sce-
nario A are followed here with parameters taking values:

• λ1 will range between 0 - 0.8 in steps of 0.04

• λ3 will be set to 0 and 0.8
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• Sample size will be set to 10,000

• αY and αD will be set to -2 and -3

• βY and βD will be set to 1 and 2

6.3.2.4 A note on p-values

Although the method we are proposing using for the simulations is that specified
by Valcarcel et al [71], rather than use their permutation method of calculating
the p-value for each differential edge (which is computationally intensive) we are
going to apply a Z-test to the Fisher transformed partial correlations [90] be-
cause of the number of simulations we perform. So the partial correlation (rijk)
calculated in each disease group needs to be transformed using the following
function:

zijk =
1

2
ln

∣∣∣∣1 + rijk
1− rijk

∣∣∣∣ (6.7)

where k indicates the subgroup (cases = 1, non-cases = 0) then the Z-statistic
is found:

Zij =
|zij1 − zij0|√

1
n0−3 + 1

n1−3

(6.8)

where n0 and n1 are the sample sizes of the two subgroups. The Z-statistic
is then compared to the normal cumulative distribution function to obtain the
corresponding p-value.

Using the asymptotic distribution of the differences to obtain p-values for each
edge makes the simulation study much more efficient than if the permutation
method is used, and given the time and computing constraints the number of
simulations performed could not have been done using the permutation method.
However, using the asymptotic distribution requires the underlying assumption
of bivariate normality between each pair of variables and is also sensitive to large
outliers. However, in the simulation study the data are generated as normally
distributed so this is not such an issue. Therefore the simulations looking at the
power of the method are based on the asymptotic distribution. The permutation
method can be used when we are less confident that the assumptions will hold,
however the power of this method will be reduced, compared to the power
observed in the simulations in this chapter.

6.4 Results

For each scenario, 500 simulations were run with results showing mean estimates
from the 500 simulations.
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6.4.1 Data generating model A

In this section we describe the results from the simulations performed using
data generating model A, starting with the simplest setting, when D is gener-
ated only as a function of X1 and X2 without interaction (i.e. β3 = βU = γ12 =
γ13 = γ23 = 0) and the sample size is fixed at 10,000. After this we will inves-
tigate the effect of including an interaction between X1 and X2 (i.e. γ12 6= 0),
before finally moving on to investigating the effect of sample size and disease
prevalence on the results. The effect of varying β3 and λ3 is not examined in
detail in this chapter.

6.4.1.1 Metabolites are direct causes of disease (no interaction)

First we consider the situation where either X1 or X2 or both X1 and X2 are
causes of disease. We vary the strength of their causal effect by altering β1 and
β2. To simplify matters, for the time being βu, β3 and λ3 are set to 0. So in
these scenarios we are considering the outcome to be generated by:

logit{Prob (D = 1)} = αD + β1X1 + β2X2 (6.9)

So the only parameters that we will be varying at this point are λ1 and λ2, which
affect the correlation of the metabolites, and β1 and β2, with βi representing
the increase in log odds of disease for an increase of 1 standard deviation in the
concentration of Xi and λi determining the strength of the association between
U and Xi. We start with a fixed sample size of 10,000 observations and a fixed
value of -2 for αD (αD represents the log odds of disease when the concentra-
tions of all metabolites are equal to their mean value), which relates to a risk of
disease of 12% amongst individuals who have a mean value of each metabolite.
This is slightly higher than, but of a similar order to, the proportion of CHD
cases in the BWHHS dataset of 5%.

X1 and X2 are uncorrelated We started by considering the setting where
X1 and X2 are uncorrelated, normally distributed metabolites (λ1 and λ2 both
are set equal to zero). At each level of β1 and β2, ranging from -0.5 to 0.5 in
increments of 0.05. We also simulated data in the range -3 to 3 to get a view as
to what happens at more extreme values.

Figure 6.13a shows a contour plot illustrating the magnitude and direction of

the mean estimate of δ̂12 (to be given the notation δ̂12) from the simulations,

for a range of values of β1 and β2. The white area represents where δ̂12 is close
to between -0.05 and 0.05, i.e. close to zero. The blue area represents a neg-

ative δ̂12 less than -0.05 with the intensity increasing as the magnitude of δ̂12

increases. The red area represents a positive δ̂12 greater than 0.05, again with
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the intensity increasing as the magnitude increases.

The first thing to note is, within the ranges β1 = -0.5,0.5 and β2 = -0.5,0.5, the

plot is white, so within the plausible region defined in the methods section δ̂12

remains at (or very close to) 0, whether X1 and or X2 are causes of D. However,
to aid our understanding of the method we have widened the plot to include
values beyond the plausible range, up to β1 and β2 = 3. It is possible to see
from the plot that no matter how large an effect X1 or X2 has on D, if only 1 of

them is a cause of D the value of δ̂12 remains equal to, or close to, 0. However
when both X1 and X2 are strong causes of disease, when β1 and β2 reach values

of about 1, we begin to see δ̂12 moving away from 0, with δ̂12 going negative
when β1 and β2 are the same sign and positive when β1 and β2 are different signs.

We can explain why this happens by looking closely at one instance of the data.
When X1 and X2 are uncorrelated their distribution looks like that in figure
6.11a-d. In figure 6.11a neither X1 and X2 are associated with disease, so the
cases (depicted in red) and controls (blue) are distributed evenly among the
observations. So the overall correlation is approximately equal to 0, and the
correlation in the cases will be approximately 0 and the correlation in the con-
trols will also be approximately 0. So there is no difference in the correlations,

leading to a δ̂12 of approximately 0. As we move from figure 6.11a through to
figure 6.11d, the strength of association between X1 and D increases, which can
be seen in the figures as the cases appear more in the upper half of the plots.
However, the correlation of X1 and X2 remains at 0 both within the cases and
within the non-cases. This is what was observed in the simulations, if X1 and
X2 are uncorrelated (ignoring disease status) and only 1 of them was associated

with D, then no matter how strong that association was, δ̂12 would remain equal
to 0.

We now look at the example when X1 and X2 are both positively associated
with D, as illustrated in figure 6.12. We can see that as the coefficients β1 and
β2 increase, the cases move into the upper right quadrant of the scatter plot(fig.
6.12d). This results in a negative correlation between X1 and X2 within the
cases. At the same time, the correlation within the non-cases also goes nega-
tive, since there are fewer non-cases in the upper right quadrant. However, the
negative correlation induced in the non-cases is smaller in magnitude than the
negative correlation in the cases, and remembering δ12 is defined as the partial
correlation of X1 and X2 in the cases minus the partial correlation in the non-

cases, therefore δ̂12 has a negative value.

So far it has been illustrated how the value of δ̂12 is affected by the values of β1

and β2. We are also interested in testing whether the estimated δ̂12 is different
from 0, which can be done by testing the null hypothesis of δ12 = 0 against the
alternative hypothesis of δ12 6= 0 using the method described in section 6.3.2.4.
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Figure 6.11: Four scatter plots from a single randomly selected simulation where
cases = red non-cases =blue. In each plot the observations of X1 and X2 are
the same, but the generation of D differs because it is dependent on the values
of β1 and β2. In a) β1 = 0, β2 = 0 b) β1 = 0.4, β2 = 0 c) β1 = 0.8, β2 = 0 d)
β1 = 1.2, β2 = 0. The solid line is the line of best fit relating X1 to X2 in the
non-cases, the dashed line in the cases. αD = −2.

Figure 6.12: Four scatter plots from a randomly selected simulation where cases
= red non-cases =blue. In each plot the observations of X1 and X2 are the
same, but the generation of D differs because it is dependent on the values of
β1 and β2. In a) β1 = β2 = 0 b) β1 = β2 = 0.4 c) β1 = β2 = 0.8 d) β1 = β2 =
1.2. The solid line is the line of best fit relating X1 to X2 in the non-cases, the
dashed line in the cases. αD = −2.

114



Figure 6.13b is another contour chart, this time illustrating the proportion of
simulations that yielded a p-value of less than 0.01 from the above hypothesis
test. Once both β1 and β2 had an absolute magnitude of 1 (odds ratio 2.7 or
0.37) then about 50% of simulations resulted in a p-value less than 0.01. Once
both β1 and β2 have an absolute magnitude of 1.5 (odds ratio 4.5 or 0.22), al-
most 100% of simulations yielded a p-value of <0.01. So it takes an extremely
large causal effect from both variables to induce a δ̂12 that is different from 0,
at the significance level of 1%.

X1 and X2 are correlated Now if we look at the situation where X1 and
X2 are correlated (i.e. both λ1 and λ2 are non-zero, therefore inducing a cor-
relation between X1 and X2) we can plot the same surface chart for the same

ranges of β1 and β2 as before. Figure 6.13c shows the values of δ̂12 across the
ranges of β1 and β2 when the partial correlation of X1 and X2 (ignoring case
status) is 0.49 and in figure 6.13e where this partial correlation is 0.81. As be-

fore, blue represents a negative δ̂12, white a δ̂12 of close to 0 and red a positive

δ̂12. Again, in the plausible range of values for β1 and β2, δ̂12 remains close to 0.

However, it is possible to see in the wider plot that the situations that give rise

to a δ̂12 different from 0 changes, now that X1 and X2 are correlated. If β1 or

β2 are of opposite signs we do not see a positive δ̂12 arising, instead the value

of δ̂12 remains close to 0. When β1 and β2 are the same sign, we find a negative

value of δ̂12 (as before). Also, in this situation compared with the uncorrelated

case, smaller values of β1 or β2 are required to induce the same δ̂12. It is also

possible, if β1 or β2 were large enough, that a non-zero δ̂12 could be obtained
if only one of X1 or X2 were a cause of D. For example, inspecting the plot in
figure 6.13e, when β1 = 0 once β2 moves above 1 or below -1 a negative value

of δ̂12 is induced, represented by the light blue shading.

We can again explain these results using one instance of the generated data,
where figures 6.14a-d are obtained with correlated X1 and X2 (with a partial
correlation of 0.81 obtained by setting λ1 and λ2 = 0.9). In figure 6.14a, both
β1 and β2 are set equal to 0, resulting in the partial correlation of X1 and X2

within the cases and within the controls both being approximately equal to the
partial correlation in the whole dataset, therefore resulting in a δ̂12 of 0. As X1

becomes a stronger cause of disease (by increasing β1) the observations in the
upper half of the plot are more likely to be cases, and since X1 and X2 are so
strongly correlated this leads to the cases being constrained into the top right
quadrant of the plot. So as β1 increases, the partial correlation within the cases
reduces, but the partial correlation in the non-cases remains close to the overall
partial correlation of 0.81. This leads to a negative value of δ̂12. However it
should be noted that it is only in situations where the strength of the association
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Figure 6.13: Each of the 3 contour plots on the left hand side represents δ̂12

across range from -3 to 3 of β1 and β2. Red areas represent a positive δ̂12,
blue a negative value. The 3 contour plots on the right hand side represent the
proportion of simulations that result in a p-value <0.01 across the range from
-3 to 3 of β1 and β2. In the top plots X1 and X2 are uncorrelated, in the middle
plots the correlation of X1 and X2 is 0.49 and in the bottom plots it is 0.81.
Green areas represent greater than 80% of simulations resulting in a p-value
<0.01, yellow 40-80% and red <40%. The sample size for each simulation was
N=10,000. The number of simulations at each point was 500. αD = −2.
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between X1 and D is extremely strong and the partial correlation between X1

and X2 is very high that we would observe this occurring.

When both X1 and X2 are causes of D then the logic is very similar to the
above example, except the effect is more pronounced. As β1 and β2 increase,
the cases move into the upper right quadrant, with the partial correlation of X1

and X2 within the cases reducing from the overall partial correlation, and the
partial correlation in the non-cases remaining steady (or reducing at a slower

rate). Again this results in negative value of δ̂12.

Once both β1 and β2 had, in absolute terms, a magnitude of 1 (odds ratio 2.7
or 0.37) then about 50% of simulations resulted in a p-value less than 0.01. If
we again plot a contour chart of the proportions of simulations that lead to a
p-value for δ̂12 of less than 0.01 we get a different picture to the uncorrelated
setting. Figure 6.13d illustrates the results from simulations where X1 and X2

have a positive partial correlation of magnitude 0.49 (λ1 = λ2 = 0.7). The

values of δ̂12 are lower when the variables are correlated, but the threshold at
which a p-value is deemed to be different from zero is also lower. Again, in
the range of plausible values from -0.5 to 0.5 almost no simulations result in
a p-value for δ̂12 that is less than 0.01. However for more extreme values of
β1 and β2 we observe a different pattern to before. Where in the setting with
X1 and X2 were uncorrelated, 50% of simulations yielded a p-value <0.01 when
β1 = β2 = 1, now 90% of the simulations result in this. However, in the previous
uncorrelated example, the results were completely symmetrical, so when β1 = 1
and β2 = −1 we still saw 50% of simulations resulting in an edge detection, now
we see only 3%. So as the partial correlation of X1 and X2 increases, we see
a δ̂12 more readily picked up as being different from 0 if X1 and X2 are both
positively or both negatively associated with D, but we see a reduction in edges
detected if X1 and X2 affect D in opposite directions.

The effect is even more marked when we increase the values of λ1 and λ2 to
0.9, resulting in a partial correlation of 0.81 between X1 and X2 in the overall
dataset (figure 6.13f). In this situation we see 99% of simulations resulting in

a p-value for δ̂12 of less than 0.01 when β1 = β2 = 1. We can also see another
effect now, if the magnitude of either one of β1 or β2 is large enough (≈ 2), then
this will lead to detection of an edge, even if the other coefficient is equal to 0.
The impact of altering αD is discussed in section 6.4.1.4.

6.4.1.2 Metabolites are direct causes of disease (with interaction)

Here we describe the results from simulations where the association between
X1 and D is modified by X2 (and vice versa), γ12 defines the strength of this
modification.

logit{Prob (D = 1)} = αD + β1X1 + β2X2 + γ12X1X2 (6.10)
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Figure 6.14: Four scatter plots from a randomly selected simulation where X1

and X2 are correlated, with a partial correlation of 0.81. Cases = red non-
cases =blue. In each plot the observations of X1 and X2 are the same, but the
generation of D differs because it is dependent on the values of β1 and β2. In
a) β1 = 0, β2 = 0 b) β1 = 0.4, β2 = 0 c) β1 = 0.8, β2 = 0 d) β1 = 1.2, β2 =
0. The solid line is the line of best fit relating X1 to X2 in the non-cases, the
dashed line in the cases. αD = −2.

Figure 6.15: Four scatter plots from a randomly selected simulation simulation
where X1 and X2 are correlated, with a partial correlation of 0.81. Cases = red
non-cases =blue. In each plot the observations of X1 and X2 are the same, but
the generation of D differs because it is dependent on the values of β1 and β2.
In a) β1 = β2 = 0 b) β1 = β2 = 0.4 c) β1 = β2 = 0.8 d) β1 = β2 = 1.2. The
solid line is the line of best fit relating X1 to X2 in the non-cases, the dashed
line in the cases. αD = −2.
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However, initially, to aid clarity we set β1 and β2 equal to 0. We shall again fix
αD to be -2 in these analyses. So the only parameters that we will be varying
at this point are λ1 and λ2, which affect the correlation of the metabolites, and
γ12 which determines the strength of the effect of the interaction of X1 and X2

on the outcome. As before we will use a sample size of 10,000 observations and
500 sets of simulations.

X1 and X2 are uncorrelated When X1 and X2 are uncorrelated (λ1 = λ2

= 0) in the overall dataset, the difference in the partial correlations in the cases

and non-cases (δ̂12) is equal to the interaction term (γ12) within the range -0.2
<(γ12) <0.2, as seen by the red line on the chart in figure 6.16. As the cor-

relation of X1 and X2 increases, the estimated δ̂12 shrinks for the same value
of γ12 but the relationship is still linear within this range, as seen by the red
line in figure 6.16. The reason that the linearity only holds within this range
is because δ12 is constrained to be between 2 and -2 so as δ12 approaches the
boundaries the linear relationship will not hold.

Figure 6.16: Chart showing the estimated value of δ12 against the value of
γ12 for the situation where X1 and X2 are uncorrelated (blue) and when the
partial correlation of X1 and X2 in the overall dataset is 0.81 (red) (Sample size
N=10,000)

As with the previous examples, we will describe how the data appear when
an interaction is included and how that affects the values of δ̂12. Figure 6.17a
shows the data when γ12 is set equal to 0, which, since the correlation of X1

and X2 within the cases and the controls is 0, leaves δ̂12 = 0. As γ12 increases
positively, the cases are more likely to be found in the upper right and lower
left quadrants, leading to a positive correlation within the cases. The non-cases
are more likely to appear in the upper left and lower right quadrants, so will
become slightly negatively correlated. These together result in a positive value
of δ̂12.
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X1 and X2 are correlated In the situation where X1 and X2 are correlated,
the logic is very similar to the last example. In this scenario, when γ12 = 0
then X1 and X2 are correlated within both the cases and non-cases, but this
correlation is the same in both groups so again δ̂12 is 0 (figure 6.18a) . As above,
as γ12 increases positively (figures 6.18b-d) the correlation of X1 and X2 within
the cases increases, and the correlation of X1 and X2 within the non-cases de-
creases slightly. However, this happens to a lesser extent than if the data were
uncorrelated, so for the same value of γ12, δ̂12 is smaller than compared with the
scenario where X1 and X2 are uncorrelated, as is seen in the chart in figure 6.16.

In the uncorrelated scenario, a γ12 of 0.1 (equivalent to an odds ratio of 1.1)
is sufficient to result in 75% of simulations having a p-value <0.01, with a γ12

of 0.15 (equivalent OR = 1.16) resulting in 99% of simulations with p <0.01.
Although as the correlation increases, the estimated value of δ12 decreases for
the same value of γ12, the proportion of p-values for δ̂12 that fall below 0.01 is
unaffected. So an edge is detected between a pair of variables if the interaction
of the pair of variables is a cause of D. A plot of the proportion of simulations
that resulted in p <0.01 is shown in figure 6.19, with one line each representing
3 levels of partial correlation of X1 and X2 (0, 0.49 and 0.81). The three lines
all appear on top of one another, so the proportion of simulations identifying a
value of δ12 with statistically significant (at the 1% level) difference from 0 is
independent of the correlation of X1 and X2 in the overall dataset.

6.4.1.3 Summary

In the previous two sections it was shown that a significant difference in partial
correlations in cases and non-cases is likely to be found when:

• Either X1 or X2 are extremely strong causes of disease and are partially
correlated

• Both X1 and X2 are strong causes of disease

• The effect of each of the metabolites on disease is modified by the other
(i.e. there is an interaction between X1 and X2)

There were some variants around these three situations, that depened on the
number of cases and the partial correlation between X1 and X2, but broadly
these are the three settings that lead to a significant δ̂12.

However, we only considered effect modification when the main effects were set
to 0, a more realistic scenario would be when an interaction effect and main
effects exist then this can lead to difficulties.
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Figure 6.17: Four scatter plots from a randomly selected simulation where X1

and X2 are uncorrelated. Cases = red non-cases =blue. In each plot the obser-
vations of X1 and X2 are the same, but the generation of D differs because it
is dependent on the values of β1 and β2. In a) γ12 = 0 b) γ12 = 0.4 c) γ12 =
0.8 d) γ12 = 1.2. In all, β1 = β2 = β3 = γ13 = γ23 = 0. The solid line is the
line of best fit relating X1 to X2 in the non-cases, the dashed line in the cases.
αD = −2.

Figure 6.18: Four scatter plots from a randomly selected simulation where X1

and X2 are correlated, with a partial correlation of 0.81. Cases = red non-
cases =blue. In each plot the observations of X1 and X2 are the same, but the
generation of D differs because it is dependent on the values of β1 and β2. In
a) γ12 = 0 b) γ12 = 0.4 c) γ12 = 0.8 d) γ12 = 1.2. In all, β1 = β1 = 0. The
solid line is the line of best fit relating X1 to X2 in the non-cases, the dashed
line in the cases. αD = −2.
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Figure 6.19: Line chart plotting proportion of p-values for testing δ12 = 0 that
are less than 0.01 against the value of γ12 used in generating the data. Sample
size N=10,000, number of simulations = 500, β1 = β2 = 0, αD = −2.

If X1 and X2 are risk factors for disease, (i.e. a higher value leads to an increased
risk of being a case, β1 and β2 are positive) then this results in a negative value

of δ̂12 (correlation in the non-cases is greater than in the cases). If the interac-

tion term γ12 is positive, this leads to a positive value of δ̂12. So if all three of β1,
β2 and γ12 are positive this can lead to a canceling effect. In a situation where
we may have identified a p-value for δ̂12 of less than 0.01 due to an interaction
in the absence of main effects, we might not pick up this effect if β1 and β2 are
large and positive as this would “dilute” the effect that the interaction has on
the difference in partial correlations.

In fact, if the main effects were strong enough, in comparison to the interaction
term, there would be a point where the difference would “cross over” and a δ̂12

of an opposite sign would appear.

6.4.1.4 Proportion of cases

Varying the value of αD when generating the data for the simulations changes
the underlying prevalence of the disease, D. The parameter αD is equal to the
logit of the probability that an individual, with a value of 0 for all other causal
variables, will have the disease. Until now we have fixed αD to -2, however the
prevalence of disease is an important factor in the determination of differential
correlations, as if one group is particularly small then the partial correlation
within that group will be imprecisely estimated.

122



To illustrate the effect of varying αD we will examine two model specifications.
First we fix γ12 to 0.1, with β1 = β2 = 0 , which was found to result in ap-
proximately 75% of simulations giving a p-value of less than 0.01 for testing the
hypothesis that δ12 = 0 (section 6.4.1.2, figure 6.18).

The proportions of p-values that are less than 0.01 at different levels of αD

against the number of cases in the sample is shown in figure 6.20 (from a sam-
ple size of 10,000 and 500 simulations). When the number of cases is at 500 (5%)
approximately 30% of simulations result in a p-value <0.01. As the number of
cases increases towards 5000 (i.e. αD increases towards 0), the proportion of
p-values also increases, with 95% of simulations resulting in p-values <0.01 once
the number of cases reaches 2300 (i.e. αD = -1.2 leading to a disease prevalence
of 23% among those with mean levels of X1 and X2). This suggests as the
size of the smaller group (the cases in these simulations) increases, the power of
the method also increases, and this association is independent of the marginal
correlation between X1 and X2.

Figure 6.20: Line chart plotting proportion of p-values for the hypothesis test
of δ12=0 that are less than 0.01 against the number of cases (from a sample of
10,000). γ12 = 0.1, β1 = β2 = 0. αD is varied to alter the number of cases.

It should be noted, the figure only shows the values up to αD = 0 (equivalent
to number of cases = 5000), the picture is symmetric beyond this point (i.e.
we would expect the same % of p-values <0.01 when there are 6000 cases as
when there are 4000, similarly 9000 and 1000), because once αD >0, the cases
become a larger group than the non-cases, but the inference is the same as it

123



was when the groups were the other way round. Finally, this process was re-run
for situations where X1 and X2 were correlated, and as seen in section 6.4.1.2,
there was no change in terms of the proportion of edges detected.

Now we fix β1 = β2 = 1 and γ12 = 0 , which previously resulted in approx-
imately 50% of simulations giving a p-value of less than 0.01 (section 6.4.1.1,
figure 6.13b), although that proportion increased as the partial correlation of
X1 and X2 increased (figures 6.13d and f). If we investigate the effect of αD

in this scenario, as before, αD increases from its lowest level the proportion of
p-values <0.01 also increases. This peaks at the point where the number of
cases is approximately 2000. However, as the number of cases approaches 5000
(i.e. αD approaches 0), this proportion drops off dramatically with virtually 0%
of edges detected once αD = 0 (figure 6.21). As the partial correlation between
X1 and X2 increases the power to detect an edge also increases.

Figure 6.21: Line chart plotting proportion of p-values for δ12 = 0 that are less
than 0.01 against the number of cases (from a sample of 10,000). β1=β2=1,
γ12=0. αD is varied to alter the number of cases.

6.4.1.5 Sample size

In the previous section, we took a fixed sample size and observed what occurred
if we varied the number of cases within that fixed sample size of 10,000. We
saw that when the smaller group reached a size of 2300, 95% of the simula-
tions resulted in a p-value of less than 0.01 when γ12 = 0.1 (and β1 = β2 =
0). We repeated this with an increased sample size of 100,000, with figure 6.22
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illustrating the results, showing the proportion of simulations that result in a
p-value <0.01 by the number of cases (when the cases are the smaller group)
when γ12 = 0.1. When the sample size was 10,000, it took 2300 cases to result
in 95% of simulations detecting an edge, when the sample size was 100,000, 2000
cases were required.

Figure 6.22: Line chart plotting proportion of p-values for δ12 = 0 that are less
than 0.01 against the number of cases (from a sample of 100,000). γ12 = 0.1,
β1 = β2 = 0, 500 simulations. αD is varied to alter the number of cases.

It is the size of the smaller group that determines the ability of the differential
network method to determine an edge, since the variance of δ̂12 is based on the
variance of the partial correlation of X1 and X2 in both the cases and in the
non-cases, and these variances are in turn based on the size of the respective
groups. If one of the groups is very small, its partial correlation will be impre-
cisely estimated and the variance of δ̂12 will therefore be high, even if the other
group is extremely large and therefore its partial correlation precisely estimated.
These latest simulations show us that we need a minimum of 2000 cases to en-
sure that we detect an edge in this scenario (95% of the time), with the number
of cases required increasing, with decreasing sample size. Once the overall sam-
ple size drops to 7000, 3500 (50%) cases are required. So the minimum sample
size required to detect difference in partial correlations of this magnitude is 7000.

6.4.1.6 Comparison with logistic regression

Given the data generating model and the results showing the agreement between
γ12 and δ12, we now investigate whether focusing our analysis on estimating γ12

is as or more informative as performing a differential network analysis.
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For each set of simulations performed, where β1 = β2 = 0 and γ12 6= 0, a logistic
regression model was also fitted with explanatory variables X1, X2 and their
interaction, reflecting how the data were generated.

logit{Prob (D = 1)} = α∗D + β∗1X1 + β∗2X2 + γ∗12X1X2 (6.11)

The significance of the estimated regression coefficient for the interaction term
was then evaluated. Figure 6.23 shows the proportion of p-values <0.01 for the
interaction between X1 and X2 when the sample size is 10,000. The dashed lines
represent the results from when a logistic regression has been used, the solid
lines are the results previously presented in figure 6.19, representing the inferred
results for δ12. It can be seen from the chart that when the correlation of X1

and X2 is set to 0, that the differential network and logistic regression identify
a similar proportion of p-values <0.01 across the values of γ12. However, as the
correlation of X1 and X2 strengthens, the logistic regression performs better at
identifying the interaction, where the differential network stays the same. These
results are also reflected when we investigate the effect of changing the size of
the cases group (figure 6.24).

Figure 6.23: Line chart plotting proportion of p-values that are less than 0.01
across a range of values of γ∗12. Dashed lines represent the results from a logistic
regression testing the null hypothesis γ12=0, solid lines represent the results
from the test of δ12 = 0. Sample size = 10,000, simulations = 500, β1 = β2 = 0,
αD = −2
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Figure 6.24: Line chart plotting proportion of p-values that are less than 0.01
across a range of sizes of the cases group, with γ12 set equal to 0.1. Dashed
lines represent the results from a logistic regression testing the null hypothesis
γ∗12=0, solid lines represent the results from the test of δ12 = 0. Sample size =
10,000, simulations = 500, β1 = β2 = 0. αD is varied to alter the number of
cases.

6.4.1.7 Comments

It may seem obvious that a logistic regression would be more efficient than the
differential network when using this data generation model, as the model is
exactly that assumed for a logistic regression. i.e. when identifying an interac-
tion, the logistic regression is testing whether the interaction term is equal to 0,
whereas the differential network is testing whether the difference in partial cor-
relations, induced by a non-zero interaction term, is equal to 0. So it is perhaps
logical that the direct test would be more efficient than a more indirect test.
However, under a different data generating model, we may see different results.

6.4.2 Data generating model B

The simulations performed for data generating model B are simpler, due to it
involving fewer parameters. In this scenario we vary the sample size, proportion
of cases in the sample and the strength of association between X1 and X2 in
the non-cases (defined as λ1). Recall that this scenario would arise when pre-
existing disease modifies the correlation between the metabolites.

Again, starting with a sample size of 10,000 we can plot the proportion of
simulations that result in a p-value <0.01 for the signifcance testing of δ12 = 0
(figure 6.25). Here we observe that with this sample size and 500 cases, 95%
of simulations yield a p-value <0.01 once λ1 reaches 0.2 (implying a correlation
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among the non-cases of 0.2 and a correlation of 0 in the cases, resulting in a δ12

of -0.2). When the number of cases reduces to 100 and 50 respectively the λ1

required increases to 0.4 and 0.55 respectively. It should be noted that these
are fairly large differences in correlations in the two groups, the cancelling out
of a correlation of 0.2 or more is quite large effect. If the difference was reduced
to 0.1, the power with 500 cases is reduced to 18%.

Figure 6.25: Proportion of p-values <0.01, across values of λ1 from 0 to 0.9
(which corresponds to the correlation in the non-cases) for 3 different numbers
of cases. Total 10,000 observations, 500 simulations

.

By fixing the number of cases and varying the overall sample size we can ob-
serve that the overall sample size has little effect on the proportion of simulations
where the p-value for δ12 that are <0.01. Figure 6.26 shows the proportion of
simulations that yield a p-value <0.01 when the number of cases is fixed at 100
and the total sample size changes from 10,000 to 1000 to 500. It can be seen
that there is very little difference between them, suggesting it is the size of the
smaller group, rather than the overall sample size, that is the main influence for
the power to detect an edge in the differential network.

In each of the simulation sets described so far the value of λ2 has been set to
0, so X3 is not associated with X1. However, when this is increased to a large
value (0.8) we can observe that the power to detect an edge is reduced (figure
6.27). This is because of the strong correlation of X1 and X3 means that the
association between X1 and X2 after adjusting for X3 is reduced, so the partial
correlation between X1 and X2 in the non-cases is reduced.
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Figure 6.26: Proportion of p-values <0.01, across values of λ1 for 3 different
total sample sizes. Number of cases is 100 in each set of 500 simulations

.

6.4.2.1 Comparison with logistic regression

In all the simulations illustrated so far, a logistic regression has also been per-
formed, and the proportion of p-values <0.01 for the interaction of X1 and X2

found, using the same associational model as when comparing scenario A to
logistic regression.

logit{Prob (D = 1)} = α∗D + β∗1X1 + β∗2X2 + γ∗12X1X2 (6.12)

In situations where λ2 = 0 the differences in results from the logistic regression
and the differential network were negligible. When λ2 is set to a non-zero value
however, the differential network approach has more power to detect a difference
in correlations than the logistic regression has to detect a significant interaction.
Figure 6.28 shows the comparison between the two approaches when there are
1000 observations and 100 cases and λ2 = 0.8.

In this scenario an edge in the differential network is detected 95% of the time
when λ1 is increased to 0.48, but using the logistic regression an interaction is
detected only 57% of the time at the same level. By the time λ1 is increased
to 0.8 the logistic regression picks up an interaction approximately 95% of the
time.

6.4.3 Data generating model C

This data generating model is very similar to data model B, other than the as-
sociation between D and the “switching off” of the association between X1 and
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Figure 6.27: Proportion of p-values <0.01, across range of λ1 for two different
values of λ2. There are 10,000 observations and 100 cases in each set of 500
simulations

.

Figure 6.28: Proportion of p-values <0.01, across range of λ1 for the test of a)
δ12 = 0 and b) γ∗12 = 0. There are 1,000 observations and 100 cases in each set
of 500 simulations. λ2 = 0.8
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X2 is associational rather than causal. In this case therefore there is no time
ordering between metabolites and disease. If βY and βD are set high enough
then D ≈ Y and the results from analysing the two scenarios will be very similar,
even if the relationships between D, X1 and X2 are not causal.

As for scenario A we can illustrate the effect of number of cases on the results,
by varying the parameter αD. Two examples are illustrated in figure 6.29, where
αD has been set equal to -2 and -3, which in a sample size of 10,000 is equivalent
to approximately 2250 and 1300 cases respectively.

Also similar to before, when λ2 is increased, the differential edge δ12 is less
likely to be picked up because the partial correlations are reduced in absolute
size (figure 6.30).

6.4.3.1 Comparison with logistic regression

As before, the differential network approach outperforms the logistic regression
approach, with figure 6.31 illustrating the difference in performance. It shows
that when λ1 is equal to 0.72, 96% of tests for δ12 = 0 result in a p-value less
than 0.01, compared with 64% of tests for an interaction between X1 and X2.

Figure 6.31: Proportion of p-values <0.01, across range of λ1 for the test of
a) δ12 = 0 and b) γ12 = 0. There are 1000 observations in each simulation.
αD = −2, βY = βD = 2, λ2 = 0

6.5 Summary and discussion

Differential networks have been proposed as exploratory methods for highlight-
ing possible changes in associations among metabolites experienced when in dif-
ferent biological states. In this chapter we applied the method to the BWHHS
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Figure 6.29: Proportion of p-values <0.01, across range of λ1 for a set of 500
simulations where a) αD = −2 and b) αD = −3. There are 10,000 observations
in each simulation. λ2 = 0 βD = βY = 2

.

Figure 6.30: Proportion of p-values <0.01, across range of λ1 for two different
values of λ2. There are 10,000 observations in each simulation. αD = −2
βD = βY = 2

.
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data, creating a differential network using the partial correlations of 78 metabo-
lites, but were unable to provide a suitable interpretation of what the network
represented. As a result we simulated data from three different possible data
generating models and a range of settings within each model. In doing this we
were able to investigate which situations would lead to the inclusion of an edge
in a differential network (defined in terms of partial correlation). The three
scenarios were chosen because they are likely to capture likely causal models:
scenario A has the metabolites as causes of disease, scenario B has the disease
causing the behaviour of the metabolites and scenario C has disease and the
metabolites sharing a common cause.

While examining scenario A, we have found that a difference in partial corre-
lations can be found in situations where the effect of X1 on disease is modified
by X2 (and vice-versa). It can also be found where both X1 and X2 are strong
independent causes of disease, or if just one is an extremely strong cause of
disease and the two metabolites are correlated. If there is an interaction AND
one of these other situations, the two effects can cancel each other out to give
a null finding. In practice, the main effects required to induce a difference in
correlations are so large that their effect on δ12 can be considered negligible
compared to any interaction effect.

We have also found that to detect a difference in partial correlations, induced
by a relatively moderate interaction (OR = 1.1) between the two variables con-
sidered, with no main effects, a minimum sample size of 7000 observations was
required, if the disease prevalence was 50%. A lower prevalence would require a
larger sample size, but irrespective of the overall sample size, the smaller group
must have at least 2000 observations. These are all based on the assumption
that there are no causes of D unaccounted for (i.e. U does not have a direct
effect on D).

When examining scenarios B and C it was found that if the disease (or another
cause of disease) modifies the relationship between a pair of metabolites, this
can lead to an edge arising in the differential network, again assuming no other
causes of D (i.e. X3 is not a cause of D).

For each set of simulations estimating the difference in partial correlations and
its associated p-value, a logistic regression (for experiencing the event) was
performed for comparison, with the regression coefficient for the interaction be-
tween the two metabolites being the focus of inference. In every scenario, for
data generating model A, the logistic regression was more powerful at picking
up the interaction, with the added advantage of being able to identify the main
effects of the metabolites. In scenarios B and C the differential network was
equally or more powerful in all settings examined.

These findings are perhaps obvious, since in scenario A the data were generated
by specifying γ12, which induces a non-zero value of δ12 so it would be expected
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that testing γ∗12 = 0 would be more powerful than testing δ12 = 0. In scenarios
B and C we effectively specify δ12, which induces a non-zero value of γ12 so again
it follows that testing δ12 = 0 would be more powerful than testing γ∗12 = 0.

Once a differential edge is identified it is not possible to know for sure the data
generating model that has led to it (or if the edge was identified by chance) but
a some recommendations as to what to do if one is encountered are as follows:

• Investigate the scatter plot of the two variables involved in the differential
edge. What has led to the difference in correlations? (e.g. the cases are
correlated, the non-cases are uncorrelated).

• Have the two variables involved been picked up as associated with the
outcome in a univariable analysis?

• If you perform a logistic regression with both variables and their interac-
tion, is there evidence of effect modification?

• Does the difference in correlations exist when not adjusted for any other
variable? If not the addition of which variables in the network lead to
the difference observed, try stepping through each variable in turn (this
process is explained in section 7.1.2).

• Consider the biological plausibility that the correlation between this pair
of variables differs in the cases and non-cases.

In this chapter we looked in depth at the most basic element of a differential
network, the edge between two nodes. We discovered that an edge can be in-
duced in a differential network if the effect of one node on disease is modified by
another node, or if the disease causes (or is associated with) a “breaking down”
in the relationship between the two nodes. We looked at a simplified model,
and only examined the edge of interest, not investigating any knock on effects
throughout a larger network. This provided us with a grounding in the building
blocks of a differential network, and illustrated that the data generating model
affected the results.
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Chapter 7

Overview and guidance for
analysis of differential
networks

In this chapter the aim is to consider the implications of what has been observed
so far in applying differential networks in practice. First we will investigate the
choice between marginal and partial correlation as a measure of association
between a pair of nodes, then we will discuss the role of variable selection on
the results of analysis. Finally the methods described will be applied to the
BWHHS dataset and the results described.

7.1 Marginal or partial correlations?

Let us start by considering a data generating model, which is an extension of the
models used in the previous chapter, where there are three unmeasured latent
factors (U1, U2 and U3), which are correlated with one another. Each of these
latent factors, in healthy individuals, strongly influences the concentration levels
of 10 metabolites, denoted respectively X1-X10, Y1-Y10 and Z1-Z10. However, in
unhealthy individuals the concentration of the X metabolites is not influenced
by U1. This is different to scenario A in the previous chapter as rather than the
values of X influencing D it is the disease status D that influences the values
of X. This could be happening directly (as in data generating model B) or via
an association with another variable (as in model C). Figure 7.1 illustrates the
proposed data generation models for healthy and unhealthy groups separately,
which is equivalent to data generating model B from the previous chapter. Note
that in this set up only the metabolites X1−X10, Y1−Y10, Z1−Z10 are observed
while U1, U2 and U3 are latent so that only the former will be contributing to
network analyses.
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Figure 7.1: Data generating model for healthy (left) and unhealthy (right) in-
dividuals, error terms not shown. (Data generating model 1)

The correlations between the latent variables are specified in general as θ12, θ13

and θ23. The latent variables U1, U2 and U3 are distributed N(0, 1) and the
equations used to generate the metabolites are, for i=1,2,...,10:

Xi = λxiU1 − λxiU1D + εxi

Yi = λyiU2 + εyi

Zi = λziU3 + εzi

(7.1)

where εji ∼ N(0, σ2
ji) (where j = x,y,z and i = 1,2...10), D = 0 in healthy

individuals and D = 1 in unhealthy individuals. This is a special case where
when D = 1 the two λxiU1 terms cancel so that Xi = εxi.
The aim of this chapter is not to further investigate the effect of sample size, the
aim is to study the values of the δ parameters expected to be observed in the
differential network. So when performing the analysis we will use a large, fixed
sample size of 1,000,000, and a disease prevalence of 10%. A sample of 1,000,000
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is generated first, with 100,000 individuals randomly (and independently of the
other variables) assigned as having the disease. Once the λ, θ and σ values are
selected, the values of X, Y and Z are then generated for each individual. For
simplicity, in the following we let each of the λ values be equal, similarly all the
σ values are set to be equal, and as described above all the θ values will be set
equal as well. Using the generating model proposed in figure 7.1, the impact
of using marginal or partial correlations as the basis of the differential network
will be examined.

7.1.1 Differential network based on marginal correlations

Using the data model described, the metabolomic network among healthy in-
dividuals we would expect to observe would be made of 3 groups, with nodes
strongly associated within groups and members of each group also correlated
with members of the other groups, albeit more loosely.

In this section we will use some specific terminology that must be defined:

• Parent - in figure 7.1 U3 is a parent of Z1, because U3 is a cause of Z1

• Child - in figure 7.1 Z1 is a child of U3

• Sibling - in figure 7.1 Z1 and Z2 are siblings as they have a common
parent

• Cousin - in figure 7.1 Y1 and Z1 are cousins as they have parents who are
siblings

Using the above terminology we expect the marginal correlation between sib-
lings, amongst healthy individuals to be:

ρx1x2 =
λx1λx2√

(λ2
x1 + σ2

x)(λ2
x2 + σ2

x)
(7.2)

and the correlation between cousins to be:

ρx1y1 =
θλx1λy1√

(λ2
x1 + σ2

y)(λ2
y1 + σ2

y)
(7.3)

and similarly for each other pair of siblings or cousins. For illustrative purposes,
we can draw the marginal correlation network (for healthy individuals only) and
we would expect to see a network as shown in figure 7.2. For this example all
values of λ are set to be equal to 0.9 and, for this figure, σ = 1 and θ = 0.5.
The edges in the network (i.e. the marginal correlations) between sibling nodes
are equal to 0.44, and between cousins they are equal to 0.22.
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In this illustrative example, in the network for unhealthy individuals the X vari-
ables are by design all uncorrelated to the other X variables and also to all of
the Y and Z variables. Therefore the correlation between the Xs is equal to 0 as
is the correlation between each X and their cousins. In contrast the Ys and Zs
still form modules, with a marginal correlation again of 0.44 between siblings
and 0.22 between cousins, but the Xs are all isolated nodes with a marginal cor-
relation of 0 between any X node and any other node in the network (figure 7.3).

Finally we consider the differential network that this scenario would induce when
calculations are based on these marginal correlations. Among the Ys and the Zs
the correlation between siblings does not change between healthy and unhealthy
groups, so there would be no differential edges within these groups, i.e. δ = 0,
where δ denotes the edge of the differential network as in the previous chapter.
However the Xs are all correlated in healthy individuals and uncorrelated in
unhealthy individuals so an edge would be generated between each of the X
variables. The marginal correlation between Xs in healthy individuals was 0.44
and between Xs in unhealthy individuals was 0, so the value of δ in this example
is 0.44. Also, between each X and its cousins there is a marginal correlation in
healthy individuals of 0.22 but not amongst unhealthy individuals, so again an
edge would be generated between each X and all of its cousins with a value of
δ = 0.22. This would result in a differential network as shown in figure 7.4.

An important fact to note is that for a given data generating model these edges
are unaffected by inclusion or exclusion of any other nodes in the network, mean-
ing that when using marginal correlations to define a differential network we get
a stable result whatever set of metabolites one studies. So finding (or not) an
edge between two nodes in a differential network based on marginal correlations
is independent of how many other nodes are included in the network.

7.1.2 Differential network based on partial correlations

We can now consider the networks generated if partial correlations are used
instead of marginal correlations. Because all the variables in our example are
positively correlated, by adjusting for other variables in the network we reduce
the partial correlation between each pair of nodes. By introducing additional
sibling nodes we reduce the strength of the correlation by a greater amount than
by introducing additional cousins.

Because of the simplicity of the example discussed here, the healthy and un-
healthy networks actually look the same when partial correlations are used as
when marginal correlations are used, although the strengths of the edges are
weaker. So in the network formed by healthy individuals, the network topology
is the same as that shown in figure 7.2 however, estimating the partial correla-
tions using a sample size of 1,000,000, the strength of an edge between siblings
is estimated to be 0.093 and between cousins it is 0.005 (as opposed to 0.44 and
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Figure 7.2: Network of the 30 observed variables in healthy individuals. Data
generated using equation 7.1, with λ = 0.9, σ = 1, θ = 0.5, D = 0.

Figure 7.3: Network of the 30 observed variables in unhealthy individuals. Data
generated using equation 7.1, with λ = 0.9, σ = 1, θ = 0.5, D = 1.
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Figure 7.4: Differential network using marginal correlation coefficients

140



0.22 in the network formed using marginal correlations). In the partial correla-
tion network formed by unhealthy individuals, the topology is again the same as
in the network using marginal correlations shown in figure 7.3. The X variables
are isolated nodes as they are uncorrelated with any of the other variables, the
partial correlation between siblings (within the Y and Z variables) is 0.095 and
and between cousins in the Y and Z variables is 0.006 (compared with 0.44 and
0.22 in the network formed using marginal correlations).

So in the differential network formed using partial correlations, the observed
value of δ between each pair of X variables is -0.093 and between each X vari-
able and its cousins the value of δ is -0.005. There are also very small, non-zero
values of δ between siblings and cousins in the Y and Z variables (δ = −0.0001).

The setting defined by the data generating model describes a situation where
the association between U1 and X1 −X10 changes between a group of healthy
individuals and a group of unhealthy individuals. As U1 is unobserved, what
we might expect from a differential network analysis performed on this setting
as defined by the data generating model is a differential network that shows
edges from each of the X nodes to all other nodes in the network. We would
also expect all other pairs of nodes to have an expected δ of 0 between them.
This is what was found when performing the differential network analysis using
marginal correlations. It was also identified using partial correlations, although
there were tiny non-zero values of δ between the Y and Z nodes as well. In this
setting these were so small that no hypothesis test would identify them as a
non-zero edge unless the sample size was enormous, however in section 7.1.2.1
this is expanded upon with a discussion about where these edges may pose a
problem.

The other point to note is that when using marginal correlations, the value
of δ estimated between a pair of nodes will be the same, irrespective of what
other nodes are included in the analysis, for a given data generating model. For
example, the δ between X1 and X2 will remain the same if there are 10 other
nodes in the network or if there are 100. When using partial correlations this
is not the case, each additional node added to the analysis contributes to the
estimate of every δ in the network, which will also be shown in section 7.1.2.1.

7.1.2.1 An additional issue when using partial correlations in differ-
ential networks

Consider healthy individuals, and the scenario where only 2 metabolites are
observed from each class X1, X2, Y1, Y2, Z1 and Z2, but the data generating
model is the same as in the previous section. With the specifications described
in the previous section the partial correlation of X1 and X2 is 0.38 (and is the
same as the partial correlation of Y1,Y2 and Z1,Z2). The partial correlation be-
tween cousins is equal to 0.07 for the same values of θ and σ as before (figure 7.5).
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Figure 7.5: Association network in healthy individuals using partial correlation
coefficients, with two variables observed (instead of ten as per marginal network)
from each set of cousins. Data generated using equation 7.1, with λ = 0.9, σ =
1, θ = 0.5, D = 0.

Figure 7.6: Association network in unhealthy individuals using partial corre-
lation coefficients, with two variables observed (instead of ten as per marginal
network) from each set of cousins. Data generated using equation 7.1, with
λ = 0.9, σ = 1, θ = 0.5, D = 1.

Figure 7.7: Differential network using partial correlation coefficients, corre-
sponding to figures 7.5 and 7.6
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Now in unhealthy individuals the partial correlation between the Xs is equal to
0, and also the partial correlation between Xs and their cousins are equal to
zero. The partial correlation between Y1 and Y2 however is now increased to
0.41, because X1 and X2 no longer “explain away” any of the correlation be-
tween Y1 and Y2 so adjusting for these variables now has no effect (this is true
for Z1 and Z2). The partial correlations between Ys and Zs are also slightly
increased to 0.09 (figure 7.6).

When we look at the differential edges we see a strong edge between X1 and
X2, with δ = −0.38, and weaker edges between X1 and X2 and their cousins
(δ = −0.07), as we might expect. However, we now also see weak edges appear-
ing between Y1/Y2 and Z1/Z2 (δ = −0.03) and also between the Ys and the Zs
(δ = −0.02) with the differential network illustrated in figure 7.7.

As we observe more variables, the results change, and depending on which
variables are included we observe different changes. For example, as further
X variables are added this reduces the partial correlations between all pairs
of variables in the healthy population (as everything is positively correlated),
however it reduces the partial correlation between pairs of X variables than
it does between Y or Z variables, or between cousins. Therefore the partial
correlation of siblings among the Xs will be reduced in the healthy population
and will remain at 0 among the unhealthy, so the difference (δ) will be reduced.
It will have a similar effect throughout the network although not as pronounced.

The impact of increasing the number of observed X variables, for a given data
generating model, on the difference in partial correlations can be viewed graphi-
cally in figure 7.8. If we take data generating model 1 (figure 7.1) and we assume
only a single Y variable and a single Z variable is observed and we start with
two X variables X1 and X2 observed.

When there are only two X variables observed, the edge connecting X1 and
X2 in the differential network is of a much greater magnitude than the edge
connecting X1 and Y1, the edge connecting X1 and Z1 and the edge connecting
Y1 and Z1. However, as more X variables are observed, the differences between
partial correlations in the Xs reduces, while the difference in partial correlation
between Y1 and Z1 increases. Once there are greater than four X variables, the
edge between Y1 and Z1 is stronger than any of the edges between either of
them and each of the X variables, once there are greater than 11 X variables,
the differential edges between Xs are smaller than those between Y1 and Z1.

This illustrates a potential problem with differential networks using partial cor-
relations, unexpected edges can be introduced between a pair of variables not
closely related to the true data generating process, when the nodes are strongly
correlated within subgroups (as is the case with the BWHHS metabolomic data).

If instead of increasing the number of Xs we increase the number of Y variables
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included, the edge between X1 and X2 remains strong, as does the edge between
X1 and Z1. All edges involving Y variables tend towards 0 (figure 7.9).

Figure 7.8: Edge strength for 3 selected pairs of variables against number of X
variables included in network (θ = 0.5, λ = 0.9, σ = 1) - the edge connecting X1

and Z1 is not shown as it is of an identical strength to the X1/Y1 edge

Figure 7.9: Edge strength for 5 selected pairs of variables against number of X
variables included in network (θ = 0.5, λ = 0.9, σ = 1)
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7.1.3 General results

To try to be more analytic about why edges appear in the differential network,
we will describe the mathematics behind the results by applying the methodol-
ogy initially described by Wermuth and Cox [103] and applied previously by de
Stavola et al [104]. To simplify the algebra used in this section, a second data
generating model is proposed, which illustrates the issues described above.

Figure 7.10: Separate data generating models for cases and non-cases. (Data
generating model 2)

If we consider the setting described in data generating model 2 (figure 7.10),
there is a variable U1 that is a common cause of X and Y . Also there is a
variable U2 that is a cause of Y in the non-cases but not amongst the cases. U2

is also a cause of Z in both cases and non-cases. We assume for simplicity that
there are no background confounders. We can describe the marginal and partial
differential network in general terms in this very simple scenario, assuming lin-
ear relationships among these variables, with no interactions and uncorrelated
errors. First we can describe the data generating model for the cases:
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Cases 
U1 = εu1

U2 = εu2

X = λxU1 + εx
Y = λyU1 + εy
Z = λzU2 + εz

(7.4)

where ε̃ = (εu1, εu2, εx, εy, εz) are error terms with mean 0 and variance covari-
ance matrix Σ,

Σ =


σ2
u1 0 0 0 0
0 σ2

u2 0 0 0
0 0 σ2

x 0 0
0 0 0 σ2

y 0
0 0 0 0 σ2

z


Rearranging these equations so that they are expressed in terms of the error
terms:


εu1 = U1

εu2 = U2

εx = X − λxU1

εy = Y − λyU1

εz = Z − λzU2

(7.5)

Let R̃ = (U1, U2, X, Y, Z)
T

and

Ã =


1 0 0 0 0
0 1 0 0 0
−λx 0 1 0 0
−λy 0 0 1 0

0 −λz 0 0 1


then model (x.x) can be written in matrix notation as ÃR̃ = ε̃

To marginalise this model with respect to U = (U1, U2), the two unobserved
variables, we first use partial inversion of Ã, as described in Wermuth and Cox
[103] with respect to U . This consists of first partitioning Ã into components
that involve/do not involve U :

Ã =


ÃUU ÃUŪ

ÃŪU ÃŪŪ

 .

where
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ÃŪŪ =

 1 0 0
0 1 0
0 0 1

 ,

ÃUŪ =

(
0 0 0
0 0 0

)
,

ÃŪU =

 −λx 0
−λy 0

0 −λz


and

ÃUU =

(
1 0
0 1

)
This leads to the new matrix B

B = invUÃ

=

(
Ã−1

UU −Ã−1
UUÃUŪ

ÃŪUÃ−1
UU ÃŪŪ − ÃŪUÃ−1

UUÃUŪ

)
(7.6)

which equates as

B =


1 0 0 0 0
0 1 0 0 0
−λx 0 1 0 0
−λy 0 0 1 0

0 −λz 0 0 1


We will next refer to the elements of this matrix and of the matrix Σ using the
same partitioning notation as for Ã, that is

B̃ =


B̃UU B̃UŪ

ÃŪU B̃ŪŪ

 .

Σ̃ =


Σ̃UU B̃UŪ

ÃŪU Σ̃ŪŪ

 .

Additionally let X = (X,Y, Z)
T

and ε = (εx, εy, εz)
T

. We are now ready to
write the marginalised model in terms of these new elements, using Lemma 1
in Wermuth and Cox [103],

η = BUUX
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where η = ε−BUŪU and the variance covariance matrix of these error terms,
K, is

K = ΣŪŪ + BŪUΣUUBT
ŪU

So to obtain K,

BŪU =

 −λx 0
−λy 0

0 −λz


ΣUU =

(
σ2
u1 0
0 σ2

u2

)

BŪUΣUUBT
ŪU =

 λ2
xσ

2
u1 λxλyσ

2
u1 0

λxλyσ
2
u1 λ2

yσ
2
u1 0

0 0 λ2
zσ

2
u2


K =

 σ2
x + λ2

xσ
2
u1 λxλyσ

2
u1 0

λxλyσ
2
u1 σ2

y + λ2
yσ

2
u1 0

0 0 σ2
z + λ2

zσ
2
u2


So amongst the cases the covariance between X and Z is 0 and also between Y
and Z. However the covariance between X and Y is

cov(X,Y|case) = λxλyσ
2
u1

So to get the correlation between X and Y (amongst the cases) we need to divide
by the standard deviations of X and Y. The matrix K has the variances on the
diagonal, so we must take the square root of these

ρxy.case =
λxλyσ

2
u1√

σ2
x + λ2

xσ
2
u1

√
σ2
y + λ2

yσ
2
u1

ρxz.case = 0

ρyz.case = 0

The above are the marginal correlations in the cases, we are also interested in
the partial correlations. If we define the covariance matrix K as:

K =


k11 k12 · · · k1J

k21 k22 · · · k2J

...
...

. . .
...

kI1 kI2 · · · kIJ


and the inverse of this covariance matrix is K̃:
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K̃ =


k̃11 k̃12 · · · k̃1J

k̃21 k̃22 · · · k̃2J

...
...

. . .
...

k̃I1 k̃I2 · · · k̃IJ


Then the partial correlation of a pair of variables i and j , adjusting for all other
variables (Q) can be defined as ρij.Q :

ρij.Q =
−k̃ij√
k̃ii

√
k̃jj

So if we take the covariance matrix for the cases and invert it, the coefficients
can be used to obtain partial correlation coefficients.
We can invert the covariance matrix for the cases. At this point to keep the
algebra simple we assume that all σ terms are equal to 1 (unit variance), also
the denominator from each term is excluded from each matrix element as it is
very unwieldy and cancels out anyway when obtaining the partial correlation
coefficients, which is the aim of this step:

K̃ =

 (1 + λ2
y)(1 + λ2

z) −λxλy(1 + λ2
z) 0

−λxλy(1 + λ2
z) (1 + λ2

x)(1 + λ2
z) 0

0 0 (1 + λ2
x)(1 + λ2

y)− λ2
xλ

2
y


Only k̃xy is non-zero, so the only non-zero partial correlation will be the one
between x and y. And the solution to that simplifies down to:

ρxy.z,case =
λxλy√

1 + λ2
x

√
1 + λ2

y

ρxz.y,case = 0

ρyz.x,case = 0

Non-cases If we now go on to repeat the above exercise for the non-cases, we
can define the 5 variables as follows:


U1 = εu1

U2 = εu2

X = λxU1 + εx
Y = λyU1 + λy2U2 + εy
Z = λzU2 + εz

(7.7)

149



and rearranging the formulae to describe the error terms gives us:


εu1 = U1

εu2 = U2

εx = X − λxU1

εy = Y − λyU1 − λy2U2

εz = Z − λzU2

(7.8)

Following the same process as before (omitting the intermediate steps) this re-
sults in a matrix B of:

B =


1 0 0 0 0
0 1 0 0 0
−λx 0 1 0 0
−λy −λy2 0 1 0

0 −λz 0 0 1


and a resulting variance-covariance matrix K:

K =

 σ2
x + λ2

xσ
2
u1 λxλyσ

2
u1 0

λxλyσ
2
u1 σ2

y + λ2
yσ

2
u1 + λ2

y2σ
2
u2 λy2λzσ

2
u2

0 λy2λzσ
2
u2 σ2

z + λ2
zσ

2
u2


So amongst the non-cases the covariance between X and Z is 0. However the
covariance between X and Y is the same as before:

cov(X,Y) = λxλyσ
2
u1

and now there is a non-zero covariance between Y and Z.

cov(Y,Z) = λy2λzσ
2
u2

So to get the correlation between X and Y we need to divide by the standard
deviations of X and Y. The matrix K has the variances on the diagonal, so we
must take the square root of these. Now the variance of Y is different to before
(As it is caused by both U1 and U2), so there is a slightly different correlation

ρxy.non−case =
λxλyσ

2
u1√

σ2
x + λ2

xσ
2
u1

√
σ2
y + λ2

yσ
2
u1 + λ2

2σ
2
u2

ρxz.non−case = 0

ρyz.non−case =
λy2λzσ

2
u2√

σ2
z + λ2

zσ
2
u2

√
σ2
y + λ2

yσ
2
u1 + λ2

2σ
2
u2
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Again to get the partial correlation coefficients we need to invert the covari-
ance matrix for the non-cases. As before, to keep the algebra simple we assume
that all σ terms are equal to 1 (unit variance), and the denominator is excluded:

K̃ =

 (1 + λ2
y + λ2

y2)(1 + λ2
z)− λ2

y2λ
2
z −λxλy(1 + λ2

z) λxλyλy2λz
−λxλy(1 + λ2

z) (1 + λ2
x)(1 + λ2

z) −(1 + λ2
x)λy2λz

λxλyλy2λz −(1 + λ2
x)λy2λz (1 + λ2

x)(1 + λ2
y + λ2

y2)− λ2
xλ

2
y


This results in a non-zero partial correlation between each pair of metabolites.
The partial correlation of x and y in the non-cases is:

ρxy.z,non−case =
λxλy(1 + λ2

z)√
(1 + λ2

y + λ2
y2)(1 + λ2

z)− λ2
y2λ

2
z

√
(1 + λ2

x)(1 + λ2
z)

The partial correlation of x and z in the non-cases is:

ρxz.y,non−case = − λxλyλy2λz√
(1 + λ2

x)(1 + λ2
y + λ2

y2)− λ2
xλ

2
y

√
(1 + λ2

y + λ2
y2)(1 + λ2

z)− λ2
y2λ

2
z

The partial correlation of y and z in the non-cases is:

ρyz.x,non−case =
(1 + λ2

x)λy2λz√
(1 + λ2

x)(1 + λ2
z)
√

(1 + λ2
x)(1 + λ2

y + λ2
y2)− λ2

xλ
2
y

Differences So we can now calculate the differences (δ) for each pair of vari-
ables in both the marginal and partial differential networks, by subtracting the
correlation in the non-cases from the correlation in the cases. First the marginal
differences:

δxy =
λxλyσ

2
u1√

σ2
x + λ2

xσ
2
u1

 1√
σ2
y + λ2

yσ
2
u1

− 1√
σ2
y + λ2

yσ
2
u1 + λ2

2σ
2
u2


δxz = 0

δyz =
λy2λzσ

2
u2√

σ2
z + λ2

zσ
2
u2

√
σ2
y + λ2

yσ
2
u1 + λ2

2σ
2
u2

And for the partial correlations:
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δxy =
λxλy√

1 + λ2
x

√
1 + λ2

y

− λxλy(1 + λ2
z)√

(1 + λ2
y + λ2

y2)(1 + λ2
z)− λ2

y2λ
2
z

√
(1 + λ2

x)(1 + λ2
z)

δxz =
λxλyλy2λz√

(1 + λ2
x)(1 + λ2

y + λ2
y2)− λ2

xλ
2
y

√
(1 + λ2

y + λ2
y2)(1 + λ2

z)− λ2
y2λ

2
z

δyz = − (1 + λ2
x)λy2λz√

(1 + λ2
x)(1 + λ2

z)
√

(1 + λ2
x)(1 + λ2

y + λ2
y2)− λ2

xλ
2
y

This illustrates, when using partial correlations, that differences can be induced
between variables that are not directly involved in the changed pathways be-
tween healthy and unhealthy individuals.

7.1.3.1 A potential benefit of using partial correlations in differential
networks

In the previous sections we considered the scenario where there were unobserved
latent variables responsible for the observed X, Y and Z variables. Now if we
consider a scenario where we return to using model (7.1) and observe every-
thing, i.e. the U variables are also observed, we can discuss how this changes
the results.

In this scenario we will use the parameters used before for illustration (θ =
0.5, λ = 0.9, σ = 1). The marginal differential network will pick up all the
edges identified before, as well as edges between each of the Xs and the Us
(The strongest edges being those between U1 and each of the Xs - see figure
7.11). This provides us more information than before as the strongest edges
are between U1 and its children (δ = 0.67), followed by the edges between the
Xs (δ = 0.45), the edges from the Xs to their “uncles/aunts” i.e. U2 and U3

(δ = 0.33) and finally from the Xs to their cousins (δ = 0.22)

However, when we perform a differential network analysis based on partial cor-
relations we see a different picture to before. This time the network among
healthy individuals has a strong association between each of the U variables
and their children. We see no association between siblings or cousins (as ad-
justing for the parent ensures that siblings or cousins are not associated). So
we see 3 distinct groups, linked via the 3 U nodes (figure 7.12).

In the network formed by unhealthy individuals U1 is no longer connected to the
X nodes and, the strength of the association between U1 and the other two U
nodes is greater than in the healthy network, as adjusting for all the X variables
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Figure 7.11: Differential network using marginal correlations and all variables
observed (θ = 0.5, λ = 0.9, σ = 1) calculated for data generating model 1

no longer affects the partial correlation between U1/U2 and U1/U3 (figure 7.13).

So the edges that a differential network will identify as non-zero will be all the
edges between the Xs and U1 which are exactly the edges which have been al-
tered between the two states and also weaker edges between U1/U2 and U1/U3

(figure 7.14). So when all variables contributing to the data generating model
are observed a differential network using partial correlations can be thought of
as being more specific than a differential network using marginal correlations.
Indeed this is the ideal situation for which differential networks were devised.
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Figure 7.12: Network of healthy individuals using partial correlations obtained
for data generating model 1 when all variables observed (θ = 0.5, λ = 0.9, σ = 1),
the thickness of the edge represents the magnitude of δ

Figure 7.13: Network of unhealthy individuals using partial correlations ob-
tained for data generating model 1 when all variables observed (θ = 0.5, λ =
0.9, σ = 1), the thickness of the edge represents the magnitude of δ
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Figure 7.14: Differential network formed using partial correlations obtained for
data generating model 1 when all variables observed, the thickness of the edge
represents the magnitude of δ, black edges represent a positive δ, red a negative
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7.1.4 Marginal or partial correlations in differential networks-
which to use?

Marginal correlations have greater power, and the edge estimated between a pair
of nodes is not affected by what other nodes are included or excluded in the
network. They have the disadvantage in that they do not differentiate between
proximal associations and associations that are mediated via other metabolites.
The marginal differential network does not provide any information that could
not be identified via a series of pairwise logistic regressions, using each possible
pair of metabolites in turn. However, visualising this information in the differ-
ential network form may enlighten us as to some patterns that may have been
difficult to infer from the individual analyses.

In partial correlations it is the reverse, they have the advantage that they are
comparing the associations between variables adjusted for the other metabolites
in the network, but the edges are dependent on what other nodes are included
in the network. As we can see from the examples above, the differential network
based on partial correlations is effective in the setting where all relevant nodes
have been included. However, where important nodes are omitted, edges are
likely to be be identified that are unrelated to the true differences that we are
trying to uncover.

7.2 Differential centrality

In chapter 6, some of the methods described in the literature review discuss dif-
ferential centrality. In this and the previous chapter the main focus has been on
the interpretation of a single edge in a differential network, which is important
as it is a fundamental building block of the network and needs to be understood.
However, as described, there is little power to detect whether or not a specific
edge in the differential network has a δ different from 0. So in practice, the
benefits of a differential network may be better realised when we consider the
network as a whole, incorporating some of the network statistics introduced in
chapter 5 into the differential network analysis.

In the interest of keeping the analysis simple and interpretable we suggest using
the most basic measure of centrality, degree centrality, as a key network statistic
in order to identify nodes of interest in the differential network. That is, the
more edges a node has, the more “important” we consider it to be, and it may
be a variable that is worth exploring further in terms of its relationship with the
disease of interest. So for the estimated differential network, the centrality of
each node should be calculated. This will identify nodes which are differentially
correlated with the greatest number of other nodes, which could indicate that
the node has an important role to play in the development, or diagnosis, of
disease.
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7.3 Analysis of the BWHHS data

Here we will apply a differential network analysis to the BWHHS data to illus-
trate this method. A differential network will be estimated using both marginal
and partial correlations, the strongest edges identified in each and the nodes
with the largest differential centrality highlighted. The nodes and edges of in-
terest will then be explored in more detail to gain an explanation as to why
they have been identified. Differential centrality with the differential network
will also be considered. For our two comparison groups we choose to compare
those who develop CHD in a 12-year follow up period with those who survive
to the end of the 12 year follow up without developing CHD (as in previous
chapters). Prior to this analysis, we need to prepare the data appropriately.

7.3.1 Data preparation

The data preparation for the BWHHS differential network analysis is exactly
the same as that done for the PCR and lasso regressions preformed in chapter
4, with a detailed description found in section 4.4. The sample size was 2922
individuals and 78 metabolites were included in the analysis.

7.3.2 Differential network based on marginal correlations

The differential network formed using marginal correlations is shown in figure
7.15. There are 38 edges with a p-value <0.01 involving 33 different nodes.
The average degree among the nodes included is 2.3, with the 3 nodes with the
highest differential degree centrality being Tyrosine (tyr in the diagram), Va-
line (val) and Glucose (glc), with 15, 10 and 7 edges respectively. The 5 edges
relating to the 5 largest differences in correlation (δ) are displayed in table 7.1.
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Figure 7.15: Differential network of the BWHHS data formed using marginal
correlations - blue = negative δ, red = positive δ. Node size (and label size)
proportional to degree centrality of the node.

Table 7.1: Strongest edges in BWHHS differential network using marginal Pear-
son correlations (δ̂ = ρ̂cases − ρ̂non−cases) N=2922

Node 1 Node 2 δ̂
Glucose Small VLDL Cholesterol Esters -0.241
Tyrosine XL VLDL Free Cholesterol -0.238
Tyrosine XL VLDL Phospholipids -0.231
Citrate XXL VLDL Cholesterol Esters -0.230
Alanine XL HDL Cholesterol Esters 0.223

First, we will examine each of these 5 edges in greater detail, starting with the
edge with the largest δ̂, which connected Glucose and Small VLDL cholesterol
esters which had an observed δ̂ of -0.241. A scatter plot of all the observations
of these two variables is shown in figure 7.16, with the individuals who had a
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CHD event in the follow up period coloured red and those that did not coloured
blue. The estimated Pearson correlation coefficient in the healthy group is 0.17
and in the diseased group it is -0.07 (leading to the δ̂ of -0.24). This difference
is not obvious from visual inspection of the plot, but there does appear to be a
few outliers due to 3 low value observations of small VLDL cholesterol which are
all non-cases. A sensitivity analysis was performed excluding these observations
which led to no material change in the estimate of δ suggesting that the large
value of δ̂ was not due to these observations. So it appears that among individ-
uals who survived the 12-year follow up period, there was a positive association
between Glucose and Small VLDL cholesterol esters, however this association
disappeared (or in fact turned to a small negative association) within individu-
als who went on to develop the disease.

Figure 7.16: Scatter plots of Glucose and Small VLDL cholesterol esters from
the BWWHS data with observations from the surviving group in blue, and those
who had a CHD event in red. N=2922, δ̂ = −0.241

A similar examination was performed on the other 4 edges highlighted in table
7.1 with the scatter plots shown in figure 7.17
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Figure 7.17: Scatter plots of the 2nd, 3rd, 4th and 5th strongest edges in
the BWHHS differential network formed using marginal correlation coefficients
(N=2922). Observations from the surviving group are in blue, and those who
had a CHD event in red

The most striking thing from each of these scatter plots is the column of points
on the far left of the plot. This is due to the number of observations equal
zero in the cholesterol and phospholipid observations. These have then been
transformed using a log transformation where the zeroes are replaced with a
value of half the smallest observation, which in these 4 variables equates to an
observation ranging from -1.79 in XL HDL cholesterol esters, through to -2.23
in XXL VLDL cholesterol esters.

Starting with the edge between Tyrosine and XL VLDL free cholesterol the
Pearson correlation in the disease group is -0.09 and in the surviving group it is
0.15 (leading to a δ̂ of -0.24). To check that the large number of zero values was
not having an undue influence on this relationship the correlation coefficients
were recalculated excluding them, giving a coefficient of -0.08 in the diseased
group and 0.16 in the surviving group (leading to an unchanged δ̂ of -0.24),
so the zero values did not appear to have an undue influence on the observed
results. The results of the edge between Tyrosine and XL VLDL phospholipids
is almost identical, since XL VLDL phospholipids and XL VLDL free choles-
terol are extremely highly correlated (ρ = 0.99), so the observed δ̂ of -0.231 is
made up of a correlation of 0.153 in the healthy group and -0.078 in the dis-
eased. Again, there is no material difference when the zero values are excluded.
So, similar to the relationship between Glucose and small VLDL cholesterol
esters, it appears that among individuals who survived the 12-year follow up
period, there was a positive association between Tyrosine and both XL VLDL
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free cholesterol and phospholipids, however this association does not exist (or
is estimated to be a small negative correlation) within individuals who went on
to develop the disease.

The edge between Citrate and XXL VLDL cholesterol esters is again negative
δ̂ = −0.230, however it differs from the previous 3 edges in that it is made up
from a correlation of -0.04 in the healthy group and a correlation of -0.27 in the
diseased group. So this time it appears that there is little association between
Citrate and XXL VLDL cholesterol esters in those who survive the 12-year fol-
low up period but a moderate negative association between these metabolites
in those who have a CHD event. Again, excluding the zero values leads to no
material difference in the observed results, but in this instance there is 1 very
small observation of Citrate in the diseased group, when this is excluded the δ̂
reduces to -0.196. This estimated δ would still be large enough to be included
in the differential network so our interpretations can still remain the same, how-
ever it would be among the “borderline” edges included in the network, rather
than amongst the strongest.

Finally the only edge resulting from a positive δ̂ is that between Alanine and
XL HDL cholesterol esters. There is a small negative association in the healthy
group (ρ̂healthy = −0.094) but a positive association amongst the diseased group

(ρ̂diseased = 0.129) leading to a δ̂ of 0.223. This suggests that within the group
that have a CHD event in the follow up period, there is a positive association be-
tween Alanine and XL HDL cholesterol esters and a negative association within
the group that survived the 12-year follow up without having a CHD event.
When performing a sensitivity analysis excluding the zero values the observed
δ̂ increases to 0.321, due to an increase in the correlation estimated within the
diseased group (up to ρ̂diseased = 0.283). So the estimated δ does not appear to
have been induced by the large number of zero values, in fact it appears that
excluding them increases the estimated δ. However, as can be seen on the scat-
ter plot for this edge, the zero values are not really outlying as they are much
closer to the observed non-zero values, and there are fewer of them.

Now considering differential network degree centrality we observe that there ap-
pear to be three “important” nodes; Tyrosine, Valine and Glucose which have
15, 10 and 7 edges respectively. Of the 15 edges connected to Tyrosine, 13
of them are VLDL metabolites, which are all strongly correlated with one an-
other. So it might be expected that if a metabolite (in this case Tyrosine) was
to be differentially correlated with one of the VLDL metabolites, then it would
be differentially correlated with many of the other VLDL metabolites that are
strongly correlated with one another. Valine is also connected to a number of
VLDL metabolites, but also has edges connecting it to monunsaturated fatty
acids, Omega-6 fatty acids and apolipoprotein-B, and 6 out of the 7 edges of
glucose connect it to VLDL metabolites. So although the differential degree
centrality measure may help us identify potentially “important” nodes, the in-
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terpretation has to be informed by the inclusion criteria for nodes, if there are
a large group of very highly correlated nodes, then it is likely that if one node
from within this group has an edge to a node outside the group, then many
will. So in terms of interpreting a node with high differential degree centrality
as being “important” it is necessary to review, for a differential network based
on marginal correlations, the nodes to which it is connected.

7.3.2.1 Adjusting for age and BMI

Adjusting for age had little effect on the results from the differential network,
36 edges were identified as opposed to 38, the 5 strongest edges were the same
in both and Tyrosine, Valine and Glucose were still the 3 nodes with the highest
differential degree centrality, with 15, 10 and 5 edges respectively. Once BMI
was adjusted for, there was a large impact on the observed differential network,
with only 2 edges remaining, both involving Citrate. Citrate had an edge in
this network to both XXL VLDL cholesterol esters (δ = -0.24, p=0.004) and
glucose (δ = 0.20, p=0.008).

7.3.2.2 Comparison with logistic regression

The similarities between the results from estimating the significance of an edge
using a differential network approach based on marginal correlations and using
the interaction term in a logistic regression were discussed in the previous chap-
ter, where simulations were run comparing the two. Using the BWHHS data,
a series of simple pairwise logistic regressions were run, using disease status (at
12 years) as the outcome and each pair of metabolites and their interaction as
predictor variables. Similar to the differential network a cut off of p <0.01 was
used to identify a “significant” edge.

Many more interactions resulted in a p <0.01 than edges in the differential
network analysis, with 121 interactions identified compared to the 38 edges
identified in the differential network analysis. Out of the 5 strongest interac-
tions (table 7.2), 4 were also in the top 5 edges from the differential network,
which is to be expected given the very close relationship between the coefficient
of the interaction term and δ. Figure 7.18 shows the strong association between
the two coefficients, calculated for all 78 metabolites. Their estimated Pearson
correlation coefficient is 0.85.
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Table 7.2: Largest 5 estimated interaction coefficients from pairwise logistic
regressions

Metabolite 1 Metabolite 2 Interaction term
Alanine XL HDL Cholesterol Esters 0.298
Glucose Small VLDL Cholesterol Esters -0.265
Tyrosine XL VLDL Free Cholesterol -0.265
Tyrosine XL VLDL Phospholipids -0.260
Tyrosine XL HDL Phospholipids 0.260

Figure 7.18: Scatter plot of the estimated interaction coefficients from pairwise
logistic regressions compared with the δ̂ from the differential network analysis
using marginal correlation coefficients on the BWHHS data. Red line is a line
of equality. N=2922

Looking at the variables involved in the greatest number of interactions with p
<0.01, there were 20 interactions involving XL HDL triglycerides (table 7.3),
which was not previously identified as an important node in the differential
network analysis, but the node with the 2nd highest number of interactions
(15) identified was Tyrosine, which was the node with the highest differential
network degree centrality. Glucose and Valine, which were the nodes with the
2nd and 3rd highest degree centralities in the differential network analysis, were
15th and 38th in the list of variables involved in interactions with p <0.01, with
6 and 2 respectively. The top four nodes with the highest differential network
degree centrality and the top ten metabolites involved in the most interactions
with p <0.01 are listed in table 7.3.
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Table 7.3: List of the four nodes with the highest differential degree centrality
from the marginal differential network and the ten nodes which were involved in
the most interactions with p <0.01 in the pairwise logistic regression analysis.

Rank
Degree centrality Number of interactions
Metabolite N Metabolite N

1 Tyrosine 15 XL HDL TG 20
2 Valine 11 Tyrosine 15
3 Glucose 7 XXL VLDL CE 13
4 Alanine 4 XXL VLDL TG 10
5 + 11 tied on 2 XXL VLDL FC 10
6 S LDL CE 10
7 S LDL FC 10
8 XL HDL CE 10
9 XXL VLDL PL 9
10 L LDL FC 9

164



7.3.3 Differential network based on partial correlations

Figure 7.19: Differential network of the BWHHS data formed using partial
correlations - blue = negative δ, red = positive δ Node size (and label size)
proportional to degree centrality of the node. N=2922

The differential network formed using partial correlations is shown in figure
7.19. There are 42 edges with a p-value <0.01 involving 45 different nodes. The
average degree among the nodes included is 1.9, with 4 nodes equally having
the highest degree (5): Small VLDL triglycerides, large LDL cholesterol esters,
small LDL free cholesterol and VLDL diameter. The 5 edges relating to the 5
largest differences in correlation (δ̂) are displayed in table 7.4.
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Table 7.4: Strongest edges in differential network using partial Pearson correla-
tions (δ = ρ̂cases − ρ̂non−cases)

Node 1 Node 2 δ̂
Small VLDL triglycerides Mean diameter for VLDL -0.733
XXL VLDL triglycerides Large VLDL free cholesterol 0.677
Small VLDL triglycerides IDL triglycerides -0.578
XS VLDL triglycerides IDL triglycerides 0.553
XXL VLDL phospholipids Large VLDL free cholesterol -0.488

Taking the strongest edge to investigate further, we can perform a regression of
small VLDL triglycerides on the other 76 metabolites (excluding VLDL mean
diameter) and also a regression of VLDL mean diameter on the same 76 metabo-
lites separately for the diseased and healthy groups. Then by taking the residuals
from each regression we can create a scatter plot to investigate what has led to
the large difference in partial correlations. As can be seen in figure 7.20 there is
a clear association between the residuals of each metabolite among the healthy
group (ρ̂ = 0.39). However among the unhealthy group, the individuals seem
to be clustered in the middle of the plot, with the estimated correlation in the
residuals (and therefore the partial correlation) being ρ̂ = −0.34, leading to a δ̂
of -0.73.

Figure 7.20: Scatter plot of the residuals, after regressing for all other metabo-
lites, of small VLDL triglycerides and VLDL diameter from the surviving group
in blue, and those who had a CHD event in red. N=2922

166



This is a rather strange looking scatter plot so it would be interesting to inves-
tigate further what has led to this distribution. First the marginal joint distri-
bution in the healthy and unhealthy groups can be checked, which is illustrated
in figure 7.21. It is clear from the plot that marginally the two metabolites
are strongly positively associated, in the healthy group the marginal Pearson
correlation is 0.86 and in the diseased group it is 0.85.

Figure 7.21: Scatter plot of the observations of small VLDL triglycerides and
VLDL diameter from the surviving group in blue, and those who had a CHD
event in red. N=2922

To try to understand how this relationship changes when other metabolites are
added a process will be applied, much like that used in typical epidemiological
model building, where we estimate the change in δ̂ after adding each of the other
metabolites one by one to the model as a covariate. The metabolite that leads
to the largest change in δ̂ is then selected and included in the model and the
process is repeated for all the remaining metabolites, each time the metabolite
leading to the largest change being included in the model. So the process is as
follows:

• For selected edge, estimate δ̂ using marginal correlations, denoted by δ̂base

• Estimate δ̂ for the same edge adjusting for each of the other metabolites
one at a time, and identify the metabolite that leads to the largest absolute
change from δ̂base

• Estimate δ̂ using partial correlations, only adjusting for the metabolite
identified in the previous step. This new adjusted δ̂ is denoted by δ̂1

• Repeat the process by estimate δ̂ for the same edge adjusting for both the
first selected confounder and each of the remaining metabolites one at a
time, and identify the metabolite that leads to the largest absolute change
in δ̂1

• Estimate δ̂ using partial correlations, only adjusting for the metabolite
identified in the previous 2 steps. This new adjusted δ̂ can be denoted by
δ̂2
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• Repeat this process until all metabolites are added into the model and the
edge from the full partial differential network is now estimated.

For each interim model the partial correlation in the healthy and unhealthy
groups can be estimated as well as δ̂. These estimates for the strongest edge
(small VLDL triglycerides and VLDL diameter) are plotted in figure 7.22, with

the blue line representing the estimate δ̂, the grey line the partial correlation
among healthy individuals and the orange line the partial correlation among
unhealthy individuals. The first point on the x-axis represents the estimates
from the differential network using marginal correlations, the final point on the
x-axis are the estimates obtained using a full partial differential network. (The
explanations of the metabolite abbreviations used in the graph can be found in
table 3.5).

Figure 7.22: Line chart illustrating the changes to δ̂ and the group specific
partial correlations as each additional metabolite is added to the differential
network, for the edge between small VLDL triglycerides and VLDL diameter.

So, as described earlier, when marginal correlations are used the correlation is
high (approx 0.85) in both the healthy and unhealthy groups so δ̂ is close to
0. The metabolite that, when adjusted for, leads to the biggest change in the
estimate of δ̂ is medium VLDL triglycerides. This leads to a partial correlation
in the healthy group of 0 and of -0.65 in the unhealthy group, giving a δ̂ of
-0.65. In addition to plotting the estimated partial correlations and δ̂ at each
intermediate model, the scatter plots of the residuals can also be examined.
Figure 7.23 shows this for the first 15 metabolites added to the model. From
this it can be seen that after adjusting for medium VLDL triglycerides, there
appears to be a (small) negative association between small VLDL triglycerides
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and VLDL diameter in the unhealthy group. However, in the healthy group
there are a number of large residuals, leading to a partial correlation close to 0.
Investigating these “outliers” shows that the majority of them are observations
where medium VLDL triglycerides are equal to 0. Among those individuals who
have an observation of 0, there is no-one who went on to develop CHD in the
follow up period, so this could be influencing the strength of the adjusted δ̂.

Figure 7.23: Scatter plots of the residuals of small VLDL triglycerides and
VLDL diameter in the healthy (blue) and unhealthy (red) groups. The first
plot is that from the marginal differential network, and each subsequent plot is
adjusted for an additional metabolite (shown in the plot title). So the second
plot is the residuals after adjusting for medium VLDL triglycerides, the third
plot is after adjusting for both medium VLDL triglycerides and small VLDL
cholesterol esters etc.

7.3.3.1 Adjusting for age and BMI

As with the marginal differential network, adjusting for age does not have a
great deal of material effect on the results, although there is an increase in the
number of edges detected, increasing from 42 to 51, with the strongest edges
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similar on both analyses. After additionally adjusting for BMI there is also little
change. Given we are already adjusting for the other 76 metabolites for each
edge in the network, adjusting for BMI over and above that changes little in the
analysis, as mentioned previously many of the metabolites are closely associated
with BMI so additionally adjusting for it has little impact.

7.3.3.2 Comparison with lasso logistic regression

In our simulations it was identified that effect modification between a pair of
metabolites was one scenario which may lead to an edge in a differential net-
work based on marginal correlations, and also that a difference in the marginal
correlations in healthy and diseased populations can lead to detection of in-
teraction in a logistic regression. These comparisons were carried out in the
very simplified setting with only 3 metabolites. We were able to compare the
differential network with marginal correlations to pairwise logistic regressions
with interactions, however with partial correlations the edges are adjusted for all
other metabolites, so a more plausible comparison is to that of a multivariable
logistic regression including all interactions with lasso, as performed in chapter
4. However, there was no overlap at all between the set of edges identified in
the differential network based on partial correlations and the set of non-zero
interactions in the lasso logistic regression.

7.4 Discussion

7.4.1 Differential network using marginal correlations

From the unadjusted marginal differential network, 3 nodes were identified as
potentially important - Tyrosine, Valine and Glucose. If we take Tyrosine, for
example, it may be that Tyrosine is a cause of CHD and its edges are due to
a δ being induced between it and other marginally associated metabolites. If
this was the case we might be able to identify this in a simple univariable lo-
gistic regression of Tyrosine on the odds of disease (The results of this give an
OR of 0.9, 95% CI 0.77,1.05, p=0.17 - suggesting little evidence of a marginal
association between Tyrosine and the odds of developing CHD in the 12 year
follow up period). Or it may be that Tyrosine modifies the effect that a number
of metabolites have on disease, this would correspond to scenario A in chapter
6, a little weight may be lent to this hypothesis given that a large number of
the pairwise logistic regressions with interactions involving Tyrosine resulted
in p-values less than 0.01. It also may be that individuals predisposed to de-
velop CHD in the subsequent 12 years have a breakdown (or increase) in the
association between Tyrosine and a number of other metabolites, which is the
hypothesised situation in scenario C in chapter 6. In any case this analysis
would suggest that Tyrosine may be an interesting metabolite to investigate
further in its relationship with CHD.
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Valine is an interesting case as it was the node that resulted in the second high-
est number of edges in the differential network (10), but in the pairwise logistic
regressions involving Valine only 2 interactions resulted in p <0.01. This per-
haps suggests that the relationship between Valine and the disease is potentially
more likely to be that described in scenario C than in scenario A in chapter 6.

Adjustment for age makes little difference in the analysis, this may be due to
the relatively small age range of women in the study (60-79) and/or may be due
to the fact that the metabolites included the study are not strongly associated
with age. However adjusting for BMI in the age-adjusted differential network
based on marginal correlations makes a large difference to the analysis, resulting
in only 2 edges with a p-value <0.01. Many of the metabolites measured are
strongly associated with BMI, so by adjusting for BMI in the analysis, much
of the within metabolite variation has already been described by BMI amongst
both the healthy and the diseased groups. This is likely to move the values of
δ̂ towards the null resulting in very few edges being included in the network.
This suggests that most of the variability between the groups can be described
by BMI. Including a differential network analysis (using marginal correlations,
albeit adjusted for BMI) over and above this adds little information. The two
edges included in this adjusted network based on marginal correlations both
involve Citrate, so it may be worth investigating this metabolite a little further
to uncover whether this metabolite is of interest.

However, when interpreting all these observations it is important to remember
the cut off p-value of 0.01 is an arbitrary threshold. We are testing 3003 poten-
tial edges so if we were to use a Benjamini-Hochberg adjusted threshold a more
appropriate p-value cut-off would be .000017. If we impose this threshold we do
not see any edges reaching statistical significance, so the evidence of the edges
described is very weak, however, given this is an exploratory analysis being used
to identify candidates for further investigation it may be acceptable to use such
a liberal threshold.

On the whole the marginal analysis could be recreated by performing a series of
pairwise logistic regressions with interaction terms, so the benefit of a differen-
tial network using marginal correlations is limited, since the pairwise regressions
are a more established method and their interpretation more understandable to
audiences. However, it may be that by using the differential centrality measure
on a marginal differential network that an important node could be picked up as
it modifies the effect of a number of other metabolites. So as a first step it will
be useful to perform a differential network using marginal correlations, to pick
up anything missed from a prior standard analysis, before going on to perform
the differential network using partial correlations, which adds a new element to
the analysis.
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7.4.2 Differential network using partial correlations

From the differential network based on partial coefficients we observed a greater
number of edges in the network than in the marginal differential network but
with fewer obviously central nodes, so the network could be described as be-
ing much more dispersed. More of the VLDL metabolites are involved in this
network than in the marginal differential network, suggesting that, after ad-
justment for all other metabolites, these VLDL variables may be modifying the
effect on disease of other variables in the network. Or they could be strong, in-
dependent risk factors for disease and the estimated δs are echoes of this strong
effect. It is also possible that the association between these pairs of variables
is modified by an unmeasured variable that is associated with the risk of an
individual developing CHD in the subsequent 12 years.

However, given the nature of the BWHHS data it may be that we are observing
the unexpected effects described in section 7.1.2.1. The BWHHS data has many
highly correlated metabolites, many of which are known to be associated with
CHD. Given that we are therefore adjusting for a number of highly correlated
metabolites we may be not picking up some “true” edges (“true” in the sense
that they really do provide some information about the aetiology of CHD), and
we may be picking up some spurious edges (spurious in the sense that they are
only very loosely related to any differences in pathways between the diseased
and healthy groups).

When investigating the single edge between small VLDL triglycerides and VLDL
diameter it was interesting to note the joint distributions (of the residuals) in
the diseased and healthy groups. In the healthy group there was a wider range
of residuals and a strong positive correlation. In the diseased individuals, the
residuals were constrained to a very small range.

Again when interpreting the findings of this differential network the role of
chance is the most plausible explanation for any extreme results observed. Given
the high number of tests performed and the lack of multiple testing adjustment
we would expect to observe a number of edges by chance. We have chosen a
liberal threshold for our cut off to allow us to explore potential candidates of
nodes and edges that may be related to CHD, but it may just be that there is
no signal within this data to uncover.

7.4.3 Limitations and alternative strategies

We chose the metabolite transformations by choosing the “best” transformation
out of 3 options, however this may not be a suitable strategy when performing
a differential network. By transforming metabolites in different manners we are
potentially making it less plausible that there is a linear association between the
pair of variables, it may be unlikely for there to be a linear association between
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the cube root transform of one variable and the log transform of another. So
it might be a better strategy to choose the single most effective (on average)
transform to be used for the whole metabolite set. Another solution to this
problem could be to use Spearman correlations instead of Pearson correlations
as the measure of association. This would have the additional benefit of reduc-
ing the impact of data where there a high number of zero values.

There are problems with both of the two methods of differential networks pro-
posed (using marginal or partial correlations). When using marginal correla-
tions it is possible the the edges observed are explained via other nodes in the
network, so the edge identified may relate to a distant association via other
variables rather than a direct association between the two nodes. At the other
extreme we use partial correlations to measure the association between a pair
of nodes, adjusting for every other node in the network. When we have the
situation where there are a high number of nodes in a network and a large pro-
portion are strongly correlated with one another we have little power to identify
an edge. Two potential strategies for dealing with this could be:

1. More stringent variable selection criteria

2. Limit the number of variables adjusted for

The first of these two methods is the simpler approach, it is simply to use the
partial correlation as our measure of association but to exclude variables that
introduce high collinearity into the model. Previously only variables that intro-
duced perfect collinearity were excluded (i.e. when one variable was a sum of
two or more others) but it may have been a better strategy to set a pragmatic
threshold for excluding variables that are extremely correlated with one another.

The second is to perform an exploration of the data between the two extremes
described. Rather than adjusting for none (as in marginal), or all (as in partial),
of the other nodes in the network, we could adjust for a subset of representative
nodes. A possible way to select this set of representative nodes could be to
generate a network using all our data. Then we find the network modules de-
fined by this overall network, we could select the most central node within each
network module as a representative set of nodes from the network and adjust
for only those nodes.

Finally, due to the long follow up time and the age of the participants in the
study, this analysis is subject to bias due to competing risks (704 participants
died of non-CHD related causes during follow up and were therefore excluded
from the analysis). In the following chapter I will describe a potential method
that will take into account the time to the CHD event, which may go some way
to alleviating this problem.
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Chapter 8

Differential networks and
time to event analysis

In chapter 7, the BWHHS cohort was analysed using a differential network
analysis comparing the group of individuals who had a CHD event in the 12
year follow up period to those who survived to the end of the 12 years without
a CHD event. This meant that 703 individuals who were lost to follow up (i.e.
died of a non-CHD related cause in the follow up, without having had a CHD
event) were excluded from the analysis altogether. This could lead to bias in
the analysis as those that were excluded may have been more likely to have a
CHD event and also may have had quite a different metabolomic profile to the
included groups, so the differential network analysis may have been based on
comparing groups, one of which was selectively depleted of frailer individuals.

Table 8.1: Number of women who had suffered a CHD event, died or survived
by the end of each year.

Year At risk CHD Died Survived
1 3625 26 25 3574
2 3574 36 60 3529
3 3529 50 100 3475
4 3475 71 146 3408
5 3408 85 204 3336
6 3336 101 268 3256
7 3256 114 332 3179
8 3179 134 400 3091
9 3091 149 480 2996
10 2996 158 549 2918
11 2918 170 621 2834
12 2834 182 703 2740

Table 8.1 shows the cumulative number of women who have had a CHD event,
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died or survived by the end of each year of follow up, with figure 8.1 showing the
estimated cumulative incidence of death and CHD. These illustrate that death
is a much more common outcome than CHD, so the competing risk of death in
this analysis may have a significant influence on the results obtained.

Figure 8.1: Plot across time of the probability of an individual having died or
having experienced a CHD event.

Furthermore, because metabolite concentrations can change substantially over
time, it may be that the concentrations of these metabolites measured at base-
line are not good indicators of CHD risk over a 12-year period, but may provide
some indication of the risk over a shorter period of time.

The objective of this chapter is to investigate the possibility of adapting the
differential network method to also include the information about the time to
CHD event in the analysis, this may be a more appropriate method of using
differential networks with cohort data. The proposed method is to perform a
differential network analysis at yearly intervals and “important” metabolites
identified. These metabolites will be compared to those identified by the Cox
regression with lasso in chapter 4 to check if the two methods highlight the same
variables associated with CHD. So the 2 aims of this chapter are:

1. To incorporate information on time to event into the differential network
analysis

2. To compare the results from the time to event differential network analysis
to results from the Cox/logistic regressions with lasso, to identify if similar
sets of important metabolites or important interactions are identified.
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8.1 Methods

As before all individuals with prevalent CHD at baseline will be excluded from
the analysis. At each yearly time point individuals will be categorised into
those that have had a CHD event, those that have survived to that time point
and those lost to follow up. Those lost to follow up at each time point will
be excluded from the analysis and a differential network analysis using partial
correlations will be performed. The differential network will be age-adjusted by
regressing each metabolite on age and using the residuals from that regression
as the covariates for the analysis. Again, a p-value of 0.01 will be used as the
threshold for inclusion of an edge.

In the first 4 years of follow up, there are fewer events than there are nodes
in the network (78) so the partial correlation coefficients cannot be estimated
without using the “shrinkage” method described earlier in section 5.3.1.1. Be-
cause of this, the analysis will be limited to estimating the networks formed at
5 years through to 12 years.

Also, for another comparison, lasso logistic regressions will be performed at each
of the same timepoints, with the outcome of each being whether an individual
has had an event by the same follow up times as above. In the lasso regression
age will also be included, as well as all metabolites and all pairwise interactions
between metabolites. No conditions will be attached to whether a coefficient
is included so it is possible that an interaction may be selected as an non-zero
coefficient in the model but the main effect of the metabolites involved may be
set to zero. This is done as it is potentially more comparable to the differential
network method being proposed than the Cox regression is. The methods for
the Cox and logistic lasso analyses are described in section 4.3

8.2 Results

8.2.1 Differential networks

The main characteristics from the networks estimated at years 5-12 (8 differen-
tial networks) are described in table 8.2. At 5 years only 3 edges were included
in the differential network, this is because there were only 81 events after 5
years of follow up, and with 78 nodes in the network the partial correlation of
the cases would be very imprecisely estimated, so it would require a very large
δ̂ to attain a p-value <0.01. However from 6 years onwards there were a greater
number of edges included in the differential networks, with the numbers of edges
ranging from 24 (at year 11) up to 72 (at year 6). The average degree (among
nodes included in the networks) ranged from 1.41 in year 10 up to 2.73 in year 7.
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Table 8.2: Characteristics of the 8 differential networks estimated.

Year CHD group (N) Survived group (N) Nodes Included Edges Included Average Degree
5 85 3336 5 3 1.20
6 101 3256 54 72 2.67
7 114 3179 49 67 2.73
8 134 3091 40 47 2.35
9 149 2996 34 27 1.59
10 158 2918 37 26 1.41
11 170 2834 32 24 1.50
12 182 2740 39 29 1.49

Of the 3003 possible edges that could be included in each network, 2836 were
not included in any of the 8 networks, leaving 167 edges that were included in
1 or more networks and 106 of these were only included in 1 network. No edge
was identified in all of the networks (due to the fact that almost no edges were
identified in the 5 year network) but 1, the edge between XXL VLDL triglyc-
erides and large VLDL free cholesterol was found in the 7 networks from year 6
onwards. The correlations within the cases and the non-cases along with δ̂ are
tabulated in table 8.3. It is also possible to plot the size of δ̂ for each of the 167
edges included in any network to identify any trends across time, which is done
in figure 8.2 with the 3 edges described above highlighted.

Table 8.3: Table of correlations in cases, non-cases and δ̂ for each of the three
edges identified as the strongest in the time to event differential network analysis

Year
5 6 7 8 9 10 11 12

XXL VLDL TG /
L VLDL FC

ρcase 0.16 0.64 0.43 0.51 0.51 0.49 0.47 0.47
ρnon−case -0.21 -0.22 -0.22 -0.22 -0.22 -0.21 -0.22 -0.22

δ̂ 0.37 0.86 0.65 0.73 0.72 0.71 0.69 0.68

L VLDL CE /
M VLDL FC

ρcase -0.71 -0.73 -0.65 -0.51 -0.34 -0.34 -0.34 -0.36
ρnon−case 0.08 0.09 0.09 0.09 0.07 0.08 0.08 0.08

δ̂ -0.79 -0.81 -0.74 -0.60 -0.42 -0.42 -0.42 -0.43

S VLDL TG /
VLDL D

ρcase -0.17 -0.32 -0.41 -0.42 -0.47 -0.45 -0.47 -0.45
ρnon−case 0.23 0.25 0.25 0.26 0.32 0.31 0.30 0.26

δ̂ -0.40 -0.57 -0.67 -0.67 -0.78 -0.76 -0.77 -0.71

It can be observed that the estimated values of δ̂ in general tend towards the
null as time progresses, although there are two edges that clearly persist and
that are larger in magnitude than all the other observed edges. These are the
edge between small VLDL triglycerides and VLDL diameter (the large negative
δ) and the edge between XXL VLDL triglycerides and large VLDL free choles-
terol (the large positive δ). Both these were picked up as strong edges in the
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original 12-year differential network analysis, but there is also one edge that ap-
pears strongly in years 5,6 and 7 before becoming less strong in the later years -
this is the edge between large VLDL cholesterol esters and medium VLDL free
cholesterol.

Figure 8.2: Each line on the plot represents an edge included in the network in
at least 1 timepoint, the x-axis represents time and the y-axis the estimated δ̂.

Figure 8.3: Each line on the plot represents a pair of nodes in the network, with
the observations in sub-figure a) representing the Pearson correlation coefficients
in the non-cases and in sub-figure b) the Pearson correlation coefficients in the
cases.

If we look at the correlations within the cases and the non-cases across the
years it is apparent that the estimates of the correlations within the non-cases
are stable across the years, whereas it is the estimate of the correlation in the
cases that drives the changes in δ̂ (figure 8.3).
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Some of what is observed may be due to the different population sizes at each
year, this can be equalized by subsampling from the cases and non-cases at
each time point to be equal to the smalles number of cases and non-cases. The
number of cases at year 5 was to small so this analysis only took place between
years 6 and 12. So 101 cases were randomly sampled from each year and 2740
non-cases. The same analysis was then performed, identifying the values of δ̂
at each timepoint for all edges, and the same graph as before produced (figure
8.4). Fewer edges (217) were identified at any time point than previously due to
reduced power. Looking at the three interesting edges from the initial analysis
they seem to follow a similar pattern as before, although the edge between XXL
VLDL TG and L VLDL FC is much reduced at year 12.

Figure 8.4: Each line on the plot represents an edge included in the network in
at least 1 timepoint from the subsampled data analysis, the x-axis represents
time and the y-axis the estimated δ̂.

Figure 8.5 shows a series of scatter plots, one for each year analysed, where each
point on the plot represents each of the 3003 potential edges in the networks,
with the position on the x-axis representing the correlation between the pair of
variables of that particular edge in the non-cases group, with the y-axis repre-
senting the same but in the cases group. The small blue circles are edges where
the p-value has not reached the threshold of 0.01 and are therefore not selected
in that year’s network and the larger red circles are those edges that are included
in the network. The edges selected in year 5 are only those where the Pearson
partial correlation is of an opposite sign in the cases and the non-cases, as the
years progress and the sample size (in the cases group) increases, more subtle
differences are picked up. But in general it appears that the edges identified
are ones where there is a partial correlation with a large magnitude in the cases
group and a correlation close to 0 in the non-cases group.
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Figure 8.5: Each plot is a scatter of the 3003 potential network edges, with the
x-axis representing the correlation in the non-cases group and the y-axis in the
cases group. The small blue circles are the potential edges that do not have a p
<0.01 so are not included in the year-specific differential network, whereas the
larger red circles are the edges included in each differential network.

When considering degree centrality, the nodes identified as more central in the
analysis restricted to the final time point (12 years) were described in the pre-
vious chapter, but there are 2 additional nodes that appear interesting in these
year specific analyses. Small LDL phospholipids had a very high degree cen-
trality in the differential networks generated at years 7 and 8, with a centrality
of 8 and 11 in each of these networks. Similarly Glutamine had 8 and 6 edges
in years 7 and 8 respectively, but for both these nodes, the degree centrality
dropped off to 0 by the 12 year follow up. It may be that these metabolites
are associated with an increased risk of CHD in the shorter term, but as time
progresses the association becomes weaker.
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8.2.2 Lasso regression

In chapter 4, the BWHHS data was analysed using a Cox regression model with
lasso, to identify the metabolites most strongly associated with time to CHD
event, as well as identify any non-zero interaction terms. The results from this
Cox regression are contained in table 4.8

In the lasso regression analysis, coefficients are estimated for both the main
association of the disease to each metabolite and all 2-way interactions between
them. Lasso logistic regression analyses were carried out separately on the same
year-specific datasets used in the previous section, with the λ parameters for
each year allowed to be selected by the data at each wave. The summary of the
numbers of non-zero coefficients in the analyses is shown in table 8.4. There is
no overlap between these results and the results from the differential network
analysis above, in fact not one of the edges selected by the differential network
matches and of the non-zero interactions identified by the Cox regression with
lasso. However, the time to event method used in the differential network anal-
ysis is quite different to that used in a Cox regression, and a method potentially
more comparable to it would be to perform a logistic regression at each of the
same points in time. Table 8.4 denotes the number of non-zero terms (main and
interaction) identified at each yearly timepoint.

Table 8.4: Results from the 8 lasso regressions performed.

Year Main effects identified Interactions identified
5 2 0
6 3 16
7 5 33
8 3 17
9 3 18
10 5 33
11 5 37
12 4 33

As with the differential network analysis, at the 5 year time point there were
very few coefficients (either for the main metabolites of any of their interac-
tions) identified as being associated with risk of CHD. There were 3 metabolites
identified as associated with risk of CHD at each of the time point from 6 years
onwards. These were:

• IDL triglycerides, which were associated with an increased risk of CHD
by each of the years 6-12

• Total cholesterol in HDL2, which was associated with a decreased risk of
CHD by each of the years 6-12
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• Monounsaturated fatty acids; 16:1, 18:1, which were associated with an
increased risk of CHD by each of the years 6-12

There were also 8 interactions that were identified at each time point (apart
from at year 5), these were interactions between:

• XXL VLDL cholesterol esters and small LDL free cholesterol

• XXL VLDL cholesterol esters and Citrate

• XL VLDL free cholesterol and Tyrosine

• XL HDL phospholipids and estimated degree of unsaturation

• XL HDL cholesterol esters and XL HDL triglycerides

• XL HDL cholesterol esters and Alanine

• Glucose and Citrate

• Glycine and Isoleucine

These are very similar to the set of interactions identified by the Cox regres-
sion, and as before they do not match up with any of the edges detected in the
differential network.

8.3 Discussion

We have attempted to address a limitation of differential networks by extending
it to incorporate time to event information, and in doing so have investigated
whether associations between metabolites and CHD vary with time. The differ-
ential network analysis performed illustrated some of the difficulties associated
with the method. In the early years there were too few observations to obtain
satisfactory estimates for the edges in the network. Although this analysis has
been framed as “time to event” as it includes information about the time until
an individual has had a CHD event, but practically it treats time to diagnosis
as a categorical variable and performs a series of differential networks at each
time point, so we are considering whether the networks are stable across time,
or whether they vary. An alternative to differential networks that uses a con-
tinuous outcome has been proposed by Valcarcel [105], and could have been a
different approach taken in this chapter.
In the earlier years (5/6/7) the partial Pearson correlation is very imprecisely
estimated due to small numbers, so although in those years there are a higher
number of edges detected these may be an artefact of this imprecision. However
the higher numbers of edges detected here could also be that the metabolite
profile of an individual is more closely associated with CHD events that occur
within the first 7 years, and as time progresses the association becomes weaker.
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There is one edge, that between large VLDL cholesterol esters and medium
VLDL free cholesterol, which exists in the earlier networks but not in the later
ones. This could just be a chance finding due to the imprecisely estimated cor-
relation coefficients in the cases group or it could be that this edge is associated
with CHD risk in the earlier years of follow up, but less so as time progresses.

Small LDL phospholipids and glutamine were identified as potentially “impor-
tant” nodes in the 6/7-year risk of CHD networks, but not in the later years. It
may be that these nodes are associated with CHD risk in the shorter term, but
are not associated with the risk of CHD in the full 12 years.

There is no overlap between the findings of the differential network analyses
and the lasso regression. This may be due to the fact that they are picking up
different features in the data, or it may be due to the fact that there is little
evidence of interactions between any of the investigated metabolites.
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Chapter 9

Discussion

The main aim of this thesis was to evaluate statistical approaches for the explo-
ration a high dimensional set of metabolic measurements, to identify whether
any are involved in the aetiology of incident CHD events. The results would
inform future studies of the mechanisms suggested by this exploration. We have
used metabolomic data available within BWHHS as both a motivation and for
illustration.
This aim led to the following two objectives:

1. Understanding the main features, and investigating the reliability, of the
BWHHS metabolomic data.

2. Comparing statistical approaches for dealing with high dimensional data
in terms of their suitability for aetiological investigations, focusing in par-
ticular onto the newly proposed differential networks (DN) approach. This
also involved examining whether and how extensions of this approach to
deal with time to event outcomes are suitable.

The first of these objectives was addressed in chapter 3 and the second addressed
in chapters 6, 7 and 8, with chapters 4 and 5 providing some background.

9.1 Metabolomic data

Main features
The descriptive analysis of the BWHHS metabolomic data identified four main
issues that must be addressed when including them in any statistical analysis
on these data. These are:

1. High dimensionality

2. Correlation structure

3. Skewness
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4. Zero values

The first issue, high dimensionality, is what first motivated the work of this the-
sis. When the aim of the analysis is to investigate the role of several metabolites
on a particular outcome and the number of potential variables is high (relative
to the sample size), an approach that relies on standard regression modelling
may not be not be suitable. This is because the strategy of fitting say a linear or
logistic regression model that includes all these potential explanatory variables
would either not be estimable, if the number of regression coefficients exceeds
the number of observations, or have extremely imprecise estimates because of
lack of information. Some commonly applied methods for dealing with this are
described and implemented in chapter 4.

The second issue, strong correlation structure, can lead to substantial problems
when performing certain statistical analyses. This would occur when fitting
any type of regression model that includes highly collinear variables. When
this happens, the regression coefficients of all included variables are not, or are
poorly, identifiable. There were a number of metabolites in the BWHHS which
were defined as combinations of other metabolites that were also included in
the data. Inclusion of all these metabolites in the same regression model would
introduce perfect collinearity among some of the explanatory variables. For this
reason it was decided to exclude those metabolites which were functions of other
metabolites in the dataset. However, a very strong correlation structure among
the metabolites remained even after these exclusions. This could be dealt with
by implementing dimension reduction techniques, such as principal component
regression performed in chapter 4. However when the aim is variable selection
as opposed to dimension reduction, the results can be unstable when multi-
collinearity is present. Methods designed to deal with high dimensional data,
such as Lasso regression, can mitigate this instability to a certain extent.

The third issue we encountered is skewness. Many of the metabolites in the
BWHHS have distributions that are highly skewed, leading to considerations of
transformations for analyses that require the data to be approximately normally
distributed, as described in section 3.3.1. Different metabolites have different
distributions and therefore certain transformations are more or less appropri-
ate for different metabolites. In the applications it was decided to choose the
transform most suitable for each metabolite separately, in order to obtain dis-
tributions for each that were closest to normality.

Finally, the fourth potential issue we identified was that a number of metabolites
had many observations equal to exactly zero. These may be true zeroes, or they
may be metabolite concentrations below the minimum threshold for detection.
This results in a non-symmetric distribution of observations, which may cause
problems when performing statistical analyses that require an assumption of
a normal, or just a symmetric distribution. This would also cause a specific
problem when attempting a log transformation for a selected metabolite if it
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included zero values, so a value half the size of the minimum observed value was
used to replace zero in any metabolite that was log-transformed. The impor-
tance of this issue was highlighted in section 7.1.2, when zero values appeared to
influence the results of a differential network analysis when defined using partial
Pearson correlation coefficients.

Reliability of NMR metabolomic data
The short-term reliability of the NMR biomarkers available in the BWHHS was
assessed using the data available on 37 women who provided a second blood sam-
ple a week after providing their first. Short-term reliability in this context refers
to the consistency of biomarkers between two different blood samples within a
single individual taken 1 week apart. The variation in the samples could be
due to biological changes, differences in the method the sample was taken and
measurement error. Of the 228 NMR biomarkers measured, 25(11.0%) were
classed as having “poor” reliability, 135(59.2%) as having “good” reliability
and 68(29.8%) as having “excellent” reliability. This is of interest because if
the concentration of a metabolite is not well correlated with its concentration
1 week later then it is unlikely to be a stable indicator of long-term underlying
health problems. These estimates of reliability were not as good as the esti-
mated reliability of the 37 biomarkers obtained using standard methods from
which 1(2.7%) was classed as “poor”, 21(56.8%) were classed as “good” and
15(40.5%) were classed as “excellent”. A key limitation of the generalizabil-
ity of these conclusions was the long storage times for the samples used to
obtain the NMR biomarkers - the blood samples were frozen for 11-13 years
before 1H-NMR spectroscopy was performed. Which could have contributed to
the greater variation seen within the NMR biomarker concentrations compared
with the standard biomarkers. Also the sample size was small (37) so the confi-
dence intervals of the estimated intra-class correlation coefficients, used as the
measure of reliability, were quite wide.

Finally, for those metabolites that had been previously measured using standard
techniques, the agreement between the concentrations obtained using standard
methods and the concentrations obtained using 1H-NMR spectroscopy was as-
sessed. There were some systematic differences in the absolute concentrations
for three of the five metabolites measured using both techniques. However, in all
five, both measurement methods were strongly correlated with one another, so
for the purposes of assessing whether a metabolite is associated with an outcome
of interest, the differences in concentration identified by the two methods should
not be a cause of concern because the association between baseline LDL choles-
terol concentration and CHD incidence can be identified using either method.

The results above were used to inform the analysis as reported in the remainder
of the thesis, in chapter 4 where methods used for analysing data with a large
number of exposures were applied to the BWHHS metabolomic dataset, and in
chapter 6 onwards, where differential networks were explored in depth.

186



9.2 Differential Networks

In chapter 4 the methods of dimension reduction (using principal component
regression) and variable selection (lasso regression) were described and applied
to the BWHHS data, using both time to CHD event and CHD event in the fol-
low up period as the outcomes. These two methods were selected as illustrative
of two general classes of high dimensional data methods. They are useful for
identifying individual metabolites, or groups of metabolites that are associated
with the outcome. However, an alternative approach, the emerging method of
differential networks, was explored in chapters 6 to 8, and used to identify if the
association between pairs of metabolites differed in two groups.This was done
first through simulations, then by implementing the method on the metabolomic
dataset from the BWHHS and finally by exploring the possibility of its use with
time to event data.

The literature review performed (described in chapter 6) identified that there
was no one definitive differential networks method, with different researchers
proposing various ways of defining a differential network, however most were
based on an edge being defined as the difference in a measure of association
between a pair of nodes in two different groups.

Figure 9.1: Scatter plot of simulated observations from a pair of variables, with
data points coloured by groups - blue: healthy individuals, red: unhealthy

One topic not addressed in the literature was the interpretation of what an edge
in a differential network means. In the typical association networks described
in chapter 5 an edge between a pair of nodes represents an association (often
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a correlation) between those nodes. In a differential network an edge is a more
complicated concept, many papers using a simple diagram as shown in figure
9.1 to show what the distribution of a pair of variables that have different corre-
lations in two groups looks like. However this led to a question - what situations
could lead to such a distribution of variables? The main applications considered
in this thesis concern the investigation of the aetiology of a particular disease.
Hence, if a pair of variables are identified that have a distribution as shown
above, how does this inform us about the mechanism leading to the outcome
of interest? To investigate this three potential data generating models were
hypothesized and a series of simulations performed to observe what differential
network would result from each generating model.

9.2.1 Simulation study

There were three main purposes for carrying out the three sets of simulations:

1. to relate the data generating structure to the resulting differential net-
works

2. to relate the differential network results to those obtained from standard
regression models

3. to assess the performance of differential networks under some realistic
scenarios

In the literature we reviewed, only two papers [72, 88] had performed simulation
studies in order to assess the performance of the method. Both papers opted
for simulations where the cases and non-cases were generated separately, with a
different marginal correlation defined for each group. Such simulated data did
indeed lead to a different correlation structure in the two groups, but their gen-
eration (and then examination) did not consider alternative scenarios in which
such data could arise.

Alternative data generating models

In order to keep our analysis manageable, our simulations were limited to esti-
mating a single edge in the differential network, so only investigating the rela-
tionship between one pair of variables, while allowing for the presence of at least
another, all encompassing variable. As the edge between the pair of variables is
the fundamental building block of a differential network, understanding which
situations give rise to the identification of an edge should help in interpreting
the results from a more complex differential network analysis. Three scenarios
were hypothesized and used to define the data generating models for the simu-
lations, these were:

(A) A pair of variables are joint causes of disease
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(B) Disease modifies the joint distribution of a pair of variables

(C) There is a common cause of the disease and of the joint distribution of a
pair of variables

We considered these three scenarios exhaustive of the mechanisms that would
give rise to an edge between metabolites. Scenario A reflects the temporal order
of the variables collected during a cohort study (with the metabolites measured
at entry among disease free individuals and disease occurring at a later time).

Scenario B would most likely arise in a cross-sectional study where disease status
is measured at the same time as the metabolites. However it could also occur
in the context of a cohort study if disease is latent at the time of recruitment.
Scenario C could occur in either cohort or cross sectional studies and possibly
represents a very likely scenario when the variables considered are not on the
causal path to disease.
Diagrams with proposed hypothesized causal models were produced for each of
these scenarios, illustrated in figures 9.2, 9.3 and 9.4

Figure 9.2: Hypothesized scenario A, where the three metabolites X1, X2, and
X3 have a common cause U and all three together with U are causes of D
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Figure 9.3: Hypothesized scenario B where X1 and X3 are always correlated but
X1 and X2 are only correlated when disease is present. The D*X1 node repre-
sents the product of D and X1, so when D=0 there is no association between
X1 and X2 and when D=1 there is an association between X1 and X2.

Figure 9.4: Hypothesized scenario C where X1 and X3 are always correlated
but X1 and X2 are correlated only when Z is present. Since Z is a cause of D
this implies that X1 and X2 are more strongly correlated when D is present -
The Z*X1 node represents the product of Z and X1, so when Z=0 there is no
association between X1 and X2 and when Z=1 there is an association between
X1 and X2

In the data generating model from scenario A the disease status was caused by
the simulated exposure variables. In scenario B the data generating model was
based on the disease modifying the association between a pair of variables, and
in C an unmeasured variable modifies the association between a pair of variables
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and is also associated with the disease.

Data generating structures When investigating data generating model A,
it was found that if a variable modified the effect of another in terms of its
association with the outcome, then an edge in a differential network would be
induced. Also, if either both of the variables are strong independent causes of
the outcome, or only one is and the variables are correlated then again an edge
would be induced, however for this to be true the variable would have to be
extremely strongly associated with the outcome. So it is fair to say, practically,
that if the effect of that variable on the outcome is modified by another variable
then an edge should be identified between that pair of variables in the differen-
tial network (if the effect is strong enough relative to the sample size).

It was also identified, by analysing data generating model B, that if the disease
modifies the relationship between a pair of variables then this can also induce
an edge in a differential network. So here the disease status is defined prior to
the concentration of X1 and X2 (or in our simulations, at least prior to X2). So
if this data generating model is true, a differential network will not provide in-
formation about the causes of disease, but could provide information regarding
potential markers of disease.

This is contrasted with data generating model A, where the disease status is
influenced by the pair of variables (metabolites X1 and X2, say), the disease
risk is (in part) defined by an individual’s concentration of X1 and X2. In sce-
nario B, the situation is reversed, an individual’s concentration of X1 and X2

is (in part) defined by their disease status (In the simulated model disease only
defines the concentration of X2).

In scenario A the development of disease is thought of as occurring later than
the measured concentration of the metabolites, so if the data generating model
is assumed to be true, then a differential network would give an indication of
the aetiology of disease, highlighting possible pairs of metabolites that modify
the effect of each other on the disease. This could be thought of as similar to
identifying a set of significant interactions in a multivariable logistic regression.

In scenario C, like scenario B, the concentrations of X1 and X2 have no in-
fluence on the risk of disease. However, unlike scenario B, the disease status
is not necessarily defined prior to the measurement of the metabolite concen-
trations. Therefore if this data generating model were true then a differential
model may be able to provide information regarding early indicators of disease,
which although not necessarily providing information regarding the causes of
disease, could aid early diagnosis or highlight a predisposition towards a dis-
ease, so could be of use in a cohort study analysis. These observations however
depend on the simplicity of the structures considered. As regards scenario A in
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particular they depend on the absence of an arrow from U to D. This will be
explored further in section 9.2.3

Power, relative to data generating model In scenario A, if the interac-
tion between the two variables was equivalent to an odds ratio of 1.1, it was
estimated that an overall sample size of 7000 was required in order to detect
an edge using a threshold of p<0.01 with 95% power. To detect an edge with
this sample size the prevalence of the outcome must be close to 50%. If the
prevalence is less than 50% then a larger overall sample size would be required,
however if the number in the smaller group (between diseased and not diseased)
falls below 2000 then no matter how large the overall sample size there will not
be 95% power to detect an edge due to an interaction of this strength.

In scenario B, the overall sample size had a negligible effect compared to the
effect of the smaller group size. So to achieve 95% power to detect a difference in
the partial correlation between the cases and non-cases of 0.2, there must be at
least 500 individuals in each group. A difference of 0.16 can be detected at 80%
power at this sample size. If the sample size drops to 100 in the smaller group,
a difference of 0.4 is required for 95% power to detect an edge (0.32 for 80%
power). A detailed analysis of power was not performed using data generating
model C because of its similarity to model B.

Comparison to standard regression models It was of interest to identify
how similar the value of δ12 in a differential network model (i.e. the quan-
tification of an edge) was to the interaction term (γ12) in a standard logistic
regression model, where disease status is the outcome, and a pair of metabolites
are exposures, with an interaction between the two metabolites included.

There was a linear relationship between the γ from the logistic regression and
the value of δ in the simulated differential networks. In fact in scenario A, when
the metabolites X1 and X2 were uncorrelated the value of δ and γ are equal in
the range -0.2 to 0.2. Figure 9.5 illustrates this relationship.

In scenario A, the logistic regression was more efficient at identifying a significant
γ̂12 between X1 and X2 than the differential network method was at identifying
a significant δ̂12, whereas in scenarios B and C the differential network method
was more efficient. This may be self explanatory, as in scenario A we generated
the data using a logistic model i.e. we defined an interaction term γ12 which
induced a non-zero δ12 in the differential network, and in scenarios B and C we
defined a difference in the correlations δ12 which in turn induced a non-zero γ12

in the logistic regression model. Of note with regards to these simulations is
that their interpretation applies to both conditional and marginal correlations,
because the simulated numbers could be generated either marginally or condi-
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Figure 9.5: Chart showing the estimated value of δ12 against the value of γ12

for the situation where X1 and X2 are uncorrelated (blue) and when the par-
tial correlation of X1 and X2 in the overall dataset is 0.81 (red) (Sample size
N=10000)

tionally (on other variables).

9.2.2 Marginal vs. partial correlations

In chapter 7 the relative merits of the use of marginal and partial correlations in
differential networks was discussed. Using partial correlations provides a “truer”
picture of the differences in the case and non-case networks, as the estimated
edges are adjusted for all the other nodes in the network to avoid confounding.
However, by performing a differential network analysis using marginal correla-
tions could also uncover some features of the data not immediately apparent,
so could also be a useful exercise when carrying out a data exploration exercise
on some new data. In particular we showed that partial correlations that do
not account for all data generating variables (the Us in the model) or not all
variables downstream from the Us, may lead to spurious edges. The possibility
of adding one metabolite at a time to move from the marginal model to the
partial model was also explored (figure 7.22), which can provide an insight into
the differences between the marginal and the partial results.

9.2.3 Differential networks using the BWHHS data

Differential network using marginal correlations The differential net-
work based on marginal Pearson correlation coefficients, adjusted for age, is
displayed in figure 9.6.

In this differential network, 38 edges were included involving 33 nodes (all other
nodes were excluded from the diagram). There were three metabolites identified
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Figure 9.6: Differential network of the BWHHS data formed using marginal
correlations - blue = negative estimated δ, red = positive estimated δ

as being potentially important because they were involved in several of these
edges (i.e. they were highly central nodes). - Tyrosine, Valine and Glucose,
none of which were identified in the univariable analysis as being associated
with CHD. The strongest individual edge identified was that between glucose
and small VLDL cholesterol esters (The top 5 edges are shown in table 7.1 in
chapter 7).
This is a network based on marginal Pearson correlation coefficients, so each
edge in the network is estimated only using the data from the pair of metabo-
lites that the edge connects, unadjusted for any of the other metabolites. If we
consider the 3 hypothesized data generating models from chapter 6, and we were
to believe scenario A was true we may interpret it as these highly central nodes
are strongly associated with the outcome (which can be verified by perform-
ing a univariable logistic regression with the selected metabolite as an exposure
and CHD as the outcome). This was not the case for these 3 metabolites, so
a second interpretation could be that the results are indicating that the highly
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central nodes are modifiers of the association between other metabolites and
disease. When the results from the pairwise logistic regressions performed in
section 7.3.2.2 were checked, it was observed that there were a large number of
significant interactions between these three metabolites and the other metabo-
lites within the dataset. This may lend weight to the hypothesis that these
nodes are modifiers of other metabolites association with disease.

Given the assumption in scenario B that the disease is the cause of the difference
in correlations observed in a differential network, and that we have excluded all
those with the disease at baseline, model C seems a more plausible data gener-
ating model than B. In this instance we would consider the unmeasured variable
Z from the model to be a pre-disease status or some other cause of CHD. If we
were to believe scenario C was true we could interpret the highly central nodes
by suggesting that it was this unmeasured cause of disease (or the early stages
of the disease itself) that was modifying the association between Tyrosine (for
example) and a number of other metabolites.

Many of the nodes that the central nodes are connected to via an edge are they
themselves very highly correlated with one another (e.g. the edges from Tyrosine
are mostly connected to VLDL metabolite concentrations). The differential net-
work obtained using marginal Pearson correlation coefficients is undadjusted, so
if there is a “significant” edge detected between a node (let us call it X) and one
node from a highly correlated set, it is likely that there will also be edges from
X to each of the nodes in the correlated set. For example there is an edge be-
tween Alanine and Isoleucine in the differential network, these are “standalone”
amino acids not very strongly correlated with another set of metabolites. But
if for example instead of 1 measure of Isoleucine, it was broken down into 9
sub-divisions all very strongly associated with one another, then an edge would
probably exist from Alanine to each one of these sub-divisions, giving Alanine a
high degree centrality. It is possible that this is contributing to the high degree
centrality observed in Tyrosine.

It is also important to bear in mind that the criteria for inclusion in this network
is a p-value of less than 0.01, which given there are 3003 tests taking place is
a very liberal threshold for inclusion (a Benjamini-Hochberg adjusted threshold
would be p <0.000017, and would yield no edges in the network). So the ability
of a differential network based on this sample size yielding strong evidence for
any particular edge is very limited. In chapter 6 we identified a sample size of
2000 required in the smaller group (in this case the diseased group) to give high
power of detecting edges due to a moderate interaction effect if scenario A was
true, whereas in the BWHHS there were only 182 cases. However, it should
be remembered that this is an exploratory analysis to aid identifying candidate
metabolites/relationships for further study, so as a result tyrosine, valine and
glucose are the strongest candidate metabolites for further examination and the
edges listed in table 7.1 are specific pairs of metabolites whose relationship with
each other could be investigated further with respect to their relationship with
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CHD. Finally, as these are marginal correlations, the estimates for any edges
may be confounded, as discussed in section 7.1.3.1 this can lead to too many
edges in the network, whereas using partial correlations can provide more spe-
cific results.

There were many more negative edges in the differential network than positive
edges, due to the fact that the correlations within both the cases and non-cases
tended to be postivie, with a higher correlation typically found in the non-cases.
In this thesis no investigation was performed into whether there was any differ-
ence in the nature of negative and positive edges.

Differential network using partial correlations The differential network
based on partial Pearson correlation coefficients is displayed in figure 9.7.

Figure 9.7: Differential network of the BWHHS data formed using partial cor-
relations - blue = negative estimated δ, red = positive estimated δ
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The differential network formed using partial correlations has 42 edges involving
45 different nodes. There were 4 nodes which had the joint highest degree (5):
Small VLDL triglycerides, large LDL cholesterol esters, small LDL free choles-
terol and VLDL diameter. The 5 edges relating to the 5 largest differences in
correlation (δ̂) are displayed in table 7.4.

The differential network using partial Pearson coefficients was denser than the
differential network using marginal correlations, although there were fewer obvi-
ous “hub” nodes, so was a more dispersed network. More of the VLDL metabo-
lites are involved in this network than in the marginal differential network,
suggesting that, after adjustment for all other metabolites, these VLDL vari-
ables may be modifying the effect on disease of other variables in the network.
Or they could be strong, independent risk factors for disease and the estimated
δs are echoes of this strong effect (as in scenario A). It is also possible that the
association between these pairs of variables is modified by the propensity that
an individual has to go on to develop CHD in the subsequent 12 years (as in
scenario C). The interpretation of this network is similar to that of the marginal
correlation differential network, except for the fact that the edges estimated now
are adjusted for all other metabolites.

However, given the highly correlated nature of the BWHHS data it may be that
spurious effects are being observed as described in section 7.1.2.1. Because there
are a number of extremely highly correlated groups of metabolites, adjusting for
all of them can in fact cause a spurious edge to appear in the network between a
pair of nodes that are only distantly associated with the association that truly
differs between the disease states.
Again when interpreting the findings of this differential network the role of
chance is the most plausible explanation for any extreme results observed. There
were 3003 potential edges in the network and a p-value of <0.01 was the crite-
ria for inclusion. This allows exploration of the data in the network form that
wouldn’t be possible with a more conservative threshold, but it does mean that
the exploratory analysis performed should be interpreted through a sceptical
lens - it may just be that, for a differential network analysis, there is no signal
within this data to uncover.

There is no overlap between the findings of the differential network analyses
and the lasso regression. None of the interactions identified by a lasso regres-
sion were included as edges in the differential network. Nor were any of the
highly central nodes in the network highlighted as important main effects in the
lasso regression. This may be due to the fact that they are picking up different
features of the data, but it also may just be that there is no signal (or the
signal is too weak) to pick out, and the edges selected in the network and the
interactions selected by the regression are just found by chance.
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9.2.3.1 Other considerations

Beyond the limitations of the model itself described above, there are other de-
cisions made throughout this analysis that would have influenced the results a
great deal. The metabolite values used in the analysis were transformed from
the raw concentrations to more closely comply with the assumptions required
of the Pearson correlations performed. The transformations selected for each
metabolite were the “best” transformation available from 3 potential options
(best being the transformation that resulted in the lowest skewness). By trans-
forming the metabolites using different transformations for each, potentially true
linear associations were lost by transforming at least one of a pair of metabolites
onto a different scale.

A different, and potentially more effective strategy might have been to choose a
single transformation for all metabolites that provided the lowest overall skew-
ness and thus meet the assumption of multivariate normality. This would hope-
fully make any true associations that exist in the data more likely to be identified
in the final analysis. Another solution to this problem could be to use Spearman
correlations instead of Pearson correlations as the measure of association, as it
does not require the same assumptions of joint normality required for Pearson
correlation. This would have the additional benefit of reducing the impact of
data where there a high number of zero values.

More fundamentally there are problems with both of the two methods of differ-
ential networks proposed (using marginal or partial correlations). When using
marginal correlations it is possible the the edges observed are explained via other
nodes in the network, so the edge identified may relate to a distant association
via other variables rather than a direct association between the two nodes. At
the other extreme we use partial correlations to measure the association be-
tween a pair of nodes, adjusting for every other node in the network. When we
have the situation where there are a high number of nodes in a network and a
large proportion are strongly correlated with one another we have little power
to identify an edge. Two potential strategies for dealing with this could be:

1. More stringent variable selection criteria

2. Limit the number of variables adjusted for

The first of these two methods is the simpler approach, it is simply to use the
partial correlation as our measure of association but to exclude variables that
introduce high collinearity into the model. Previously only variables that intro-
duced perfect collinearity were excluded (i.e. when one variable was a sum of
two or more others) but we could set a pragmatic threshold to exclude variables
where there are a number that are strongly correlated with one another.

The second is to perform an exploration of the data between the two extremes
described. Rather than adjusting for none (as in marginal), or all (as in partial),
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of the other nodes in the network, we could adjust for a subset of representative
nodes. One potential way to select this set of representative nodes could be to
first generate a network using all our data.
Then we find the network modules defined by this overall network (as per the
method described in section 5.2.6). We could then select one node from within
each network module to represent that module, and using this set of nodes as
a representative set of nodes from the network we can adjust the associations
accordingly.

9.2.4 Results from the time to event analysis

In chapter 8 we attempted to include information on time to event to investi-
gate whether that uncovered edges in the network that were not identified in
the network where CHD event in the follow up period was used as the outcome
of interest. This was done by, at the end of each year of follow-up, comparing
the group of individuals who had suffered a CHD event by that time with those
who had survived until that point. Up until the 5th year there were too few
events to estimate the differential networks successfully, so this was performed
from years 5 to 12.

There was one additional edge identified using this method (when compared to
the static differential network (using partial correlations) in chapter 7, between
large VLDL cholesterol esters and medium VLDL free cholesterol, which was
potentially identified as important in the earlier years but had disappeared by
the final year. There were also 2 additional nodes, glutamine and small LDL
phospholipids that were identified as important in the 6th and 7th years of fol-
low up, but by the final 12 year follow-up they were no longer found to be as
central to the network.

As with the original analysis, there was no overlap between the findings of the
differential network analyses and the lasso regression. As this analysis was lim-
ited by the low number of observations in the earlier years of study, this led
to poorly estimated correlations in the cases group, and as a result few edges
detected. So these observed inconsistencies between the two methods are likely
to be due to lack of power, even more than in the 12-year analysis (in chapter
7.

9.3 Concluding comments

In this thesis a metabolomic dataset from the BWHHS cohort study was de-
scribed and the metabolites short-term reliability assessed, this identified the
metabolites which were more stable, and therefore were better candidates for
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use in investigating the associations with CHD over a long follow-up period.

This study was used to motivate our investigation of the emerging method of
differential networks. This was addressed by initially simulating individual net-
work edges to gain an understanding of potential interpretations of differential
network analysis, then by applying it to the metabolite data from the BWHHS
to discover the differential network formed from comparing those who developed
CHD in a 12-year follow-up period. Then finally, an extension of the analysis
to incorporate time to CHD event was proposed and implemented, with some
limitations encountered.

Differential networks may be a useful additional tool in performing exploratory
analyses on high-dimensional datasets such as -omics data where causal/aetiological
structure is still unknown. This thesis identified potential scenarios where a dif-
ferential network could identify important interactions or be used to identify
biomarkers for future disease risk in cohort studies, although whether it can
provide useful information over and above that obtained via other high dimen-
sional methods is uncertain.
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of the westfall-young permutation procedure for multiple testing under
dependence. The Annals of Statistics, 39(6):3369–3391, 2011.

[50] Benjamini Y and Yekutieli D. The control of the false discovery rate in
multiple testing under dependency. The Annals of Statistics, 29(4):1165–
1188, 2001.

[51] Jolliffe IT. Principal Component Analysis. Springer-Verlag, 1986.

[52] Bartholomhew DJ, Steele F, Moustaki I, and Galbraith JI. Analysis of
multivariate social science data. Chapman and Hall, 2008.

[53] Chaterjee S and Hadi AS. Regression analysis by example (Fourth edition).
Wiley, 2006.

[54] Hoerl E and Kennard RW. Ridge regression: Applications to non-
orthogonal problems. Technometrics, 12(1):69–82, 1970.

[55] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, 58:267–288, 1996.

[56] Hosmer DW and Lemeshow S. Applied Logistic Regression, Third Edition.
Wiley, 2013.

[57] Kalbfleisch JD and Prentice RL. The statistical analysis of failure time
data, 2nd edition. Wiley, 2002.

[58] Schoenfeld D. Partial residuals for the proportional hazards regression
model. Biometrika, 69(1):239–241, 1982.

[59] Laszlo Barabasi. Network science book.

[60] Lewis TG. Network Science: Theory and Applications. Wiley, 2009.

[61] Newman MEJ. The structure and function of complex networks. Society
for Industrial and Applied Mathematics Review, 45(2):365–375, 2003.

205



[62] VanderWeele TJ and Robins JM. Signed directed acyclic graphs for causal
inference. Journal of the Royal Statistical Society, 72:111–127, 2010.

[63] Zachary WW. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[64] Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, and Barabasi A-L. The
human disease network. PNAS : Applied Physical Sciences, 2007.
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Appendix A

Results from an alternative version of the univariable analysis performed in
chapter 4 are shown in the below table. Previously the linear and quadratic
terms were assessed in a joint test, here we perform an analysis just of the linear
associations. Some (13) additional weaker linear associations are identified here
that were not picked up in the analysis when using the joint test. Mean diameter
for VLDL particles is the strongest of these, where a one standard deviation
increase in the mean diameter of VLDL is estimated to be associated with a
33% increase in the odds of disease. However, this analysis does not identify
Creatinine as being associated with the odds of CHD, despite strong evidence of
an association found in the original analysis in chapter 4, picked up there because
there may be a non-linear association between Creatinine and the outcome. The
table below shows the results for completeness.
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Table 1: Metabolites associated with the odds of CHD in the follow up period,
statistically significant at the Westfall-Young corrected threshold of p <0.00117,
ordered by p-value. Odds ratios relate to a one standard deviation change in
the metabolite concentration.

Variable Odds Ratio (95% CI) p-value
Total cholesterol in HDL2 0.72 (0.62, 0.83) <0.0001
Triglycerides in very small VLDL 1.40 (1.20, 1.62) <0.0002
Serum total triglycerides 1.39 (1.20, 1.61) <0.0003
Monounsaturated fatty acids; 16:1, 18:1 1.40 (1.20, 1.63) <0.0004
Total cholesterol in HDL 0.72 (0.61, 0.83) <0.0005
Triglycerides in small VLDL 1.38 (1.19, 1.60) <0.0006
Triglycerides in medium VLDL 1.38 (1.19, 1.60) <0.0007
Triglycerides in IDL 1.36 (1.18, 1.58) <0.0008
Triglycerides in VLDL 1.39 (1.19, 1.62) <0.0009
Concentration of medium VLDL particles 1.37 (1.18, 1.59) <0.0010
Total lipids in medium VLDL 1.36 (1.17, 1.58) <0.0011
Phospholipids in very large HDL 0.70 (0.59, 0.83) <0.0012
Free cholesterol in medium VLDL 1.37 (1.18, 1.59) 0.0001
Cholesterol esters in large HDL 0.70 (0.59, 0.83) 0.0001
Total cholesterol in large HDL 0.70 (0.59, 0.83) 0.0001
Triglycerides in large VLDL 1.40 (1.19, 1.65) 0.0001
Total lipids in large HDL 0.71 (0.60, 0.84) 0.0001
Phospholipids in medium VLDL 1.36 (1.17, 1.58) 0.0001
Free cholesterol in large HDL 0.70 (0.59, 0.84) 0.0001
Concentration of large HDL particles 0.72 (0.61, 0.84) 0.0001
Concentration of large VLDL particles 1.40 (1.18, 1.65) 0.0001
Total lipids in large VLDL 1.39 (1.18, 1.64) 0.0001
Mean diameter for HDL particl 0.73 (0.62, 0.85) 0.0001
Phospholipids in large HDL 0.73 (0.62, 0.85) 0.0001
Phospholipids in large VLDL 1.40 (1.18, 1.65) 0.0001
Free cholesterol in large VLDL 1.37 (1.17, 1.61) 0.0001
Glycoprotein acetyls, mainly a1-acid glycoprotein 1.32 (1.15, 1.52) 0.0001
Mean diameter for VLDL particles 1.32 (1.14, 1.52) 0.0002
Total cholesterol in large VLDL 1.36 (1.16, 1.61) 0.0002
Concentration of small VLDL particles 1.33 (1.14, 1.55) 0.0002
Triglycerides in small LDL 1.33 (1.14, 1.54) 0.0002
Free cholesterol in very large HDL 0.73 (0.62, 0.86) 0.0003
Triglycerides in small HDL 1.33 (1.14, 1.56) 0.0003
Estimated degree of unsaturation 0.76 (0.65, 0.88) 0.0003
Bonferroni threshold
Concentration of very large HDL particles 0.74 (0.62, 0.87) 0.0004
Total lipids in very large HDL 0.74 (0.63, 0.87) 0.0004
Total cholesterol in medium VLDL 1.32 (1.13, 1.54) 0.0004
Total lipids in small VLDL 1.32 (1.13, 1.53) 0.0004
Triglycerides in very large VLDL 1.34 (1.14, 1.57) 0.0004
Cholesterol esters in large VLDL 1.34 (1.14, 1.58) 0.0005
Concentration of very large VLDL particles 1.33 (1.13, 1.56) 0.0005
Cholesterol esters in very large VLDL 1.32 (1.13, 1.54) 0.0005
Total lipids in very large VLDL 1.33 (1.13, 1.56) 0.0005
Triglycerides in LDL 1.29 (1.12, 1.50) 0.0007
Total cholesterol in medium HDL 0.77 (0.66, 0.90) 0.0009
Triglycerides in large LDL 1.29 (1.11, 1.49) 0.0009
Cholesterol esters in medium HDL 0.77 (0.66, 0.90) 0.0009
Total cholesterol in very large VLDL 1.31 (1.11, 1.53) 0.0010
Free cholesterol in chylomicrons and extremely large VLDL 1.30 (1.11, 1.53) 0.0011
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