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Abstract 

 

Campylobacter jejuni is a microaerobic bacterium that possesses complex 

mechanisms to counter oxidative stress to be able to survive in the presence of reactive 

oxygen species (ROS). Re-annotation of the C. jejuni NCTC 11168 genome sequence 

identified two putative MarR-type transcriptional regulators Cj1546 and Cj1556, 

originally annotated as hypothetical proteins, now designated as RrpA and RrpB 

(regulator of response to peroxide). Both rrpA and rrpB mutants exhibit increased 

sensitivity to hydrogen peroxide stress compared to the wild-type strain and both 

mutants exhibit reduced levels of catalase (KatA) activity. However, neither mutant 

exhibited any significant difference in sensitivity to either cumene hydroperoxide or 

menadione oxidative stresses, indicating that RrpA and RrpB do not regulate 

expression of either alkylhydroperoxide (AhpC) or superoxide dismutase (SodB). 

rrpA and rrpB mutants exhibit increased biofilm formation, probably due to 

accumulation of ROS within the cells. Preliminary RNA-seq analysis indicated 

reduced katA expression in the rrpA mutant, but no differences in katA expression was 

observed in the rrpB mutant or rrpAB double mutant compared to the wild-type strain. 

C. jejuni strains normally contain rrpA, whilst only a subset contained rrpB. C. jejuni 

strains containing both genes were more associated with livestock-associated MLST 

clonal complexes. The presence of rrpB is linked to a hypervariable region containing 

the IF subtype of the type I Restriction-Modification (hsd) system, whereas strains 

containing only rrpA contain the IAB subtype hsd system. Analysis of 43 Brazilian 

strains identified that most chicken meat isolates contained both genes, whilst most 

human isolates contained only rrpA. The predominant presence of rrpB in livestock-

associated C. jejuni MLST-types suggests an important role for fine-tuning oxidative 

stress responses through the concerted actions of multiple regulatory proteins in this 

microaerophilic pathogen. It also highlights the potential of genetic variation in the 

natural population in the adaptation to different environmental niches. 

  



4 
 

Table of contents 

Declaration ................................................................................................................... 2 

Abstract ........................................................................................................................ 3 

Acknowledgments ...................................................................................................... 12 

1 Introduction ......................................................................................................... 13 

1.1 Campylobacter jejuni .................................................................................. 13 

1.2 Metabolism .................................................................................................. 14 

1.3 Epidemiology .............................................................................................. 15 

1.4 Campylobacteriosis in developed and developing countries ...................... 16 

1.5 Disease symptoms ....................................................................................... 18 

1.6 Bacterial surface structures.......................................................................... 20 

1.6.1 Capsule ................................................................................................. 20 

1.6.2 Lipooligosaccharide ............................................................................. 21 

1.6.3 Flagella ................................................................................................. 22 

1.7 Toxin production ......................................................................................... 25 

1.8 Adhesion and Invasion ................................................................................ 26 

1.9 Glycosylation systems ................................................................................. 30 

1.9.1 O-linked glycosylation ......................................................................... 30 

1.9.2 N-linked glycosylation ......................................................................... 31 

1.10 Vaccines ...................................................................................................... 33 

1.11 Secretion systems ........................................................................................ 35 

1.11.1 Type VI Secretion System ................................................................... 36 

1.11.2 T6SS is important for bacterial resistance to oxidative stress.............. 39 

1.11.3 Outer membrane vesicles ..................................................................... 40 

1.12 Biofilm formation ........................................................................................ 43 

1.13 Oxidative stress ........................................................................................... 44 



5 
 

1.14 C. jejuni oxidative stress ............................................................................. 46 

1.15 Oxidative stress defence mechanisms ......................................................... 47 

1.15.1 Enzymes ............................................................................................... 47 

1.15.1.1 Catalase ......................................................................................... 47 

1.15.1.2 Superoxide dismutase ................................................................... 48 

1.15.1.3 Alkyl hydroperoxide reductase ..................................................... 49 

1.15.1.4 Thiol peroxidases .......................................................................... 49 

1.15.1.5 Bacterioferritin comigratory protein ............................................. 49 

1.15.1.6 Cytochrome c peroxidase.............................................................. 50 

1.15.1.7 DNA binding protein from starved cells....................................... 51 

1.15.1.8 Ferredoxin ..................................................................................... 51 

1.15.1.9 Thioredoxin system....................................................................... 52 

1.15.2 Regulators of oxidative stress .............................................................. 52 

1.15.2.1 Peroxide-sensing regulator (PerR) ................................................ 53 

1.15.2.2 Ferric uptake regulator (Fur)......................................................... 54 

1.15.2.3 Campylobacter oxidative stress regulator (CosR) ........................ 55 

1.15.2.4 Carbon starvation regulator (CsrA) .............................................. 55 

1.15.2.5 Two-component regulatory systems ............................................. 56 

1.15.2.5.1 Campylobacter planktonic growth regulation (CprRS) ............ 56 

1.15.2.5.2 Reduced ability to colonise (RacRS) ........................................ 56 

1.15.2.6 LuxS .............................................................................................. 57 

1.15.2.7 Rubredoxin oxidoreductase / Rubrerythrin-like (rrc) ................... 57 

1.15.2.8 RrpA and RrpB transcriptional regulators .................................... 58 

1.16 Aims and objectives .................................................................................... 59 

2 Material and Methods ......................................................................................... 60 

2.1 Bacterial strains ........................................................................................... 60 



6 
 

2.2 Growth conditions ....................................................................................... 60 

2.3 Preparation of a bacterial cell suspension at a specific OD600 .................... 61 

2.4 Assays .......................................................................................................... 61 

2.4.1 Motility assays ..................................................................................... 61 

2.4.2 Protein quantification ........................................................................... 61 

2.4.3 Outer membrane vesicle (OMV) isolation ........................................... 62 

2.4.4 Preparation of Whole Cell lysates ........................................................ 63 

2.4.4.1 Blood agar plates .............................................................................. 63 

2.4.4.2 Minimum Essential Media alpha (MEMα) ...................................... 63 

2.4.5 Growth curves ...................................................................................... 63 

2.4.6 Oxidative stress assays ......................................................................... 64 

2.4.6.1 Hydrogen peroxide stress assays ...................................................... 65 

2.4.6.2 Cumene hydroperoxide stress assays ............................................... 65 

2.4.6.3 Menadione stress assays ................................................................... 65 

2.4.7 Catalase activity assays ........................................................................ 66 

2.4.8 Superoxide dismutase activity assay .................................................... 68 

2.4.9 Biofilm formation ................................................................................ 70 

2.4.10 Biofilm formation in the presence of chicken juice ............................. 70 

2.4.10.1 Chicken juice preparation ............................................................. 70 

2.4.10.2 Biofilm formation with diluted chicken juice ............................... 71 

2.4.10.3 Biofilm formation with undiluted chicken juice ........................... 71 

2.4.11 Galleria mellonella haemolymph collection ........................................ 72 

2.5 Molecular methods ...................................................................................... 72 

2.5.1 DNA isolation ...................................................................................... 72 

2.5.2 DNA quantification .............................................................................. 73 

2.5.2.1 NanoDrop ND-1000 spectrophotometer .......................................... 73 



7 
 

2.5.2.2 Qubit ................................................................................................. 74 

2.5.3 DNA quality control ............................................................................. 74 

2.5.4 Primers ................................................................................................. 75 

2.5.5 Polymerase Chain Reaction ................................................................. 77 

2.5.6 Analysis of PCR products using agarose gel electrophoresis .............. 78 

2.5.7 Design of degenerate oligonucleotide primers for screening rrpA,   

rrpB and cosR genes............................................................................. 78 

2.5.8 Construction of a C. jejuni 11168H rrpB perR double mutant ............ 79 

2.5.9 Genomic analysis at the Institute of Food Research ............................ 80 

2.5.10 RNA isolation ...................................................................................... 81 

2.5.11 RNA normalisation .............................................................................. 82 

2.5.12 DNase treatment ................................................................................... 82 

2.5.13 Preparation of cDNA from total RNA ................................................. 83 

2.5.14 Reverse transcription polymerase chain reaction ................................. 84 

2.5.15 qPCR .................................................................................................... 85 

2.5.16 Whole genome sequencing .................................................................. 86 

2.5.16.1 Fragmentation and tagging ........................................................... 86 

2.5.16.2 Amplification ................................................................................ 87 

2.5.16.3 PCR clean-up ................................................................................ 87 

2.5.16.4 Library normalisation ................................................................... 88 

2.5.16.5 Library pooling ............................................................................. 88 

2.5.16.6 Genomic sequencing and analysis ................................................ 89 

2.5.17 Search for pathogenicity genes ............................................................ 89 

2.5.18 Multilocus sequence typing.................................................................. 90 

2.5.19 RNA sequencing .................................................................................. 91 

2.5.19.1 Ribosomal RNA (rRNA) removal ................................................ 91 



8 
 

2.5.19.2 Sample purification ....................................................................... 92 

2.5.19.3 RNA fragmentation....................................................................... 92 

2.5.19.4 cDNA synthesis ............................................................................ 92 

2.5.19.5 Terminal tagging ........................................................................... 93 

2.5.19.6 cDNA purification ........................................................................ 94 

2.5.19.7 Indexing and library amplification ............................................... 94 

2.5.19.8 Library purification ....................................................................... 95 

2.5.19.9 Assess library quality .................................................................... 95 

2.5.19.10 RNA sequencing and analysis ...................................................... 95 

2.6 Statistical analysis ....................................................................................... 96 

3 Investigation into the role of RrpA and RrpB in the C. jejuni oxidative stress 

response .................................................................................................................. 97 

3.1 Introduction ................................................................................................. 97 

3.2 Results ......................................................................................................... 97 

3.2.1 Construction of a 11168H rrpB perR double mutant ........................... 97 

3.2.2 Oxidative stress assays ......................................................................... 99 

3.2.2.1 Hydrogen peroxide stress ................................................................. 99 

3.2.2.2 Menadione stress ............................................................................ 104 

3.2.2.3 Cumene hydroperoxide stress......................................................... 109 

3.2.3 Catalase activity assays ...................................................................... 114 

3.2.3.1 Catalase activity associated with C. jejuni whole cell lysates from  

BA plates .......................................................................................... 114 

3.2.3.2 Catalase activity associated with C. jejuni whole cell lysates from 

MEMα broth ..................................................................................... 115 

3.2.4 Superoxide dismutase activity assays ................................................ 117 

3.2.5 RT-PCR analysis of katA, sodB and ahpC expression ....................... 118 

3.2.6 qPCR .................................................................................................. 121 



9 
 

3.2.7 RNA sequencing ................................................................................ 122 

3.3 Discussion ................................................................................................. 124 

4 Further investigation into the role of RrpA and RrpB in the C. jejuni ............. 136 

4.1 Introduction ............................................................................................... 136 

4.2 Results ....................................................................................................... 136 

4.2.1 Motility assays ................................................................................... 136 

4.2.2 Galleria mellonella haemolymph collection ...................................... 139 

4.2.3 Biofilm formation .............................................................................. 141 

4.2.3.1 Biofilm formation in Mueller Hinton broth ................................... 141 

4.2.3.2 Biofilm formation in Mueller Hinton supplemented with diluted 

chicken juice..................................................................................... 144 

4.2.3.3 Biofilm formation in Mueller Hinton supplemented with undiluted 

chicken juice..................................................................................... 147 

4.2.4 Growth of the 11168H wild-type strain in the presence of sodium 

taurocholate ........................................................................................ 150 

4.2.5 Sensitivity of the 11168H wild-type strain to hydrogen peroxide    

stress when grown in the presence of sodium taurocholate ............... 152 

4.2.6 Superoxide dismutase activity associated with C. jejuni OMVs ....... 154 

4.2.7 Catalase activity associated with C. jejuni OMVs ............................. 157 

4.3 Discussion ................................................................................................. 159 

4.3.1 Motility ............................................................................................... 159 

4.3.2 Galleria mellonella infection model .................................................. 160 

4.3.3 Biofilm formation .............................................................................. 161 

4.3.4 Bile salts ............................................................................................. 165 

4.3.5 OMVs ................................................................................................. 167 

4.3.6 Conclusion ......................................................................................... 168 



10 
 

5 Analysis of the distribution of rrpA and rrpB in different C. jejuni wild-type 

strains .................................................................................................................... 170 

5.1 Introduction ............................................................................................... 170 

5.2 Results ....................................................................................................... 170 

5.2.1 Screening for rrpA, rrpB and cosR using PCR with degenerate   

primers................................................................................................ 170 

5.2.2 Prevalence of the rrpA and rrpB genes amongst 270 C. jejuni strains .... 

  ............................................................................................................ 175 

5.2.3 Prevalence of rrpA and rrpB in 3,746 C. jejuni and 486 C. coli 

genomes.............................................................................................. 176 

5.2.4 Plasticity region investigation amongst 3,746 C. jejuni ..................... 183 

5.3 Discussion ................................................................................................. 185 

6 Analysis of C. jejuni strains isolated in Brazil.................................................. 195 

6.1 Introduction ............................................................................................... 195 

6.2 Results ....................................................................................................... 196 

6.2.1 Sensitivity of Brazilian isolates to oxidative stress ............................ 196 

6.2.2 Ability of the Brazilian isolates to form biofilms .............................. 201 

6.2.2.1 Biofilm formation under microaerobic conditions ......................... 202 

6.2.2.2 Biofilm formation under aerobic conditions .................................. 204 

6.2.3 Whole genome sequencing ................................................................ 207 

6.2.4 Prevalence of rrpA and rrpB in Brazilian C. jejuni isolates .............. 208 

6.2.5 Presence of pathogenicity genes ........................................................ 211 

6.2.6 Presence of the Type VI Secretion System ........................................ 216 

6.2.7 Brazilian isolates MLST analysis....................................................... 218 

6.2.8 Plasticity region investigation amongst Brazilian isolates ................. 220 

6.3 Discussion ................................................................................................. 225 

6.3.1 Oxidative stress .................................................................................. 225 



11 
 

6.3.2 Biofilm formation .............................................................................. 227 

6.3.3 Presence of pathogenicity genes amongst the Brazilian isolates ....... 229 

6.3.4 rrpA and rrpB gene distribution and hydrogen peroxide stress ......... 232 

6.3.5 rrpA and rrpB gene distribution and MLST ...................................... 233 

6.3.6 Plasticity region investigation amongst Brazilian isolates ................. 235 

6.3.7 Conclusion ......................................................................................... 236 

7 Final Discussion ................................................................................................ 237 

7.1 Role of RrpA and RrpB in regulation C. jejuni oxidative stress ............... 237 

7.2 Variation in the presence of RrpB ............................................................. 239 

7.3 Analysis of Brazilian C. jejuni strains ....................................................... 241 

8 References ......................................................................................................... 244 

Appendix 1 ............................................................................................................... 275 

Appendix 2 ............................................................................................................... 283 

Appendix 3 ............................................................................................................... 287 

Appendix 4……………………………………………………………………………...Flash drive 

Appendix 5………………….…………………………………………...……………...Flash drive 

Appendix 6……………………………………………………………………………...Flash drive 

 

 

 

  



12 
 

Acknowledgments 

 

First and foremost, I would like to thank my supervisor Dr. Nick Dorrell for his 

guidance, support and advice on my research work and for supporting my attendance 

at various conferences. I have been extremely lucky to have been under your 

supervision. I am forever indebted to you for your time and patience. 

I would like to thank Dr. Ozan Gundogdu for all the advice, help and patience to teach. 

I would also like to thank you for all the bioinformatics analysis that contributed for 

my thesis. I would also like to thank Dr Abdi Elmi for advice and suggestions to my 

work. I would like to thank all individuals from Lab 202 for the company and relaxed 

moments. 

I would like to thank Dr. Arnoud van Vliet for his collaboration and bioinformatics 

analysis, which greatly contributed to my research.  

I am grateful for the Campylobacter collection group from FIOCRUZ – Rio de 

Janeiro, Brazil, for sending me Campylobacter strains to be sequenced and analysed, 

which added to my research. 

I would like to thank Dr. Cláudio Timm for helping me to write a successful research 

proposal for the scholarship application. 

I would like to thank my sponsor CNPq from the Brazilian Ministry of Education for 

giving me the opportunity to do my PhD in one of the best public health schools. I am 

extremely lucky to have been granted this scholarship. 

I would like to thank all my family, especially my mom, dad, sister and brother, for 

their support and for always being there for me. 

I would like to thank my partner for encouraging me throughout my PhD and for 

proofreading my thesis. Mone, without your support and love I would never have 

pursued this PhD.  

I would also like to thank my little dog Shay for his companionship and for showing 

me that life can be simple. 

  



13 
 

1 Introduction 

 

1.1 Campylobacter jejuni 

Campylobacter jejuni is a Gram-negative bacteria, non-sporulating, spiral shaped and 

microaerophilic (Young et al., 2007). Microaerophilic bacteria require low oxygen 

concentrations for growth (Krieg and Hoffman, 1986). C. jejuni requires between 2% 

to 5% oxygen, 10% carbon dioxide and approximately 85% nitrogen as optimum 

concentrations for growth (Atack and Kelly, 2009). Due to this singular growth 

condition, C. jejuni is susceptible to environment levels of oxygen concentration 

(Atack and Kelly, 2009). C. jejuni cannot grow below 30ºC, and the optimum growth 

temperature is 42ºC (Park, 2002). C. jejuni cells are slim and S-shaped, measuring on 

average 1.5 to 6.0 μm in length by 0.2 to 0.5 μm in width (Ketley, 1997). C. jejuni 

possesses flagella at one or both ends of the cell (Pead, 1979). Flagella are important 

for motility, which is essential for cell colonisation (Young et al., 2007). C. jejuni has 

a small genome compared to other enteric bacteria. The complete sequence has 

1,641,481 base pair (bp) in length (Parkhill et al., 2000, GSGSC, 2016). The genome 

contains many hypervariable sequences in genes encoding surface structures, such as 

lipooligosaccharide (LOS), capsular polysaccharide (CPS) and flagella modification 

(Parkhill et al., 2000).  

C. jejuni morphology can change depending upon the growth stage or depending on 

the environment conditions (Thomas et al., 1999). C. jejuni cell morphology from 

early log phase displays typical spiral and curved shapes (Kelly, 2001). Nutrient 

limiting conditions (such as in late stationary phase) can change the cell morphology 

and cell integrity promoting the transition to coccoid forms (Thomas et al., 1999, 

Kelly, 2001). When C. jejuni changes morphology, the bacteria lose culturability and 

this state is called viable but non-culturable (VBNC) (Kelly, 2001). Oxidative stress 

has been shown to decrease C. jejuni culturability and increase the number of coccoid 

cells (Harvey and Leach, 1998). Fresh cultures have uniform spiral cells, whilst older 

cultures tend to have more coccoid forms and reduced capacity to adhere to epithelial 

cells (Konkel et al., 1992).  
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1.2 Metabolism 

Unlike other enteropathogenic bacteria, C. jejuni is not capable of metabolising 

carbohydrates because C. jejuni lacks several enzymes from the glycolytic pathway 

(Parkhill et al., 2000, Stahl et al., 2012), such as 6-phosphofructokinase and 

glucokinase orthologues (Parkhill et al., 2000, Velayudhan and Kelly, 2002). 

However, some C. jejuni strains have a genomic island that allows  L-fucose utilization 

as nutrient source (Stahl et al., 2011). C. jejuni utilises amino acids as primary source 

of nutrients for growth (Stahl et al., 2012). Amino acids are broken down through a 

deamination process. Compounds generated from this process, such as ammonia, can 

be used as a carbon source for bacterial metabolism (Velayudhan and Kelly, 2002, 

Velayudhan et al., 2004). Ammonia can also be utilised by C. jejuni as nitrogen source 

for amino acid metabolism (Velayudhan et al., 2004). 

The amino acids commonly utilised by C. jejuni are aspartic acid, glutamic acid, 

proline, asparagine and serine (Hofreuter et al., 2008, Wright et al., 2009). Aspartic 

acid, serine, asparagine and glutamic acid are the preferred amino acids. Only after the 

depletion of these preferred amino acids, will proline start to be consumed (Leach et 

al., 1997, Wright et al., 2009). However, there is some metabolic diversity amongst 

different C. jejuni species (Hofreuter et al., 2008). Serine, aspartic acid, asparagine, 

glutamic acid and proline are all metabolised by C. jejuni and also make up some of 

the most common amino acids found in chick excreta (Parsons et al., 1982). This fact 

might explain why chickens are the main reservoir of C. jejuni (Parsons et al., 1982). 

C. jejuni has the capacity to survive under different environments and hostile 

conditions, which could lead to a selective pressure and differences in amino acid 

metabolism identified in different Campylobacter species (Hofreuter et al., 2008). 

Furthermore, some strains might acquire genes resulting in an enhanced ability to 

utilise different amino acids. This capability can enhance virulence and cell 

colonisation (Hofreuter et al., 2008). Guccione et al. (2008) investigated amino acid 

depletion by C. jejuni from Mueller Hinton broth after 48 h growth. They 

demonstrated that glutamic acid, aspartic acid, serine and proline were depleted by 

more than 50% from the initial concentrations. They also demonstrated that when 

amino acids, such as glutamic acid, aspartic acid, serine, proline or glutamic acid, were 

added to MEMα media, the C. jejuni growth rate was increased (Guccione et al., 
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2008). 

Metabolism of amino acids generates different compounds such as acetate, lactate, 

pyruvate and succinate (Mendz et al., 1997). Pyruvate is the first metabolite generated 

and is efficiently used in energy metabolism (Mendz et al., 1997). C. jejuni 

metabolises serine to generate pyruvate, which is essential for synthesis of different 

amino acids (Berg et al., 2002). Pyruvate can also be converted to acetyl-CoA to enter 

the Krebs cycle to generate energy for C. jejuni cells (Mendz et al., 1997). 

 

1.3 Epidemiology 

C. jejuni is the leading cause of bacterial gastroenteritis in the world (Friedman et al., 

2004). Though this bacterium can be linked to outbreaks, most of the cases reported 

are sporadic (Pires et al., 2010). C. jejuni infections are a burden to developed 

economies due to hospitalisations and treatment (Pires et al., 2010). C. jejuni is the 

leading cause of food poisoning in the UK, believed to be responsible for over 280,000 

cases, hospitalisations costs around £900 million, and more than 100 deaths per year 

(FSA, 2016). 76% of retail chickens were contaminated in UK retail market in 2015 

(FSA, 2015). 

The gastrointestinal tract of avians is the main habitat of C. jejuni (Stanley et al., 2014). 

C. jejuni can also be found in different animal species, such as cattle, swine, dogs, cats 

and a variety of wild animals (Stanley et al., 2014). Most of the strains that infect 

humans come from poultry (Golz et al., 2014, FSA, 2016). However, pigs, ruminants 

and wild birds are also important sources of infection (Golz et al., 2014). Healthy 

animals can be infected without showing any symptoms (Young et al., 2007). Flies, 

wild birds, rodents, environmental contamination and staff are some of the important 

sources of infection for poultry flocks (Golz et al., 2014, Stanley et al., 2014). C. jejuni 

is considered to be commensal bacteria present in the chicken gut (Corry and Atabay, 

2001). However, Humphrey et al. (2014) demonstrated that infected birds developed 

inflammatory response against C. jejuni, and in certain poultry breeds the C. jejuni 

infection lead to diarrhoea. Other breeds have a more tightly regulated gut immune 

response to prevent excessive inflammation, leading to little or no symptoms in these 

birds (Humphrey et al., 2014). Variation in symptoms is suggested to be due to 
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differences in innate immunity amongst the different poultry breeds (Humphrey et al., 

2014). C. jejuni optimum growth temperature ranges from 37°C to 42°C. Avians have 

body temperature of 42°C, which is ideal for C. jejuni growth and may be another 

reason why poultry are the main reservoir of this microorganism (Corry and Atabay, 

2001).  

The consumption of undercooked poultry meat is considered to be the main source of 

Campylobacteriosis for humans (van Vliet and Ketley, 2001, Coker et al., 2002). 

Inappropriate handling of contaminated poultry meat can lead to cross contamination 

to other food sources (Luber et al., 2006). Unpasteurised milk and untreated water are 

also important sources of infection for humans (Levesque et al., 2008). C. jejuni and 

Campylobacter coli are the main species present in poultry flocks and in poultry meat 

(Powell et al., 2012). C. jejuni is responsible for around 85% and C. coli for around 

15% of the infectious cases in humans (Moore et al., 2005). However, infection by 

other Campylobacter species can also occur, such as Campylobacter lari, 

Campylobacter upsaliensis, Campylobacter fetus, Campylobacter 

concisus and Campylobacter ureolyticus (Moore et al., 2005, Mukhopadhya et al., 

2011). Studies indicate a low infectious dose with 400 to 500 bacteria enough to cause 

a disease in humans (Robinson, 1981, FDA, 2013). 

Chickens are usually contaminated during the first days of life. C. jejuni spreads 

rapidly through flocks, colonising close to 100% of birds (Berndtson et al., 1996, Golz 

et al., 2014). Birds are colonised at very high levels, between 106 to 109 CFU/g in the 

caecal contents (Corry and Atabay, 2001). Infected flocks cause cross contamination 

to carcasses due to faecal contamination during the slaughter process (Berndtson et 

al., 1996, Golz et al., 2014). Flocks free from C. jejuni can also become contaminated 

during the slaughter process through contact with contaminated equipment (Perko-

Makela et al., 2011). 

 

1.4 Campylobacteriosis in developed and developing countries 

C. jejuni is the predominant species in poultry meat in many countries around the 

world, including both developed and developing countries (Suzuki and Yamamoto, 

2009). In addition, chicken meat exhibits higher contamination than other poultry 
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meat, such as duck and turkey, becoming the most important source of contamination 

for humans (Little et al., 2008).  

In developed countries, the disease is most commonly seen in children under 4 years 

of age and young adults (Coker et al., 2002, Padungton and Kaneene, 2003a), while 

in developing countries, the disease is more relevant in children under 2 years of age 

and is characterised as a milder form of gastroenteritis (Coker et al., 2002, Padungton 

and Kaneene, 2003a). In such countries, C. jejuni is also commonly isolated from 

asymptomatic older children (Coker et al., 2002, Quetz et al., 2010). In Brazil, for 

example, C. jejuni is a common gastrointestinal infection amongst young children, and 

cases of infected children without symptoms have also been reported (Fernandez et 

al., 1985, Quetz et al., 2010, Quetz et al., 2012). In contrast, in developed countries, 

it is not common to isolate C. jejuni from asymptomatic humans (Coker et al., 2002). 

C. jejuni infection usually presents in developed countries as inflammatory, bloody 

diarrhoea, whilst in developing countries infection presents as watery, non-

inflammatory diarrhoea (Coker et al., 2002). It is believed that this occurs due to the 

early and frequent contact of children in developing countries with C. jejuni, which 

allows the development of immunity against Campylobacter (Blaser, 1997, Coker et 

al., 2002). Most likely, the first infection of a child in a developing country will result 

in inflammatory, bloody diarrhoea, although no published studies have investigated 

this (Taylor et al., 1993). However, studies have demonstrated that children in 

developing countries have higher levels of antibodies against C. jejuni than children 

in developed countries (Taylor et al., 1993). Therefore, C. jejuni infection becomes 

less common in older children and is not common in adults (Taylor et al., 1993, Coker 

et al., 2002). 

Developed countries commonly have surveillance programs to monitor the incidence 

of cases of C. jejuni infection (Padungton and Kaneene, 2003a). This is not the case 

in developing countries that normally do not have surveillance programs for this 

pathogen and neither are clinical laboratories able to detect this microorganism 

(Blaser, 1997, Padungton and Kaneene, 2003a). For this reason, the number of cases 

in developing countries is not accurately understood (Padungton and Kaneene, 2003a). 

In fact, the number of studies and published data is much higher in developed countries 

than in developing ones (Coker et al., 2002). Furthermore, the lack of information 
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about C. jejuni infections contributes to the non-existence of national programs to 

control poultry contamination (Padungton and Kaneene, 2003a). Some developing 

countries have low biosecurity measures to control pathogens and infectious diseases 

(Conan et al., 2012). Although enhanced biosecurity measures are used in farms in 

developed countries, contamination of poultry flocks still occurs (Ridley et al., 2011). 

Biosecurity measures help to reduce flock contamination. However, such measures 

still fail to prevent C. jejuni colonisation (Ridley et al., 2011). 

In Brazil, there are no surveillance programs to report Campylobacter infections. 

Therefore, the real dimension of Campylobacteriosis in Brazil is not known. 

Furthermore, clinical laboratories cannot isolate Campylobacter from faecal samples 

from patients suffering from diarrhoea because the methodology to isolate 

Campylobacter is different from other traditional enteropathogens (CCamp, 2016). 

Campylobacter has a fastidious growth and requires special incubation conditions and 

can easily lose culturability (Park, 2002). 

The prevalence of Campylobacter in chicken in Brazil varies. Some studies found the 

prevalence of Campylobacter in poultry in slaugtherhouses as high as 70% (Franchin 

et al., 2005, Franchin et al., 2007, Kuana et al., 2008, Chaves et al., 2010). Different 

studies also detected presence of Campylobacter in poultry products sold in Brazilian 

markets (Carvalho and Cortez, 2003, Freitas and Noronha, 2007, Silva et al., 2014). 

Fernandez et al. (1985) and Mendes et al. (1987) isolated Campylobacter from 

children with acute diarrhoea, but also from healthy children. A more recent study 

showed that 10% of children with diarrhoea had Campylobacter (Quetz et al., 2010). 

However, C. jejuni and C. coli were also isolated from asymptomatic children (Quetz 

et al., 2010, Quetz et al., 2012), which is a common occurrence in developing 

countries. 

 

1.5 Disease symptoms 

C. jejuni infection causes gastroenteritis in humans (Friedman et al., 2004). The 

symptoms can vary from watery, non-inflammatory diarrhoea to inflammatory, 

bloody diarrhoea (Coker et al., 2002). The disease is normally acute and self-limiting, 

with a 2 to 5-day incubation period and symptoms that persist for 7 to 10 days (Coker 
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et al., 2002, FDA, 2013). Other symptoms such as fever, vomiting and headaches can 

also occur (Allos, 2001). The infection can be severe if the infected individual has a 

compromised immune system (Coker et al., 2002, FDA, 2013). Irritable bowel 

syndrome can also be an outcome following Campylobacter infection (Spiller, 2007). 

Guillain-Barré Syndrome (GBS) is a complication arising from C. jejuni infection, 

with about 1.3 cases per 1,000 C. jejuni infections (Hughes and Rees, 1997). GBS is 

an autoimmune disease that affects the nervous system and leads to muscular paralysis 

(Hughes and Rees, 1997). GBS occurs due to the molecular mimicry by carbohydrates 

present in the bacterial LOS of human gangliosides (Yuki et al., 2004). This similarity 

can be due to the presence of sialic acid moieties in the LOS structure (Godschalk et 

al., 2007). Hence, once infected with C. jejuni, the human host generates antibodies 

that target initially the bacterial LOS structures and, once infection is cleared, the 

antibodies then attack the human peripheral nerve gangliosides, causing acute 

inflammatory demyelination and axonal degeneration of the peripheral nerves (Yuki 

et al., 2004, Nyati and Nyati, 2013). IgG antibodies are produced against the GM1 

ganglioside that are present in human peripheral nerves (Yuki et al., 2004). The 

damage to the peripheral nervous system leads to acute flaccid paralysis (Hughes and 

Rees, 1997). The individual presents with progressing weakness of the limbs and 

respiratory muscles. Most of the isolates obtained from patients with GBS have been 

reported as C. jejuni (Nachamkin et al., 1998, Nyati and Nyati, 2013). The risk of 

developing GBS is increased after infection with certain C. jejuni serotypes, such as 

the serotype O:19 based on Penner serotyping scheme (Yuki et al., 1997). Other 

serotypes, such as O:1, O:2, O:4, O:4 complex, O:5, O:10, O:16, O:23, O:37, O:44, 

and O:64 have also been linked to GBS (Nachamkin et al., 1998). However, host 

susceptibility factors may also affect the antiganglioside antibody production 

(Nachamkin et al., 1998). 

Miller Fisher Syndrome (MFS) is a variant of GBS causing ataxia, areflexia, and 

ophthalmoplegia (Willison and O'Hanlon, 1999). MFS is also an immune mediated 

neuropathy arising from the C. jejuni LOS structure that mimics human GQ1b and 

GT1a gangliosides (Willison and O'Hanlon, 1999, Dingle et al., 2001). 40% of people 

presenting with GBS or MFS can be associated with a prior C. jejuni infection (Dingle 

et al., 2001).  
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1.6 Bacterial surface structures 

The genome sequence of C. jejuni NTCT 11168 demonstrated the presence of 

hypervariable sequences that are responsible for expressing proteins involved in the 

biosynthesis or modification of carbohydrates structures, such as capsule, LOS and 

flagella (Parkhill et al., 2000). These hypervariable sequences arise from slip-strand 

mispairing during replication, which, in turn, lead to a phase variation altering surface 

proteins and antigenicity (Parkhill et al., 2000). Phase variation is a change in the 

translational reading frame leading to variation in protein expression or changes in the 

level of expression of one or more proteins in a bacterial population (Henderson et al., 

1999, van der Woude and Baumler, 2004). This change in gene expression is 

reversible (van der Woude and Baumler, 2004). Phase variation can be modulated by 

environmental conditions and can lead to antigenic variation (Deitsch et al., 2009). 

Phase variation is an important mechanism to evade host immune system. Through 

the alteration of surface antigens, the bacteria can avoid cross-immunity and enhance 

bacterial survival (Henderson et al., 1999, van der Woude and Baumler, 2004, Deitsch 

et al., 2009). Most phase variation systems require DNA replication (van der Woude 

and Baumler, 2004). Therefore, the reason for such extensive C. jejuni phase variation 

could be because of the lack of DNA repair enzymes that are commonly present in 

other bacteria (Parkhill et al., 2000). 

 

1.6.1 Capsule 

C. jejuni has a capsular polysaccharide (CPS) with a highly variable polysaccharide 

composition (Karlyshev et al., 2005a). CPS structures are the main components for 

serotyping determined by the Penner serotyping scheme of C. jejuni. Penner 

serotyping scheme identified 42 serotypes based on the diversity of antigens of the 

polysaccharide capsular structures of C. jejuni (Penner et al., 1983). 

Karlyshev and Wren (2001) were the first to demonstrate the presence of capsule in 

C. jejuni. They used the Alcian blue dye to stain the capsular polysaccharide, which 

was visualised by electron microscopy. This dye was shown to be better than 

traditional stains, such as silver stain (Karlyshev and Wren, 2001).  

C. jejuni kpsM gene is involved in CPS biosynthesis and capsule formation (Karlyshev 
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and Wren, 2001). kpsM gene is also a member of ABC transporter family involved in 

polysaccharide export (Karlyshev et al., 2000). A C. jejuni 11168H kpsM mutant 

failed to produce polysaccharide capsule and resulted in serotype changes based on 

Penner serotyping method (Karlyshev et al., 2000, Karlyshev and Wren, 2001). A C. 

jejuni 81-176 kpsM mutant also failed to express capsule, and exhibited reduced 

adhesion to and invasion of epithelial cells (Bacon et al., 2001). kpsE gene is also 

involved in capsule transport mechanism through the bacterial cell surface (Bachtiar 

et al., 2007). A C. jejuni 81-176 kpsE mutant failed to express capsule and had reduced 

capacity to adhere and invade human epithelial cells (Bachtiar et al., 2007). 

The capsule possesses highly variable polysaccharides due to slip-strand mispairing 

(Bacon et al., 2001). The host innate immune response is an important defense 

mechanism against C. jejuni infection, so phase variation of the CPS can modulate the 

host immune response (Maue et al., 2013). The genetic variation of CPS can change 

the surface structure, therefore, favoring evasion of the host immune response, which 

can also be important for adaptation to hostile environments (Karlyshev et al., 2005b). 

Keo et al. (2011) demonstrated that C. jejuni strains were resistant to human serum 

and that the capsule was essential for the serum resistance. CPS is important for C. 

jejuni survival in the environment. However, the role of CPS in bacterium–host 

relationships is not clarified yet (Karlyshev et al., 2005b). 

 

1.6.2 Lipooligosaccharide 

Lipooligosaccharide (LOS) plays a role in adhesion to and invasion of intestinal 

epithelial cells (Young et al., 2007). Strains with different LOS structures have shown 

variation in the ability to invade and colonise epithelial cells (Muller et al., 2007). 

LOS is highly variable in C. jejuni with 19 distinct classes of LOS identified in the 

biosynthesis loci (Parker et al., 2006). LOS can undergo phase variation altering the 

expression of LOS surface structures, which plays an important role in avoiding the 

host immune response (Guerry et al., 2002, Prendergast et al., 2004). Besides phase 

variation, insertion and deletion events can also generate variation in LOS structure 

(Parker et al., 2006). Furthermore, some strains can synthesise and incorporate sialic 

acid within the LOS structure, which affects immunogenicity and increases the 

bacteria resistance to human sera (Guerry et al., 2000). Sialylated LOS is also 
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important for invasion to host cells, as strains with sialylated LOS have been shown 

to invade epithelial cells at higher levels than strains with unsialylated LOS (Louwen 

et al., 2008). Sialylated LOS also reduces immunogenicity compared to unsialylated 

LOS, which has been shown to have a much stronger signal in a Western blot 

(Karlyshev et al., 2000). 

LOS is an important structure that contributes to antimicrobial resistance as this 

structure forms a diffusion barrier for macrolides across the outer membrane (Jeon et 

al., 2008, Keo et al., 2011). LOS can also protect against cationic antimicrobial 

peptides (Jeon et al., 2008, Keo et al., 2011). Conversely, CPS does not appear to have 

an important role in C. jejuni antimicrobial resistance (Jeon et al., 2008).  

Phase variation can hinder vaccine development because of the variability in LOS 

structures (Prendergast et al., 2004). Vaccines with LOS structures could lead to the 

induction of antiganglioside antibodies and to the development of autoimmune disease 

(Prendergast et al., 2004). 

 

1.6.3 Flagella 

C. jejuni is a highly motile bacterium which is mediated by polar flagella (Hendrixson 

and DiRita, 2004). The flagellum is located at one or both bacteria poles and has three 

main parts: the basal body, the hook, and the filament (Young et al., 2007). The 

filament is composed of two flagellins: FlaA (the major flagellin) and FlaB (the minor 

flagellin) (Nuijten et al., 1990). Both flagellins are around 59kDa and are 95% 

identical (Nuijten et al., 1990). The flagellins have different promoters, σ28 for flaA 

and σ54 for flaB (Hendrixson and DiRita, 2003). Both flagellins are required for a fully 

functional flagella (Joslin and Hendrixson, 2009). A C. jejuni 81116 flaB mutant 

exhibits reduced motility whilst a C. jejuni 81116 flaA mutant produces a truncated 

flagella and exhibits no motility (Wassenaar et al., 1991, Guerry, 2007). rpoN and fliA 

encode sigma factors which are important for flagellar expression in Helicobacter 

species (Sterzenbach et al., 2008). C. jejuni also demonstrated to have both regulators, 

fliA encodes σ28 and rpoN encodes σ54 (Jagannathan et al., 2001). A C. jejuni 11168 

fliA mutant produced a truncated flagellum, whereas a C. jejuni 11168 rpoN mutant 

showed complete absence of flagella (Jagannathan et al., 2001). 
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The expression of many flagella biosynthetic genes are controlled by σ54. However, 

the activation of the FlgSR two-component system is required for full expression of 

σ54-dependent flagellar genes (Hendrixson and DiRita, 2003, Joslin and Hendrixson, 

2009). FlgS is a sensor protein kinase and FlgR a response regulator (Wosten et al., 

2004). The sensor protein FlgS detects a signal and is activated by phosphorylation 

(Wosten et al., 2004). When FlgS is phosphorylated, FlgS transfers the phosphate to 

FlgR (Hendrixson and DiRita, 2003). The activation of FlgS is important for the 

activation of flagellar export apparatus (Joslin and Hendrixson, 2009). Phosphorylated 

FlgR activates σ54-dependent transcription of flagellar biosynthesis (Hendrixson and 

DiRita, 2003, Wosten et al., 2004). Activation of σ54 is essential for flagellar genes 

expression and, therefore, for the formation of the flagella structure (Joslin and 

Hendrixson, 2009). σ54 initiates the transcription of flagellar genes encoding proteins 

that form the basal body, rod and hook and FlaB, whereas σ28 controls expression of 

flaA (Hendrixson and DiRita, 2003, Guerry, 2007). 

FlgM is an anti-σ28 factor that represses σ28 activity in Helicobacter pylori (Colland et 

al., 2001). However, in C. jejuni 81-176, FlgM has only limited σ28-repressive activity. 

The overexpression of flgM did not result in any reduction in flaA transcription 

(Hendrixson and DiRita, 2003). Furthermore, mutation of fliA, the gene which encodes 

σ28, demonstrated that in the C. jejuni 81-176 strain there is a flaA σ28-independent 

promoter as the mutant expressed flaA at the same levels as the wild-type strain 

(Hendrixson and DiRita, 2003). 

Many C. jejuni genes undergo phase variation to regulate gene expression. Phase 

variation also regulates the expression flagellar biosynthesis (Hendrixson, 2006). 

Phase variation modulates gene expression and protein expression via reversible 

change in the length of short DNA sequence repeats (van der Woude and Baumler, 

2004). Phase variation mechanism regulates the expression of FlgSR (Hendrixson, 

2006). This regulatory system alters C. jejuni motility and colonisation capacity by 

adding or removing a nucleotide in the flgR gene (Hendrixson, 2006). This phase 

variable expression of FlgR has been suggested to be the reason for the commensal 

behaviour of C. jejuni strains in chickens as opposed to the invasion of host cells in 

humans (Hendrixson, 2006).  

Motility is important for invasion and colonisation of intestinal epithelial cells, and 
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the flagella is responsible for chemotaxis towards the host cell (Guerry, 2007). 

Motility is important for chick ceacal colonisation (Nachamkin et al., 1993). However, 

mutants displaying less motile phenotypes are still able to colonise the chick ceacum, 

but not at the same level as a fully motile wild-type strain (Nachamkin et al., 1993, 

Hendrixson and DiRita, 2004). The in vitro motility of C. jejuni increases in highly 

viscous solutions, probably because viscous solutions simulate the thick mucus lining 

of the intestinal epithelium (Guerry, 2007). Adhesion and invasion can also be 

increased in vitro in presence of viscous conditions (Guerry, 2007).  

Chemotaxis is the ability of a bacteria to migrate towards or away from chemical 

substances, allowing the bacteria to migrate towards more favourable conditions 

(Adler, 1966). C. jejuni has a chemotactic attraction towards amino acids, organic 

acids, components of mucin and bile (Hugdahl et al., 1988, Vegge et al., 2009). The 

highest chemotactic activity was towards L-serine and pyruvate (Vegge et al., 2009). 

L-serine and pyruvate are the preferred growth substrates, together with glutamine, 

glutamic acid, asparagine and proline (Hofreuter et al., 2008). Konkel et al. (2004) 

showed that mutation of flagellar genes responsible for the flagella assembly resulted 

in mutants that lost both motility and the ability to secrete proteins. C. jejuni uses the 

flagellum as type III secretion system for secretion of proteins (Goon et al., 2006). 

Flagellar mutants failed to produce FlaA and to secrete any of the Campylobacter 

invasion antigen (Cia) proteins (Konkel et al., 2004).  

A fully functioning flagella apparatus is required for secretion of proteins and for fully 

capacity to invade intestinal epithelium cells (Konkel et al., 2004). C. jejuni invasion 

antigens (Cia) identified to date are: CiaB, CiaC, CiaD and CiaI (Konkel et al., 2004, 

Christensen et al., 2009, Buelow et al., 2011, Samuelson et al., 2013). CiaB is required 

by C. jejuni F38011 strain for fully invasion of epithelial cells (Konkel et al., 2004). 

Mutation of ciaB in C. jejuni 81116 strain also had reduced ability to invade intestinal 

epithelium cells (Rivera-Amill et al., 2001). Novik et al. (2010) mutated ciaB in C. 

jejuni 81-176 strain. However, the mutant did not display defect in the ability to invade 

epithelial cells. These findings suggest that different wild-type strains may behave 

differently, or that there were significant differences amongst assays performed in the 

different studies (Novik et al., 2010). It is also possible that previous phenotypes 

observed were a result of phase variation (Novik et al., 2010). CiaC is required for 

maximal invasion of host epithelial cells by C. jejuni F38011 (Christensen et al., 
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2009). CiaD is required for cell invasion and for inducing secretion of IL-8 from 

epithelium cells (Samuelson et al., 2013). CiaI is required for intracellular survival in 

epithelial cells by probably preventing the fusion of Campylobacter-containing 

vacuoles with the lysosome (Buelow et al., 2011). 

FlaC has amino acid similarities to FlaA and FlaB and is highly conserved amongst 

different Campylobacter species (Song et al., 2004, Faber et al., 2016). However, FlaC 

is not required for flagella structure nor for motility as flaC mutants showed no defect 

to the flagellum structure nor alteration of the cell shape (Song et al., 2004). FlaC is 

secreted to the extracellular milieu but can also be found in the cytoplasm and 

periplasm (Song et al., 2004). Secreted FlaC binds to the surface of epithelial cells of 

both human and chicken cells (Song et al., 2004, Faber et al., 2016). Further 

investigation has shown that a flaC mutant binds to HEp-2 at the same level as the 

wild-type strain, but exhibits reduced invasion (Song et al., 2004). Recently, FlaC has 

been shown to bind to human toll-like receptor 5 (TLR) and to have the capacity to 

modulate the host immune system (Faber et al., 2016). Recombinant FlaC did not 

induce pro-inflammatory cytokines in both human and chicken cells (Faber et al., 

2016). However, both C. jejuni 11168 flaC mutant and a C. jejuni 81-176 flaC mutant 

demonstrated to induce pro-inflammatory cytokines at higher level than the 

corresponding wild-type strains (Faber et al., 2016). This indicates the importance of 

FlaC in the modulation of the innate immune response and suggests that FlaC plays 

an important role in chronic colonisation (Faber et al., 2016). 

 

1.7 Toxin production 

Cytolethal Distending Toxin (CDT) is a toxin produced by C. jejuni. CDT arrests both 

HeLa and Caco-2 cells in the G2 phase of the cell cycle during mitosis (Whitehouse 

et al., 1998). The cells become distended and with chromatin anomalies that lead to 

cell death (Whitehouse et al., 1998). Cyclin-dependent kinases (CDKs) are essential 

for regulation of the cell cycle in yeast and bacteria (Doree and Hunt, 2002). The 

protein kinase activity of cdc2 is important for cell mitosis, and in order to become 

active, cdc2 needs to be dephosphorylated (Comayras et al., 1997). CDT interferes 

with cdc2 phosphorylation. CDT blocks dephosphorylation, maintaining the 

hyperphosphorylated form of cdc2, which is the non-active form, thus not allowing 
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mitosis to continue (Comayras et al., 1997, Whitehouse et al., 1998). 

CDT is produced by different Campylobacter species, such as C. coli and C. fetus 

(Asakura et al., 2007b). CDT has also been identified in other bacteria, such as 

Escherichia coli (Comayras et al., 1997) and Actinobacillus actinomycetemcomitans 

(Shenker et al., 2000). CDT is encoded by three genes: cdtA, cdtB and cdtC, within a 

single operon and thus transcribed as a single mRNA (Jeon, 2005). All three genes 

need to be expressed for a functional toxin (Lara-Tejero and Galan, 2001). All three 

CDT proteins are required for the induction of IL-8 from intestinal epithelial cells 

(Hickey et al., 2000).  

CdtB has shown amino acid sequence homology to mammalian DNases (Elwell and 

Dreyfus, 2000).  CdtB has a motif found in all DNase I (Elwell and Dreyfus, 2000). 

The CdtB subunit has been shown to penetrate the nucleus of the host cell and cleave 

DNA (Lara-Tejero and Galan, 2001). CdtB DNase activity could be responsible for 

the cell cycle arrest (Elwell and Dreyfus, 2000). The DNA damaged cells then recruit 

repair responses to the double stranded DNA breaks (Hassane et al., 2003). A C. jejuni 

11168 cdtB mutant showed no cytotoxicity against HeLa cells (Purdy et al., 2000), 

whilst a C. jejuni 81-176 cdtB mutant showed a residual low level of cytotoxicity, 

which indicates that some species can produce more than one toxin (Purdy et al., 

2000). Different putative Campylobacter toxins have been described, such as 

hemolytic cytotoxins (Wassenaar, 1997). Based in microarray analysis, Cj0183, 

Cj0588 (tlyA), Cj0959 and Cj1351 (pldA) encode putative haemolysins in C. jejuni 

(On et al., 2006). 

The roles of the CdtA and CdtC subunits are not yet fully understood. However, it is 

suggested that both CdtA and CdtC could adhere to cell surface receptors to translocate 

CdtB into the host cell since the incubation of intestinal epithelial cells with either 

CdtA, CdtB or CdtC alone did not result in cytotoxicity (Lara-Tejero and Galan, 

2001). Cytotoxicity was only observed if all three purified proteins were incubated 

together with the epithelial cells (Lara-Tejero and Galan, 2001). 

 

1.8 Adhesion and Invasion 

Adherence to intestinal epithelial cells is essential for cell colonisation and disease 
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development (Konkel et al., 2010). The ability of C. jejuni to cause disease relies on 

multiple different factors, such as motility, adhesion to the host cell, invasion, cell 

death, protein secretion, immune defence evasion, drug resistance, and iron acquisition 

(Konkel et al., 2001). 

Human intestinal epithelial cells are considered the best model to study 

Campylobacter pathogenicity because of the lack of a suitable animal model to 

represent the disease in humans (Friis et al., 2005). Campylobacter strains that were 

shown to be more invasive in an in vitro epithelial cell model also had stronger ability 

to colonise the gastrointestinal tract of chicks (Hanel et al., 2004). Campylobacter 

exhibits maximum adherence to epithelial cells when grown at 37ºC, and exhibits 

decreased adherence when grown at 42ºC, and a further decrease when grown at 30ºC 

(Konkel et al., 1992). Different bacterial media compositions were shown not to affect 

the adherence capability of the bacteria (Konkel et al., 1992). 

LOS, flagella and other outer membrane components may also play a role in 

adherence, but it is not well understood how important these factors are (Konkel et al., 

1992). Flagella play an important role in C. jejuni adhesion to and invasion of human 

host cells (Wassenaar et al., 1991). A 81116 flaB mutant remains motile and 

maintained the ability to adhere to and invade epithelial cells (Wassenaar et al., 1991). 

However, when the flaA gene was mutated, this mutant lost motility and had a reduced 

ability to adhere to and invade epithelial cells (Wassenaar et al., 1991). A fully 

functional flagella is important for host cell invasion as motility allows bacterial 

migration toward host cells to enable interaction (Wassenaar et al., 1991). The authors 

also concluded that flagella do not have adhesive properties (Wassenaar et al., 1991). 

C. jejuni expresses important adhesins, such as CadF, FlpA, JlpA, PEB1 and Cj1379c 

(Flanagan et al., 2009). cadF, jlpA, peb1A, porA, flpA and Cj1349c are highly 

conserved amongst C. jejuni strains (Pei and Blaser, 1993, Konkel et al., 1997, 

Flanagan et al., 2009). 

Intestinal epithelial cells possess fibronectin, which is a glycoprotein responsible for 

cell-to-cell interactions and interaction with the extracellular matrix (Pankov and 

Yamada, 2002). The extracellular matrix is responsible for binding the cells together 

(Pankov and Yamada, 2002). Integrins are transmembrane receptor proteins that bind 

cells to fibronectin, connecting the extracellular membrane to the cell cytoskeleton 
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(Pankov and Yamada, 2002). C. jejuni was found to bind to the extracellular 

fibronectin (Konkel et al., 1997, Moser et al., 1997).  

C. jejuni cells make contact with epithelial cells through surfaces adhesins, which bind 

to fibronectin, integrin and caveolin present on the surface of intestinal epithelial cells 

(Ó Croinin and Backert, 2012). This initiates the formation of pseudopods that extend 

around the bacteria due to cell cytoskeleton reorganisation to complete the bacterial 

internalisation (Konkel et al., 1992). C. jejuni uses a combination of “zipper” and 

“trigger” mechanisms for cell internalisation (Ó Croinin and Backert, 2012). However, 

how C. jejuni triggers rearrangement of microfilaments and microtubules of host cells 

for internalisation is still unclear (Ó Croinin and Backert, 2012). 

C. jejuni can also transmigrate through the epithelial cell barrier using paracellular or 

transcellular routes (Backert et al., 2013). The paracellular route requires that the 

bacteria break tight junctions and E-cadherin-based adherens junctions, which are 

responsible for attachment of the epithelial cells together (Backert et al., 2013). C. 

jejuni is able to migrate in between the intestinal epithelial cells to bind to the 

fibronectin located on the basolateral surface of these cells (Monteville and Konkel, 

2002). With the transcellular route, the bacteria invade the host cells and exit at the 

basolateral membrane (Backert et al., 2013). The actual transmigration mechanism in 

C. jejuni is still controversial (Backert et al., 2013) 

Konkel et al. (1997) discovered a C. jejuni adhesin with fibronectin binding capacity 

which was named CadF and later was shown to have a fibronectin binding domain 

(Konkel et al., 2005). A C. jejuni 81-176 cadF mutant and a F38011 cadF mutant were 

shown to exhibit reduced binding to fibronectin, binding less than 10% compared to 

wild-type levels (Monteville et al., 2003). Therefore, CadF was shown to be an 

important factor in host cell interactions, as the lack of CadF reduced the adherence 

and internalisation of C. jejuni to epithelial cells (Monteville et al., 2003).  

FlpA was also identified as an important adhesin in C. jejuni (Konkel et al., 2010). 

FlpA contains fibronectin type III domains, which are extracellular exposed domains 

(Flanagan et al., 2009, Konkel et al., 2010). A C. jejuni F38011 flpA mutant exhibited 

reduced adhesion in in vitro human epithelial cell assay and also showed reduced 

ability to colonise chicks (Flanagan et al., 2009, Konkel et al., 2010). FlpA also binds 

to fibronectin, but a C. jejuni F38011 flpA mutant exhibited reduced fibronectin 
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binding affinity compared to a C. jejuni F38011 cadF mutant (Konkel et al., 2010). 

PEB1 is another important adhesin in C. jejuni and is encoded by peb1A (Pei et al., 

1998). A peb1A mutant exhibited reduced adhesion and invasion to in vitro intestinal 

epithelial cells compared to the C. jejuni 81-176 wild-type strain (Pei et al., 1998). 

Mutation of peb1A also reduced the duration and the colonisation rate in mice. 

However, PEB1 may also play a role in nutrient transport (Pei et al., 1998). PEB1 is 

an orthologue of the binding component in amino acid transport systems in other 

bacterial species (Pei and Blaser, 1993). Therefore, it has been suggested that PEB1 is 

the binding component of the C. jejuni ABC transport system as PEB1 locus has 

similarities with other membrane binding receptors (Pei et al., 1998). Although in 

other bacteria the protein binding of the transport system is located in the periplasmic 

space, PEB1 is located on the bacteria membrane (Pei and Blaser, 1993). PEB1 is a 

highly antigenic protein that induces a strong immunologic response and showed to 

have effective immunological protection in mice (Pei et al., 1998, Du et al., 2008).  

JlpA is a surface lipoprotein with an adhesion role in C. jejuni (Jin et al., 2001). A jlpA 

mutant decreased adhesion and invasion in vitro compared to the wild-type strain (Jin 

et al., 2001). Antibodies against JlpA also reduced bacterial adherence to HEp-2 cells 

(Jin et al., 2001). JlpA binds to HEp-2 cell receptor that activates NF-κB initiating an 

inflammatory response (Jin et al., 2003). JlpA and Cj1349c have been shown not to 

be essential for in vivo chick colonization. However, CadF, PEB1 and FlpA exhibited 

an important role in chick colonisation as the respective mutants had reduced 

colonisation ability (Flanagan et al., 2009).  

porA encode a major outer-membrane protein (MOMP) in C. jejuni (Islam et al., 

2010). PorA is involved in ion transport across the outer membrane (Islam et al., 

2010). PorA also plays a role in adhesion to host epithelium cells and to extra-celullar 

matrix (Moser et al., 1997). The porA locus has a great genetic diversity, as every 

distinct sequence encodes a novel peptide which provides positive immune selection 

(Cody et al., 2009). However, PorA also has conserved regions with common 

antigenic epitopes amongst strains (Islam et al., 2010). 
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1.9 Glycosylation systems 

C. jejuni possesses two important glycosylation systems: N-linked and O-linked 

glycosylation, which add glycans to proteins as a post-translational modification 

(Szymanski et al., 2003). This modification is important for protein folding, stability 

and adhesion to epithelial cells (Szymanski et al., 2003). Many C. jejuni proteins 

undergo glycosylation to be fully functional (Szymanski and Wren, 2005).  

 

1.9.1 O-linked glycosylation 

C. jejuni O-linked glycosylation is required for flagella filament assembly (Szymanski 

et al., 2002). Defects in the glycosylation process can cause loss of motility and 

deficiency in adhesion to and invasion of host cells (Szymanski et al., 2002, Young et 

al., 2007). The lack of glycosylation on key residues can hinder filament assembly, 

produce strains with reduced motility or produce truncated flagella filaments (Ewing 

et al., 2009). O-linked glycosylation genes in the glycan biosynthetic locus are 

hypervariable resulting in variation between different strains (Ewing et al., 2009). This 

region is one of the most variable between C. jejuni genomes (Parkhill et al., 2000, 

Dorrell et al., 2001). Therefore, flagellin glycosylation varies amongst different 

strains, which contributes to antigenic diversity and avoidance of the host immune 

response (Guerry, 2007).  

O-linked glycosylation is responsible for modifying 19 serine and threonine residues 

in the flagellin from the C. jejuni 81-176 strain (Thibault et al., 2001). C. coli 

VC167 had at least 16 amino acid residues glycosylated in the flagellin (Logan et al., 

2002). Alteration in the glycosylation process changes the serospecificity of the 

flagellar filament (Logan et al., 2002). Most of the modified residues in C. jejuni 81-

176 are in the central domain of the flagellin. However, one residue is exposed on the 

surface of the flagellin (Thibault et al., 2001). The glycosylation locus in C. jejuni 

11168 possesses 24 more genes than the 81-176 strain (Guerry et al., 2006). However, 

only 9 common genes in both strains seem to affect the glycosylation of flagellin 

(Guerry et al., 2006). The main sugar used in the O-linked glycosylation is the 

monosaccharide 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-

nonulosonic acid (pseudaminic acid, Pse, which is similar to sialic acid) and its 
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acetamidino derivative (PseAm) (Thibault et al., 2001, Logan et al., 2002). Mutation 

of Cj1293 responsible for pseudaminic acid biosynthesis generated a non-motile 

aflagellated C. jejuni 81-176 strain with accumulated unglycosylated flagellin in the 

cytoplasm, whilst a C. coli VC167 Cj1293 mutant replaced Pse with PseAm and 

retained motility (Goon et al., 2003). Cj1324 also has a role in flagellin glycosylation, 

as an 11168H Cj1324 mutant showed an absence of the glycans Leg5Am7Ac and 

Leg5AmNMe7Ac on the flagellin and exhibited a defect in chick colonisation 

(Howard et al., 2009). 

 

1.9.2 N-linked glycosylation 

N-linked glycosylation links glycans to asparagine residues in many proteins, 

associated with the motif Asp/Glu-X1-Asn-X2-Ser/Thr, where X is any amino acid 

except for proline (Nothaft and Szymanski, 2010). Carbohydrates attached to proteins 

are important in different manners: signal transduction, protein folding, stability, cell 

interactions and host immune response (Nothaft and Szymanski, 2010). 

Originally, a gene locus that encoded enzymes involved in the glycosylation of 

multiple proteins in C. jejuni was identified (Szymanski et al., 1999). This locus was 

named pgl for protein glycosylation and is highly conserved amongst C. jejuni and C. 

coli strains (Szymanski et al., 1999).  

The C. jejuni glycosylation system (Figure 1.1) produces a heptasaccharide in the 

cytoplasm from a uridine diphosphate-activated N-acetylglucosamine (UDP-

GlcNAc), PglF (C6 dehydratase) generates UDP-2-acetamido-2,6-dideoxy-D-xylo-4-

hexulose (a UDP-4-keto-sugar), PglE (aminotransferase) transfers the amino group 

from L-glutamate to UDP-4-keto-sugar forming UDP-2-acetamido-4-amino-2,4,6-

trideoxy-α-D-glucose (UDP-4-amino-sugar). Then PglD acetylates the compound 

from acetyl CoA, forming UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucose (UDP-

diNAcBac). After this, PglC forms diNAcBac-α1-PP-Und. Then PglA adds a UDP-

GalNAc to form GalNAc-α1,3-diNAcBac-α1-PP-Und. PglJ adds an α1,4-GalNAc 

residue to the compound. PglH adds three α1,4-linked GalNAc residues to the glycan 

chain. Finally, PglI adds a β1,3-linked glucose branch. PglK is a flippase responsible 

for translocating the heptasaccharide across the inner membrane to the periplasm. 
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PglB is an oligosaccharyltransferase responsible for releasing the oligosaccharide into 

the periplasm or for transferring the oligosaccharide to a protein with the following 

sequence Asp/Glu-X1-Asn-X2-Ser/Thr, in which X1 and X2 are any amino acid except 

Proline (Nothaft and Szymanski, 2010). 

 

Figure 1.1 The mechanism of block transfer for Campylobacter jejuni, 

which is the prototype for the bacterial N-linked protein glycosylation 

system. The undecaprenyl pyrophosphate-linked heptasaccharide is 

assembled in the cytosol by the addition of the indicated sugars from 

nucleotide-activated donors. The complete heptasaccharide is translocated 

across the inner membrane into the periplasm by the protein glycosylation 

K (PglK) protein, an ATP-binding cassette (ABC)-type transporter. The 

oligosaccharide is transferred to the amino group of Asn in the protein 

consensus sequence (Asp/Glu-X1-Asn-X2-Ser/Thr, in which X1 and X2 are 

any amino acid except Proline), or released into the periplasm as free 

oligosaccharides (fOS) by the oligosaccharyl transferase (OTase) PglB. 

In C. jejuni, the fOS/N-glycan ratio is approximately 10/1 under standard 

growth conditions. Reproduced from Nothaft and Szymanski (2010). 
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Mutations in the pgl locus resulted in mutants with altered antigenicity (Szymanski et 

al., 1999), as deglycosylation can result in the protein losing immunogenicity 

(Thibault et al., 2001). A total of 130 proteins have been shown to be N-glycosylated 

with 75 glycosylation sites identified (Scott et al., 2011). 81-176 plgB and pglE 

mutants showed a decreased capacity to adhere to and invade intestinal epithelial cells 

(Szymanski et al., 2002). 

Larsen et al. (2004) demonstrated that PglB and PglE are important for the natural 

transformation of C. jejuni. Larsen et al. (2004) also demonstrated that the type IV 

secretion system protein VirB10 is inactive in the non-glycosylated form. It has also 

been suggested that N-linked glycosylation of C. jejuni surface proteins can protect 

against cleavage from gut proteases (Alemka et al., 2013). 

The C. jejuni pgl locus has been demonstrated to function when cloned into E. coli 

(Wacker et al., 2002) and is a better alternative for generating conjugate vaccines than 

conventional chemical methods (Nothaft and Szymanski, 2010). PglB attaches 

polysaccharides to proteins. This process enhances host immune response and can 

prevent colonisation and infection of pathogens (Cuccui and Wren, 2015). Therefore, 

polysaccharide conjugates from pathogenic bacteria can be produced in E. coli using 

the C. jejuni N-glycosylation system as an alternative for vaccines against bacterial 

pathogens (Cuccui and Wren, 2015). 

 

1.10 Vaccines 

Chickens start producing antibodies against Campylobacter once colonisation occurs. 

Chickens produce IgG, IgA and IgM Campylobacter-specific antibodies (Widders et 

al., 1998, de Zoete et al., 2007, Humphrey et al., 2014). The increase of serum 

antibodies against Campylobacter has been demonstrated to reduce the bacterial 

concentration in chicken faeces (de Zoete et al., 2007). No vaccine developed so far is 

capable of preventing Campylobacter infection/colonisation of poultry (Hermans et 

al., 2011). All developed vaccines had limited success. The best vaccines could only 

reduce the level of Campylobacter colonisation in the chicken gut (de Zoete et al., 

2007, Hermans et al., 2011). Different types of vaccines have been tested, such as 

whole cell lysate, surface-exposed subunit vaccines, and antigens vectored by 
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microrganisms (Layton et al., 2011, Neal-McKinney et al., 2014, Meunier et al., 

2016). Vaccines still need improvement and further investigation to increase the level 

of protection to boost a strong intestinal immune response (de Zoete et al., 2007, 

Jagusztyn-Krynicka et al., 2009). Investigation into the expression of surface proteins 

during human/chicken colonisation is essential to improve the vaccine development 

(de Zoete et al., 2007, Jagusztyn-Krynicka et al., 2009). A Campylobacter vaccine 

must be highly immunogenic and must provide cross protection against different 

Campylobacter strains (Hermans et al., 2011). If a subunit is chosen as a good 

immunogenicity candidate, this protein must be conserved amongst different strains 

(Meunier et al., 2016). Campylobacter vaccines for humans are also being 

investigated. However, tests in humans are rarely performed due to the possibility of 

inducing GBS (Jagusztyn-Krynicka et al., 2009). One study demonstrated that humans 

develop anti-Campylobacter antibodies after being infected (Black et al., 1988). High 

levels of antibodies in humans can reduce the risk of Campylobacter infection (Black 

et al., 1988, Walz et al., 2001). 

The best strategy to control Campylobacter infections is to combine different 

strategies: 1 - biosecurity measures which are important to avoid flock contamination; 

2 - reduce Campylobacter carriage in the gut (vaccination, nutritional measures, 

probiotics); 3 - antimicrobial alternatives, such as bacteriophages and bacteriocin 

treatments (Jagusztyn-Krynicka et al., 2009). Farm biosecurity measures are difficult 

to implement, but important to prevent flock contamination effectively (Newell et al., 

2011). However, no clear route on how Campylobacter infects flocks has been 

established (Newell et al., 2011). Vaccination can reduce the level of colonisation in 

poultry. However, vaccines cannot yet eliminate Campylobacter. To efficiently 

control Campylobacter, all these different measures need to be combined to reduce 

the level of contamination on flocks and, as a result, to reduce human exposure to this 

bacterium (Newell et al., 2011). Some nutritional compounds, such as fatty acids, have 

an antimicrobial effect, and can reduce the level of Campylobacter in the chicken gut 

(Meunier et al., 2016). Probiotics and phage treatment can also reduce the level of 

Campylobacter in the chicken gut (Messaoudi et al., 2011, Ghareeb et al., 2012, 

Meunier et al., 2016). Nutritional additives and bacteriophages can be administered 

before slaughter to reduce the level of gut contamination since they are not efficient 

in the long term (Hermans et al., 2011). 
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1.11  Secretion systems 

Secretion systems are important for all bacteria to survive under environmental 

conditions or to interact with host cells (Wang et al., 2015). Gram-negative bacteria 

contain numerous secretion systems to transfer bacterial proteins from the cytoplasm 

to the periplasm or through the outer membrane (Costa et al., 2015). The secreted 

compounds can be released to the extracellular space. However, some secretion 

systems can deliver proteins directly into the cytoplasm of a target cell (Guerry, 2007). 

The general secretion pathway (Sec-pathway) and the twin arginine translocation (Tat-

pathway) are secretion systems found in eukaryotes and prokaryotes (Mori and Ito, 

2001).  

Tat and Sec only span the cytoplasmic membrane and allow the passage of proteins 

through the cytoplasmic membrane to the periplasmic space (Natale et al., 2008). The 

Tat system mainly transports folded proteins and cofactors, whilst the Sec system 

transports unfolded proteins (Mori and Ito, 2001). Tat co-factors are found in the 

cytoplasm and periplasm of bacteria, whilst Sec co-factors are only found in the 

periplasm (Natale et al., 2008). Both pathways secrete proteins with diverse functions, 

such as Sec-pathway: substrate uptake and excretion, cell envelope structure, sensing 

and cell communication; Tat-pathway: respiratory energy metabolism, cell division, 

cell motility, iron and phosphate acquisition, quorum sensing (Natale et al., 2008). 

More specialised secretion systems have been described in prokaryotes. Six secretion 

systems have been identified in Gram-negative bacteria: type I secretion system 

(T1SS), type II secretion system (T2SS), type III secretion system (T3SS), type IV 

secretion system (T4SS), type V secretion system (T5SS) and type VI secretion system 

(T6SS) (Costa et al., 2015). 

T1SS, T2SS, T3SS, T4SS and T6SS all span both the cytoplasmic and outer 

membrane, whilst the T5SS spans only the outer membrane of the cell (Costa et al., 

2015). T2SS and T5SS use a two-step secretion mechanism, whilst all the others use 

only a one-step secretion mechanism, secreting proteins from the cytoplasm directly 

to the extracellular space or host cell (Costa et al., 2015). 

The T3SS is specific for the transport of factors by pathogenic bacteria (Kuehn and 

Kesty, 2005). However, C. jejuni lacks a T3SS that is important for virulence for many 
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other enteropathogenic bacteria (Parkhill et al., 2000, Guerry, 2007). 

 

1.11.1 Type VI Secretion System 

One of the functions of the T6SS is to deliver effectors to other bacteria competing in 

the same environment (Salomon et al., 2014). These effectors give a survival 

advantage in a specific niche, e.g. phospholipases (Wang et al 2015). DNases are 

delivered to attack neighbouring cells (Wang et al 2015). The T6SS is required for full 

virulence in various bacteria (Tseng et al., 2009). The T6SS has a cluster of 13 

conserved genes that are present with at least one copy in the genome (Basler et al., 

2012, Wang et al., 2015).  

The structure of the T6SS is very similar to a contractile tail of bacteriophages 

(Salomon et al., 2014). VgrG (valine glycine repeat) and PAAR (repeat-containing 

proteins) form a structure similar to a phage spike (Pukatzki et al., 2007, Salomon et 

al., 2014). Hcp (hemolysin-coregulated protein) forms the structure homologous to a 

phage tube protein (Kudryashev et al., 2015). Hcp and VgrG are required to form the 

T6SS structure, but are also secreted to the extracellular milieu (Pukatzki et al., 2007). 

Studies demonstrated that Hcp is assembled in hexametric rings to form a tubular 

structure to deliver proteins or virulence factors (Ho et al., 2014). It has also been 

shown that the Hcp tubular structure has homology to the phage lambda tube protein 

and shows an evolutionary relationship between the T6SS and phages (Pell et al., 

2009). Mutation of hcp or vgrG in Vibrio cholerae stopped the secretion of proteins 

substrates. Both mutants also showed reduced cytotoxicity towards macrophages 

(Pukatzki et al., 2007). 

The 13 conserved genes of the T6SS have been renamed tssA to tssM (Shalom et al., 

2007). The 13 belonging to the T6SS are described in Table 1.1. 

TssB and TssC form a tubular structure that is assembled around the TssD (Hcp) tube, 

similar to a sheath, and attached to the bacterial membranes (Basler et al., 2012). 

TssB/TssC are homologues of VipA/VipB in V. cholerae and E. coli, which form a 

long contractile sheath structure (Basler et al., 2012, Kudryashev et al., 2015). It is 

believed that the contraction of the sheath is responsible for the process of 

translocating the effectors through the TssD tube across the membrane (Kudryashev 
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et al., 2015).  

icmF homolog is a conserved gene present amongst T6SS gene cluster (Bingle et al., 

2008). IcmF is present in T4SS Legionella pneumophila, which is an accessory protein 

associated with ATPase (Bingle et al., 2008). ATPase activity is important to power 

the T6SS to secrete proteins (Wang et al., 2015).  

TssH (ClpV) is cytoplasmic ATPase responsible for recognising the contracted T6SS 

sheath (Kapitein et al., 2013, Kudryashev et al., 2015). ClpV disassembles contracted 

VipA/VipB tubules in V. cholera allowing formation of functional elongated tubules 

(Kapitein et al., 2013). 

https://en.wikipedia.org/wiki/Legionella_pneumophila
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Table 1.1 List of core T6SS genes, homologues and putative functions. 

Gene Homologues Putative function 

tssA impA, vasJ Unknown function 

tssB impB, vipA Homologous to T4 phage contractile tail 

sheath proteins 

tssC impC, vipB Homologous to T4 phage contractile tail 

sheath proteins 

tssD hcp Effector/Structure: Homologous to T4 

phage tube 

tssE impF, vasS Essential baseplate protein similar to T4 

phage gp25 proteins 

tssF impG, vasA Unknown function 

tssG impH, vasB Unknown function 

tssH clpV, vasG ATPase / effector chaperon / recycling 

TssB/TssC 

tssI vgrG Effector/structure: forms the T6SS 

piercing structure 

tssJ vasD, lip Anchoring T6SS to cell wall 

tssK impJ, vasE Unknown function 

tssL ompA, dotU Anchoring T6SS to cell wall 
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tssM vasK, icmF Anchoring T6SS to cell wall 

Tss (type VI secretion) genes refers to the T6SS gene nomenclature proposed by 

(Shalom et al., 2007). These genes have been shown to be essential for secretion of 

at least two proteins, Hcp and VgrG and are conserved in the genome sequence of 

over 100 different bacteria encoding a T6SS similar to the prototype described by 

(Pukatzki et al., 2009). Table reproduced from Shyntum et al. (2014). 

 

1.11.2 T6SS is important for bacterial resistance to oxidative stress 

Wang et al. (2015) demonstrated that the T6SS has a role in oxidative stress resistance. 

The Yersinia pseudotuberculosis T6SS-4 is regulated by OxyR (a global oxidative 

stress regulator) and the expression of the T6SS is induced in the presence of hydrogen 

peroxide (H2O2). Furthermore, mutants lacking important structural genes of the 

T6SS-4 are more sensitive to oxidative stress compared to the Y. pseudotuberculosis 

wild-type strain and accumulated higher amounts of reactive oxygen species (Wang 

et al., 2015). The T6SS has an important role not only in resistance to oxidative stress 

conditions, but also to high osmolality and low pH (Wang et al., 2015). 

Wang et al. (2015) also demonstrated that the T6SS is involved in uptake of ions, such 

as Zn2+ under stress conditions. Zn2+ is required for bacterial survival under oxidative 

stress conditions, specially required for attenuation of hydroxyl radicals (Wang et al., 

2015). 

Zinc is an important co-factor for several enzymes and has an antioxidant role (Eide, 

2011). However, higher concentrations of zinc can be toxic. Therefore, zinc 

homeostasis has to be tightly regulated in both bacterial cells and eukaryotic cells 

(Davis et al., 2009). Host cells can release zinc at the mucosal level as an innate 

defence mechanism against pathogens (McDevitt et al., 2011). Zinc deficiencies 

increase oxidative stress within the cells and cause DNA damage in rat blood cells 

(Song et al., 2009). The mechanisms by which zinc reduces oxidative stress are not 

yet clear (Song et al., 2009), and neither is the mechanism how zinc can provide 

protection against pathogens (McDevitt et al., 2011). 
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The T6SS may be important for zinc uptake in bacteria. However, it has been 

suggested that C. jejuni has a ZnuABC system that can also uptake zinc (Davis et al., 

2009). The ZnuABC system is required for C. jejuni survival in a low zinc 

environment and for chick colonisation (Davis et al., 2009). Zinc homeostasis is very 

important for C. jejuni during the infectious cycle, playing a major role in the ability 

of C. jejuni to survive within host cells (Davis et al., 2009). 

Bacillus subtilis was shown to survive H2O2 stress in the presence of zinc, 

demonstrating the important role of zinc in oxidative stress resistance (Gaballa and 

Helmann, 2002). The same study also showed that a B. subtilis perR mutant was 

dependent on zosA (P-type metal-transporting ATPase) expression, which is up-

regulated by H2O2 and repressed by PerR, which also has an important role in 

protecting cells against peroxide stress (Gaballa and Helmann, 2002). 

 

1.11.3 Outer membrane vesicles 

Outer membrane vesicles (OMV) are utilized by Gram-negative bacteria to deliver 

virulence factors to the extracellular environment (Kuehn and Kesty, 2005). C. jejuni 

lacks the virulence-associated secretion systems present in most enteric pathogens, 

such as a T3SS or T4SS (Guerry, 2007). The flagella apparatus is similar to a T3SS 

that could deliver virulence factors outside C. jejuni cells (Konkel et al., 2004). 

Therefore, the delivery of pathogenicity factors through OMVs is an especially 

important feature for C. jejuni (Elmi et al., 2012).  

OMVs are secreted by Gram-negative bacteria, both pathogenic and non-pathogenic 

species (Beveridge, 1999). OMVs consist of a spherical bilayer membrane with a 

diameter ranging from 50 to 250 nm (Beveridge, 1999, Kuehn and Kesty, 2005). The 

external membrane of the OMV is composed of LOS/LPS and the internal membrane 

is composed of phospholipids and lipoproteins (Logan and Trust, 1982, Kuehn and 

Kesty, 2005). Surface proteins and carbohydrates are antigens for the host immune 

response (Logan and Trust, 1982). OMVs also have surface-exposed adhesins and 

receptors (Kulp and Kuehn, 2010). OMVs are formed from small portions of the outer 

membrane that bleb away and are released from the cell (Figure 1.2) (Kulp and Kuehn, 

2010).  
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Figure 1.2 Model of vesicle biogenesis. OM vesicles are proteoliposomes 

consisting of OM phospholipids and LPS, a subset of OM proteins, and periplasmic 

(luminal) proteins. Proteins such as heat labile toxin (red) that adhere to the external 

surface of the bacteria are associated with the external surface of vesicles. Proteins 

and lipids of the IM and cytosolic content are excluded from OM vesicles. Vesicles 

are likely to bud at sites where the links between the peptidoglycan and OM are 

infrequent, absent, or broken. Lipopolysaccharide (LPS); periplasm (Pp); outer 

membrane (OM); peptidoglycan (PG); inner membrane (IM); Cytosol (Cyt). 

Reproduced from Kuehn and Kesty (2005).  

 

OMVs are responsible for secreting products that enhance bacterial survival, such as 

delivering virulence factors to host cells (Kuehn and Kesty, 2005). OMVs from 

pathogenic bacteria contain toxins, adhesins and immunomodulatory compounds, 

which are responsible for increasing adhesion and invasion, causing cytotoxicity and 

modulating the host immune response (Kuehn and Kesty, 2005). OMVs also possess 

pores that are used to diffuse soluble secretion substances, such as ions, amino acids, 

and small sugars (Beveridge, 1999, Delcour, 2009). OMVs can also deliver quorum-

signaling molecules, such as the PQS molecule from Pseudomonas aeruginosa 

(Mashburn and Whiteley, 2005). 
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It has been suggested that OMVs deliver their contents by lysis once near a target site, 

such as a Gram-positive bacteria, whilst when near another Gram-negative bacteria, 

OMVs can fuse to the outer membrane to release their contents directly inside the cell 

(Kadurugamuwa and Beveridge, 1999, Kulp and Kuehn, 2010). 

Non-pathogenic bacteria can secrete OMVs containing protective compounds that can 

aid in reducing the level of toxic compounds in the surrounding environment (Kuehn 

and Kesty, 2005). Pathogenic bacteria can produce more OMVs than non-pathogenic 

bacteria (Horstman and Kuehn, 2002).  

Lindmark et al. (2009) have demonstrated that C. jejuni strains 81-176 and 81116 can 

secrete CDT via OMVs, suggesting that OMVs are the main form of delivery of CDT. 

All subunits were detected in OMVs. Intestinal epithelial cells were treated with 

OMVs isolated from the C. jejuni 81-176 wild-type strain. It was observed that the 

cells entered into cell cycle arrest, demonstrating that OMVs deliver active CDT and 

cause cytolethal distending effects (Lindmark et al., 2009). OMVs contain soluble and 

insoluble proteins. Secreting proteins inside OMVs can provide protection against 

extracellular proteases present in the bacterial environment (Kulp and Kuehn, 2010). 

Thus, OMVs can be active for longer time and can travel larger distances (Kulp and 

Kuehn, 2010). 

Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins (Elmi et al., 

2012). A great number of identified proteins were: membrane-associated, cytoplasmic 

and periplasmic proteins, and virulence-associated proteins (Elmi et al., 2012). Some 

of the virulence-associated proteins identified were the fibronectin binding proteins 

CadF and FlpA, CDT and three proteases (HtrA, Cj0511 and Cj1365c) (Elmi et al., 

2012, Elmi et al., 2015). However, 26% of the proteins that were identified have as 

yet unknown functions (Elmi et al., 2012). C. jejuni 11168H OMVs have a cytotoxic 

effect on Caco-2 cells (Elmi et al., 2012). OMVs also induced an immune response 

from T84 cells with increasing the levels of IL-8, IL-6, TNF-α and hBD-3 (Elmi et al., 

2012). 

In vitro assays demonstrated that C. jejuni 11168H proteases HtrA and Cj1365c can 

actively cleave E-cadherin and occludin, which are adherens junction and tight 

junction proteins respectively (Elmi et al., 2015). The cleavage of these two proteins 

facilitates the bacterial invasion of human intestinal epithelial cells (Elmi et al., 2015). 
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Presence of antibiotics and oxidative stresses are some mechanisms that can influence 

OMV formation and content, which can increase the chances of bacterial survival 

(Kuehn and Kesty, 2005). Antibiotic treatment can enhance OMV formation (Kulp 

and Kuehn, 2010). OMVs can bind to antimicrobials and inactivate them, and can 

increase antibiotic resistance when associated with biofilms (Kulp and Kuehn, 2010).  

Sabra et al. (2003) demonstrated that when P. aeruginosa is exposed to oxidative 

stress, P. aeruginosa increases the number of OMVs, both attached to the cell surface 

and also released into the environment.  

 

1.12 Biofilm formation 

A biofilm is a community of bacteria that attaches to a surface (O'Toole et al., 2000). 

This community of bacteria can belong to the same species or to different species 

(O'Toole et al., 2000). In order to form a biofilm, free planktonic cells attach to a 

surface, then start attaching to one another forming microcolonies (O'Toole et al., 

2000). Once the bacteria is attached to a surface, the colony undergoes adaptation and 

starts producing extracellular polymers that facilitate attachment of other bacteria and 

forms a matrix of polymers (Donlan, 2001). The extracellular matrix is composed of 

polysaccharides, proteins, nucleic acids and dead cells (Parsek and Greenberg, 2005). 

Bacteria that have flagella, pili or fimbriae can attach more easily to surfaces (Donlan, 

2001). The C. jejuni flagella has been demonstrated to be important for biofilm 

formation as non-motile wild-type strains and aflagellate mutants fail to attach to 

surfaces to form biofilms (Joshua et al., 2006, Reuter et al., 2010). Biofilms can be 

flat or can have several layers of cells encased in the extracellular matrix (Parsek and 

Greenberg, 2005). A mature biofilm structure decreases bacterial sensitivity to 

antimicrobial agents (Donlan, 2001). 

Biofilms are more metabolically active at the surface, with low levels of activity and 

slow growth in the centre (Hoiby et al., 2010). Biofilms produce endogenous ROS that 

can accumulate in the matrix, whilst external ROS can also increase oxidative stress 

levels in biofilm cells (Hoiby et al., 2010). Accumulation of ROS in biofilms has been 

linked to mutations in P. aeruginosa (Hoiby et al., 2010). These mutations can lead to 

the production of new enzymes that inactivate antibiotic compounds increasing the 
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associated biofilm antibiotic resistance (Hoiby et al., 2010).  

Quorum sensing is an intercellular communication system that acts as a global 

regulatory system in several different bacteria and which also has been shown as an 

important communication system for biofilm formation (Parsek and Greenberg, 2005). 

Changes in the environmental conditions can alter gene transcription, cell phenotype 

and biofilm growth rate (Donlan, 2001). Quorum sensing genes can regulate biofilm 

aggregation, maturation and architecture development (Parsek and Greenberg, 2005), 

Quorum sensing can also regulate the release of cells from the biofilm (Parsek and 

Greenberg, 2005). Expression of the V. cholera vps operon is regulated by quorum 

sensing and this operon encodes the secretion of exopolysaccharide responsible for 

cell aggregation to form biofilms (Zhu and Mekalanos, 2003). In P. aeruginosa, 

quorum sensing regulates the expression of 170 to 200 genes where some of them are 

involved in biofilm formation (Parsek and Greenberg, 2005). However, there are 

species where a quorum sensing system was not identified, but these species still have 

the capability of forming biofilms (Parsek and Greenberg, 2005). 

Environmental factors also affect biofilm formation, such as nutrient starvation, 

osmotic changes, temperature variation, and changes in oxygen tensions (Reeser et al., 

2007). C. jejuni increases biofilm formation in nutrient-poor media, and decreases 

biofilm formation in high osmolarity environment and under aerobic environment 

(Reeser et al., 2007). C. jejuni forms 3 different types of biofilm: aggregates in liquid 

culture, pellicles at liquid-gas interface, and attachment to surfaces (Joshua, 2005). 

Aggregates are bacteria that auto-agglutinate in liquid cultures and have similar 

structure to both biofilms attached to surfaces and to liquid-gas pellicles (Joshua, 

2005).  

 

1.13 Oxidative stress 

Oxidative stress causes damage to cell compounds through the exposure to reactive 

oxygen species (ROS) (Storz and Imlay, 1999). ROS are generated by the incomplete 

reduction of oxygen as a by-product of aerobic metabolism (Imlay, 2008). The atomic 

oxygen structure makes oxygen susceptible to radical formation (Held, 2015). The 

addition of electrons to the oxygen molecule generates ROS compounds (Figure 1.3), 
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such as the superoxide anion (O2
•−), hydrogen peroxide (H2O2), and the hydroxyl 

radical (HO•) (D'Autreaux and Toledano, 2007).  

 

 

Figure 1.3 Electron structures of common reactive oxygen species. Each 

structure is provided with the name and chemical formula. The red • 

designates an unpaired electron. Reproduced from Held (2015). 

 

ROS compounds are present in the environment, are produced by bacterial metabolism 

itself, and are also produced by the host immune response to counter infection (Dalton 

et al., 1999). ROS are generated by the host’s inflammatory immune response as part 

of a defence mechanism against bacterial infection that occurs within phagocytes 

(Simon et al., 2000, Imlay, 2008). Therefore, it is essential for bacterial survival to 

have mechanisms to neutralise these toxic compounds because ROS accumulation in 

the bacterial cytoplasm and periplasm causes damage to lipids, proteins and DNA by 

oxidation (Dalton et al., 1999).  

The generation of ROS at low levels can be beneficial to cells as it is important for 

cell signalling by reversible oxidation of proteins, starting phosphorylation cascades 

and regulating gene expression (Fisher, 2009). H2O2 and O2
•− can penetrate the cell 

membrane through aquaporin channels and anion channels respectively (Fisher, 

2009). 
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Fenton reaction is also important in the formation of ROS. Fenton (1894) discovered 

that some metals, such as iron and copper, have a catalytic power to transfer an 

electron to H2O2, then generating highly reactive oxygen radicals. Bacteria respiratory 

metabolism generates by-products, such as H2O2 and O2
•−. Fenton reaction is the H2O2 

reaction with Fe2+ generating OH− and OH• as shown in equation 1. O2
•−, by-product 

generated from respiratory metabolism, can reduce the oxidised Fe3
+ released by 

Fenton reaction, as shown in equation 2. O2
•− can also catalyse the Harber-Weiss 

reaction, as shown in equation 3 (Figure 1.4). 

 

 

Figure 1.4 The Fenton reaction, free radical chemistry and metal poisoning. 

In vivo Fenton chemistry and other metal-catalysed free radical chain reactions are 

initiated by the inadvertent by-products of aerobic respiration, such as hydrogen 

peroxide (H2O2) and superoxide (O2
•−). Many in vitro experiments have indicated that 

H2O2 can oxidize Fe2
+ to produce hydroxide (OH−) and the highly reactive hydroxyl 

radical (OH•), which is called the Fenton reaction (see equation 1). In vitro work has 

demonstrated that O2
•− can reduce the oxidized metal released by the Fenton reaction 

(see equation 2), and the net reaction, which is called the Haber–Weiss reaction, is 

catalytic (see equation 3). Reproduced from Lemire et al. (2013). 

 

1.14 C. jejuni oxidative stress 

Microaerobic bacteria normally do not grow in environmental oxygen concentrations 

or grow poorly (Krieg and Hoffman, 1986). C. jejuni is a microaerobic bacteria that 

has optimal growth in an atmosphere containing 5% O2 and 10% CO2 (Atack and 

Kelly, 2009). However, C. jejuni has evolved complex mechanisms to cope with high 

oxygen levels and toxic compounds in order to survive under unfavourable conditions 

(Imlay, 2008). 
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C. jejuni can survive under environmental conditions. However, C. jejuni lacks many 

important regulators of the oxidative stress response compared to other enterobacteria, 

such as SoxRS and OxyR (Imlay, 2008). These two regulators are responsible for 

activating gene expression involved in oxidative stress defence mechanisms (Imlay, 

2008). However, C. jejuni possesses different regulators to counter oxidative stress, 

such as PerR, which is a functional but non-homologous substitute for OxyR (van 

Vliet et al., 1999). Most of the C. jejuni regulators have shown to have roles in 

invasion and colonisation of chicks ceacum (Palyada et al., 2009). The complete role 

of all C. jejuni regulators is still poorly understood (Atack and Kelly, 2009), which 

shows how complex and inter-linked the C. jejuni oxidative stress defense mechanism 

is. 

 

1.15 Oxidative stress defence mechanisms 

1.15.1 Enzymes  

C. jejuni has many enzymes that are responsible for countering oxidative stress to 

protect against accumulation of ROS (Atack and Kelly, 2009). These enzymes include 

catalase, superoxide dismutase, peroxiredoxins, cytochrome c peroxidises, methionine 

sulfoxide reductases (Atack and Kelly, 2009). They are responsible for neutralising 

ROS compounds generated during bacterial metabolism, encountered during survival 

in the environment and during colonisation of a host (Imlay, 2008). 

 

1.15.1.1 Catalase 

Catalase is the main enzyme responsible for reducing H2O2 into water and oxygen. C. 

jejuni expresses just one type of catalase (KatA), whilst many microorganisms have 

more than one catalase (Atack and Kelly, 2009). C. jejuni KatA is induced by H2O2 

and O2
- (Atack and Kelly, 2009). KatA is an iron-repressed protein regulated by PerR 

(van Vliet et al., 2002). Low iron levels increase the level of katA expression, and 

mutation of perR also increases katA expression, but at extremely high levels (van 

Vliet et al., 1999). 

A C. jejuni 11168H katA mutant is extremely sensitive to H2O2 stress when compared 
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to the wild-type strain and cannot survive under even low concentrations of H2O2 

(Gundogdu et al., 2011). However, a C. jejuni M129 katA mutant was able to colonise 

chickens at the same level as the wild-type strain (Day et al., 2000). A C. jejuni M129 

katA mutant showed reduced intra-macrophage survival. However, KatA does not play 

a role in intra-epithelial survival, as the katA mutant survived at the same level as the 

wild-type strain (Day et al., 2000). Paraquat is an organic compound that induces 

oxidative stress and increases katA expression in C. jejuni (Garenaux et al., 2008). 

Cj1386 has been demonstrated to be involved in the H2O2 stress response, as an 11168 

Cj1386 mutant was sensitive to H2O2 at the same level as a katA mutant (Flint et al., 

2012). The Cj1386 gene, located downstream of katA, is independently transcribed 

and contributes to KatA activity (Flint et al., 2012). A Cj1386 mutant showed reduced 

catalase activity, but did not reduce katA expression (Flint et al., 2012). It was 

suggested that Cj1386 is involved in haem trafficking to KatA and optimising the 

haem co-factor in active KatA (Flint et al., 2012). 

 

1.15.1.2 Superoxide dismutase 

Superoxide dismutase (SOD) has an important role in defence against superoxide 

anions (O2
-) converting two molecules of O2

- into H2O2 and oxygen (Atack et al., 2008, 

Atack and Kelly, 2009). There are three forms of SOD: with copper and Zinc as co-

factor; with manganese as co-factor; and with iron as co-factor (Smith and Doolittle, 

1992). C. jejuni has a single superoxide dismutase (SodB) and uses iron as co-factor 

(van Vliet et al., 2002), whilst other bacteria normally express more than one SOD 

(Atack and Kelly, 2009). However, SOD is also known to be important in the C. jejuni 

capacity to invade and survive within epithelial cells (Atack and Kelly, 2009). A C. 

coli UA585 sodB mutant showed reduced growth in intracellular epithelial cells, 

decreased chick colonisation and increased sensitivity to superoxide anion generated 

by freeze-thaw process (Purdy et al., 1999, Stead and Park, 2000). A C. jejuni 11168 

sodB mutant showed reduced ability to survive to exposure to H2O2, cumene 

hydroperoxide and menadione (Palyada et al., 2009). A C. jejuni 11168 sodB mutant 

also exhibited increased sensitivity to paraquat (Garenaux et al., 2008). However, the 

wild-type strain did not increase SOD expression under paraquat exposure (Garenaux 

et al., 2008). 
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1.15.1.3 Alkyl hydroperoxide reductase 

Alkyl hydroperoxide reductase (AhpC) is an enzyme that has a role in neutralising 

H2O2 in the cytoplasm (Atack and Kelly, 2009). AhpC also eliminates small 

hydroperoxides and organic hydroperoxides in Salmonella typhimurium (Parsonage et 

al., 2008). However, the exact role of AhpC in C. jejuni is still unclear (Atack and 

Kelly, 2009). Most bacteria express AhpF and AhpC, where AhpF is a flavoprotein 

responsible for activation of AhpC by oxidation (Poole et al., 2000). C. jejuni has 

AhpC, but lacks an AhpF orthologue (Atack and Kelly, 2009). In addition, it has been 

shown that iron represses ahpC expression (van Vliet et al., 1999). 

AhpC is responsible for removing low concentrations of H2O2 in E. coli and may play 

a similar role in C. jejuni (Seaver and Imlay, 2001, Atack and Kelly, 2009). AhpC has 

also been demonstrated to remove toxic hydroperoxide intermediates in C. jejuni 

(Baillon et al., 1999). A C. jejuni 81116 ahpC mutant is hypersensitive to cumene 

hydroperoxide and less aerotolerant than the wild-type strain, but did not show 

increased sensitivity to H2O2 (Baillon et al., 1999). A C. jejuni 11168 ahpC mutant 

exhibits enhanced biofilm formation due to accumulation of ROS and lipid 

hydroperoxides (Oh and Jeon, 2014). 

 

1.15.1.4 Thiol peroxidases 

Thiol peroxidase (Tpx) is a peroxiredoxin that also catalyses the breakdown of 

peroxides, mainly H2O2. It is thought that Tpx acts in concert with KatA and AhpC to 

eliminate toxic H2O2 from the cytoplasm, thus providing maximum cell protection 

(Atack et al., 2008). A C. jejuni 11168 tpx mutant showed reduced growth under 

aerobic conditions and also showed increased lipid peroxidation (Atack et al., 2008). 

Tpx production was increased under aerobic conditions, which could be due to the 

increase of ROS levels under aerobic growth conditions (Atack et al., 2008). 

 

1.15.1.5 Bacterioferritin comigratory protein 

Bacterioferritin comigratory protein (Bcp) is another peroxiredoxin present in C. 

jejuni. Bcp is responsible for reducing H2O2 and organic peroxides in vitro showing 
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some redundancy with Tpx function (Atack et al., 2008). Bcp has a role as a general 

peroxidase enzyme breaking down different compounds and seems to complement 

Tpx activity (Atack et al., 2008). A C. jejuni 11168 bcp mutant also showed similar 

phenotypic characteristics to the C. jejuni 11168 tpx mutant: reduced growth under 

aerobic conditions, increased Bcp production under aerobic conditions and increased 

lipid peroxidation due to the increase of ROS levels induced by the aerobic growth 

(Atack et al., 2008). A C. jejuni 11168 bcp tpx double mutant exhibited severe growth 

defects under microaerobic conditions and did not grow under aerobic conditions 

(Atack et al., 2008).  

 

1.15.1.6 Cytochrome c peroxidase 

C. jejuni contains two periplasmic cytochrome c peroxidases (CCPs) (Cj0020c and 

Cj0358 in the NCTC 11168 strain), whilst most bacteria possess only one (Atack and 

Kelly, 2009). Each CCP contains two c-type haems and are located in the periplasm 

(Atack et al., 2008). The exact role of these two CCPs has not yet been elucidated. It 

is believed that CCPs are responsible for breaking down H2O2 present in the periplasm 

(van Vliet et al., 2002). CCPs reduce H2O2 and the electrons generated bind to haem 

molecules. Therefore, CCPs avoid the generation of other reactive oxygen 

intermediates (Atack et al., 2008). 

Both CCPs are required for complete resistance to peroxide in C. jejuni 11168 (Atack 

and Kelly, 2009). Both CCPs also demonstrated to have peroxidase activity in C. jejuni 

81-176 strain. However, mutation of either CCPs did not increase sensitivity to H2O2 

compared to the wild-type strain (Atack and Kelly, 2009). 

It is also suggested that the two CCPs may have a role in colonisation of intestinal 

epithelial cells, as C. jejuni 81-176 Cj0020c and Cj0358 mutants both showed 

colonisation defects compared to the wild-type strain (Bingham-Ramos and 

Hendrixson, 2008).  
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1.15.1.7 DNA binding protein from starved cells 

DNA binding protein from starved cells (Dps) plays an important role in protecting 

DNA against oxidative stress (Zhao et al., 2002). Dps is expressed under oxidative 

and nutritional stress conditions (Zhao et al., 2002). 

A 81-176 dps mutant demonstrated increased sensitivity to H2O2 compared to the 

wild-type strain (Ishikawa et al., 2003). Addition of an iron chelator reduced the 

sensitivity of the dps mutant to H2O2 and demonstrated that Dps provides protection 

against iron-mediated H2O2 stress (Ishikawa et al., 2003). Conversely, Dps sequesters 

free iron molecules (Fe2+) to prevent H2O2 formation of hydroxyl radicals via the 

Fenton reaction (Ishikawa et al., 2003, Huergo et al., 2013). Dps is up-regulated in the 

presence of Fe2+ or H2O2, then Dps binds to DNA to protect from hydroxyl radical 

damage (Huergo et al., 2013). 

Dps has different roles in C. jejuni besides protection against oxidative stress, such as 

roles in chick colonisation and biofilm formation (Theoret et al., 2012). A C. jejuni 

11168 dps mutant demonstrated reduced biofilm formation compared to the wild-type 

strain (Theoret et al., 2012). dps expression is increased during chick colonisation in 

the wild-type strain, and a dps mutant showed reduced ability to colonise chicks 

(Theoret et al., 2012). 

 

1.15.1.8 Ferredoxin 

Ferredoxins are small iron–sulfur non-haem proteins that function as electron carriers 

in different metabolic reactions (Bruschi and Guerlesquin, 1988). C. jejuni has a 

ferredoxin FdxA. fdxA gene sequence is located upstream ahpC in C. jejuni strain 

81116 genome (van Vliet et al., 2001). fdxA was also identified in the genome 

sequence of C. jejuni strain NCTC 11168 and identical to 81116 strain (van Vliet et 

al., 2001). fdxA gene expression is induced by iron (van Vliet et al., 2001), which is 

the opposite to ahpC expression. An 81116 fdxA mutant showed no difference in 

sensitivity to H2O2 compared to the wild-type strain (van Vliet et al., 2001). Also an 

81116 fdxA mutant did not show growth deficiency under iron-restrict media (van 

Vliet et al., 2001). However, when this mutant was grown under aerobic conditions, 

the bacterial growth was severely affected, suggesting a role in the oxidative stress 
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defence mechanism (van Vliet et al., 2001). 

C. jejuni lacks AhpF homolog, which in other bacteria is responsible for reducing the 

oxidised form of AhpC (Baillon et al., 1999, Parkhill et al., 2000). The reduced form 

of AhpC is responsible for reducing alkyl hydroperoxides to alcohols (Baillon et al., 

1999). As C. jejuni does not have the AhpF homolog, it has been suggested that C. 

jejuni may utilise an alternative system (Baillon et al., 1999). Ferredoxins are 

important reducing agents and could be used by C. jejuni to reduce AhpC (Baillon et 

al., 1999).  

 

1.15.1.9 Thioredoxin system  

Thioredoxin system plays a role as antioxidant in the defence against oxidative stress 

(Lu and Holmgren, 2014). This system activates enzymes by electron reduction to 

thiol-dependent peroxidases (Lu and Holmgren, 2014). 

Thioredoxin is a small protein capable of reducing protein disulphide bonds which are 

formed by the oxidation of two cysteine residues (Ritz et al., 2000). Thioredoxin 

reduces the oxidized intracellular proteins and contributes to the maintenance of the 

redox status (Palyada et al., 2004). Thioredoxins are responsible for maintaining 

cytoplasmic proteins in a reduced state, and thioredoxin reductases are responsible for 

reducing the thioredoxin using electrons from NADPH  (Arner and Holmgren, 2000). 

E. coli has two thioredoxins, and mutation of either thioredoxin increases the strain 

sensitivity to H2O2 (Ritz et al., 2000). In C. jejuni 11168, trxA encodes a thioredoxin 

and trxB encodes a thioredoxin reductase (Holmes et al., 2005). In an iron restricted 

environment, both trxA and trxB increased gene expression (Holmes et al., 2005). trxB 

expression is co-regulated by Fur and PerR (Holmes et al., 2005). 

 

1.15.2 Regulators of oxidative stress 

SoxR and OxyR are conserved regulators of the oxidative stress response in different 

bacterial groups, such as E. coli (Storz and Imlay, 1999). These two regulators respond 

to stresses O2
•− and H2O2 (Storz and Imlay, 1999). However, C. jejuni lacks 
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homologues of SoxRS and OxyR (van Vliet et al., 1999). OxyR regulates almost 40 

genes to protect E. coli against H2O2 stress (Chiang and Schellhorn, 2012). OxyR also 

regulates the responses to different stresses, such as heat stress, lipid peroxidation cell 

damage, and neutrophil killing (Chiang and Schellhorn, 2012). Expression of katA and 

ahpC homologues is normally regulated by OxyR (Chiang and Schellhorn, 2012). 

SoxRS is a two-component regulatory system important for controlling the response 

to superoxide stress (Chiang and Schellhorn, 2012). The expression of soxS is induced 

when SoxR is activated. SoxS regulates the expression of genes in response to 

oxidative stress (Chiang and Schellhorn, 2012).  

C. jejuni has sensory systems to detect different forms of oxidative stress. Regulators 

can repress or increase enzyme production to control cytoplasmic levels of ROS 

(Atack and Kelly, 2009). The following regulators are found in C. jejuni: the peroxide-

sensing regulator (PerR), the ferric uptake regulator (Fur), the 

carbon starvation regulator (CsrA), the two-component Campylobacter planktonic 

growth regulatory system (CprRS), and the reduced ability to colonise (RacRS) two-

component regulatory system (Atack and Kelly, 2009; Van Vliet et al., 2002). Further 

regulators were discovered more recently in C. jejuni, such as the OmpR-type response 

regulator (CosR) (Hwang et al., 2011) and the two MarR-type response regulators 

RrpA and RrpB (Gundogdu et al., 2011, Gundogdu et al., 2015). 

 

1.15.2.1 Peroxide-sensing regulator (PerR) 

PerR is a global transcriptional regulator that regulates at least 104 genes, a number of 

which are related with peroxide stress defence (Palyada et al., 2009). PerR is 

considered a functional non-homologue of OxyR (van Vliet et al., 1999). The 

mechanism by which PerR senses levels of peroxide has not been elucidated, but it is 

thought that PerR might sense peroxide stress by oxidation of the metal cofactor or by 

oxidation of the PerR protein itself (van Vliet et al., 2002). perR transcription is 

negatively auto-regulated (Kim et al., 2015) and PerR uses iron as co-factor to repress 

gene expression (Palyada et al., 2009). Peroxide and superoxide reduce the level of 

perR transcription regardless of whether iron is present or absent (Kim et al., 2015). 

PerR constitutively represses katA and ahpC (van Vliet et al., 1999). Therefore, a C. 

jejuni 11168 perR mutant has a constitutive expression of katA and ahpC, which 
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makes cells highly resistant to peroxide stress (Van Vliet et al., 1999). A C. jejuni 

11168 perR mutant also shows reduced capacity to invade and colonise chicks, which 

suggests that PerR regulates genes related with different roles, not only with the 

oxidative stress response (Palyada et al., 2009). Putative PerR binding regions were 

found in the promoter region of ahpC, katA and dps (Kim et al., 2015). 

 

1.15.2.2 Ferric uptake regulator (Fur) 

Fur is a regulator that controls the expression of genes responsible for the maintenance 

of the iron level within bacterial cells (Atack and Kelly, 2009). Fur controls genes 

responsible for iron uptake and also regulates levels of other metals, such as zinc, 

tungsten and molybdenum (Butcher et al., 2012). Fur represses the expression of 

proteins involved in iron acquisition processes (Palyada et al., 2009). Butcher et al. 

(2012) identified all the Fur binding sites throughout the C. jejuni NCTC 11168 

genome. Fur is also involved in regulating both flagella and membrane biosynthesis, 

energy production, and stress responses besides controlling metal homeostasis 

(Butcher et al., 2012). A C. jejuni 11168 fur mutant was shown to reduce chick 

colonisation compared to the wild-type strain (Palyada et al., 2009). A fur mutant 

accumulates iron and can increase ROS formation, which can hinder chick 

colonisation (Palyada et al., 2009). Flagella genes are regulated by Fur. Expression of 

flagella genes is important for chick colonisation. It is suggested that mutation of fur 

can cause a defect in the flagella (Palyada et al., 2009). A C. jejuni 11168 fur mutant 

showed reduced chick colonisation (Palyada et al., 2009). 

There is an overlap between the Fur and PerR regulons (van Vliet et al., 1999). Fur 

regulates perR expression, whereas PerR does not affect fur expression (van Vliet et 

al., 1999), which demonstrates that regulators have multiple inter-linked levels as well 

as overlapping responses related to oxidative stress defence mechanisms (Palyada et 

al., 2009). Fur co-regulates several oxidative stress defence genes, such as katA, fdxA, 

trxB, sodB and ahpC (van Vliet et al., 1999, Butcher et al., 2012). However, it is not 

clear how this interaction between regulators occurs (Atack and Kelly, 2009). Fur-

activated and Fur-inactivated forms have been shown to recognise two distinct 

consensus binding sequences. This finding has not been demonstrated in other bacteria 

(Butcher et al., 2012). 
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1.15.2.3 Campylobacter oxidative stress regulator (CosR) 

CosR has more recently been identified as a Campylobacter oxidative stress regulator 

belonging to OmpR family of transcriptional regulators (Hwang et al., 2011). CosR is 

an essential protein for C. jejuni, as cosR mutants were not viable, indicating a lethal 

mutation (Hwang et al., 2011). In order to investigate the CosR regulatory roles, 

antisense peptide nucleic acids were used to regulate cosR expression (Hwang et al., 

2011). Antisense regulation was used to knockdown or to overexpress cosR in C. jejuni 

11168 (Hwang et al., 2011). CosR regulates other essential genes, demonstrating 

important regulation of vital cell functions (Hwang et al., 2012). 

CosR was shown to be responsible for the negative regulation of the oxidative stress 

response proteins SodB, Dps, Rrc and LuxS and the positive regulation of AhpC and 

KatA (Hwang et al., 2011; Hwang et al., 2012). CosR regulates a number of genes 

involved in different mechanisms, such as energy production, transcription, protein 

synthesis, motility, secondary metabolite biosynthesis, and stress defence (Hwang et 

al., 2012). Knockdown of cosR reduced the level of CosR in the C. jejuni cells, 

enhanced SodB activity, and increased resistance to both O2
− and H2O2 (Hwang et al., 

2011). CosR knockdown in C. jejuni 11168 increases cellular motility (Hwang et al., 

2012). The CosR binding site does not overlap with the predicted PerR and Fur binding 

sites in the katA promoter, suggesting that CosR may not interfere with PerR and Fur 

binding to the katA promoter (Hwang et al., 2012). 

 

1.15.2.4 Carbon starvation regulator (CsrA) 

CsrA is a post-transcriptional regulator shown to have a role in the oxidative stress 

resistance mechanism. A C. jejuni 81-176 crsA mutant was highly sensitive to 

atmospheric oxygen concentrations (Fields and Thompson, 2008). The same study 

also showed that the 81-176 crsA mutant has greater sensitivity to H2O2 (Fields and 

Thompson, 2008). CsrA is required for biofilm formation as the 81-176 csrA mutant 

exhibits decreased biofilm formation and also had reduced adhesion to and invasion 

of epithelial cells (Fields and Thompson, 2008). 
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1.15.2.5 Two-component regulatory systems 

1.15.2.5.1 Campylobacter planktonic growth regulation (CprRS) 

CprRS is a two-component regulatory system with a role controlling changes in 

physiology and metabolism involved in biofilm formation, stress tolerance, and 

colonisation (Svensson et al., 2009). CprR is a response regulator and CprS is a sensor 

kinase that regulates CprR by phosphorylation (Svensson et al., 2009). Mutation of 

cprR is lethal for bacterial survival, demonstrating that CprR is essential for C. jejuni, 

whilst a cprS mutant was viable (Svensson et al., 2009). A C. jejuni 11168 cprS mutant 

displayed growth defects, enhanced biofilm formation, and bacterial aggregation 

(Svensson et al., 2009). Mutation of cprS also reduced colonisation levels in one-day-

old chicks (Svensson et al., 2009). Oxidative stress proteins were up-regulated in the 

C. jejuni 11168 cprS mutant, such as KatA, TrxB and AhpC. However, the mutant 

exhibited increased sensitivity to paraquat and H2O2 (Svensson et al., 2009). 

 

1.15.2.5.2 Reduced ability to colonise (RacRS) 

RacR is a two-component regulatory system that affects C. jejuni growth in vitro in a 

temperature-dependent manner (Bras et al., 1999). RacR is a response regulator and 

RacS is a sensor kinase. A C. jejuni 81116 racR mutant entered stationary phase earlier 

than the wild-type strain. Furthermore, the racR mutant showed a more accentuated 

growth defect at 42ºC (Bras et al., 1999). Mutation of racR also reduced the ability to 

colonise chickens (Bras et al., 1999). RacR also affects expression of Cj0358, which 

encodes a CCP (Bras et al., 1999). Both 81-176 racR and racS mutants showed great 

colonisation defects in chicks. However, both mutants showed only minor growth 

defects at 42ºC (Apel et al., 2012). RacR regulates expression of the racRS operon and 

represses dnaJ (Apel et al., 2012). Both racR and racS mutants reduced expression at 

44ºC of dnaJ, dnaK and groEL, which encode heat shock response proteins (Apel et 

al., 2012). Both mutants were less resistant to increased temperature of 44ºC (Apel et 

al., 2012). However, no link with the oxidative stress response was suggested by Apel 

et al. (2012). 
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1.15.2.6 LuxS 

Vibrio harveyi luxS is a gene belonging to a family of auto-inducer 

synthases responsible for production of the signal molecule auto-inducer 2 (AI-2) 

(Surette et al., 1999). V. harveyi luxS regulates the bioluminescence using quorum 

sensing depending on AI-2 (Surette et al., 1999). 

LuxS has been shown to mediate quorum sensing communication, and to regulate acid 

and oxidative stress in Streptococcus mutans (Wen and Burne, 2004). LuxS also 

showed to have a role in the biofilm formation (Wen and Burne, 2004). In P. 

aeruginosa, quorum sensing contributes to regulation of oxidative stress response 

mechanism (Hassett et al., 1999). Elvers and Park (2002) identified 

a luxS orthologue in the genome of NCTC 11168 strain. C. jejuni 11168 also 

demonstrated AI-2 activity (Cloak et al., 2002, Elvers and Park, 2002).  

A C. jejuni NCTC 11168 luxS mutant did not increase sensitivity to oxidative stress 

compared to the wild-type strain when first tested by Elvers and Park (2002). 

However, further analysis with a C. jejuni 81-176 luxS mutant demonstrated that the 

lack of luxS reduced growth under microaerobic conditions, and increased sensitivity 

to both H2O2 and cumene hydroperoxide compared to the wild-type (He et al., 2008). 

81-176 luxS mutant also demonstrated to stop the expression of AI-2 signal molecule 

(He et al., 2008). LuxS is involved in the regulation of different cell aspects, such as 

cellular metabolism, flagella assembly, oxidative stress response, and efflux systems 

(He et al., 2008). The expression of ahpC and tpx genes was down regulated in the 81-

176 luxS mutant (He et al., 2008). 

 

1.15.2.7 Rubredoxin oxidoreductase / Rubrerythrin-like (rrc) 

rrc encodes a protein homologous to the rubredoxin oxidoreductase/rubrerythrin 

protein in other bacteria, which have been shown to protect anaerobic microorganisms 

against oxidative stress (Yamasaki et al., 2004). The presence of Rrc in C. jejuni cells 

decreased in the presence of H2O2 (Yamasaki et al., 2004). C. jejuni grown under 

aerobic conditions also decreased the levels of Rrc (Yamasaki et al., 2004). Rrc is 

sensitive to H2O2 as Rrc concentrations were rapidly decreased in presence of H2O2 

and also under aerobic conditions (Yamasaki et al., 2004). Although the exact function 

of Rrc is not known, it is suggested that Rrc has a regulatory role to control endogenous 
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oxidative stress (Yamasaki et al., 2004). 

 

1.15.2.8 RrpA and RrpB transcriptional regulators 

Reannotation of C. jejuni NCTC 11168 genome sequence identified two genes 

(Cj1546 and Cj1556) encoding putative transcriptional regulators that belonged to the 

multiple antibiotic resistance regulator (MarR) family of transcriptional regulators 

(Gundogdu et al., 2007). Cj1546 and Cj1556 belong to the MarR family based on the 

presence of a Pfam motif PF01638 (Gundogdu et al., 2007). PF01638 is a HxlR-like 

helix-turn-helix motif which includes proteins that play a role in regulating expression 

of genes involved in multiple antibiotic resistance phenotypes, oxidative stress, and 

production of pathogenic factors (Kumarevel, 2012). 

The two MarR-type response regulators Cj1546 and Cj1556 have demonstrated to play 

a role in the peroxide stress resistance (Gundogdu et al., 2011, Gundogdu et al., 2015). 

We have thus designated Cj1546 and Cj1556 as RrpA and RrpB (regulator of response 

to peroxide) respectively. A C. jejuni 11168H rrpB mutant showed decreased ability 

to survive to aerobic and peroxide stress (Gundogdu et al., 2011). RrpB was shown to 

be important in cell invasion as the 11168H rrpB mutant exhibited decreased capacity 

to invade and colonise human intestinal cells (Gundogdu et al., 2011). Microarray 

analysis indicated that 73 genes were up-regulated and 18 genes were down-regulated 

in the 11168H rrpB mutant compared to the wild-type strain (Gundogdu et al., 2011). 

Some oxidative stress genes were down-regulated, such as ahpC, katA and perR, 

whilst sodB was up-regulated (Gundogdu et al., 2011). RrpB was the first MarR-type 

regulator characterised in C. jejuni (Gundogdu et al., 2011). The second MarR 

transcriptional regulator RrpA showed 43.6% identity and 58.4% similarity to RrpB 

(Gundogdu et al., 2011, Gundogdu et al., 2015). 
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1.16  Aims and objectives  

The aim of this research project was to investigate the mechanisms of regulation of 

the C. jejuni oxidative stress responses, specifically the roles of the two recently 

identified MarR-like transcriptional regulators RrpA and RrpB. A further aim was to 

investigate genomic and phenotypic differences amongst C. jejuni strains isolated in 

Brazil. 

Specific objectives: 

1. Investigation into the role of RrpA and RrpB in the C. jejuni oxidative stress 

response. 

2. Investigation into the role of RrpA and RrpB in biofilm formation. 

3. Investigation of the distribution of rrpA and rrpB amongst C. jejuni strains. 

4. Investigate the phenotypes of 43 Brazilian C. jejuni strains with respect to 

hydrogen peroxide stress and biofilm formation. 

5. Perform whole genome sequencing for the 43 Brazilian C. jejuni strains. 

6. Perform bioinformatics analysis on the 43 Brazilian C. jejuni strains with 

respect to important virulence genes and the distribution of rrpA and rrpB. 
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2 Material and Methods 

 

2.1 Bacterial strains 

The C. jejuni strains used in this study are described in Appendix 1. 

 

2.2 Growth conditions 

C. jejuni strains were grown on blood agar (BA) plates (Sigma-Aldrich, Poole, UK) 

containing 7% (v/v) of horse blood (TCS Biosciences, Botolph Claydon, UK) and 

Campylobacter Selective Supplement (Skirrow, Oxoid, Basingstoke, UK). Strains 

were resuscitated from glycerol stocks stored at -80°C. Vials were thawed on ice, the 

contents transferred to BA plates, and incubated for 48 h at 37ºC under microaerobic 

conditions (85% Nitrogen, 10% Carbon Dioxide and 5% Oxygen) in a Variable 

Atmospheric Incubator (VAIN) (Don Whitley Scientific, Shipley, UK). 

Strains were re-streaked every 72-96 h on fresh BA plates. A maximum of 10 passages 

were performed before a new line was resuscitated. Bacteria were re-streaked onto BA 

plates and grown for 24 h to be used in assays. Mutants were grown on BA plates 

supplemented with kanamycin (50 µg/ml) or chloramphenicol (10 µg/ml) as required 

(Sigma-Aldrich).  

Assays were performed from 24 h BA plates or from broth cultures. Broth cultures 

were prepared in 25 cm2 tissue culture flasks (Thermo Scientific, Massachusetts, 

USA) using either 10 ml Brucella broth (Sigma-Aldrich) or 10 ml Mueller Hinton 

broth (Oxoid) inoculated with a bacterial suspension (see Section 2.3) prepared from 

a 24 h BA plate to a starting OD600 of 0.1. Broths were grown for 16 h with shaking at 

75 rpm on a shaker (Platform Shaker STR6, VWR-Jencons, East Grinstead, UK) at 

37ºC under microaerobic conditions. 

Glycerol stocks were prepared from 24 h BA plates. Cells were harvested and re-

suspended in 10% (v/v) glycerol, 10% (v/v) foetal calf serum in Brucella broth. 

Aliquots (50 µl) of this suspension were transferred to 0.6 ml tubes (Starlab, Hamburg, 

Germany) and snap-frozen using dry-ice in 100% (v/v) ethanol. Tubes were stored at 

-80°C. 
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2.3 Preparation of a bacterial cell suspension at a specific OD600 

Bacterial cells from a 24 h BA plate were re-suspended in 1 ml Phosphate-

buffered saline (PBS) (Sigma-Aldrich). 100 µl of this suspension was diluted in 900 

µl PBS. This volume was transferred to a cuvette (Fisher Scientific, Loughborough, 

UK), and the OD600 was recorded using a spectrophotometer (S200UV/Vis 

Spectrophotometer, VWR-Jancons, Leighton Buzzard, UK). 1 ml PBS was used as 

blank. The OD600 obtained was used in the following dilution formula: 

 

 

         OD600 (Initial) x  Volume (Initial)  =  OD600 (Final)  x  Volume (Final) 

 

 

2.4 Assays 

2.4.1 Motility assays 

C. jejuni strains were grown on BA plates for 24 h. Colonies were re-suspended in 1 

ml PBS and adjusted to an OD600 of 1.0. Then 5 µl of this suspension was inoculated 

into the centre of a motility agar plate using a P10 Gilson pipette (Anachem Ltd, Luton, 

UK). Motility agar consisted of Brucella broth supplemented with 0.4% (w/v) 

bacteriological agar (Oxoid). Plates were incubated at 37ºC under microaerobic 

conditions without inverting. The diameter of the motility ring was measured at 24, 48 

and 72 h and images were recorded using a GeneGenius Bio Imaging System 

(Syngene, Cambridge, UK).  

 

2.4.2 Protein quantification 

The quantification of protein concentration was performed using a BCA Protein Assay 

Kit (Thermo Scientific, Rockford, USA). This kit assesses the total protein 

concentration compared to a protein standard. The reagents in the kit were mixed 

following the manufacture’s guidelines, which reduces the cupric ion (Cu2+) to 
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cuprous ion (Cu+) in an alkaline medium by bicinchoninic acid (BCA). This reaction 

is called the biuret reaction, which produces a blue colour. In the second step, the two 

BCA molecules are chelated with a Cu+ ion, which results in an intense purple colour 

with absorbance at 562 nm.  

The protein standard utilised was bovine serum albumin (BSA) prepared in different 

concentrations in PBS to generate a standard curve with concentrations ranging from 

25 to 2000 µg/ml. The average OD562 reading of the blank replicates was subtracted 

from all other individual standards and samples. The average OD562 reading for each 

concentration replicate of the BSA standards was plotted against concentration in 

µg/ml. The standard curve generated was used to determine the protein concentration 

of the samples. Samples were then diluted with PBS to the desired concentration 

before further assays were performed.  

 

2.4.3 Outer membrane vesicle (OMV) isolation 

C. jejuni strains were grown on BA plates for 24 h under microaerobic conditions. 

Brucella broth (50 ml) was pre-incubated in 150 cm2 tissue culture flasks (Corning 

Incorporated, New York, USA) at 37ºC with shaking at 75 rpm under microaerobic 

conditions overnight. For each strain, two flasks were prepared. Plate colonies were 

re-suspended in 1 ml PBS, and the OD600 was recorded. The pre-incubated Brucella 

broth was inoculated to an initial OD600 of 0.1 and incubated at 37ºC with shaking at 

75 rpm under microaerobic conditions. Bacterial cultures were grown for 16 h, up to 

mid-log to late-log phase. Cultures were transferred to 50 ml tubes (Corning) and 

centrifuged using a Centrifuge 5810 R (Eppendorf, Stevenage, UK) at 4,000 rpm for 

30 min at 4ºC. The supernatant was then filtered through a 0.22 µm syringe filter 

(Merk Millipore Ltd, Tullagreen, Ireland). Sterile supernatants were transferred to an 

Amicon Ultra-15 centrifugal filter unit (Merck Millipore Ltd) with a 10 kDa cut off 

and centrifuged at 4,000 rpm for 30 min at 4ºC. This step was repeated until the whole 

supernatant was filtered. The concentrated samples were transferred to ultra clear 

centrifuge tubes (Beckman Coulter, Brea, USA) and ultra-centrifuged at 45,000 rpm 

for 3 h at 4°C using a TLS 55 rotor in an Optima TL Ultracentrifuge (Beckman 

Instruments, Palo Alto, USA). The supernatant was discarded and the pellet re-

suspended in 200 µl of sterile PBS. Aliquots of 50 µl were prepared and stored at -
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20ºC. One aliquot of each sample was diluted 1:10 and the protein concentration was 

quantified (see Section 2.4.2). 

 

2.4.4 Preparation of Whole Cell lysates 

2.4.4.1 Blood agar plates 

Strains were harvested from 24 h BA plates and re-suspended in 1 ml PBS in 1.5 ml 

tubes (Starlab). The suspensions were placed on ice in a Bioruptor® sonicator 

(Diagenone, Seraing, Belgium). Samples were sonicated at 60 kHz for 30 seconds with 

30 seconds intervals for 15 min. Samples were then centrifuged at 13,000 rpm for 15 

min at 4°C. Supernatants were transferred to new 1.5 ml tubes and stored on ice. 

Whole cell lysate concentrations were quantified (see Section 2.4.2). 

 

2.4.4.2 Minimum Essential Media alpha (MEMα) 

Strains were grown on BA plates for 24 h. Two 25 cm2 tissue culture flasks containing 

10 ml of MEMα were pre-incubated overnight at 37ºC, shaking at 75 rpm under 

microaerobic conditions. Colonies were re-suspended in 1 ml PBS and broths were 

inoculated to an OD600 of 0.05. Flasks were incubated for 48 h at 37°C, with shaking 

at 75 rpm under microaerobic conditions. After this incubation period, 20 ml of each 

sample were centrifuged in a 50 ml flask (Corning). Pellets were re-suspended in 1 ml 

PBS in a microcentrifuge tube and sonicated as described in Section 2.4.4.1. 

Supernatants were removed and stored on ice. Whole cell lysate concentrations were 

quantified (see Section 2.4.2). 

 

2.4.5 Growth curves 

Strains were grown for 24 h on BA plates. 25 cm2 tissue culture flasks containing 10 

ml Brucella broth were pre-incubated at 37ºC under microaerobic conditions with 

shaking at 75 rpm. A bacterial suspension was prepared in 1 ml PBS. The Brucella 

broth in the flasks was inoculated to an initial OD600 of 0.1. Flasks were re-incubated 

at 37ºC with shaking at 75 rpm under microaerobic conditions. OD600 readings were 
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performed at 0, 3, 6, 9, 16 and 24 h. At each time point, an aliquot was taken for serial 

dilutions (10-1 to 10-6) so colony forming units (CFUs) could be counted. 10 µl of each 

dilution was plated on BA plates in duplicate and incubated at 37ºC for 48 h under 

microaerobic conditions. 

Growth curves were also performed in presence of sodium taurocholate (ST). ST was 

prepared at a concentration of 10% (w/v) (200 mM) in MilliQ water and filter sterilised 

using a 0.22 µm syringe filter. ST was added to broths to a final concentration of 0.1% 

(w/v) (2 mM) or 0.2% (w/v) (4 mM) and incubated for further 15 min at 37ºC under 

microaerobic conditions before inoculating with bacterial suspension. 

 

2.4.6 Oxidative stress assays 

C. jejuni strains were grown for 24 h on BA plates, then cells were harvested and re-

suspended in 1 ml PBS. The OD600 of each bacterial suspension was recorded and 

adjusted to an OD600 of 1.0. This concentration of bacterial cells was prepared in 1 ml 

for the control samples and in 900 µl for the test samples. Calculations were made 

using the dilution calculation formula (see Section 2.3). 

Bacterial suspensions were exposed to three different types of oxidative stress; 

hydrogen peroxide (H2O2, Sigma-Aldrich), cumene hydroperoxide (Sigma-Aldrich), 

and menadione (Sigma-Aldrich). During the oxidative stress assays, cell suspensions 

were incubated at 37°C under microaerophilic conditions. As a positive control, the 

strains were also incubated at 37°C under microaerophilic conditions without exposure 

to any oxidative stress. 

Strains were also grown in presence of ST prior to the oxidative stress assay. A 

solution of 10% ST was prepared, sterilised with 0.22 µm syringe filter, then added to 

BA plates to a final concentration 0.1 % (w/v) or 0.2 % (w/v). Strains were grown on 

BA plates containing either 0.1% or 0.2% ST for 24 h. Bacterial cells were re-

suspended in 1 ml PBS and the OD600 adjusted to 1. Bacterial suspensions were then 

exposed to H2O2 stress as described below in Section 2.4.6.1. 
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2.4.6.1 Hydrogen peroxide stress assays 

1 M H2O2 was used to prepare the following concentrations: 250, 500 and 1000 mM. 

100 µl of one of these concentrations was added to 900 µl of bacterial suspension, 

giving a final concentration of 25, 50 or 100 mM H2O2, respectively. Bacterial 

suspensions were also tested using a final concentration of 200 mM H2O2, where 200 

µl of the 1 M H2O2 was added to 800 µl of each bacterial suspension. Bacterial 

suspensions were exposed to different H2O2 concentrations at 37°C for 15 min under 

microaerobic conditions. Serial dilutions were prepared (10-1 to 10-6), then 10 µl of 

each dilution was pipetted onto a BA plate in duplicate and incubated for 48 h. CFUs 

were counted. 

 

2.4.6.2 Cumene hydroperoxide stress assays 

Cumene hydroperoxide was diluted to a concentration of 0.5% (v/v) and 100 µl added 

to 900 µl of bacterial suspension. The final concentration of cumene hydroperoxide 

was 0.05% (v/v). Bacterial suspensions were incubated at 37°C for 15 min under 

microaerobic conditions. Serial dilutions were prepared (10-1 to 10-6), then 10 µl of 

each dilution was pipetted onto a BA plate in duplicate and incubated for 48 h. CFUs 

were counted. 

 

2.4.6.3 Menadione stress assays 

Menadione was prepared to a 1 M concentration, then 100 µl was added to 900 µl of 

bacterial suspension. Bacterial suspensions were exposed to a final concentration of 

100 mM menadione. Bacterial suspensions were incubated at 37°C for 1 h under 

microaerobic conditions. Serial dilutions were prepared (10-1 to 10-6), then 10 µl of 

each dilution was pipetted onto a BA plate in duplicate and incubated for 48 h. CFUs 

were counted. 
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2.4.7 Catalase activity assays 

Catalase activities were quantified using a Catalase Activity Assay Kit (Sigma-

Aldrich). This kit quantifies the antioxidant activity of the catalase enzyme through a 

colourimetric assay. Whole cell lysates were prepared as described in Section 2.4.4. 

All samples were normalised to a final concentration of 100 ng/µl protein. 

The color chromogen reagent containing 0.25 mM 4-aminoantipiryne and 2 mM 3,5-

dichloro-2-hydroxybenzenesulfonic acid was re-suspended in 150 ml of assay buffer 

(50 mM potassium phosphate buffer, pH 7.0). This solution was prepared, aliquoted 

and stored at -20°C. A solution of peroxidase (0.69 mg/ml) was freshly prepared. Then 

20 ml color chromogen reagent was thawed before use and mixed with 20 µl of 

peroxidase solution. 

The compound 3,5-dichloro-2-hydroxybenzenesulfonic acid present in the color 

reagent oxidises 4-aminoantipyrine in the presence of H2O2 and horseradish peroxide 

producing a red quinoneimine dye (N-(4-antipyryl)-3-chloro-5-sulfonate-p-

benzoquinone-monoimine). The red quinoneimine dye was detected using a 

SpectraMax M3 microplate reader (Molecular Devices, Sunnyvale, USA) at an 

absorbance of 520 nm. 

A 3% (w/v) solution of H2O2 was provided with the kit. However, the assay requires 

the concentration of H2O2 to be exactly 200 mM. Therefore, the H2O2 concentration 

was quantified using Beer’s Law (εmM = 0.0436). The H2O2 solution was diluted 100 

fold and the absorbance at 240 nm recorded, the reading was applied to the Beer’s 

Law formula and the concentration corrected to 200 mM using the assay buffer.  

 

      Beer’s Law:     

mM H2O2 =
  A240  

     0.0436      
 

 

 

 

A H2O2 solution of 10 mM was also prepared to obtain a standard curve of H2O2 

concentration against the absorbance of the red quinoneimine dye. The 10 mM H2O2 

solution was diluted to the following concentrations in mM: 0, 0.0125, 0.025, 0.05 and 
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0.075. The readings of the known H2O2 concentrations were plotted as a standard 

curve and used to calculate the H2O2 concentration from the sample readings. 

 

Catalase assay reactions were set up as follows: 

Sample 

10 µl   Whole cell lysate (100 ng/µl) 

65 µl  Assay Buffer 

25 µl  200 mM H2O2 solution 

 

Blank 

75 µl  Assay Buffer 

25 µl  200 mM H2O2 solution 

 

All reactions were incubated at room temperature for 1 min. The reaction was then 

stopped with 900 µl stop solution (15 mM sodium azide). A 10 µl aliquot of each 

reaction was transferred to a new tube, 1 ml of the color reagent was added, then 

incubated at room temperature for 15 min to allow colour development. The reactions 

were then transferred to cuvettes and the absorbance recorded at 520 nm. The 

absorbance readings were used with the following formula to obtain the H2O2 

concentrations. 

 

Calculation:  

 

   Catalase Activity  =   
     µmol (H2O2) x 100 

V x t
   ×10 

 

 

 

x 

1

0 
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   µmol of H2O2 = µmol of H2O2 in Blank - µmol of H2O2 in Sample 

t = catalase reaction duration in min 

V = Sample volume in ml 

100 = dilution of aliquot from catalase reaction in colorimetric reaction 

10 = convert ng to µg (Total amount of protein used in each reaction was 100 ng/µl. 

Values were multiplied by 10 so results are presented as H2O2/min/µg) 

 

Catalase activity is presented as µmol H2O2/min/µg. One unit of catalase activity is 

defined as 1 µmol of H2O2 decomposed to water and hydrogen per minute at 25°C and 

at pH 7.0. 

 

2.4.8 Superoxide dismutase activity assay 

Superoxide dismutase (SOD) activities were quantified using a Superoxide Dismutase 

Assay kit (Sigma-Aldrich). SOD breaks downs the superoxide anion (O2
-) into H2O2 

and molecular oxygen. This kit utilises Dojindo’s highly water-soluble 2-(4-

iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt 

(WST-1). Dojindo’s WST-1 has sulfonate groups added to the phenyl ring to improve 

water solubility. When WTS-1 is reduced by a O2
-, this generates a water-soluble 

formazan dye, which absorbs at 450 nm. SOD removes O2
- inhibiting the formazan 

dye formation. SOD activity represents the percentage of inhibition rate of the 

formazan dye. 

For assay monitoring, a WST-1 inhibition curve was generated with different 

concentrations of SOD. SOD was diluted with dilution buffer to the following 

concentrations: 200 U/ml, 100 U/ml, 50 U/ml, 20 U/ml, 10 U/ml, 5 U/ml, 1 U/ml, 0.1 

U/ml, 0.05 U/ml, 0.01 U/ml, 0.001 U/ml. 

Strains were grown on BA plates for 24 h and whole cell lysates prepared as described 

previously (see Section 2.4.4). Whole cell lysates were normalised at a concentration 

of 100 ng/µl. For each assay, 20 µl of whole cell lysate was used.  
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Assay reaction: 

Sample 

20 µl   Whole cell lysate (100 ng/µl) 

200 µl  WST-1 working solution 

20 µl  Enzyme working solution 

 

Blank 1 

20 µl   ddH2O 

200 µl  WST-1 working solution 

20 µl  Enzyme working solution 

 

Blank 2 

20 µl   Whole cell lysate (100 ng/µl) 

200 µl  WST-1 working solution 

20 µl  Dilution buffer 

 

Blank 3 

20 µl   ddH2O 

200 µl  WST-1 working solution 

20 µl  Dilution buffer 

 

Reactions were prepared in 96 well plates (Corning), then incubated at 37°C for 20 

min. Absorbance was measured at 450 nm using a SpectraMax M3 microplate reader. 
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Calculation: 

 

 

                    =  {
 [ (A450blank 1 – A450blank 3) − (A450sample – A450blank 2)]

(A450blank 1 – A450blank 3)
 } ×100 

 

 

2.4.9 Biofilm formation 

Strains were re-streaked on BA plates and grown for 24 h at 37ºC under microaerobic 

conditions. 10 ml Mueller Hinton broth was pre-incubated in a 25 cm2 tissue culture 

flask at 37ºC with shaking at 75 rpm under microaerobic conditions overnight. 

Bacterial cells were re-suspended in 1 ml PBS and the OD600 was measured. Mueller 

Hinton broths were inoculated to a final OD600 of 0.1. Broths were incubated for 5 h 

at 37ºC with shaking at 75 rpm under microaerobic conditions. The OD600 was 

readjusted to 0.1 with fresh Mueller Hinton broth and 1 ml of this suspension was 

added to each well in a 24 well plate (Corning). The plates were incubated at stationary 

at 37ºC for 72 h under either aerobic or microaerobic conditions. The plates were 

washed twice with PBS, dried at 37ºC for 20 min, then stained with 1.2 ml of 1% (w/v) 

crystal violet (Sigma-Aldrich) for 15 min. Wells were then washed three times with 

PBS followed by addition of 1 ml destaining buffer containing 10% (v/v) acetic acid / 

30% (v/v) methanol. Plates were placed in a shaker at 400 rpm for 15 min for 

destaining. Absorbance was measured at 595 nm using a SpectraMax M3 microplate 

reader. 

 

2.4.10 Biofilm formation in the presence of chicken juice 

2.4.10.1 Chicken juice preparation 

Chicken juice biofilm assays were performed based on the methodology of Brown et 

al. (2014). Frozen chicken pieces were defrosted at room temperature. Chicken juice 

was obtained from the exudate released from defrosted chicken pieces. The exudate 

was centrifuged to remove debris at 4,000 rpm for 20 min at 4ºC. The supernatant was 

SOD 

activity 
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diluted with sterile water 1:1, then filter sterilised using a 0.22 µm syringe filter. 1 ml 

aliquots were prepared and stored at -20°C. This chicken juice is referred as undiluted 

chicken juice. Stored chicken juice was thawed on ice prior to use. 

 

2.4.10.2 Biofilm formation with diluted chicken juice 

Strains were re-streaked on BA plates and prepared as described in Section 2.4.9. After 

the 5 h growth in Mueller Hinton broth under microaerobic conditions, the OD600 was 

readjusted to 0.1 with fresh Mueller Hinton broth. Then 1 ml of this suspension was 

added to each well of a 24 well plate with four replicates for each strain. Chicken juice 

was diluted with sterile MilliQ water 1:100 and 5% (v/v) of diluted chicken juice was 

added to each well. Plates were incubated at 37ºC for 72 h under either aerobic or 

microaerobic conditions. Wells were washed, stained with crystal violet and destained 

as described in Section 2.4.9. Absorbance was measures at 595 nm using a SpectraMax 

M3 microplate reader. 

 

2.4.10.3 Biofilm formation with undiluted chicken juice 

Strains were re-streaked on BA plates and prepared as described in Section 2.4.9. After 

the 5 h growth in Mueller Hinton broth under microaerobic conditions, the OD600 was 

readjusted to 0.1 with fresh Mueller Hinton broth. Then 1 ml of this suspension was 

added to each well of a 24 well plate with four replicates for each strain. 5% (v/v) of 

undiluted chicken juice was added to each well. The plates were incubated at 37ºC for 

72 h under either aerobic or microaerobic conditions. After the incubation period, 

wells were washed 3 times with sterile PBS. Brucella broth was supplemented with 

0.05% (v/v) 2,3,5-triphenyltetrazolium chloride solution (TTC) (Sigma-Aldrich) 

(Brown et al., 2014), then 1.2 ml was added to each well and the plates were re-

incubated at 37ºC for 72 h under microaerobic conditions. TTC can differentiate 

between metabolically active and inactive cells. Active cells reduce TTC to a red 

compound 1,3,5-triphenylformazan (TPF) due to enzymatic activity associated with 

cellular metabolism. After incubation, the plates were washed twice with PBS 

followed by the addition of 1 ml elution buffer containing 20% (v/v) acetone and 80% 

(v/v) ethanol to each well. Plates were placed in a shaker at 400 rpm for 15 min at 
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room temperature for homogenisation. Absorbance was measured at 500 nm using a 

SpectraMax M3 microplate reader. 

 

2.4.11 Galleria mellonella haemolymph collection 

G. mellonella larvae were obtained from TruLarv (Biosystems Technology, Exeter, 

UK) kept at room temperature. Strains were grown on BA plates for 24 h. Bacterial 

cells were re-suspended in 1 ml PBS and the OD600 adjusted to 0.1. Larvae were 

injected with 10 µl of the bacterial suspension in the right foremost leg using a micro-

injection syringe (Hamilton, Bonaduz, Switzerland) and incubated at 37ºC for 16 h. 

After incubation, the larvae were chilled on ice for 15 min. The larval surface was 

cleaned with 70% (v/v) ethanol using a tissue. A small cut was made at the side of the 

body with sterilised scissors and the haemolymph drained into a sterile 

microcentrifuge tube. 10 µl of the heamolymph was then serially diluted (10-1 to 10-

6). 10 µl of each dilution were plated on BA plates. Plates were incubated for 48 h at 

37ºC under microaerobic conditions then CFUs were counted. 

 

2.5 Molecular methods 

2.5.1 DNA isolation 

C. jejuni strains were grown on BA plates for 24 h and genomic DNA was isolated 

using a PureLink Genomic DNA Mini Kit (Invitrogen, Carlsbad, USA). Briefly, a 

loopful of bacterial cells was re-suspended in 1 ml PBS in a 1.5 ml microcentrifuge 

tube and centrifuged at 13,000 rpm for 1 min. The supernatant was discarded and the 

pellet re-suspended in 180 µl PureLink Genomic Digestion Buffer. 20 µl of Proteinase 

K (20 mg/µl) was added to lyse the cells and vortexed. Tubes were incubated in a heat 

block at 55ºC for 30 min with occasional further vortexing. Then 20 µl RNase A (20 

mg/µl) was added, vortexed and incubated at room temperature for 2 min. 200 µl 

PureLink Genomic Lysis/Binding buffer was added and vortexed. 200 µl of absolute 

ethanol was added to the lysate and vortexed for 5 sec to yield a homogenous solution. 

The lysate solution was added to a PureLink spin column and centrifuged at 10,000 

rpm for 1 min. The column was then placed in a new collection tube. 500 µl of Wash 

Buffer 1 was added to the column and centrifuged at 10,000 rpm for 1 min. The column 
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was then placed in another new collection tube. 500 µl of Wash Buffer 2 was added 

to the column and centrifuged at 13,000 rpm for 3 min. The spin column was then 

placed in a new 1.5 ml microcentrifuge tube. 50 µl of MilliQ water was added to the 

centre of the column membrane, incubated at room temperature for 1 min then 

centrifuged at 13,000 rpm for 90 seconds. DNA concentrations were quantified using 

a NanoDrop (see Section 2.5.2.1). Genomic DNA samples were stored at -20ºC. 

 

2.5.2 DNA quantification 

2.5.2.1 NanoDrop ND-1000 spectrophotometer  

Quantification of genomic DNA was performed using NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, USA). Quantity and 

quality of the isolated DNA was assessed based on Ultra Violet (UV) absorbance. 

Nucleic acids absorb UV light in a specific pattern when exposed to 260 nm 

wavelength. The light that passes through the sample is measured and calculation of 

the concentration is made using the Beer-Lambert Law. The formula is based on the 

average extinction coefficient for double-stranded DNA (0.020 μg ml−1 cm−1) that is 

automatically performed by the NanoDrop. The DNA quality is evaluated based on 

the ratio between the absorbance readings at 260 nm and 280 nm, which indicates the 

sample purity. A ratio of 1.8 is considered as good quality DNA. Lower ratio indicates 

the presence of proteins or other contaminants that absorb at 280 nm. 

Quantification of RNA was also performed using the NanoDrop. The calculation 

formula using the Beer-Lambert Law is based on the average extinction coefficient for 

single-stranded RNA (0.025 μg ml−1 cm−1). Quality of RNA was also calculated based 

on the ratio between the absorbance readings at 260 nm and 280 nm. A ratio of 2.0 is 

considered as good quality RNA. 

The NanoDrop was blanked with MilliQ water, after this 1.5 μl of each DNA sample 

was measured. Each sample was pipetted onto the NanoDrop pedestal, which contains 

one end of a fibre optic cable. The arm was closed on top of the pedestal, which 

contains the other end of the fibre optic cable. The liquid sample makes contact with 

both ends of the fibre optical cables. The pedestal automatically adjusts the optimal 

https://en.wikipedia.org/wiki/Beer%27s_law
https://en.wikipedia.org/wiki/Beer%27s_law


74 
 

path length and a pulse of light passes through the sample. Readings were displayed 

in a computer screen and recorded. 

 

2.5.2.2 Qubit 

The Qubit dsDNA HS Assay kit (Life Technologies, Carlsbad, USA) uses a 

fluorometer that is highly selective for double-stranded DNA and quantifies the DNA 

accurately.  The fluorescent dye only emits a signal when bound to double-stranded 

DNA. Qubit generates a concentration curve based on the two standards of known 

concentration (0 ng/μl and 10 ng/μl). Sample fluorescence readings are plotted on the 

concentration curve and values displayed on the Qubit screen. Qubit reagent was 

diluted in Qubit buffer (1:200) to prepare the working solution. 190 µl of working 

solution was mixed with 10 µl of standards and 198 µl of working solution was mixed 

with 2 µl of each DNA sample. Tubes were mixed and incubated for 2 min at room 

temperature. Tubes were inserted into the Qubit 2.0 fluorometer and readings were 

displayed on the Qubit screen. 

 

2.5.3 DNA quality control 

DNA quality was analysed using a BioAnalyzer High Sensitivity DNA Kit (Agilent 

Technologies, Wokingham, UK) according to the manufacturer’s instructions. Briefly, 

15 µl High Sensitivity DNA dye concentrate was mixed with High Sensitivity DNA 

gel matrix and vortexed for 10 sec. The solution was transferred to a spin filter column 

and centrifuged for 10 min at 6,000 rpm. 9 µl of the gel-dye mix was loaded onto a 

new high sensitivity DNA chip. The chip was inserted into the chip priming station 

and closed. A 1 ml syringe filled with air was depressed down to the lowest position 

of the plunger, held there for 60 sec, the plunger was released for 5 sec and then slowly 

pulled back to the 1 ml position. The chip was removed from the priming station and 

9 µl of the gel-dye mix was pipetted into each well marked as G. 5 µl High Sensitivity 

DNA marker was pipetted into each sample well and also into the ladder well. 1 µl 

High Sensitivity DNA ladder was then pipetted into the ladder well. 1 µl of each DNA 

sample was pipetted into one sample well. An extra 1 µl High Sensitivity DNA marker 
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was pipetted into each unused sample well. The DNA chip was placed in the IKA 

vortex mixer at 2,400 rpm for 1 min. The DNA chip was then inserted in the Agilent 

BioAnalyzer. The 2100 Expert software was selected for high sensitivity DNA 

analysis. 

 

2.5.4 Primers 

Oligonucleotide primers were designed based on the C. jejuni NCTC 11168 genome 

sequence. Primers were checked for self-dimers and hairpin loops using Oligoanalyzer 

3.1 software on the Integrated DNA Technologies website 

(http://eu.idtdna.com/analyzer/applications/oligoanalyzer/). 

Primers were supplied by Invitrogen and reconstituted with sterile MilliQ water to 100 

pmol/µl to produce 100 µM stock solutions. Concentrations of 15 pmol/µl of each 

primer were used in PCR reactions. 

Primers utilised for quantitative real time PCR (qPCR) were further diluted to 10 

pmol/µl to produce 10 µM stock solutions. Primers used in this study are described in 

Table 2.1. 
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Table 2.1 Oligonucleotide primers used in this study 

Primer Sequence 

rrpA – Forward degenerate CCNCCNAARGTNGARTAC   

rrpA – Reverse degenerate GTAYTCNACYTTNGGNGG   

rrpB – Forward degenerate TGYCCNATHGARACNACN 

rrpB – Reverse degenerate GTAYTCNACYTTNGGNGG 

cosR – Forward degenerate GTNATHGARGAYGARATH 

cosR – Reverse degenerate YTTYTTNGGRAARCARAA 

rrpB – Forward specific AGATTTGGAGAGTTAAG 

rrpB – Reverse specific CTAAAGATGTAAGTGAGTAC 

perR – Forward specific CATGAGTTAAAAGCTACTCCGC 

perR – Reverse specific GCAATTATCAACATAAGCAC 

chlR – Forward out CGATTGATGATCGTTGTA 

sodB – Forward specific TACCTTATGATACCAATGC 

sodB – Reverse specific CAGGGTGAAGTTCATTTGC   

ahpC – Forward specific CCAGCGGTATTAGGAAAC 
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ahpC – Reverse specific CAAGATATTCAGCCACGCC   

gyrA – Forward specific GGTCGTTATCACCCACATGGAG 

gyrA – Reverse specific CCTACAGCTATACCAC 

gyrA qPCR – Forward CGCACAGGGCGTGGTCGCGTG 

gyrA qPCR – Reverse  ACACGGCCGATTTCACGCAC 

katA qPCR – Forward GTAGCAGGTGAAGCAGGTGC 

katA qPCR – Reverse CCTACCAAGTCCCAGTTTCC 

 

 

2.5.5 Polymerase Chain Reaction 

Each reaction was prepared as follows: 

Forward primer (100 pmol/µl)         0.15 µl 

Reverse primer (100 pmol/µl)          0.15 µl 

Genomic DNA (10 – 100 ng/µl)              1 µl 

MyTaq Red DNA Polymerase (Bioline, London, UK)         24 µl 

 

Tubes were inserted into a DNA Engine Tetrad 2 Peltier Thermal Cycler (Bio-Rad, 

Hemel Hempstead, UK) and PCR performed using the following program: 
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Standard PCR program: 

Step 1: Denaturing at 94°C for 15 sec 

Step 2: Annealing at 50°C for 1 min          34 cycles 

Step 3: Extension at 72°C for 1 min 

Step 4: Final extension at 72°C for 7 min 

 

2.5.6 Analysis of PCR products using agarose gel electrophoresis 

PCR reactions used MyTaq Red DNA Polymerase which contains a buffer with a red 

dye for direct gel loading (without the need to add loading buffer). Amplified PCR 

products were analysed on a 0.7% (w/v) agarose gel in 1X Tris-acetate-EDTA (TAE) 

electrophoresis buffer supplemented with 0.5 µg/ml ethidium bromide (Fisher 

Scientific). Briefly, 10 µl amplified PCR products were loaded into wells on the 

agarose gel. 5 µl of Hyperladder 1 kb marker was loaded into the first well of each 

gel. Gel electrophoresis was performed in a AGE electrophoresis tank (Bio-Rad) at 

120 V for 40 min in 1X TAE buffer. PCR products were visualised and images 

recorded using a GeneGenius Bio Imaging System. 

 

2.5.7 Design of degenerate oligonucleotide primers for screening rrpA, rrpB and 

cosR genes 

RrpA, RrpB and CosR are recently identified regulators of the C. jejuni oxidative 

stress response. Degenerate primers were designed to amplify each of these genes 

based on multiple amino acid alignments of RrpA, RrpB and CosR. 

The NCTC 11168 genome sequence was used with the Basic Local Alignment Search 

Tool (BLAST) website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to perform 

gene comparisons with all other C. jejuni genomes already sequenced in the database. 

This website allows searching for regions of local similarity within sequences from 

different strains and calculates the statistical significance of matches. 

Gene and amino acid sequences from different C. jejuni strains were copied into a 
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Microsoft Word document. These files were used to perform alignments using the 

ClustalW2 website (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Nucleotide 

alignments were performed as well as amino acid alignments. Amino acid alignments 

proved to be the best option when searching for areas of patch homology (Appendix 

2). Patch homology regions with a minimum of 6 amino acids were selected for each 

gene and degenerate primers were designed. Primers were checked for self-dimers and 

hairpin loops. Different PCR programs were used for each set of primers (Table 2.2). 

 

 

Table 2.2 PCR programs used for rrpA, rrpB and cosR degenerate primers. 

 cosR rrpA rrpB 

Step 1: Denaturing 94°C for 15 sec 94°C for 15 sec 94°C for 15 sec 

Step 2: Annealing 50ºC for 1 min 50ºC for 1 min 50ºC for 1 min 

Step 3: Extension 72°C for 1 min 72°C for 30 sec 72°C for 1 min 

Number of cycles 34 34 25 

Step 4: Final extension 72°C for 7 min 72°C for 7 min 72°C for 7 min 

 

 

2.5.8 Construction of a C. jejuni 11168H rrpB perR double mutant 

rrpB gene was PCR amplified, purified and then ligated into a plasmid pGEM-T Easy 

vector. rrpB gene was digested with a restriction enzyme to allow the insertion of a 

chloramphenicol (chlR) cassette. This construct was obtained from Gundogdu et al. 

(2011) study, where it was used for the generation of 11168H rrpAB double mutant.  

The 11168H perR mutant was grown on a BA plate for 24 h. Colonies were re-

suspended in 10 ml ice cold EBF buffer. EBF buffer consists of 1% (w/v) sucrose and 

6% (v/v) glycerol in MilliQ water and sterilised by filtration using 0.22 µm syringe 
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filter. The cell suspension was centrifuged for 10 min at 4,000 rpm and the supernatant 

was discarded. The pellet was re-suspended in 1 ml ice cold EBF buffer, transferred 

to a 1.5 ml microcentrifuge tube and centrifuged for 2 min at 13,000 rpm. This step 

was repeated and the pellet then re-suspended in 250 µl of ice cold EBF. 50 µl of this 

cell suspension was transferred to a new microcentrifuge tube and 5 µl of plasmid (1 

– 5 µg) containing the disrupted rrpB gene was added to the cells then mixed by 

pipetting. This mixture was incubated on ice for 10 min and then transferred to a cold 

electroporation 2 mm gap cuvette (Bio-Rad). Electroporation was performed using a 

GenePulser Xcell (Bio-Rad) with the following settings: 2.5 kV, 25 µFD and 200 Ω. 

Immediately after the electroporation, 100 µl SOC Medium (Invitrogen) at room 

temperature was added to the cells to aid bacterial recovery. Bacterial cells were plated 

onto BA plates and incubated at 37ºC under microaerobic conditions for 2 days. 

Colonies were then harvested and re-suspended in 500 µl PBS. Aliquots of 100 µl or 

200 µl were plated on BA plates containing 50 µl/ml kanamycin and 10 µl/ml 

chloramphenicol. Plates were incubated at 37ºC under microaerobic conditions for up 

to 5 days. Single colonies were re-streaked on fresh BA kanamycin/chloramphenicol 

plates. A loop of each re-streaked colony was re-suspended  in 100 µl MilliQ water in 

a 0.6 µl microcentrifuge tube, vortexed and incubated at 95ºC for 10 min to lyse the 

bacterial cells, then centrifuged at 13,000 rpm for 5 min. Boilate supernatants were 

used for PCR screening using rrpB gene specific primers. rrpB gene specific forward 

and chlR forward-out primers were also used to determine the orientation of the chlR 

cassette within the cloned rrpB gene. Glycerol stocks were prepared as described in 

Section 2.2. 

 

2.5.9 Genomic analysis at the Institute of Food Research 

A total of 4,232 Campylobacter genome sequences (3,746 C. jejuni and 486 C. coli) 

were obtained from Genbank (www.ncbi.nlm.nih.gov) and from the Campylobacter 

pubMLST database (pubmlst.org/Campylobacter). The multilocus sequence type 

(MSLT) and clonal complex (CC) were determined using the scheme provided by the 

Campylobacter pubMLST website. 

The genomes were phylogenetically clustered using FFPry feature frequency profiling 

with a word length of 18 (van Vliet and Kusters, 2015), which compares the 
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occurrence of purine/pyrimidine words in each separate genome sequence, and 

subsequently converts the information into a distance table followed by construction 

of a tree using the Neighbour-Joining method. Genomes were provisionally annotated 

using Prokka (Seemann, 2014) and searched for the presence of RrpA and RrpB using 

BLAST. Presence of the corresponding genes was also assessed at the DNA level 

using BLASTN+ and the MIST program (Kruczkiewicz et al., 2013) and BLAST+ 

(v2.28). Both DNA and amino acid comparisons were performed using the rrpA and 

RrpA sequences from C. jejuni NCTC 11168, C. jejuni 81116, C. jejuni 414 and C. 

coli 76639, and the rrpB and RrpB sequences from C. jejuni NCTC 11168. 

Conservation of flanking genes was assessed using the Prokka-annotated genomes 

analysed with the pangenome analysis software package Roary (Page et al., 2015) and 

the gene numbers obtained from the provisional Prokka annotation of the 4,232 C. 

jejuni and C. coli genome sequences. 

 

 

2.5.10 RNA isolation 

Bacteria were re-streaked on BA plates and grown for 24 h. 10 ml Brucella broth was 

pre-incubated overnight with shaking at 75 rpm under microaerobic conditions. 

Bacterial cells were re-suspended in 1 ml PBS. The pre-incubated Brucella broth was 

inoculated to an initial OD600 of 0.1 and incubated for 17 h at 37ºC with shaking at 75 

rpm under microaerobic conditions. 4 ml of the culture was added to 8 ml of RNA 

protect Bacterial Reagent (Qiagen, Manchester, UK), vortexed for 5 sec and incubated 

for 5 min at room temperature for RNA stabilisation. The stabilised culture was then 

centrifuged at 4,000 rpm for 10 min at 4ºC and the supernatant discarded. The pellet 

was re-suspended in 200 µl Tris-EDTA (TE) buffer/lysozyme mix (one part of 

lysozyme solution (1 mg/ml) diluted in 9 parts of TE buffer) and mixed using a P1000 

Gilson pipette for 1 min. This suspension was then incubated at room temperature for 

10 min and vortexed every 2 min. RLT buffer from a RNeasy Mini Kit (Qiagen) was 

mixed with 14.4 M β-mercaptoethanol (10 µl per 1 ml RLT buffer) (Stratagene, 

Amsterdam, The Netherlands). This mix was added to the suspension and vortexed 

vigorously. 500 µl of 100 % (v/v) ethanol was added to the suspension and mixed by 

pipetting. A 700 µl aliquot of this suspension was transferred to an RNeasy Mini spin 

column and centrifuged for 15 sec at 10,000 rpm. The flow through was discarded and 
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this step repeated. 350 µl RW1 buffer was then added to the column and centrifuged 

for 15 sec at 10,000 rpm and the flow through discarded. 70 µl RDD buffer (Qiagen) 

was mixed with 10 µl DNase I (1 U/µl), and 80 µl of this mix was added to the centre 

of the RNeasy mini spin column and incubated at room temperature for 15 min. 350 

µl of RW1 buffer was added to the spin column, centrifuged for 15 sec at 10,000 rpm 

and the flow through discarded. 500 µl of RPE buffer was added to the spin column, 

centrifuged for 15 sec at 10,000 rpm and the flow through discarded. Another 500 µl 

of RPE buffer was added to the spin column and centrifuged for 2 min at 10,000 rpm. 

The column was transferred to a new 2 ml collection tube and centrifuged at 13,000 

rpm for 1 min to allow removal of any residual RPE buffer. The spin column was then 

placed in a 1.5 ml microcentrifuge tube. 50 µl RNase-free water was added to the 

centre of the spin column directly onto the membrane and then centrifuged at 13,000 

rpm for 1 min to elute the RNA. The concentration of the RNA was quantified using 

a NanoDrop (see Section 2.5.2.1). RNA samples were stored at -80ºC. 

 

2.5.11 RNA normalisation 

Based on the NanoDrop concentration, all RNA samples were normalised to the same 

concentration. RNase-free water was used to dilute RNA samples.  

 

2.5.12 DNase treatment 

The TURBO DNA-free Kit (Fisher Scientific) contains a highly efficient DNase I 

compared to traditional DNase I. This kit was used to completely remove any traces 

of DNA present in the RNA samples.  

The reactions were prepared as follows: 

10x TURBO DNase Buffer    5 µl 

TURBO DNase     1 µl 

RNA sample (2 µg)     x µl 

Nuclease-free water up to               50 µl 
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Samples were incubated for 30 min at 37ºC. 5 µl of DNase Inactivation Reagent was 

then added to each reaction and incubated at room temperature for 5 min with 

occasional mixing for re-dispersion of the DNase Inactivation Reagent. Tubes were 

centrifuged at 10,000 rpm for 90 sec. Supernatants were transferred to clean tubes. 

This step removes the DNase from the RNA samples. The final concentration obtained 

for each sample was 40 ng/µl. 

 

2.5.13 Preparation of cDNA from total RNA 

The SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) was used 

to convert total RNA to cDNA. 100 ng of each RNA sample was used in each RT-

PCR reaction to be converted to cDNA. 

RNA sample  (40 ng/µl)             2.5 µl 

Random hexamers (50 ng/µl)     1 µl 

10 mM dNTP mix             1 µl 

RNase-free water                  5.5 µl 

 

Samples were incubated at 65ºC for 5 min, then incubated on ice for 1 min. Then 10 

µl of the cDNA synthesis mix was prepared at the following concentration per sample: 

10X RT buffer       2 µl 

25 mM MgCl2       4 µl 

0.1 M DTT       2 µl 

RNase OUT (40 U/µl)      1 µl 

SuperScript III RT (200 U/µl)    1 µl 

 

No RT reactions were also prepared as a control to analyse the reverse transcriptase 

enzyme efficiency and as a control for contaminating genomic DNA. Samples were 
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prepared in duplicate, one without the addition of SuperScript III RT. 10 µl of cDNA 

synthesis mix was added to each RNA sample, mixed and incubated in the DNA 

Engine Tetrad 2 Peltier Thermal Cycler using the following program: 

Step 1: 25ºC for 10 min  

Step 2: 50°C for 50 min 

Step 3: 85°C for 5 min 

 

Reactions were then incubated in ice for 1 min. Reactions were briefly centrifuged, 

then 1 µl RNase H added and incubated for 20 min at 37ºC to degrade the remaining 

RNA. cDNA samples were stored at -20ºC. 

 

2.5.14 Reverse transcription polymerase chain reaction 

Reverse transcription polymerase chain reaction (RT-PCR) was used to investigate 

katA, ahpC and sodB expression semi-quantitatively using gyrA as a control 

housekeeping gene. Two reactions were set up for each cDNA sample, one using katA 

primers and the other using gyrA primers. RT-PCR reactions were performed in three 

biological replicates. PCR products were analysed as described previously (see 

Section 2.5.6). Images were recorded using a GeneGenius Bio Imaging System and 

band intensities were quantified using ImageJ software (NIH Image, Bethesda. USA). 

A rectangle was drawn around the amplified band using the ImageJ software to record 

the pixel intensity. The selected area was copied and used to read the other bands 

amplified so all the bands were quantified using exactly the same area. All PCR 

reactions were analysed using the same PCR program described in Section 2.5.4, using 

the same number of amplification cycles and scanning settings. A graph of each band 

was generated with a peak indicating the intensity of each band. The area of each peak 

was marked, values for each peak were generated indicating the area in square pixels 

and the percentage of the size of all other peaks. katA cDNA PCR product ratios were 

calculated and normalised against gyrA cDNA PCR product ratios for each sample. 

Gene expression levels are described as relative intensity (vs. gyrA).  
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2.5.15 qPCR 

The cDNA obtained from the total RNA was diluted 1:10 with nuclease-free water as 

the reverse transcription buffer can inhibit PCR amplification. Power SYBR Green 

PCR Master Mix (Fisher Scientific) was used to label the double stranded DNA during 

target amplification. This mix contains SYBR Green I dye, DNA Polymerase, dNTPs 

with dUTP, passive reference Rox dye and optimised buffer. Samples were prepared 

in duplicate in MicroAmp Fast Optical 96-Well Plates (Applied Biosystems), then 

sealed with Optical Adhesive Covers (Applied Biosystems) and analysed using a 7500 

Real-Time PCR System (Applied Biosystems).  

Reactions were prepared as follows: 

SYBR Green Master Mix     10 µl 

Primer forward (10 µM)      1 µl 

Primer reverse (10 µM)      1 µl 

Nuclease-free water       4 µl 

cDNA         4 µl 

 

Cycling conditions: 

Denaturation:  95ºC for 3 min 

Amplification:  95ºC for 15 sec 

   50ºC for 20 sec 

Melting curve: 95ºC for 15 sec 

    50ºC for 1 min 

    95ºC for 30 sec 

    50ºC for 15 sec   

 

40 

C

yc

le

s 

40 cycles 
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A Melting curve was performed due to the non-specific binding capability of the 

SYBR Green dye, which can bind to any double stranded DNA. Multiple melting 

points indicate DNA contamination. Multiple melting points can also indicate primer 

dimmers.  

 

2.5.16 Whole genome sequencing 

The Laboratory Coleção de Campylobacter from Instituto Oswaldo Cruz (Oswaldo 

Cruz Foundation) from Rio de Janeiro kindly provided 43 C. jejuni strains isolated 

from chicken meat, human infections and the environment. Whole genome sequencing 

was performed following Nextera protocol. 

Genomic DNA was isolated from all strains as described in Section 2.5.1. 

Quantification of the genomic DNA was performed initially using a NanoDrop (see 

Section 2.5.2.1). Genomic DNA was diluted to 1 ng/µl and the concentration further 

analysed using the Qubit (see Section 2.5.2.2). Genomic DNA was then further diluted 

to 0.2 ng/µl for library preparation. 

 

2.5.16.1 Fragmentation and tagging 

DNA samples were fragmented and tagged using Nextera XT transposome. This step 

allowed the samples to be fragmented and simultaneously tagged with adapter 

sequences to the ends of the fragments. Briefly, 10 µl Tagment DNA buffer and 5 µl 

DNA at 0.2 ng/ µl was used for each sample in a 96-well plate. 5 µl Amplicon Tagment 

mix was added to each sample and mixed. The plate was sealed and centrifuged at 280 

x g for 1 min at room temperature. The plate was inserted into a DNA Engine Tetrad 

2 Peltier Thermal Cycler and incubated at 55ºC for 5 min, then cooled to 10ºC. When 

the samples reached 10ºC, the seal was removed and 5 µl Neutralize Tagment buffer 

was added to each well and mixed. The plate was re-sealed and centrifuged at 280 x g 

for 1 min at room temperature. The plate was incubated for 5 min at room temperature. 

Quality of samples was then analysed using the BioAnalyzer (see Section 2.5.3). 
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2.5.16.2 Amplification 

DNA samples were amplified using PCR and indexes required for cluster formation. 

Each DNA sample was tagged with two specific index primers provided in the Nextera 

XT DNA kit. Briefly, 15 µl Nextera PCR master mix was added to each well. 5 µl of 

specific index 2 primer was added to each well, followed by 5 µl of specific index 1 

primer and mixed. The plate was sealed and centrifuged at 280 x g for 1 min at room 

temperature. Then the following PCR program was used: 

Step 1: 72ºC for 3 min 

Step 2: 95ºC for 30 sec 

Step 3: 95ºC for 10 sec 

            55ºC for 30 sec        12 cycles 

            72ºC for 30 sec 

Step 4: 72ºC for 5 min 

Step 5: Hold at 10ºC 

 

2.5.16.3 PCR clean-up 

DNA samples were cleaned using microbeads to purify the library and remove short 

library fragments. Briefly, the 96-well plate was centrifuged at 280 x g for 1 min at 

room temperature. 50 µl of each DNA sample was transferred to a new 96-well plate. 

The microbeads were equilibrated to room temperature and mixed for 30 sec to be 

evenly dispersed. 30 µl AMPure XP beads were added to each well and mixed by 

pipetting 10 times. The plate was then incubated at room temperature for 5 min and 

placed on a magnetic stand for 2 min. The supernatant was discarded and the 

microbeads were washed with freshly prepared 80% (v/v) ethanol. 200 µl of 80% (v/v) 

ethanol was added to each well and incubated on the magnetic stand for 30 sec. The 

supernatant was removed and a second wash performed. The plate was kept on the 

magnetic stand for 15 min to air-dry. The plate was then removed from the magnetic 

stand and 52.5 µl Resuspension buffer was added to each well and mixed by pipetting 
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10 times. The plate was incubated at room temperature for 2 min and re-placed on the 

magnetic stand. 50 µl of the supernatant was carefully transferred to a new 96-well 

plate. 

 

2.5.16.4 Library normalisation 

This step normalises the concentration of each DNA sample to ensure equal library 

representation in the pooled samples. Briefly, 20 µl of the supernatant was transferred 

to a new 96-well plate. 800 µl of re-suspended Library normalisation beads were 

mixed with 4.4 ml Library normalisation additives. 45 µl of the mixture was added to 

each well. The plate was sealed and placed on a shaker at 1800 rpm for 30 sec. The 

plate was then placed on the magnetic stand for 2 min. 80 µl of the supernatant was 

removed and discarded. The beads were washed with 45 µl Library normalisation 

wash, then the plate re-sealed and placed on a shaker at 1,800 rpm for 5 min. The plate 

was placed on a magnetic stand for 2 min. The supernatant was removed and 

discarded. The plate was removed from the stand and a further washing process was 

performed. The plate was then removed from the stand and 30 µl 0.1 M NaOH was 

added to each well. The plate was sealed and placed on a shaker at 1,800 rpm for 5 

min. Then, 30 µl Library normalisation storage buffer was added to each well and 

samples re-suspended and shaken for another 5 min. The plate was placed on the 

magnetic stand for 2 min. 30 µl of the supernatant was transferred to a new 96-well 

plate, sealed and centrifuged at 1,000 x g for 1 min. 

 

2.5.16.5 Library pooling 

During this step, DNA samples were pooled with equal volumes of normalised library 

for cluster generation and sequencing. Briefly, 5 µl of each library was transferred to 

a PCR tube and mixed. 24 µl of the pooled library was transferred to another tube and 

576 µl Hybridization buffer was added and mixed. This mix was incubated at 96ºC for 

2 min. After the incubation, each tube was mixed by inversion and placed in an ice-

water bath for 5 min. A MiSeq cartridge was defrosted and the library content was 

loaded into the cartridge. 
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2.5.16.6 Genomic sequencing and analysis 

Genome sequencing was performed using Illumina MiSeq 2 x 150 bp paired-end 

sequencing. Initial data quality was assessed in FastQC (Andrews, 2010). The 

sequencing reads were quality controlled using Trimmomatic (v0.32) (leading’ and 

‘trailing’ setting of 3, a ‘slidingwindow’ setting of 4:20 and a ‘minlength’ of 36 

nucleotides) (Bolger et al., 2014). Reads were mapped using BWA-MEM (v0.7.7-

r441) against the genome sequence of either the C. jejuni NCTC 11168 (AL111168) 

or C. jejuni 414 strains. Assembly was performed using VelvetOptimiser (v2.2.5) 

using n50 optimization (Zerbino and Birney, 2008, Gladman and Seemann, 2012). 

Contigs were ordered against C. jejuni 414 (CM000855) using ABACAS (v1.3.1) 

(Assefa et al., 2009). Annotation of genomes was performed with RATT (Otto et al., 

2011) using C. jejuni NCTC 11168 (AL111168). Genomes were visualised using 

Artemis and ACT software (Carver et al., 2012).  

 

2.5.17 Search for pathogenicity genes 

Genomes were analysed for specific genes (protein sequences) using the program 

Blastall (Altschul et al., 1990). Gene sequences were obtained from either the C. jejuni 

NCTC 11168 or 414 strain. Searched genes included rrpA, rrpB, cadF, cdtA, cdtB, 

cdtC, ciaB flpA, dnaJ, flaA, flaC, hipO, ilpA, peb1A, pldA, and racR based on the 

genome sequence of C. jejuni NCTC 11168 strain. T6SS-associated genes searched 

were tssA, tssB, tssC, tssD, tssE, tssF, tssG, tssH, tssI, tssJ, tssK, tssL, and tssM based 

on the genome sequence of C. jejuni 414 strain.  

To perform searches, the selected genes were set as the database and the newly 

sequenced whole genome was converted into amino acid sequence form. To set the 

query sequence as the database, the formatdb command was used as follows: 

formatdb -i file -oT -pF -VT 

The option -i denotes the input file. The option -oT was set to true allowing creation 

of indexing for potential downstream applications. The option -pF was set to false 

denoting the input sequence is a nucleotide sequence. The option -VT was set to true 

so as to allow warning messages to appear if sequence identifiers were not unique.  
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Using the blastall program, blastx was used to perform the comparison. Blastx 

compares the six-frame translation products of a nucleotide query sequence against a 

protein database. In this case, the newly generated genome sequences were converted 

in this manner and the gene to be searched acted as the protein database. To perform 

the blast search, the blastall command was used as follows: 

blastall -p blastx -i inputfile -d RacR_p.txt –o outputfile -b2 -a1 -v2 -e0.01 –FF 

The option -b was set to 2 which selected the number of alignments to show. The 

option -a was set to 1 which selected the number of processors to use. The option –v 

was set to 2 which selected the number of descriptions to display. The option –e 

allowed the Expectation value to be set (in this case -e0.01) and the value allowed the 

filtering of non-significant matches. The option -F was set to ‘false’ (-FF) so there was 

no filtering of low-complexity subsequences. Blastall results were considered 

significant where Expectation values were less than 1e-15 and similarity was greater 

than 50%.  

 

2.5.18 Multilocus sequence typing 

Housekeeping genes are normally expressed and conserved. However, variation in 

housekeeping gene nucleotide sequences can occur. Nucleotide differences were 

assigned an allele number and then to a unique allelic profile, which were then 

assigned to a sequence type (ST). Sequences of housekeeping genes were analysed 

and assignments were performed using the script from Torsten Seemann which scans 

contig files against PubMLST typing schemes (Jolley and Maiden, 2010). This method 

uses a web-accessible database system (https://github.com/tseemann/mlst) called The 

Bacterial Isolate Genome Sequence Database (BIGSDB) for identification of MLST 

of different bacterial specimens. Similarities of C. jejuni isolates were made by 

comparing the different allelic profiles. The housekeeping genes used for MLST were 

aspA, glnA, gltA, glyA, pgm, tkt and uncA. The MLST script used was: 

mlst – scheme campylobacter *.dna > mlst.csv 

https://github.com/tseemann/mlst
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2.5.19 RNA sequencing 

RNA samples were obtained as described in Section 2.5.9 and treated with DNase I to 

remove any traces of DNA in the samples (see Section 2.5.11). 

 

2.5.19.1 Ribosomal RNA (rRNA) removal 

The Ribo-Zero rRNA Removal Kit (Illumina) was used to remove rRNA from total 

RNA samples. Briefly, for each sample 225 µl of magnetic beads were transferred to 

a 1.5 ml tube and placed on a magnetic stand for 1 min. The supernatant was discarded 

and beads were re-suspended in 225 µl of RNA-free water and mixed by pipetting. 

This washing step was repeated one more time and the supernatant discarded. Beads 

were re-suspended in 65 µl of Magnetic Bead Suspension Solution and mixed. 1 µl of 

RiboGuard RNase Inhibitor was added to the beads. The following reaction was 

prepared to remove ribosomal RNA from total RNA samples: 

Ribo-Zero Reaction Buffer       4 µl 

RNA sample          1 µg 

Ribo-Zero rRNA Removal Solution       8 µl 

RNase-free water up to     40 µl 

 

Reactions were incubated at 68ºC for 10 min, then incubated at room temperature for 

5 min. Each treated sample was transferred to a 1.5 ml microcentrifuge tube containing 

the prepared magnetic beads, mixed thoroughly by pipetting and then vortexexd for 

10 sec. Samples were incubated at room temperature for 5 min, vortexed for 10 sec 

and then incubated at 50ºC for 5 min. Tubes were then placed in the magnetic stand 

for 1 min. The supernatant was removed carefully and transferred to a new 1.5 ml 

microcentrifuge tube. 
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2.5.19.2 Sample purification 

Sample purification was performed using the Agencourt RNAClean XP Kit (Beckman 

Coulter, Brea, USA). Briefly, beads were vortexed for dispersion. 160 µl of the beads 

solution was added to each RNA sample prepared as described in Section 2.5.19.1, 

and thoroughly mixed by pipetting. Tubes were incubated at room temperature for 15 

min, then placed on the magnetic stand for 5 min. Supernatants were discarded. 200 

µl of freshly prepared 80% ethanol was added to each sample without disturbing the 

beads. After 30 sec, the supernatant was discarded and this step repeated. Tubes were 

air dried for 15 min at room temperature. Then, 11 µl of RNA-free water was added 

and the beads gently re-suspended. Tubes were incubated at room temperature for 2 

min, then placed in the magnetic stand for 5 min. The supernatant was then removed 

to a collection tube. 

 

2.5.19.3 RNA fragmentation 

Reactions for RNA fragmentation were prepared in a 0.6 ml microcentrifuge tube as 

described: 

Ribo-Zero-treated RNA     9 µl 

RNA Fragmentation Solution     1 µl 

cDNA Synthesis Primer     2 µl 

Tubes were incubated at 85ºC for 5 min, then placed on ice. 

 

2.5.19.4  cDNA synthesis 

The following master mix was prepared for each reaction: 

cDNA Synthesis PreMix         3 µl 

100 mM DTT        0.5 µl 

StarScript Reverse Transcriptase    0.5 µl 
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The 4 µl from the master mix were transferred to each sample prepared in Section 

2.5.19.3. Tubes were incubated in thermocycler as follows: 

Step 1: 25ºC for 5 min  

Step 2: 42ºC for 20 min  

Step 3: 37ºC Paused 

 

1 µl of Finishing Solution was added to each reaction. Tubes were returned to the 

thermocycler and incubated as follows: 

Step 4: 37ºC for 10 min  

Step 5: 95ºC for 3 min (Inactivation of finishing solution) 

Step 6: 25ºC Paused 

 

2.5.19.5 Terminal tagging 

For each sample the following reaction was prepared: 

Terminal Tagging Premix     7.5 µl 

DNA Polymerase       0.5 µl 

 

The 8 µl reaction mixture was mixed gently by pipetting. Tubes were returned to the 

thermocycler and incubated as follows: 

Step 7: 25º for 15 min 

Step 8: 95ºC for 3 min 

Step 9: Tubes were then cooled on ice. 
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2.5.19.6 cDNA purification 

cDNA samples were purified using the Agencourt RNAClean XP Kit as follows: 45 

µl of beads were added to each microcentrifuge tube prepared in Section 2.5.19.5 and 

mixed by pipetting. Samples were transferred to 1.5 ml microcentrifuge tubes and 

incubated at room temperature for 15 min. Tubes were placed in a magnetic stand for 

5 min. The supernatant was discarded and 200 µl 80% (v/v) ethanol was added to each 

sample. Tubes were incubated at room temperature for 30 sec and the supernatant was 

discarded. This step was repeated once more. Tubes were air dried for 15 min at room 

temperature. 24.5 µl of nuclease-free water was added and the beads re-suspended by 

pipetting. Tubes were incubated for 2 min at room temperature then transferred to the 

magnetic stand for 5 min. 22.5 µl of the clear supernatant was transferred to a 0.6 µl 

tube. 

 

2.5.19.7 Indexing and library amplification 

This step generated the second strand of cDNA. Adaptor sequences and indexes were 

also added to the fragments for sequencing. ScriptSeq Index PCR Primers (Illumina) 

were used, a unique index primer was used for each sample. 

FailSafe PCR PreMix E       25 µl 

Forward PCR Primer (10 µM)       1 µl 

ScriptSeq Index PCR Primer (10 µM)      1 µl 

FailSafe PCR Enzyme (1.25 U)     0.5 µl 

PCR program used:  Step 1:  95ºC for 1 min 

          Step 2: 95ºC for 30 sec 

                      55ºC for 30 sec 

          68ºC for 3 min 

          Step 3: 68ºC for 7 min 

15 cycles 
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2.5.19.8 Library purification 

The AMPure XP system was used to purify the libraries. Briefly, 50 µl of beads were 

added to each PCR tube prepared in Section 2.5.19.7 and mixed by pipetting. Samples 

were transferred to 1.5 ml microcentrifuge tubes and incubated at room temperature 

for 15 min. Tubes were placed in the magnetic stand for 5 min. The supernatant was 

discarded. Beads were washed twice with 200 µl 80% ethanol for 30 sec and 

supernatant discarded. Tubes were air dried for 15 min at room temperature. Beads 

were re-suspended with 20 µl nuclease-free water by gentle pipetting and incubated at 

room temperature for 2 min. Tubes were placed in the magnetic stand for 5 min. The 

clear supernatant was transferred to a new collection tube.  

 

2.5.19.9 Assess library quality 

Library qualities were assessed using BioAnalyzer as described in Section 2.3.5. 

 

2.5.19.10 RNA sequencing and analysis 

Library pooling and loading into MiSeq cartridge was performed as described in 

2.5.16.5. RNA sequencing (RNA seq) was performed using Illumina MiSeq 2 x 75 bp 

paired-end sequencing. To allow quantification of RNA-Seq data, Rockhopper 

software was used (McClure et al., 2013). Rockhopper allows input of Fastq files and 

based on built in genomes, allows determination of differential gene expression 

values. The software includes the reference genome NCTC 11168 and this was used 

as the reference. Rockhopper also conveniently allows the incorporation of biological 

replicates. For reference based analysis Rockhopper aligns creates a Burrows-Wheeler 

index based on the full-text minute space. After index creation for the reference 

genome, an exact alignment is attempted for each read and, if unsuccessful, an inexact 

alignment to the set of replicons is attempted by aligning the seed regions to the 

genome and extending these alignments with an optimized dynamic program. This 

dynamic program determines the optimal alignment using an algorithm based on the 

error probabilities of each sequencing read (McClure et al., 2013).  
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For normalisation, the software allows for comparison of data from different samples 

and experiments, by normalising each set of data by upper quartile normalization 

(McClure et al., 2013). Rockhopper quantifies transcript abundance based on RPKM 

(Reads Per Kilobase of transcript per Million mapped reads), which is a measure that 

sums the number of reads for a gene and divides by the gene’s length and the total 

number of reads. However, Rockhopper divides RPKM by the upper quartile of gene 

expression. 

For differential expression, Rockhopper uses local regression to obtain an estimate of 

gene expression variances. Then, for each transcript, Rockhopper performs a statistical 

test for the null hypothesis, which is that the expression of the transcript is the same 

in different conditions. The Negative Binomial distribution is used as the statistical 

model to compute a p-value indicating the probability of observing a transcript's 

expression levels in the different conditions by chance. Rockhopper generates q-

values using Benjamini-Hochberg procedure to control the false discovery rate caused 

by multiple statistical analysis (McClure et al., 2013). 

 

2.6 Statistical analysis 

All experimental assays consist of at least three biological replicates performed in 

duplicate. Error bars represent the standard error of mean. Statistical analyses were 

performed using GraphPad Prism software (v4.02). Variables were compared for 

significance using a student’s t-test. 
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3 Investigation into the role of RrpA and RrpB in the C. jejuni 

oxidative stress response 

 

3.1 Introduction 

The re-annotation of the C. jejuni NTCT 11168 genome identified two previously 

unidentified transcriptional regulators RrpA and RrpB that belong to the MarR family 

of transcriptional regulators due to the presence of a Pfam motif PF01638 (Gundogdu 

et al., 2007). PF01638 is a HxlR-like helix-turn-helix motif which is part of the DNA 

binding site of MarR-like transcriptional regulators (Kumarevel, 2012). MarR-like 

transcriptional regulators control many different biological functions, including 

resistance to multiple antibiotics, expression of virulence factors and resistance to 

different oxidative stresses (Kumarevel, 2012). The two MarR-type response 

regulators RrpA and RrpB have been shown to play a role in the peroxide and aerobic 

stress responses (Gundogdu et al., 2011, Gundogdu et al., 2015). Mutation of rrpA or 

rrpB in the 11168H wild-type strain resulted in decreased ability to survive under 

aerobic conditions and increased sensitivity to peroxide stress (Gundogdu et al., 2011, 

Gundogdu et al., 2015). Mutation of rrpB in the 11168H wild-type strain was shown 

to affect the expression of 73 genes based on microarray data (Gundogdu et al., 2011). 

Some of the genes affected by the rrpB mutation were related to oxidative stress 

defence mechanisms, such as ahpC, katA, perR and sodB (Gundogdu et al., 2011). 

Further analysis showed that RrpA has 43.6% identity and 58.4% similarity to RrpB 

(Gundogdu et al., 2015). 

 

3.2 Results 

3.2.1 Construction of a 11168H rrpB perR double mutant 

A plasmid containing the cloned 11168H rrpB gene disrupted by the insertion of a 

chloramphenicol resistance (chlR) cassette was obtained from Dr. Ozan Gundogdu 

(Gundogdu et al., 2015) and electroporated into the 11168H perR mutant. 11168H 

rrpB perR double mutants were selected on BA kanamycin/chloramphenicol plates as 

described in Section 2.5.8. 
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The construction of an 11168H rrpB perR double mutant was confirmed by PCR. rrpB 

and perR gene specific primers were used to confirm that both genes had been mutated 

through the insertion of antibiotic resistance cassettes. The expected size for rrpB 

amplification is 163 bp and the size expected for perR amplification is 411 bp. The 

size of the kanamycin (kanR) cassette is 1,426 kilobase (kb). Therefore, the size 

expected for perR plus the kanR cassette is 1,837 kb. The size of the chlR cassette is 

804 bp. Therefore, the size expected for rrpB plus the chlR cassette is 967 bp.  

The rrpB gene specific forward primer was also used with a chlR forward-out primer 

to investigate if the chlR cassette was inserted in the correct orientation. The size 

expected for the amplification using rrpB forward and chlR forward-out is 489 bp 

(Figure 3.1).  

 

 

Figure 3.1 Confirmation of the construction of a 11168H rrpB perR 

mutant using PCR. A and B are genomic DNA from 2 different clones. 

Lane 1: ladder; Lanes 2 and 8: 11168H genomic DNA (positive controls); 

Lanes 2, 3 and 4: rrpB specific primers; Lanes 5, 6 and 7: rrpB forward 

and chlR forward out primers; Lanes 8, 9, 10 and 11: perR specific 

primers; Lanes 7 and 11: negative controls. 

 

 

1        2       3       4       5       6       7       8       9       10     11 

A        B 

A        B 

A        B 
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3.2.2 Oxidative stress assays 

The survival of the 11168H wild-type strain, rrpA mutant, rrpB mutant and rrpAB 

double mutant were tested under different oxidative stress conditions in order to 

investigate the roles of RrpA and RrpB. rrpA and rrpB complements were also tested 

under H2O2 stress conditions. As controls, different mutants with known defects in 

oxidative stress responses (katA, ahpC, sodB and perR) were also tested under the 

different oxidative stress conditions. 

 

3.2.2.1 Hydrogen peroxide stress 

The 11168H wild-type strain exhibited resistance to 25 mM H2O2, but was highly 

sensitive to both 50 mM and 100 mM H2O2. The katA mutant does not express 

catalase, the main bacterial enzyme that neutralises hydrogen peroxide, so was highly 

sensitive to all concentrations of H2O2 used. The sodB mutant exhibited increased 

resistance to H2O2 compared to the wild-type strain, surviving exposure to 50 mM 

H2O2. The ahpC mutant also exhibited increased resistance compared to the wild-type 

strain, demonstrating resistance to 100 mM H2O2 (Figure 3.2). Controls were 

performed incubating each strain under the same conditions, but without exposure to 

H2O2. 
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Figure 3.2 Sensitivity of the 11168H wild-type strain, katA, sodB and ahpC 

mutants to H2O2 stress. Bacterial suspensions (OD600 1.0) were exposed to 

25, 50 and 100 mM H2O2 for 15 min under microaerobic conditions at 37ºC. 

Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA 

plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. * = p < 0.05; ** = p < 0.01; *** = p < 0.001; # no growth. 

 

 

The sensitivity of the rrpA mutant, rrpB mutant and rrpAB double mutant to H2O2 was 

also investigated. The rrpA and rrpB mutants exhibited increased sensitivity to H2O2 

compared to the wild-type strain. rrpA and rrpB complements exhibited restoration of 

the 11168H wild-type phenotype. However, the rrpB complement did not resist 

exposure to 25 mM H2O2 at the same level as the wild-type strain. The rrpAB double 

mutant exhibited increased resistance to H2O2 compared to the wild-type strain, even 

resisting exposure to 100 mM H2O2 (Figure 3.3). 
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Figure 3.3 Sensitivity of the 11168H wild-type strain, rrpA, rrpB and rrpAB 

mutants, rrpA and rrpB complements to H2O2 stress. Bacterial suspensions 

(OD600 1.0) were exposed to 25, 50 and 100 mM H2O2 for 15 min under 

microaerobic conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and 

pipetted onto duplicate in BA plates. CFUs were counted after 48 h incubation. 

Data represents at least three biological replicates. * = p < 0.05; *** = p < 0.001; 

# no growth. 

 

 

PerR is a regulator of the C. jejuni oxidative stress response and is known to repress 

both katA and ahpC expression (Palyada et al., 2009). The 11168H perR mutant was 

shown to be highly resistant to H2O2. The 11168H rrpB perR double mutant was also 

shown to be highly resistant to H2O2 (Figure 3.4). 
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Figure 3.4 Sensitivity of the 11168H wild-type strain, perR and rrpB perR 

mutants to H2O2 stress. Bacterial suspensions (OD600 1.0) were exposed to 

25, 50 and 100 mM H2O2 for 15 min under microaerobic conditions at 37ºC. 

Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA 

plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. *** = p < 0.001; # no growth. 

 

Different C. jejuni wild-type strains and their respective rrpA and/or rrpB mutants 

were also investigated for H2O2 stress resistance. The strains analysed were: 81-176 

wild-type strain, 81-176 rrpA mutant, 81-176 rrpB mutant, 81116 wild-type strain, 

81116 rrpA mutant, M1 wild-type strain and M1 rrpA mutant. The sensitivity of these 

strains to H2O2 was compared to the 11168H wild-type strain as well as the 11168H 

rrpA and rrpB mutants. The 81-176 rrpA and rrpB mutants demonstrated increased 

sensitivity to 25 mM H2O2 compared to the wild-type strain. This result was similar 

to the phenotype demonstrated by the 11168H rrpA and rrpB mutants (Figure 3.5). 
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Figure 3.5 Sensitivity of the 11168H and 81-176 wild-type strains and 

respective rrpA and rrpB mutants to H2O2 stress. Bacterial suspensions 

(OD600 1.0) were exposed to 25, 50 and 100 mM H2O2 for 15 min under 

microaerobic conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) 

and pipetted in duplicate onto BA plates. CFUs were counted after 48 h 

incubation. Data represents at least three biological replicates. * = p < 0.05; # 

no growth. 

 

 

The genomes of the 81116 and M1 wild-type strains only possess an rrpA gene. When 

these wild-type strains were exposed to H2O2, both demonstrated an increased 

resistance compared to the 11168H and 81-176 wild-type strains. The 81116 rrpA and 

M1 rrpA mutants demonstrated no significant differences in the level of resistance to 

H2O2 compared to the respective wild-type strains (Figure 3.6), indicating that the 

mutation of rrpA in these two wild-type strain backgrounds does not affect sensitivity 

to H2O2 stress. 
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Figure 3.6 Sensitivity of the 81116 and M1 wild-type strains and 

respective rrpA mutants to H2O2 stress. Bacterial suspensions (OD600 1.0) 

were exposed to 25, 50 and 100 mM H2O2 for 15 min under microaerobic 

conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and pipetted 

in duplicate onto BA plates. CFUs were counted after 48 h incubation. Data 

represents at least three biological replicates. 

 

 

3.2.2.2 Menadione stress 

The 11168H wild-type strain, rrpA mutant, rrpB mutant and rrpAB double mutant 

were exposed to menadione stress to investigate sensitivity to this superoxide 

generator. 11168H sodB, katA, ahpC and perR mutants were also investigated as 

controls. 

The katA mutant demonstrated a similar level of sensitivity to menadione as the wild-

type strain. The sodB mutant was highly sensitive to menadione, due to the fact that 

sodB encodes the main enzyme that eliminates superoxides. The ahpC mutant 
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demonstrated increased sensitivity to menadione compared to the wild-type strain 

(Figure 3.7). Controls were performed incubating each strain under the same 

conditions, but without exposure to menadione. 

 

 

 

Figure 3.7 Sensitivity of the 11168H wild-type strain, katA, sodB and ahpC 

mutants to menadione stress. Bacterial suspensions (OD600 1.0) were exposed 

to 100 mM menadione for 1 h under microaerobic conditions at 37ºC. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. *** = p < 0.001; # no growth. 

 

 

The rrpA mutant and rrpB mutant were exposed to menadione stress. However, no 

differences in sensitivity were observed compared to the wild-type strain. The sodB 

mutant was included as a control (Figure 3.8). 
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Figure 3.8 Sensitivity of the 11168H wild-type strain, rrpA, rrpB and sodB 

mutants to menadione stress. Bacterial suspensions (OD600 1.0) were exposed 

to 100 mM menadione for 1 h under microaerobic conditions at 37ºC. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three biological 

replicates. *** = p < 0.001; # no growth. 

 

 

The rrpAB double mutant exhibited increased resistance to menadione stress 

compared to the wild-type strain. The perR mutant exhibited the same level of 

sensitivity as the wild-type strain (Figure 3.9). 
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Figure 3.9 Sensitivity of the 11168H wild-type strain, rrpAB and perR 

mutants to menadione stress. Bacterial suspensions (OD600 1.0) were 

exposed to 100 mM menadione for 1 h under microaerobic conditions at 37ºC. 

Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA 

plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. ** = p < 0.01. 

 

 

The following non-11168H C. jejuni strains were also tested for sensitivity to 

menadione stress: 81-176 wild-type strain, 81-176 rrpA mutant, 81-176 rrpB mutant, 

81116 wild-type strain, 81116 rrpA mutant, M1 wild-type strain and M1 rrpA mutant. 

The 81-176 wild-type strain demonstrated resistance to menadione stress, at a similar 

level as the control. The 81-176 rrpA mutant demonstrated no significant difference 

in sensitivity to menadione stress compared to the wild-type strain, whilst the rrpB 

mutant demonstrated a small but significant increase in sensitivity. The 11168H sodB 

mutant was included as a negative control (Figure 3.10). 
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Figure 3.10 Sensitivity of the 81-176 wild-type strain, rrpA and rrpB mutants 

and 11168H sodB mutant to menadione stress. Bacterial suspensions (OD600 

1.0) were exposed to 100 mM menadione for 1 h under microaerobic conditions 

at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto 

BA plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. * = p < 0.05; *** = p < 0.001; # no growth. 

 

The 81116 rrpA mutant did not demonstrate any significant difference in 

sensitivity to menadione stress compared with the 81116 wild-type strain. 

Similarly, the M1 rrpA mutant did not demonstrate any significant difference in 

sensitivity to menadione stress compared to the M1 wild-type strain (Figure 3.11).  
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Figure 3.11 Sensitivity of the 81116 and M1 wild-type strains and respective 

rrpA mutants to menadione stress. Bacterial suspensions (OD600 1.0) were 

exposed to 100 mM menadione for 1 h under microaerobic conditions at 37ºC. 

Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA 

plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. 

 

 

3.2.2.3 Cumene hydroperoxide stress 

The ability of the 11168H wild-type strain, rrpA mutant, rrpB mutant and rrpAB 

double mutant to survive oxidative stress was further investigated by exposure to 

cumene hydroperoxide stress. The katA, ahpC and perR mutants were also included 

as controls. 

Controls were performed by incubating each strain under the same conditions and with 

the same concentration of ethanol as the concentration present in the cumene 
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hydroperoxide solution. AhpC is known to break down organic peroxides. Therefore, 

the ahpC mutant was used as negative control in this assay. 

The katA mutant exhibited increased resistance to cumene hydroperoxide compared 

to the wild-type strain. The sodB mutant also exhibited increased resistance to cumene 

hydroperoxide compared to the wild-type strain. However, the ahpC mutant 

demonstrated increased sensitivity to cumene hydroperoxide compared to the wild-

type strain (Figure 3.12). 

 

Figure 3.12 Sensitivity of the 11168H wild-type strain, katA, sodB and ahpC 

mutants to cumene hydroperoxide stress. Bacterial suspensions (OD600 1.0) were 

exposed to 100 mM cumene hydroperoxide for 15 min under microaerobic 

conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and pipetted in 

duplicate onto BA plates. CFUs were counted after 48 h incubation. Data represents 

at least three biological replicates. * = p < 0.05; ** = p < 0.01. 
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The rrpA mutant and rrpB mutant did not show any significant differences in 

sensitivity to cumene hydroperoxide compared to the wild-type strain (Fig 3.13). The 

perR mutant also did not show any significant difference in sensitivity to cumene 

hydroperoxide compared to the wild-type strain. However, the rrpAB double mutant 

demonstrated increased resistance to cumene hydroperoxide stress (Fig 3.14). 

 

 

 

Figure 3.13 Sensitivity of the 11168H wild-type strain, rrpA, rrpB and ahpC 

mutants to cumene hydroperoxide stress. Bacterial suspensions (OD600 1.0) 

were exposed to 100 mM cumene hydroperoxide for 15 min under microaerobic 

conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and pipetted in 

duplicate onto BA plates. CFUs were counted after 48 h incubation. Data 

represents at least three biological replicates. ** = p < 0.01. 
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Fig 3.14 Sensitivity of the 11168H wild-type strain, rrpAB and perR 

mutants to cumene hydroperoxide stress. Bacterial suspensions (OD600 1.0) 

were exposed to 100 mM cumene hydroperoxide for 15 min under 

microaerobic conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) 

and pipetted in duplicate onto BA plates. CFUs were counted after 48 h 

incubation. Data represents at least three biological replicates. ** = p < 0.01. 

 

 

 

The C. jejuni 81-176 wild-type strain, rrpA and rrpB mutants were also tested for 

sensitivity to cumene hydroperoxide stress. Both the 81-176 rrpA and rrpB mutants 

exhibited the same level of sensitivity as the 81-176 wild-type strain (Figure 3.15). 
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Figure 3.15 Sensitivity of C. jejuni 81-176 wild-type strain, rrpA and rrpB 

mutants and 11168H ahpC mutant to cumene hydroperoxide stress. 

Bacterial suspensions (OD600 1.0) were exposed to 100 mM cumene 

hydroperoxide for 15 min under microaerobic conditions at 37ºC. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. * = p < 0.05. 

 

 

 

The C. jejuni 81116 wild-type strain, 81116 rrpA mutant, M1 wild-type and M1 rrpA 

mutant were also tested for sensitivity to cumene hydroperoxide stress. Surprisingly 

the 81116 wild-type strain exhibited increased sensitivity to cumene hydroperoxide 

compared to the 81116 rrpA mutant. However, the M1 wild-type strain and M1 rrpA 

mutant exhibited similar levels of sensitivity to cumene hydroperoxide (Figure 3.16). 
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Figure 3.16 Sensitivity of C. jejuni 81116 and M1 wild-type strains and 

respective rrpA mutants to cumene hydroperoxide stress. Bacterial suspensions 

(OD600 1.0) were exposed to 100 mM cumene hydroperoxide for 15 min under 

microaerobic conditions at 37ºC. Serial dilutions were prepared (10-1 to 10-6) and 

pipetted in duplicate onto BA plates. CFUs were counted after 48 h incubation. Data 

represents at least three biological replicates. * = p < 0.05. 

 

 

3.2.3 Catalase activity assays 

3.2.3.1 Catalase activity associated with C. jejuni whole cell lysates from BA 

plates 

Strains were grown on BA plates and whole cell lysates prepared as described in 

Section 2.4.4.1. Catalase activity assays were performed as described in Section 2.4.7. 

Whole cell lysates were normalised to 100 ng/µl and used to quantify the catalase 

activity. Different catalase activity levels were observed comparing the 11168H wild-

type strain with the different mutants. The rrpA mutant and rrpB mutant both exhibited 

reduced catalase activity compared to the wild-type strain. The rrpA complement and 

rrpB complement exhibited wild-type levels of catalase activity. The rrpAB double 
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mutant exhibited catalase activity slightly higher, but not significantly so, compared 

to the wild-type strain. The katA mutant exhibited no catalase activity and the perR 

mutant exhibited an extremely high level of catalase activity (Figure 3.17). 

 

Figure 3.17 Catalase activity assay for the 11168H wild-type strain, rrpA 

mutant, rrpA complement, rrpB mutant, rrpB complement, rrpAB double 

mutant, katA mutant and perR mutant. Whole cell lysates were prepared 

from 24 h BA plates. Bacterial suspensions were sonicated and centrifuged. 

Protein concentrations were normalised to 100 ng/µl. Data represents at least 

four biological replicates. ** = p < 0.01; *** = p < 0.001; # no activity. 

 

 

3.2.3.2 Catalase activity associated with C. jejuni whole cell lysates from MEMα 

broth 

Catalase activity assays were also performed using whole cell lysates prepared from 

C. jejuni strains grown in MEMα broth to mimic low iron growth conditions, which 

should increase katA expression. The assay was performed as described in Section 
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2.4.4.2. Catalase activity assays were performed as described in Section 2.4.7. Whole 

cell lysates were again normalised to 100 ng/µl. The rrpA mutant and rrpB mutant 

both exhibited reduced catalase activity compared to the wild-type strain. The rrpAB 

double mutant did not exhibit any difference in catalase activity levels compared to 

the wild-type strain. The katA mutant exhibited a very low level of catalase activity 

whilst the perR mutant exhibited an extremely high level of catalase activity (Figure 

3.18). 

 

 

Figure 3.18 Catalase activity assay for the 11168H wild-type strain, rrpA 

mutant, rrpB mutant, rrpAB double mutant, katA mutant and perR 

mutant under low iron conditions. Whole cell lysates were prepared from 

48 h MEMα broth cultures. Cell suspensions were sonicated and centrifuged. 

Protein concentrations were normalised to 100 ng/µl. Data represents at least 

four biological replicates. ** = p < 0.01. 

 

 



117 
 

3.2.4 Superoxide dismutase activity assays 

SOD activity assays were performed to investigate whether RrpA and/or RrpB also 

affect the expression of SodB. Bacterial suspensions were prepared from 24 h BA 

plates and sonicated as described in Section 2.4.4.1. Protein concentrations were 

normalised to 100 ng/µl. SOD activity assays were performed as described in Section 

2.4.8.  

SOD activity represents the percentage of inhibition of the rate of reduction of the 

formazan dye compared to the blank control. Formazan dye is reduced by superoxide 

anions and this reaction can be inhibited by SOD. Reduction of formazan dye can be 

measured using a colorimetric method. Blank control 1 will give the highest reading 

as this contains no SOD to inhibit the reduction of formazan dye.  

Neither the rrpA mutant, rrpB mutant nor rrpAB double mutant exhibited any 

significant differences in SOD activity compared to the 11168H wild-type strain. The 

perR mutant and katA mutant also did not exhibit any significant differences in SOD 

activity compared to the 11168H wild-type strain. The sodB mutant was used as a 

control due to the lack of SOD expression. The sodB mutant did not exhibit any SOD 

activity. However, the ahpC mutant demonstrated a significant increase in SOD 

activity compared to the wild-type strain (Figure 3.19). 
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Figure 3.19 Superoxide dismutase activity assay for the 11168H wild-

type strain, rrpA mutant, rrpB mutant, rrpAB double mutant, sodB 

mutant, perR mutant, ahpC mutant and katA mutant. Whole cell lysates 

were prepared from 24 h BA plates. Cell suspensions were sonicated and 

centrifuged. Protein concentrations were normalised to 100 ng/µl. Data 

represents at least four biological replicates. * = p < 0.05; # no activity. 

 

 

3.2.5 RT-PCR analysis of katA, sodB and ahpC expression 

RT-PCR was used as a semi-quantitative method to measure the relative intensity of 

katA, ahpC and sodB expression using gyrA as reference gene. gyrA encodes DNA 

gyrase which is constitutively expressed in C. jejuni (Joslin and Hendrixson, 2009). 

gyrA has been used as endogenous control in RT-PCR analysis by many different 

Campylobacter researchers (Bingham-Ramos and Hendrixson, 2008, Joslin and 

Hendrixson, 2009, Weingarten et al., 2009). 
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Total RNA was isolated from all strains at the late log phase. mRNA was converted 

to cDNA as described in Section 2.5.9 to Section 2.5.13. The cDNA was used as a 

template for PCR amplification as described in Section 2.5.14. katA, ahpC and sodB 

expression levels were calculated based on the endogenous control gyrA expression 

and presented as relative intensities. 

Both the rrpA and rrpB mutants exhibited reduced katA expression compared to the 

wild-type strain. The rrpAB double mutant demonstrated an increased level of katA 

expression compared to the wild-type strain. However, this was not statistically 

significant (Fig 3.20). 

 

 

Figure 3.20 RT-PCR analysis of katA transcription in the 

11168H wild-type strain, rrpA, rrpB and rrpAB mutants. RNA 

was isolated and converted to cDNA by RT-PCR. cDNA was used 

as a template in PCR reactions to amplify katA. katA expression 

was assessed relative to gyrA expression. Reactions were analysed 

on an agarose gel and relative band intensities were measured using 

ImageJ software. Data represents at least three biological 

replicates. * = p < 0.05. 
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No significant changes in sodB expression were observed in the rrpA mutant, rrpB 

mutant or rrpAB double mutant compared to the wild-type strain (Figure 3.21).  

 

 

Figure 3.21 RT-PCR analysis of sodB transcription in the 

11168H wild-type strain, rrpA, rrpB and rrpAB mutants. 

RNA was isolated and converted to cDNA by RT-PCR. cDNA 

was used as a template in PCR reactions to amplify sodB. sodB 

expression was assessed relative to gyrA expression. Reactions 

were analysed on an agarose gel and relative band intensities 

were measured using ImageJ software. Data represents at least 

three biological replicates. 

 

 

The expression of ahpC was reduced in both the rrpA mutant and the rrpB mutant 

compared to the wild-type strain. However, the reduction in ahpC expression in the 

rrpA mutant was not significant compared to the wild-type strain (Figure 3.22). No 

significant changes in ahpC expression were observed in the rrpAB double mutant 

compared to the wild-type strain. 
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Figure 3.22 RT-PCR analysis of ahpC transcription in the 

11168H wild-type strain, rrpA, rrpB and rrpAB mutants. 

RNA was isolated and converted to cDNA by RT-PCR. 

cDNA was used as a template in PCR reactions to amplify 

ahpC. ahpC expression was assessed relative to gyrA 

expression. Reactions were analysed on an agarose gel and 

relative band intensities were measured using ImageJ 

software. Data represents at least three biological replicates. 

* = p < 0.05. 

 

 

 

3.2.6 qPCR 

qPCR results appeared to indicate that katA expression levels are reduced in both the 

rrpA mutant and rrpB mutant compared to the wild-type strain. The rrpAB double 

mutant appears to have increased levels of katA expression. However, only one 

biological replicate is shown because most replicates demonstrated Ct readings at late 

cycles, which can indicate background amplification not related to target 

amplification. Therefore, no statistical analyses have been performed (Figure 3.23).  



122 
 

 

 

Figure 3.23 qPCR results for katA expression. RNA 

was isolated from each sample and converted to cDNA 

using two-step RT-PCR. katA relative expression 

levels are shown as fold changes and were normalised 

using gyrA as a control. Data presented is from one 

biological replicate only. 

 

 

 

3.2.7 RNA sequencing 

RNA sequencing data was analysed using Rockhopper software as described in 

Section 2.5.19.10. q-values less than 0.01 were considered significant indicating 

differential gene expression between the 11168H wild-type strain and either the rrpA 

mutant, the rrpB mutant or the rrpAB double mutant (Appendix 5). 

Genes encoding proteins with a role in the C. jejuni oxidative stress response and with 

significant differential expression compared to the wild-type strain are listed in Table 

3.1. 
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katA expression was reduced in the rrpA mutant compared to the 11168H wild-type 

strain. However, no changes in katA expression were observed in the rrpB mutant or 

in the rrpAB double mutant. None of the mutants demonstrated significant changes in 

the expression of sodB and ahpC. However, in the rrpB mutant, the expression of fur 

and trxA were up-regulated. The rrpB mutant and the rrpAB double mutant showed 

increased expression of rrpB.  

 

Table 3.1 Differential gene expression in the rrpA mutant, rrpB mutant or rrpAB 

double mutant compared to the 11168H wild-type strain. 

Strain Gene Product 
Expression 

11168H 

Expression 

mutant 

rrpA 

mutant 
katA catalase 125 67 

 

rrpB 

mutant 

rrpB transcriptional regulator 38 337 

fur ferric uptake regulator 66 136 

trxA thioredoxin 294 525 

rrpAB 

double 

mutant 
rrpB transcriptional regulator 38 86 

Values indicate the number of reads of a transcript normalized using RPKM.  

 

Results displayed are preliminary. Further investigation of RNA-seq data is in 

progress using different software for more in-depth analysis. These analyses could not 

be finished in time to be presented here. 
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3.3 Discussion 

RrpA and RrpB have been identified as two new regulators of the C. jejuni oxidative 

stress response. The C. jejuni oxidative stress response is a complex and not fully 

understood defence mechanism. To investigate the roles of RrpA and RrpB, different 

oxidative stress assays were performed on the 11168H wild-type strain, rrpA and rrpB 

mutants and the rrpAB double mutant. Changes in gene expression in these three 

different mutants were also investigated. 

Even though C. jejuni is a microaerobic microorganism, this bacterium is capable of 

surviving under high concentrations of oxygen and is found ubiquitously within the 

environment (Atack and Kelly, 2009). C. jejuni utilises a range of electron acceptors 

and electron donors for respiration, which allows C. jejuni to grow under different 

conditions and different oxygen availability (Woodall et al., 2005). C. jejuni has 

multiple respiratory mechanisms which allow adaptation for growth under oxygen-

limited conditions (Woodall et al., 2005). C. jejuni utilises primarily only 5 specific 

amino acids as a carbon source and consumes hemin as a primary source of iron 

(Woodall et al., 2005, Hofreuter et al., 2008). C. jejuni has a complex and highly 

branched respiratory chain, being able to utilise different electron donors to generate 

energy (Weerakoon et al., 2009). 

C. jejuni fumarate metabolism is up-regulated under the oxygen restricted conditions 

of the chicken gut environment (Woodall et al., 2005). Anaerobic conditions are 

stressful for C. jejuni and this bacterium is unable to grow under anaerobic conditions 

(Sellars et al., 2002). Furthermore, DNA synthesis can only occur in the presence of 

oxygen (Sellars et al., 2002). There is also variation in the metabolism amongst 

different C. jejuni strains. Some strains, such as 81-176, have additional respiratory 

functions compared to others, such as NCTC 11168. Additional features, such as an 

additional potassium uptake system in 81-176, may contribute to a more efficient 

ability to colonise human and animal intestinal epithelial cells (Hofreuter et al., 2006). 

Oxygen is a reactive molecule that diffuses easily through cell membranes, as a 

consequence, organisms need mechanisms to defend themselves against oxygen 

toxicity (Fridovich, 1998). Oxygen levels higher than the microorganism’s natural 

intestinal habitat will cause cell damage and cell death (Imlay, 2013). Cell damage 

will occur due to the formation of ROS by partially reduced oxygen (Imlay, 2013). 
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Addition of electrons to the oxygen molecule generates superoxide radical (O2
-), 

hydrogen peroxide (H2O2) and hydroxyl radical (HO•) (Fridovich, 1998, Imlay, 2013). 

These compounds are also generated continuously by bacterial cell respiration (Imlay, 

2013). 

C. jejuni has evolved complex mechanisms to cope with diverse environments and 

hosts. C. jejuni has the ability to counter different toxic oxidative compounds, 

generated by bacterial metabolism or from the external environment. These 

mechanisms are fundamental for bacterial survival under hostile environments 

(Palyada et al., 2009).  

C. jejuni expresses important enzymes to control the level of ROS within the cell. 

Some of the major scavengers are KatA, SodB and AhpC (Atack and Kelly, 2009). 

However, C. jejuni also expresses other different enzymes that complement the role 

of the major scavengers, hence optimising the control of ROS in the cell. The 

following C. jejuni enzymes also have a role in oxidative stress: Tpx, Bcp, CCPs, Dps, 

FdxA and Trx system (van Vliet and Ketley, 2001, Palyada et al., 2004, Atack et al., 

2008, Atack and Kelly, 2009, Huergo et al., 2013). However, most of these enzymes 

have not had their roles in the C. jejuni oxidative stress response completely clarified. 

11168H mutants lacking one of the three major oxidative stress scavengers were used 

to confirm the role of KatA, SodB and AhpC in the oxidative stress response. These 

mutants were first exposed to H2O2 stress. KatA is the main enzyme that controls 

intracellular levels of H2O2 (Atack and Kelly, 2009). The katA mutant lacks this 

enzyme and, therefore, is not able to survive exposure to H2O2. The sodB and ahpC 

mutants were more resistant than the wild-type strain after exposure to H2O2. 

However, the ahpC mutant was more resistant than the sodB mutant. Both sodB and 

ahpC mutants may have compensatory mechanisms that increase katA expression and 

the elimination of H2O2. There is such an example of functional compensation due to 

a mutation in Mycobacterium tuberculosis. M. tuberculosis expresses KatG, which is 

the only catalase and the main enzyme that breaks down H2O2 in this bacterium 

(Sherman et al., 1996). Mutation of katG leads to bacterial adaptation and 

overexpression of ahpC (Sherman et al., 1996). In C. jejuni, the mutation of sodB and 

ahpC may result in increased katA expression.  
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C. jejuni lacks the classical regulators found in other enteropathogenic bacteria, but 

has functional substitutes, such as PerR (van Vliet et al., 1999). PerR is a peroxide 

stress regulator substitute of OxyR, which is a common regulator of peroxide stress 

response genes in other Gram-negative bacteria (van Vliet et al., 1999). C. jejuni 

possesses a number of different regulators of oxidative stress and their role in gene 

regulation frequently overlaps. Regulators known to have overlapping roles in 

oxidative stress regulation are PerR, Fur and CosR (van Vliet et al., 1999, Palyada et 

al., 2009, Hwang et al., 2012). However, how exactly these regulators interact to fine 

tune the regulation of the oxidative stress defence mechanisms in C. jejuni is still not 

fully understood (Atack and Kelly, 2009).  

RrpA and RrpB were identified as putative regulators of the C. jejuni oxidative stress 

response (Gundogdu et al., 2007). Both regulators have now been shown to have a 

role in both the peroxide and aerobic stress responses (Gundogdu et al., 2011, 

Gundogdu et al., 2015). 11168H rrpA and rrpB mutants were exposed to different 

concentration of H2O2 and were shown to be more sensitive to H2O2 compared to the 

wild-type strain, suggesting that RrpA and RrpB may regulate katA expression. 

11168H rrpA and rrpB complements restored the phenotype of the wild-type strain. 

However, the 11168H rrpAB double mutant demonstrated an increased resistance to 

H2O2 stress, suggesting that absence of both regulators generates a more resistant 

strain. 

katA expression is regulated by PerR, which constitutively represses katA (van Vliet 

et al., 2002). Mutation of perR generates a strain highly resistant to H2O2 with 

extremely high levels of KatA activity (van Vliet et al., 1999). C. jejuni has a complex 

oxidative stress regulation system and PerR is not the only regulator of katA. CosR 

also regulates katA expression. However, CosR regulates katA positively and also 

regulates several other important oxidative stress genes (Hwang et al., 2011, Hwang 

et al., 2012). Fur is another regulator of katA expression. It is suggested that Fur 

represses katA expression and that Fur and PerR are the main regulators of oxidative 

stress response in C. jejuni (Palyada et al., 2009). Furthermore, several of the oxidative 

stress genes regulated by Fur are co-regulated by PerR (Palyada et al., 2009). katA is 

co-regulated by PerR, Fur and CosR (van Vliet et al., 1999, Hwang et al., 2012). 
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Absence of either RrpA or RrpB increased the sensitivity of the 11168H strain to H2O2, 

suggesting that absence of either regulator results in a decrease in KatA levels. To 

further investigate if RrpA and RrpB affect KatA expression levels, catalase activity 

assays were performed for the 11168H wild-type, rrpA and rrpB mutants and 

complements, as well as the rrpAB double mutant. 

The catalase activity assays were performed using bacteria grown in two different 

media. Strains were grown either in Brucella broth, which is an iron-rich broth, or in 

MEMα, which is an iron-restricted broth. These two media were used to investigate 

changes in KatA expression under the different conditions since katA expression is 

repressed in presence of iron (van Vliet et al., 1999). Iron is essential for bacterial 

growth because it is involved in metabolic processes and cell respiration (Cornelis et 

al., 2011). However, an excess of iron is harmful to microorganisms due to the 

production of ROS via the Fenton reaction (Cornelis et al., 2011). Therefore, a balance 

in iron metabolism is essential for bacterial survival. Iron metabolism plays an 

important role in C. jejuni metabolism and gene regulation (van Vliet et al., 2002). Fur 

is the ferric uptake regulator responsible for maintaining the iron homeostasis (van 

Vliet et al., 1998). Fur controls expression of ferritin, which controls intracellular 

homeostasis by storing and releasing iron (Ishikawa et al., 2003). Dps binds to iron to 

prevent the generation of hydroxyl radicals under hydrogen peroxide stress via the 

Fenton reaction (Ishikawa et al., 2003). Fur is a repressor and down-regulates the 

transcription of several genes when the intracellular concentration of Fe2+ is elevated 

(van Vliet et al., 2002). Fe2+ is a co-factor to a Fur molecule that binds to the promoter 

region of iron-regulated genes blocking their transcription (Escolar et al., 1999). 

Mutation of fur does not completely abolish the gene repression in C. jejuni, which 

indicates the presence of an iron-regulatory system independent of Fur (van Vliet et 

al., 1998). Fur regulates the expression of some oxidative stress genes, such as katA, 

fdxA and trxB (Palyada et al., 2004). Iron may also regulate C. jejuni virulence, as 

protein glycosylation can be influenced by intracellular iron levels (Palyada et al., 

2004). 

Both katA and ahpC expression are repressed by iron (van Vliet et al., 1998). 

Furthermore, both katA and ahpC are constitutively repressed by PerR (van Vliet et 

al., 1999). Mutation of perR de-repressed both katA and ahpC expression at high levels 

(van Vliet et al., 1999). Growth of C. jejuni in iron limitation media was also shown 
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to increase katA and ahpC expression, although not at the same level as the de-

repression caused by the perR mutation (van Vliet et al., 1999). Iron also represses 

tpx, which has a role breaking down H2O2 (Palyada et al., 2004, Atack et al., 2008). It 

is also known that AhpC has a role in neutralising H2O2 in the cytoplasm, in addition 

to organic peroxides (Atack and Kelly, 2009). 

The catalase activity levels from whole cell lysates indicated that both the 11168H 

rrpA and rrpB mutants had reduced catalase activity compared to the wild-type strain. 

The rrpA and rrpB complement strains exhibited wild-type level of catalase activity. 

The 11168H rrpAB double mutant also demonstrated catalase activity at a similar level 

compared to the wild-type strain, despite the increased resistance to H2O2 (Gundogdu 

et al., 2011, Gundogdu et al., 2015). This suggests that enzymes other than catalase 

may be playing a role in the breakdown of H2O2 in the 11168H rrpAB double mutant. 

Other genes expressing proteins with a role in the peroxide stress defence may be up-

regulated to contribute to H2O2 breakdown, such as AhpC, Tpx or CCPs. As expected, 

the 11168H perR mutant demonstrated extremely high levels of catalase activity due 

to de-repression of katA expression (van Vliet et al., 1999). 

The 11168H katA mutant was used as a negative control in the catalase activity assay. 

When the 11168H katA mutant was grown in iron-rich media, no catalase activity was 

detected. However, when the 11168H katA mutant was grown in MEMα media, a low 

level of catalase activity was observed. This probably occurred because iron restricted 

media increases the expression of ahpC and tpx, both genes encoding enzymes with 

the ability to neutralise H2O2 (van Vliet et al., 1998, Palyada et al., 2004, Atack et al., 

2008, Atack and Kelly, 2009). A compensatory mechanism may also have occurred, 

up-regulating ahpC and tpx. A slight increase in catalase activity can be observed in 

the wild-type strain when grown in low iron media compared to high iron media. 

However, this was not statistically significant. This was an expected observation 

because katA and ahpC are up-regulated under iron restricted conditions (van Vliet et 

al., 1999). 

Electrophorectic Mobility Shift Assays (EMSA) have been performed to investigate 

whether RrpA and RrpB are auto-regulated as this feature is common to the MarR 

family of transcriptional regulators (Kumarevel, 2012). EMSA results showed that 

both RrpA and RrpB are auto-regulated. RrpA binds upstream of rrpA, and RrpB binds 
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upstream of rrpB (Gundogdu et al., 2011, Gundogdu et al., 2015). RrpA also binds 

upstream of katA indicating active regulation of katA expression (Gundogdu et al., 

2015). However, RrpB does not appear to bind upstream of katA (Gundogdu et al., 

2015). This indicates that RrpA directly regulates katA expression, whilst RrpB may 

affect katA expression indirectly. It was speculated that RrpA and RrpB may interact 

with each other to regulate katA expression. Following this observation, EMSA assays 

were performed to investigate if RrpA would bind upstream of the rrpB promoter and 

vice versa. RrpA was shown to bind upstream of rrpB. However, RrpB does not bind 

upstream of rrpA (Gundogdu et al., unpublished data). This suggests that RrpA 

directly regulates katA and rrpB expression. RrpB does not appear to directly regulate 

either katA or rrpA expression, but RrpB may interact with RrpA to regulate katA 

expression. However, this is only true for strains that contain both genes (rrpA and 

rrpB). RrpA does not appear to regulate katA as efficiently in strains that only contain 

rrpA. Further studies are necessary to understand whether and how RrpB interacts with 

RrpA to regulate katA expression, and why RrpB does not seem to be important for 

all C. jejuni strains. 

Gene expression based on RT-PCR was performed to further investigate if RrpA and 

RrpB affect katA expression. RT-PCR indicated that katA expression is reduced in the 

11168H rrpA and rrpB mutants, whilst the 11168H rrpAB double mutant 

demonstrated a non-significant increase in katA expression. qPCR data also suggests 

that the 11168H rrpA and rrpB mutants have reduced katA expression and also indicate 

increased katA expression in the 11168H rrpAB double mutant. However, more qPCR 

replicates are required. 

Preliminary RNA-seq data analysis demonstrated that a few genes related to the 

oxidative stress defence had a change of expression in the mutants compared to the 

wild-type strain. In agreement with the phenotypic assays, the 11168H rrpA mutant 

demonstrated reduced katA expression compared to the wild-type strain. However, the 

11168H rrpB mutant and the 11168H rrpAB double mutant did not demonstrate any 

changes in katA expression. It was expected that the 11168H rrpB mutant would have 

reduced katA expression due to increased sensitivity to H2O2 and reduced catalase 

activity. It was also expected that the 11168H rrpAB double mutant would up-regulate 

oxidative stress genes with a role in neutralising H2O2. However, RNA was isolated 

from bacteria grown under microaerobic conditions. RNA should be isolated after 
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bacteria have been exposed to oxidative stress conditions. This will allow the 

investigation of changes in gene expression induced by the oxidative stress. Changes 

in katA expression may be observed comparing the wild-type strain and the different 

mutants after exposure to H2O2. 

The 11168H rrpB mutant demonstrated up-regulation of rrpB. This was also observed 

in previous microarray data, which identified rrpB as the most up-regulated gene in 

the 11168H rrpB mutant (Gundogdu et al., 2011). Further analysis demonstrated that 

rrpB expression is controlled by a negative autoregulation feedback mechanism and 

that the sequence upstream of the inserted kanamycin cassette was being transcribed 

in the 11168H rrpB mutant. This is probably why rrpB is also up-regulated in the 

11168H rrpAB double mutant. The 11168H rrpB mutant also demonstrated up-

regulation of fur and trxA. Thioredoxins have a role in the oxidative stress response 

by activating specific thiol-dependent antioxidant systems (Lu and Holmgren, 2014). 

When thioredoxin reduces a cytoplasmic enzyme, thioredoxin becomes oxidised, and 

will become reduced again by thioredoxin reductase (Ritz et al., 2000). Thioredoxins 

can also directly reduce H2O2, quench single oxygen molecules and eliminate OH  

(Zeller and Klug, 2006). However, both TrxA and TrxB are necessary for a 

functioning Trx system. Fur and PerR co-regulate several genes involved in the 

oxidative stress defence mechanism in C. jejuni (Palyada et al., 2009). trxB is one of 

the genes regulated by both Fur and PerR (Holmes et al., 2005). However, which 

regulators control trxA expression is not known yet.  

RT-PCR and RNA seq were performed on RNA isolated from bacteria grown under 

microaerobic conditions without any kind of oxidative stress exposure. These 

conditions were chosen to observe gene expression without external ROS stimulus. 

Further analyses are necessary to understand changes in gene expression during 

bacterial exposure to ROS. Future work will require that bacterial cultures be exposed 

to oxidative stress, such as sub-lethal levels of H2O2, or grown under aerobic 

conditions to identify important changes in gene expression. The changes in gene 

expression under ROS stress could then be compared to gene expression under 

microaerobic conditions. 

The 11168H rrpB perR double mutant was highly resistant to H2O2, at the same level 

as the 11168H perR mutant. It is possible that mutation of rrpB is not dramatically 
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influencing the phenotype caused by the perR mutation. Mutation of perR results in 

extremely high expression of katA and ahpC (van Vliet et al., 1999). The 11168H perR 

mutant level of resistance to H2O2 stress and the levels of catalase activity observed 

were very high. The 11168H rrpB mutant demonstrated a significant but subtle 

phenotype compared to the 11168H wild-type strain. Therefore, it is probable that 

there will be no alteration in the H2O2 resistance phenotype of the 11168H rrpB perR 

mutant compared to the 11168H perR mutant. 

Different wild-type strains and respective mutants were also investigated under H2O2 

stress. The distribution of rrpA and rrpB amongst C. jejuni strains has been 

investigated (see Chapter 5). It was observed that not all C. jejuni strains contain rrpB. 

Further analyses demonstrated that 11168H and 81-176 contain both rrpA and rrpB, 

whilst 81116 and M1 contain only rrpA. 

81-176 rrpA and rrpB mutants also exhibited increased sensitivity to H2O2 stress, 

demonstrating the same phenotype as the 11168H rrpA and rrpB mutants. However, 

rrpA mutants in the other two wild-type strains, 81116 and M1, were not more 

sensitive to H2O2 stress compared to the respective wild-type strains. The 81116 and 

M1 wild-type strains and the respective rrpA mutants were also more resistant to H2O2 

stress compared to 11168H and 81-176 wild-type strains. This suggests that variation 

in the presence of rrpB may have an impact on the peroxide stress response. 

Further studies supported the observation that variation in the distribution of rrpA and 

rrpB influences C. jejuni resistance to hydrogen peroxide stress. C. jejuni strains that 

contain only rrpA were demonstrated to have a natural tendency to be more resistant 

to H2O2 than C. jejuni strains that contain both rrpA and rrpB (Gundogdu et al., 

unpublished data). When rrpA is mutated in the strains that only contain rrpA, no 

effect on H2O2 sensitivity is observed compared to the respective wild-type strain 

(Gundogdu et al., unpublished data). Further investigations are necessary to 

understand the significance of the presence of RrpB, and whether RrpB interacts with 

RrpA, since not all C. jejuni strains contain rrpB. 

Menadione was used as a generator of superoxide anions through redox cycling. 

Menadione is reduced by NADPH and oxidised by O2 generating O2
•− (Greenberg and 

Demple, 1989). This compound was used to investigate the activity of SodB in the 

different wild-type strains and mutants. SodB has an important role in C. jejuni 
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defence against oxidative stress and is the main enzyme that breaks down superoxides 

(Atack and Kelly, 2009). 

11168H mutants lacking one of the three major oxidative stress scavengers were used 

to investigate the role of KatA, SodB and AhpC in the menadione stress response. The 

11168H katA mutant did not show increased sensitivity compared to the wild-type 

strain. However, the 11168H sodB mutant was highly sensitive to menadione stress. 

This finding agrees with Stead and Park (2000) study where the katA mutant also did 

not show increased sensitivity to superoxide anions, whilst the sodB mutant 

demonstrated increased sensitivity. In this study, the ahpC mutant also demonstrated 

an increased sensitivity to menadione compared to the wild-type strain. Palyada et al. 

(2009) have shown that C. jejuni increases ahpC expression in presence of menadione. 

Both sodB and ahpC were up-regulated in the presence of menadione, but sodB 

expression was increased at a higher level compared to ahpC expression (Palyada et 

al., 2009). This indicates that besides SodB, AhpC also has a role in neutralising the 

toxic effects of superoxide anions and the 11168H ahpC mutant did indeed exhibit 

increased sensitivity to menadione in this study. 

11168H rrpA and rrpB mutants were also exposed to menadione stress. Both mutants 

did not demonstrate any differences in sensitivity compared to the wild-type strain, 

suggesting that neither RrpA nor RrpB have a role in regulating sodB expression. 

However, the 11168H rrpAB double mutant demonstrated increased resistance to 

menadione stress, suggesting that absence of both RrpA and RrpB increases the 

expression of sodB. Microarray data demonstrated 1.24-fold increase of sodB 

expression in the 11168H rrpB mutant (Gundogdu et al., 2011). In this study, RT-PCR 

did not demonstrate changes in sodB expression comparing the different mutants with 

the wild-type strain. sodB expression in the 11168H rrpB mutant seems to increase. 

However, this was not significant. RNA-seq data also did not show any changes in 

sodB expression. 

Unlike the 11168H rrpB mutant, the 81-176 rrpB mutant demonstrated a small 

increase in sensitivity to menadione compared to the respective wild-type strains. This 

suggests that RrpB may have a more specific role in the superoxide stress response in 

this strain. No differences were observed in sensitivity to menadione stress with the 

81-176, 81116 and M1 rrpA mutants compared to the respective wild-type strains. 
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Cumene hydroperoxide is an organic peroxide used to generate a different type of ROS 

involved in bacterial oxidative stress. In this study, cumene hydroperoxide was used 

to assess differences between mutants and wild-type strains. AhpC is the main enzyme 

that counters organic hydroperoxides in many different bacteria (Sherman et al., 1996, 

Ellis and Poole, 1997, Lee et al., 2014). Mutation of C. jejuni ahpC resulted in a strain 

with increased sensitivity to cumene hydroperoxide (Baillon et al., 1999). In this 

study, the 11168H ahpC mutant also exhibited increased sensitivity to cumene 

hydroperoxide.  

Both 11168H katA and sodB mutants demonstrated an increased resistance to cumene 

hydroperoxide compared to the wild-type strain. Palyada et al. (2009) demonstrated 

that both katA and sodB expression are up-regulated in the presence of cumene 

hydroperoxide. This suggests that KatA and SodB might also exhibit organic 

hydroperoxidase activity (Palyada et al., 2009). The reason why 11168H katA and 

sodB mutants exhibit increased resistance is unclear. This may indicate that when katA 

is mutated, sodB is up-regulated as a compensatory mechanism to neutralise the toxic 

effects of cumene hydroperoxide, whilst katA may be up-regulated when sodB is 

mutated. 

Both 11168H rrpA and rrpB mutants did not demonstrate any differences in sensitivity 

to cumene hydroperoxide compared to the wild-type strain. Therefore, neither RrpA 

nor RrpB appear to have a role in regulating AhpC. However, the 11168H rrpAB 

double mutant demonstrated increased resistance to cumene hydroperoxide compared 

to the wild-type strain, suggesting that the absence of both RrpA and RrpB may 

increase ahpC expression. Even though the 11168H rrpB mutant did not show 

increased sensitivity to cumene hydroperoxide, microarray data demonstrated that this 

mutant had 1.27-fold decreased ahpC expression (Gundogdu et al., 2011). 

Furthermore, RT-PCR also demonstrated reduced ahpC expression in the 11168H 

rrpB mutant. However, RNA-seq did not show any changes in ahpC expression for 

any of the mutants investigated. 

Similarly, the 11168H perR mutant also demonstrated an increased resistance to 

cumene hydroperoxide. PerR is a repressor of katA and ahpC. Therefore, a perR 

mutation leads to katA and ahpC overexpression (Palyada et al., 2009), which explains 

the increased resistance of the 11168H perR mutant to cumene hydroperoxide. PerR 
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also regulates several other genes in the oxidative stress response and different 

regulators of C. jejuni oxidative stress responses have a tendency to overlap. 

The 81-176 rrpA and rrpB mutants and the M1 rrpA mutant did not demonstrate 

differences in sensitivity compared to the respective wild-type strains. However, the 

81116 rrpA mutant demonstrated an increased resistance to cumene hydroperoxide 

compared to the wild-type strain. This suggests that RrpA may play a different role in 

different wild-type strains. However, this phenotype could also be explained due to a 

point mutation in 81116 wild-type strain that affects ahpC expression. To test this 

hypothesis a new 81116 wild-type strain should be used to generate a new 81116 rrpA 

mutant, and then these strains should be exposed again to cumene hydroperoxide 

stress. Sequencing the 81116 wild-type strain and rrpA mutant could also indicate if 

any mutations had occurred to explain this phenotype. 

Both 11168H rrpA and rrpB mutants displayed differences in KatA activity compared 

to the wild-type strain. However, when these mutants were assessed for SOD activity, 

no differences were found compared to the wild-type strain. This suggests that SodB 

is not responsible for the phenotypes observed in the 11168H rrpAB double mutant. 

11168H perR and katA mutants had similar levels of SOD activity compared to the 

wild-type strain. However, the 11168H ahpC demonstrated increased levels, which is 

the opposite of what was expected. The 11168H ahpC mutant was more sensitive to 

menadione. Therefore, it was expected to have reduced SOD activity. However, 

Palyada et al. (2009) demonstrated that sodB expression is increased in presence of 

Menadione, which could explain the increased SOD activity in the 11168H ahpC 

mutant. Further investigation is necessary to understand this observation. 

Both 11168H rrpA and rrpB mutants demonstrated to have increased sensitivity to 

aerobic stress compared to the wild-type strain (Gundogdu et al., 2011, Gundogdu et 

al., 2015). Both mutants showed reduced ability to survive when grown in broth under 

aerobic stress (Gundogdu et al., 2011, Gundogdu et al., 2015). These data suggest that 

RrpA and RrpB also have a role in the C. jejuni aerobic stress. 

The assays performed demonstrated that RrpA and RrpB have a role in the C. jejuni 

oxidative stress defence mechanism. RrpA and RrpB have a role in the H2O2 defence 

mechanism through regulation of katA expression. RrpA has a direct role regulating 

katA expression. However, the exact role of RrpB is still not clear. RrpA and RrpB do 



135 
 

not seem to affect sodB or ahpC expression. The absence of both rrpA and rrpB in the 

11168H rrpAB double mutant demonstrated increased resistance to H2O2, menadione 

and cumene hydroperoxide. However, RNA-seq analysis of this strain did not show 

any changes in the expression of katA, sodB and ahpC. 

Further investigations are required to fully understand how these two regulators 

interact with other C. jejuni regulators of the oxidative stress and why the double 

mutation increased resistance to different oxidative stresses. Preliminary RNA-seq 

confirmed that RrpA is regulating katA expression. However, katA expression appears 

unaltered in the 11168H rrpB mutant and in the 11168H rrpAB double mutant. The 

RNA-seq data is currently being further analysed using different software to 

investigate more thoroughly differences in gene expression. Further analysis using 

ChIP-seq will also be performed to investigate RrpA and RrpB interaction with DNA 

and identification of the sequence binding sites. ChIP-seq will be an important tool to 

map all the binding sites throughout the C. jejuni genome, identifying exactly which 

genes are being regulated by RrpA and RrpB.  
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4 Further investigation into the role of RrpA and RrpB in the C. 

jejuni  

 

4.1 Introduction 

The 11168H rrpB mutant has previously been shown to exhibit a decreased ability for 

intracellular survival within Caco-2 human intestinal epithelial cells and J774A.1 

mouse macrophages (Gundogdu et al., 2011). Also has been demonstrated that RrpB 

was not involved in the nitrosative stress response (Gundogdu et al., 2011). Both the 

11168H rrpA and rrpB mutants demonstrated a reduction in virulence in the Galleria 

mellonella infection model (Gundogdu et al., 2011, Gundogdu et al., 2015). 

Electrophoretic mobility shift assays indicated that both RrpA and RrpB are DNA 

binding proteins. RrpA binds to the promoter region of rrpA, whilst RrpB binds to the 

promoter region of rrpB (Gundogdu et al., 2011, Gundogdu et al., 2015). Further 

analyses were performed to investigate other phenotypic differences caused by the 

mutation of rrpA or rrpB in the C. jejuni 11168H wild-type strain. 

 

4.2 Results 

4.2.1 Motility assays 

C. jejuni is a highly motile bacterium (Hendrixson and DiRita, 2004). Flagella are 

important for biofilm formation (Kalmokoff et al., 2006), secretion of virulence 

factors (Konkel et al., 2004) and adhesion to and invasion of intestinal epithelial cells 

(Song et al., 2004). 

Motility assays were performed to investigate whether the mutation of rrpA or rrpB 

in the 11168H wild-type strain affected bacterial motility directly or if the insertion of 

the antibiotic resistance cassette resulted in any polar effects, which could affect 

downstream gene expression. Motility assays were performed as described in Section 

2.4.1. Motility halos were measured after 24, 48 and 72 h incubation. No significant 

differences were observed in the diameter of the motility halo comparing the rrpA 

mutant, rrpB mutant or rrpAB double mutant with the 11168H wild-type strain (Figure 

4.1 and Figure 4.2).  
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Figure 4.1 Motility assays for different C. jejuni mutants. A: 11168H 

wild-type strain; B: rrpA mutant; C: rrpB mutant, D: rrpAB double mutant. 

A bacterial suspension was prepared from a 24 h BA plate to an OD600 of 

1.0 and 5 µl of this suspension was inoculated into the centre of a motility 

plate. Plates were incubated at 37ºC under microaerobic conditions. Halo 

diameter was measured after 24, 48 and 72 h. Images displayed were 

recorded after 72 h. 

 

A A B 

C D 
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Figure 4.2 Motility assays for different C. jejuni mutants. A bacterial 

suspension was prepared from a 24 h BA plate to an OD600 of 1.0 and 5 µl of 

this suspension was inoculated into the centre of a motility plate. Plates were 

incubated at 37ºC under microaerobic conditions. Halo diameter was measured 

after 24, 48 and 72 h. Data represents at least three biological replicates. 

 

 

No differences were also observed in the diameter of the motility halo of the katA 

mutant, sodB mutant, perR mutant or rrpB perR double mutant compared to the 

11168H wild-type strain (Figure 4.3). 
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Figure 4.3 Motility assays for different C. jejuni mutants. A bacterial 

suspension was prepared from a 24 h BA plate to an OD600 of 1.0 and 5 µl of 

this suspension was inoculated into the centre of a motility plate. Plates were 

incubated at 37ºC under microaerobic conditions. Halo diameter was measured 

after 24, 48 and 72 h. Data represents at least three biological replicates. 

 

 

4.2.2 Galleria mellonella haemolymph collection 

G. mellonella larvae have been established as a good infection model to investigate 

the virulence of Campylobacter strains (Champion et al., 2010). G. mellonella larvae 

were infected with the following: the 11168H wild-type strain, rrpA mutant, rrpB 

mutant and rrpAB double mutant to assess the effects of these mutations on virulence. 

G. mellonella were infected with a bacterial suspension containing 106 CFU for each 

strain. Haemolymph was collected after 16 h, serially diluted and pipetted onto BA 

plates, as described in Section 2.4.12. C. jejuni colonies were counted after 48 h. 

Reduced haemolymph CFUs were observed following infection with both the rrpA 

and rrpB mutants compared to infection with the 11168H wild-type strain. However, 
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these were not statistically significant (Figure 4.4). Infection with the rrpAB double 

mutant resulted in haemolymph CFUs similar to the wild-type strain. 

 

  

Figure 4.4 Survival of C. jejuni strains in Galleria mellonella 

larvae. 10 µl bacterial suspension (106 CFU) of the 11168H wild-type 

strain, rrpA mutant, rrpB mutant or rrpAB double mutant was injected 

into G. mellonella larvae. Larvae were incubated at 37ºC for 16 h. 

Haemolymph was drained from individual larvae, serially diluted (10-

1 to 10-6) and pipetted onto BA plates. CFUs were counted after 48 h 

incubation. The experiments were repeated 4 times. Data represents at 

least three biological replicates. 
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4.2.3 Biofilm formation  

C. jejuni is capable of forming biofilms (Joshua et al., 2006). Different environmental 

signals can trigger biofilm formation, for example the presence of environmental 

stresses are known to stimulate biofilm formation (O'Toole et al., 2000). However, the 

mechanisms controlling biofilm formation in C. jejuni are still not yet fully understood 

(O'Toole et al., 2000).  

 

4.2.3.1 Biofilm formation in Mueller Hinton broth 

Biofilm assays were performed to investigate whether mutation of rrpA or rrpB would 

affect the ability of C. jejuni to form biofilms. Biofilm formation assays were 

performed for the 11168H wild-type strain, rrpA, rrpB, ahpC, katA, sodB and perR 

mutants, and the rrpAB and rrpB perR double mutants as described in Section 2.4.9. 

Strains were inoculated in MH broth and incubated for 72 h under either aerobic or 

microaerobic conditions.  

Both the rrpA and rrpB mutants exhibited a significant increase in biofilm formation 

under aerobic conditions compared to the wild-type strain. The rrpAB double mutant 

formed biofilms at a similar level as the wild-type strain. All the other mutants (ahpC, 

katA, sodB, perR and rrpB perR) also exhibited a significant increase in biofilm 

formation under aerobic conditions compared to the wild-type strain (Figure 4.5). 
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Figure 4.5 Capacity of the 11168H wild-type strain, rrpA mutant, rrpB 

mutant, rrpAB double mutant, ahpC mutant, katA mutant, sodB mutant, 

perR mutant and rrpB perR double mutant to form biofilms under aerobic 

conditions. Bacterial suspensions were prepared from 24 h BA plates and MH 

broth were inoculated to an OD600 of 1.0. MH broths were pre-incubated for 5 h, 

then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. Plates were 

incubated at 37ºC for 72 h under aerobic conditions. Biofilms were stained with 

1% (w/v) crystal violet, destained and the OD595 recorded. Data represents at 

least three biological replicates. ** = p < 0.01; *** = p < 0.001.  

 

 

Similar biofilm formation phenotypes were observed when the strains were incubated 

under microaerobic conditions. The rrpA mutant and rrpB mutant exhibited a 

significant increase in biofilm formation compared to the wild-type strain. The rrpAB 

double mutant formed biofilms at a similar level as the wild-type strain. All the other 
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mutants (ahpC, katA, sodB, perR and rrpB perR) also exhibited a significant increase 

in biofilm formation under microaerobic conditions compared to the wild-type strain 

(Figure 4.6). 

 

 

 Figure 4.6 Capacity of the 11168H wild-type strain, rrpA mutant, rrpB mutant, 

rrpAB double mutant, ahpC mutant, katA mutant, sodB mutant, perR mutant 

and rrpB perR double mutant to form biofilms under microaerobic conditions. 

Bacterial suspensions were prepared from 24 h BA plates and MH broth were 

inoculated to an OD600 of 1.0. MH broths were pre-incubated for 5 h, then the OD600 

was re-adjusted to 0.1 in 1 ml in 24 well-plates. Plates were incubated at 37ºC for 

72 h under microaerobic conditions. Biofilms were stained with 1% (w/v) crystal 

violet, destained and the OD595 recorded. Data represents at least three biological 

replicates. ** = p < 0.01; *** = p < 0.001.  
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4.2.3.2 Biofilm formation in Mueller Hinton supplemented with diluted chicken 

juice 

Organic materials can play an important role in bacterial biofilm formation (Brown et 

al., 2014). Compounds such as proteins, lipids, carbohydrates and sugars can promote 

a rich environment for bacterial development (Brown et al., 2014). Chicken juice was 

diluted as described in Section 2.4.10.2 due to high levels of protein precipitation 

during the incubation period. This protein precipitation increased the staining with 

crystal violet, which was not related to bacterial biofilm formation. The dilution of the 

chicken juice prevented this precipitation. 

Biofilm formation in presence of diluted chicken juice was performed on the 11168H 

wild-type strain, rrpA mutant, rrpB mutant and rrpAB double mutant. Strains were 

inoculated in MH broth + 5% (v/v) diluted chicken juice and incubated for 72 h under 

aerobic or microaerobic conditions. Biofilms were stained with crystal violet as 

described in Section 2.4.10.2. Diluted chicken juice did not affect biofilm formation 

under aerobic conditions, except with the rrpA mutant where decreased biofilm 

formation was observed compared to the rrpA mutant grown without chicken juice 

(Figure 4.7). 
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Figure 4.7 Capacity of the 11168H wild-type strain, rrpA, rrpB and rrpAB 

mutants to form biofilms in presence of diluted chicken juice under aerobic 

conditions. Bacterial suspensions were prepared from 24 h plates and MH broths 

were inoculated with OD600 of 1.0. MH broths were pre-incubated for 5 h, then 

OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. Controls: MH and MH + 

5% (v/v) diluted chicken juice. Plates were incubated at 37ºC for 72 h under 

aerobic conditions. Plates were stained with 1% (w/v) crystal violet and OD595 

measured. Data represents at least three biological replicates. ** = p < 0.01. 

 

 

Similar phenotypes were observed when the strains were incubated under 

microaerobic conditions in presence of undiluted chicken juice. Diluted chicken juice 

did not affect biofilm formation, except for the rrpA mutant that exhibited decreased 

biofilm formation compared to the rrpA mutant grown without chicken juice (Fig 4.8). 
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 Figure 4.8 Capacity of the 11168H wild-type strain, rrpA mutant, rrpB mutant, 

and rrpAB double mutant to form biofilms in presence of diluted chicken juice 

under microaerobic conditions. Bacterial suspensions were prepared from 24 h 

plates and MH broths were inoculated with OD600 of 1.0. MH broths were pre-

incubated for 5 h, then OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. 

Controls: MH and MH + 5% (v/v) diluted chicken juice. Plates were incubated at 

37ºC for 72 h under microaerobic conditions. Plates were stained with 1% (w/v) 

crystal violet and OD595 measured. Data represents at least three biological 

replicates. *** = p < 0.001. 
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4.2.3.3 Biofilm formation in Mueller Hinton supplemented with undiluted 

chicken juice 

Based on previously published methodology (Brown et al., 2014), undiluted chicken 

juice was added to media and stained with TTC. TTC was used to overcome the 

problems with protein precipitation and excess staining with crystal violet. TTC only 

stains the live bacteria within the biofilm because metabolically active cells reduce 

TTC to a red compound that can be measured colorimetrically. TTC was prepared as 

described in the Section 2.4.10.3.  

Biofilm formation in presence of undiluted chicken juice was performed on the 

11168H wild-type strain, rrpA mutant, rrpB mutant, and rrpAB double mutant. Strains 

were inoculated in MH broth + 5% (v/v) undiluted chicken juice and incubated for 

72h under aerobic or microaerobic conditions. Biofilms were stained with TTC as 

discussed above. All strains incubated with undiluted chicken juice exhibited 

increased biofilm formation under aerobic conditions compared to biofilm formation 

in the absence of chicken juice. However, the wild-type strain exhibited a slightly 

larger increase in biofilm formation compared to rrpA mutant. The same phenotype 

was also observed for the rrpB mutant. The rrpAB double mutant exhibited increased 

biofilm formation at a similar level to the wild-type strain (Figure 4.9). 
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Figure 4.9 Capacity of the 11168H wild-type strain, rrpA, rrpB and rrpAB 

mutants to form biofilms in presence of undiluted chicken juice under 

aerobic conditions. Bacterial suspensions were prepared from 24 h plates and 

MH broths were inoculated with OD600 of 1.0. MH broths were pre-incubated for 

5 h, then OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. Controls: MH and 

MH + 5% (v/v) undiluted chicken juice. Plates were incubated at 37ºC for 72 h 

under aerobic conditions. Plates were stained with TTC and OD500 measured. Data 

represents at least three biological replicates. *** = p < 0.001. 

 

 

A similar phenotype was observed when the strains were incubated under 

microaerobic conditions in presence of undiluted chicken juice. All strains increased 

biofilm formation under microaerobic conditions compared to biofilm formation in 

the absence of chicken juice (Figure 4.10). However, the rrpA mutant exhibited a 
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smaller increase in biofilm formation compared to the wild-type strain, as well as to 

the rrpAB double mutant. 

 

 

Figure 4.10 Capacity of the 11168H wild-type strain, rrpA, rrpB and rrpAB 

mutants to form biofilms in presence of undiluted chicken juice under 

microaerobic conditions. Bacterial suspensions were prepared from 24 h plates 

and MH broths were inoculated with OD600 of 1.0. MH broths were pre-incubated 

for 5 h, then OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. Controls: MH 

and MH + 5% (v/v) undiluted chicken juice. Plates were incubated at 37ºC for 72 

h under microaerobic conditions. Plates were stained with TTC and OD500 

measured. Data represents at least three biological replicates. *** = p < 0.001. 

 

 

 



150 
 

4.2.4 Growth of the 11168H wild-type strain in the presence of sodium 

taurocholate 

In order to investigate if the bile salt sodium taurocholate (ST) can influence the C. 

jejuni oxidative stress response, the 11168H wild-type strain was grown on BA plates 

containing two different concentrations of ST and then exposed to H2O2 stress. 

However, before performing the H2O2 assays, the 11168H wild-type strain was grown 

in Brucella broth containing the two different physiological concentrations of ST 

(0.1% (w/v) and 0.2% (w/v)) to assess any impact on bacterial growth or survival.  

OD600 readings were recorded at different time points and compared to the 11168H 

wild-type strain grown in Brucella broth only. There were no differences in the 

readings performed at 3, 6 and 9 h. There was a difference in the readings performed 

at 16 h, where significantly lower OD600 readings were observed for the 11168H wild-

type strain grown in the presence of both 0.1% ST (w/v) and 0.2% (w/v) ST. However, 

at 24 h, significantly lower OD600 readings were only observed for the 11168H wild-

type strain grown in the presence of 0.2% ST (w/v) (Figure 4.11). 

 

 

 

 

 



151 
 

 

Figure 4.11 Growth curves for C. jejuni 11168H wild-type strain grown 

with and without sodium taurocholate. 11168H was grown in Brucella 

broth alone or in the presence of 0.1% (w/v) or 0.2% (w/v) ST at 37ºC under 

microaerobic conditions, shaking at 75 rpm. OD600 readings were recorded at 

3, 6, 9, 16 and 24 h. Data represents at least three biological replicates. * = p 

< 0.05; ** = p < 0.01 

 

 

To more accurately investigate the effect of ST on C. jejuni growth and survival, at 

each time point, one aliquot of the broth was collected, serial diluted (10-1 to 10-6) and 

then plated onto BA plates for CFU counts. The presence of ST did not affect the 

growth or the survival of the 11168H wild-type strain at most time points analysed. 

The only exception was at 16 h in the presence of 0.2% (w/v) ST, where a statistically 

significant reduction in CFUs was observed compared to the CFUs in the absence of 

ST (Figure 4.12). However, there was no statistically significant reduction in CFUs 

after 24 h incubation in the presence of either 0.1% (w/v) ST or 0.2% (w/v) ST. 
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Figure 4.12 Growth curves for C. jejuni 11168H wild-type strain grown with 

and without sodium taurocholate. 11168H was grown in Brucella broth alone 

or in the presence of 0.1% (w/v) or 0.2% (w/v) ST at 37ºC under microaerobic 

conditions, shaking at 75 rpm. Serial dilutions were prepared at 3, 6, 9, 16 and 

24 h and pipetted in duplicate onto BA plates. CFUs were counted after 48 h 

incubation. Data represents at least three biological replicates. * = p < 0.05. 

 

 

4.2.5 Sensitivity of the 11168H wild-type strain to hydrogen peroxide stress 

when grown in the presence of sodium taurocholate  

Exposure to bile salts can alter bacterial gene expression and increase resistance to 

toxic compounds, such as diverse antimicrobials (Lin et al., 2005). Therefore, the 

11168H wild-type strain was grown in the presence or absence of ST and then exposed 

to different concentrations of H2O2 to investigate if exposure to this bile salt could 

alter bacterial sensitivity to H2O2 stress. 11168H grown in 0.1% (w/v) ST showed no 

difference in sensitivity to H2O2 compared to 11168H grown in the absence of ST. 

However, when grown in presence 0.2% (w/v) ST, 11168H exhibited a statistically 
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significant increase in sensitivity to H2O2 stress compared to growth in the absence of 

ST (Figure 4.13). 

 

 

Figure 4.13 Sensitivity of the 11168H wild-type strain to hydrogen peroxide 

stress after exposure to sodium taurocholate. A bacterial suspension was 

prepared from a 24 h BA plate containing either no ST, 0.1% (w/v) ST or 0.2% 

(w/v) ST. The bacterial suspension (OD600 1.0) was exposed to 10, 25 or 50 mM 

H2O2 for 15 min at 37ºC under microaerobic conditions. Serial dilutions were 

prepared from 10-1 to 10-6 and pipetted in duplicate onto BA plates. CFUs were 

counted after 48 h incubation. Data represents at least three biological replicates. 

* = p < 0.05; # no growth. 
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4.2.6 Superoxide dismutase activity associated with C. jejuni OMVs 

OMVs are a mechanism to deliver effector proteins extracellularly by C. jejuni (Kuehn 

and Kesty, 2005). C. jejuni 11168H OMVs have been shown to contain oxidative 

stress response enzymes (Elmi et al., 2012, Jang et al., 2014). OMVs were isolated 

from the 11168H wild-type strain and the rrpA, rrpB, rrpAB, katA and perR mutants 

as described in Section 2.4.3. The OMV samples were normalised to 100 ng/µl based 

on the protein concentration and SOD activity was investigated as described in Section 

2.4.8. OMVs isolated from the rrpA, rrpB and rrpAB mutants all exhibited lower levels 

of SOD activity. However, no significant differences were observed compared to 

OMVs from the wild-type strain. SOD activity associated with OMVs isolated from 

the perR mutant was similar to that associated with OMVs from to the wild-type strain. 

However, OMVs isolated from the katA mutant exhibited a significant decrease in 

SOD activity compared to the wild-type strain (Figure 4.14). 

 

 



155 
 

 

Figure 4.14 Superoxide dismutase activity assay associated with 

C. jejuni OMVs isolated from the 11168H wild-type strain, rrpA 

mutant, rrpB mutant, rrpAB double mutant, katA mutant and 

perR mutant. OMVs were isolated and protein concentrations were 

normalised to 100 ng/µl. Data represents at least three biological 

replicates. ** = p < 0.01. 

 

 

 

When C. jejuni is grown in the presence of ST, OMV production is increased (Elmi et 

al., unpublished data). Therefore, OMVs were isolated from the 11168H wild-type 

strain grown in the presence or absence of ST to investigate changes in SOD activity. 

The 11168H wild-type strain was grown in presence of ST 0.1% (w/v) and 0.2% (w/v), 

and in absence of ST. OMVs isolated from the 11168H wild-type strain grown in the 

presence of 0.1% (w/v) ST exhibited no change in SOD activity compared to OMVs 
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isolated following growth in the absence of ST. However, OMVs isolated in presence 

of 0.2% (w/v) ST demonstrated a significant increase in SOD activity (Figure 4.15).  

 

 

Figure 4.15 Superoxide dismutase activity assay associated 

with C. jejuni OMVs isolated from the 11168H wild-type 

strain grown in absence or in presence of sodium taurocholate 

(ST). OMVs were isolated from the 11168H wild-type strain 

grown in the absence of ST or in the presence of 0.1% (w/v) ST 

or 0.2% (w/v) ST. Protein concentrations were quantified and 

normalised to 100 ng/µl. Data represents at least three biological 

replicates. * = p < 0.05. 
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4.2.7 Catalase activity associated with C. jejuni OMVs 

C. jejuni 11168H OMVs have been shown to contain oxidative stress enzymes (Elmi 

et al., 2012, Jang et al., 2014). Therefore, OMVs were isolated to investigate catalase 

activity. However, the catalase activity assay could not be performed on OMVs 

isolated from the C. jejuni 11168H wild-type strain or on OMVs isolated from the 

different mutants. The catalase activity kit contains chromogen reagent (3,5-dichloro-

2-hydroxybenzenesulfonic acid) that oxidises 4-aminoantipyrine in the presence of 

H2O2 and horseradish peroxide producing a red quinoneimine dye. Some compounds, 

such as proteins and lipids, may interfere with the assay colour development.  

The assay uses a blank control that consists of a chromogen reagent and an aliquot of 

200 mM H2O2. H2O2 oxidises the chromogen reagent and the blank control will 

develop the highest amount of colour. When H2O2 is added to a test sample, the H2O2 

will be neutralised by enzymes present in the sample. Therefore, the H2O2 that reacts 

with the chromogen reagent will produce less oxidation (colour) than the blank 

control.  

When OMVs were used to investigate catalase activity, the colour development in the 

samples was higher than the blank control. It is possible that proteins associated with 

C. jejuni OMVs interfere with the assay reagent. However, it was possible to 

demonstrate visually that C. jejuni OMVs exhibit catalase activity by exposing a 

solution containing OMVs to H2O2. Catalase activity breaks down H2O2 to H2O and 

O2, and it was possible to observe the released O2 molecules through the development 

of bubbles (Figure 4.16). 
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Figure 4.16 C. jejuni OMVs initiate the 

breakdown of H2O2 to water and oxygen. OMVs 

(100 ng/µl) were isolated from 11168H wild-type 

strain and added to a 200 mM H2O2 solution. 
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4.3 Discussion  

To further investigate the roles of RrpA and RrpB, different assays were performed 

on the 11168H wild-type strain, rrpA mutant, rrpB mutant and rrpAB double mutant 

to investigate whether mutation of rrpA or rrpB resulted in other phenotypic changes. 

Motility assays, Galleria mellonella infection and biofilm formation assays were 

performed. This study also investigated whether the bile salt sodium taurocholate 

influences the 11168H wild-type strain resistance to H2O2 stress. The role of OMVs 

in the C. jejuni oxidative stress response was also investigated using catalase and SOD 

activity assays.  

 

4.3.1 Motility 

Motility is essential for C. jejuni colonisation. Wassenaar et al. (1991) demonstrated 

that a non-motile C. jejuni lost the capacity to adhere to and invade human intestinal 

epithelial cells. Yao et al. (1994) also demonstrated that different mutants with defects 

in motility were also unable to invade human cells. A different study also 

demonstrated that non-motile C. jejuni strains exhibited deficit in invasion in vitro 

(Russell and Blake, 1994). Non-motile C. jejuni also demonstrated no adhesion or 

invasion in mice (Yanagawa et al., 1994). 

Motility assays were performed to assess possible polar effects in the different 

mutants. Insertional mutations can cause polar effects by changing the transcriptional 

reading frame and by altering gene expression of genes located either upstream or 

downstream of the insertion site (Cheng et al., 2015). It was important to investigate 

possible polar effects after mutating a gene to confirm if differences in the phenotype 

observed were a result of the mutation of the target gene or if they were a result of 

polar effects on adjacent genes (Roberts, 2000). Some C. jejuni mutations are known 

to affect motility via polar effects, such as the mutation of luxS that also affects flaA 

transcription and reduces motility (Jeon et al., 2008). In the present study, none of the 

mutants demonstrated altered motility compared to wild-type strain. However, no 

further investigations were performed to confirm the absence of polar effects. 
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4.3.2 Galleria mellonella infection model 

G. mellonella larvae have been used as a model of infection to investigate the virulence 

of various pathogenic bacteria, such as Burkholderia cepacia (Seed and Dennis, 2008), 

Legionella pneumophila (Harding et al., 2012), Pseudomonas aeruginosa 

(Hendrickson et al., 2001) and Bacillus cereus (Fedhila et al., 2006). Insect immune 

systems have many characteristics in common with mammalian immune systems, 

including an innate non-adaptive immune response which is an efficient defence 

against microorganisms (Hoffmann, 1995). The immune response is divided in 

humoral and cellular responses (Lavine and Strand, 2002). Humoral defences 

comprise of antibacterial peptides, coagulation, melanisation, and production of ROS 

(Lavine and Strand, 2002). Cellular responses are responsible for phagocytosis and 

encapsulation (Lavine and Strand, 2002). Insect haemolymph detects bacterial LPS 

leading to a rapid coagulation response (Hoffmann, 1995). The recognition of foreign 

antigens occurs through haemocyte surface receptors or through opsonisation (Lavine 

and Strand, 2002). Inhibitors and antibacterial peptides are produced and released into 

the haemolymph to eliminate the bacteria (Hoffmann, 1995, Altincicek et al., 2007). 

An important cellular defence reaction mechanism utilised by insects, including G. 

mellonella, is melanisation (Altincicek et al., 2007). The melanisation process 

involves the production of cytotoxic molecules, such as ROS to eliminate infectious 

microorganisms sequestered in melanoic capsules (Hoffmann, 1995). Melanisation 

occurs around the invaded microorganisms, followed by phagocytosis by specialised 

cells (Hoffmann, 1995). Melanin can also release free radicals to help eliminate 

microorganisms (Hoffmann, 1995). 

G. mellonella produce antioxidant enzymes as a protective response to oxidative stress 

to control endogenous levels of ROS (Buyukguzel et al., 2010). Changes in the 

expression of enzymatic antioxidants occur during bacterial or viral infection (Wang 

et al., 2001, Dubovskii et al., 2005). The enzymes that demonstrated changes in 

expression were SOD, glutathione S-transferase (GT), and catalase (Dubovskii et al., 

2005). Catalase activity is decreased under bacterial infection (Dubovskii et al., 2010). 

Infected G. mellonella increased oxidative stress and lipid peroxidation levels to 

eliminate the infectious pathogen (Dubovskii et al., 2010). The increase of ROS by G. 

mellonella is a mechanism to eliminate the infection (Dubovskii et al., 2010). As such, 
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G. mellonella is a useful model to study C. jejnui mutants deficient in oxidative stress 

responses.  

Both the rrpA and rrpB mutants demonstrated reduced cytotoxicity in the G. 

mellonella model of infection compared to the wild-type strain (Gundogdu et al., 

2011, Gundogdu et al., 2015). However, the rrpAB double mutant and perR mutant 

exhibited similar levels of cytotoxicity as the wild-type strain, whilst the katA, sodB 

and ahpC mutants all exhibited reduced levels of cytotoxicity compared to the wild-

type strain (Gundogdu et al., 2015). In the present study, G. mellonella larvae were 

injected with either the 11168H wild-type strain or different mutants. Haemolymph 

was drained from the larvae to investigate differences in bacterial survival. Reduced 

CFU counts were observed for both the rrpA and rrpB mutants, suggesting that rrpA 

and rrpB mutants were more sensitive to the G. mellonella innate immune response. 

This reinforces previous findings that G. mellonella larvae are less susceptible to 

killing when injected with the rrpA or rrpB mutants compared to the wild-type strain 

(Gundogdu et al., 2011, Gundogdu et al., 2015). However, this reduction in CFUs was 

not statistically significant. Infection with the rrpAB double mutant resulted in CFU 

counts similar to the wild-type strain. This indicates that the rrpAB double mutant has 

a similar capacity to resist to the G. mellonella innate immune system as the wild-type 

strain.  

 

4.3.3 Biofilm formation 

Biofilms are microbial communities formed by a polymeric matrix attached to a 

surface (Gambino and Cappitelli, 2016). Different environmental conditions can 

stimulate biofilm formation, such as limited nutrient availability, temperature 

variation and presence of environmental stresses (O'Toole et al., 2000). C. jejuni 

biofilm formation is affected by environmental factors. In rich nutrient media, C. jejuni 

forms biofilm very poorly (Reeser et al., 2007). However, less rich nutrient media, 

such as Muller Hinton broth, is more compatible with C. jejuni biofilm formation 

(Reeser et al., 2007).  

Biofilm formation is a bacterial survival strategy as biofilms confer higher resistance 

to adverse conditions (Gambino and Cappitelli, 2016). Bacterial cells have to form a 
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balance between the ROS produced by cytoplasmic metabolism and neutralisation of 

these ROS by scavenger enzymes to prevent damage to bacterial structures (Gambino 

and Cappitelli, 2016). Accumulated ROS activate the oxidative stress response, but 

also trigger adaptation to the hostile environment and biofilm formation (Gambino and 

Cappitelli, 2016). Environmental ROS are generated by UV radiation that leads to 

ROS formation intracellularly, as well as high or low temperatures which also increase 

the amount of free radicals within bacterial cells (Gambino and Cappitelli, 2016). 

Low levels of ROS can induce bacterial adaptive responses and influence biofilm 

structure and morphology (Gambino and Cappitelli, 2016). Low concentrations of 

H2O2 have been shown to increase biofilm formation in E. coli (Jakubowsk and 

Walkowiak, 2015). The presence of sub-lethal doses of ROS lead to an increase in 

catalase and AhpC expression in Azotobacter vinelandii, but also increased biofilm 

formation through the increased production of polysaccharide extracellular matrix 

(Villa et al., 2012). Some bacterial regulators are involved in both of these processes, 

biofilm formation and ROS resistance mechanism. (Gambino and Cappitelli, 2016). 

In C. jejuni, CsrA plays an important role in biofilm formation and in the regulation 

of oxidative stress resistance (Fields and Thompson, 2008). However, it is still unclear 

how CsrA regulates genes involved in the oxidative stress response and in biofilm 

formation. 

C. jejuni biofilm formation has been shown to be a direct response to oxidative stress. 

C. jejuni can enhance biofilm formation in response to oxidative stress (Asakura et al., 

2007a, Reuter et al., 2010). It has been demonstrated that C. jejuni mutants which are 

more sensitive oxidative stress, such as ahpC and katA mutants, exhibit increased 

biofilm formation compared to the wild-type strain, with the ahpC mutant exhibiting 

the largest increase in biofilm formation (Oh and Jeon, 2014). Further investigation 

demonstrated that the increase in biofilm was associated with the accumulation of 

ROS within bacterial cells (Oh and Jeon, 2014). 

In the present study, it was also demonstrated that different mutants with defects in 

the oxidative stress response increased biofilm formation compared to the wild-type 

strain. 11168H ahpC, katA, perR, rrpA, rrpB and rrpB perR mutants all demonstrated 

increase in biofilm formation. This suggests that these mutants are accumulating ROS 

compounds in the cytoplasm that triggers the increase in biofilm formation. Although 
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Oh and Jeon (2014) did not demonstrate increased biofilm formation for a 11168 sodB 

mutant, in the present study the 11168H sodB mutant demonstrated increased biofilm 

formation. However, there were significant differences in the techniques used. The 

period of incubation performed by Oh and Jeon (2014) was 48 h at 42ºC, whilst in this 

study the period of incubation was 72 h at 37ºC. There was no increase in biofilm 

formation demonstrated by the 11168H rrpAB double mutant compared to the wild-

type strain. 

Although C. jejuni can survive in different environments, the presence of organic 

material can increase the chances of bacteria survival under hostile conditions (Brown 

et al., 2014). Proteins present in these organic liquids can increase C. jejuni biofilm 

formation (Brown et al., 2014). Chicken juice is defined as the meat exudates obtained 

from defrosted chicken carcasses (Birk et al., 2004, Brown et al., 2014). The formation 

of ice crystals during freezing damages the meat cell structure, so the meat exudate is 

the substance obtained as a result of ruptured meat cells (Leygonie et al., 2012). Meat 

exudates contain compounds such as nucleotides, amino acids, peptides, proteins and 

many soluble enzymes, forming a viscous liquid (Kima et al., 2015) which provides a 

rich environment for bacterial growth (Birk et al., 2004). Such compounds can prolong 

the viability of Campylobacter cells compared to incubation in BHI broth (Birk et al., 

2004). C. jejuni NCTC 11168 was shown to be viable for 8 weeks in chicken juice 

incubated at 5ºC under microaerobic conditions (Birk et al., 2004). Milk is a different 

type of organic material with a rich protein content that can also provide an increase 

in bacterial attachment to surfaces (Barnes et al., 1999). Pre-coating stainless steel 

with diluted milk solutions has been shown to increase bacterial attachment to the 

surface, such as with Staphylococcus aureus, Listeria monocytogenes and Serratia 

marcescens (Barnes et al., 1999). 

When undiluted chicken juice was incubated at 37ºC, precipitation was observed, 

which increased crystal violet staining unrelated to biofilm formation. Brown et al. 

(2013) have also described this problem of interference with crystal violet staining due 

to chicken juice precipitation. As such, chicken juice was diluted to overcome the 

problem of interference with crystal violet staining. However, diluted chicken juice 

did not increase biofilm formation compared to strains grown in MH broth alone. The 

reason for this could be that the dilution reduced the amount of organic material 

available for the bacteria to grow and/or stimulate an increase in biofilm formation. 
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The only exception was with the 11168H rrpA mutant. The rrpA mutant grown in 

presence of diluted chicken juice showed reduced biofilm formation compared to MH 

broth alone. The reduction in biofilm formation was more pronounced under 

microaerobic conditions. The reason for this phenotype is not obvious. This suggests 

that the concentration of diluted chicken juice was enough to trigger a signal for the 

11168H rrpA mutant to restore the phenotype observed in the wild-type strain. Further 

studies are necessary to investigate this phenotype. 

As the chicken juice had to be highly diluted to avoid precipitation, it may no longer 

be representative of an organic liquid that could affect biofilm formation. Therefore, 

an alternative quantitative method using TTC was investigated. TTC is reduced by 

bacterial cell respiration and allows for quantification of viable cells in biofilms 

(Brown et al., 2013). Brown et al. (2013) demonstrated that chicken juice compounds 

do not interfere with TTC and that TTC is a useful staining method as an alternative 

to crystal violet. When undiluted chicken juice was added to MH broth, an increase in 

biofilm formation was observed for all strains. The rich content of undiluted chicken 

juice allowed 11168H biofilm formation to be increased more than two-fold. Chicken 

juice has high concentration of particulates that form a conditioning layer in the abiotic 

surface facilitating bacterial attachment and increase in biofilm formation (Brown et 

al., 2014). C. jejuni also attaches to chicken juice particulates (Brown et al., 2014). 

This study demonstrated that mutation of the genes encoding key oxidative stress 

enzymes increased biofilm formation. Oh and Jeon (2014) showed that this increased 

biofilm formation is due to the accumulation of ROS intracellularly. However, 

accumulation of ROS can also induce C. jejuni cells to enter a VBNC state (Ica et al., 

2012). Ica et al. (2012) demonstrated that C. jejuni biofilm cells enter a VBNC state, 

and that VBNC cells within the biofilms failed to grow in bacteriological media. 

VBNC cells are less active compared to planktonic cells (Tholozan et al., 1999). 

VBNC cells produce a low level of AMP and no ATP or ADP compared to planktonic 

C. jejuni cells (Tholozan et al., 1999). TTC is reduced by planktonic cells. However, 

VBNC cells do not reduce this compound as efficiently (Tholozan et al., 1999). 

The 11168H rrpA mutant demonstrated an increase in biofilm formation using crystal 

violet stain. However, the rrpA mutant did not show an increase in biofilm formation 

using TTC when grown in MH only compared to the wild-type strain. Crystal violet 
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stains both living and dead cells by binding to extracellular polysaccharide matrix 

formed by biofilms (Gomes et al., 2014), whilst TTC is only reduced by metabolically 

active cells (Brown et al., 2013). This could suggest that the rrpA mutant increases 

biofilm formation, but also forms VBNC cells more rapidly compared to the wild-type 

strain. Further studies are necessary to investigate if the other C. jejuni oxidative stress 

mutants would also display similar phenotypes using TTC. 

 

4.3.4 Bile salts 

Bile salts are present in the intestine and provide protection to the host against 

pathogenic bacteria through bactericidal activity (Meinersmann et al., 2005). Primary 

bile salts (cholate and chenodeoxycholate) are typically conjugated to glycine or 

taurine (forming taurocholate and glycocholate) in the host liver (Sorg and 

Sonenshein, 2008). Most of the bile salts present in the human gut are conjugated. 

However, bacteria present in the small intestine can deconjugate bile salts, forming 

different compounds termed secondary bile salts, such as deoxycholate acid (Ridlon 

et al., 2006). Pathogenic bacteria have evolved the ability to survive and grow in the 

presence of bile salts in the intestine and establish infection (Meinersmann et al., 

2005). Bile salts are known activators of multidrug efflux pumps in different bacteria 

(Piddock, 2006). In C. jejuni, bile salts activate expression of CmeABC, the major 

efflux pump mechanism, increasing resistance to several antimicrobials (Lin et al., 

2005).  

Bile salts can change gene expression and increase C. jejuni resistance to 

antimicrobials (Kuehn and Kesty, 2005). It is suggested that bile salts can also activate 

different mechanisms of resistance, protection and damage repair (Meinersmann et al., 

2005). Bile salts activate stress responses in E. coli associated with membrane 

functions, oxidative stress and DNA damage (Berg et al., 2002). In C. jejuni, bile salts 

induce the expression of Cia protein synthesis enhancing C. jejuni capacity to invade 

intestinal cells (Rivera-Amill et al., 2001, Malik-Kale et al., 2008). 

The highest bile salt concentration in the human gut is 10 mM, with an average 

concentration of 3.4 mM (Northfield and McColl, 1973). The average human 

concentration of taurocholic acid in the gall bladder varies between 39 to 56 µmol/ml 
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(Fisher and Yousef, 1973). ST is a constituent of the bile salts present in the human 

caecum, with average concentration of 1.3% (Hamilton et al., 2007). ST is an 

important bile salt found in the human gut. ST has been shown to induce the 

germination of Clostridium difficile spores (Sorg and Sonenshein, 2008).  

This study demonstrated that C. jejuni grows well in the presence of either 0.1% w/v 

(2 mM) or 0.2% w/v (4 mM) ST. These concentrations are within the physiological 

range and similar to the concentration used by Malik-Kale et al. (2008), although this 

study used a different bile salt (sodium deoxycholate). Sodium deoxycholate increases 

the expression of C. jejuni virulence genes, such as ciaB (Rivera-Amill et al., 2001). 

CiaB increases bacterial ability to invade epithelial cells (Malik-Kale et al., 2008). 

Sodium deoxycholate also increases the expression of rrpB and katA (Malik-Kale et 

al., 2008). This suggests that sodium deoxycholate can increase C. jejuni resistance to 

oxidative stress. This study investigated the effects of ST in the C. jejuni H2O2 stress 

response. 

The presence of 0.2% w/v ST was demonstrated to be a stressful condition for C. 

jejuni. When 11168H was grown in the presence of ST, the bacteria displayed a 

reduced OD600 and reduced CFU at the 16 h time point. However, the CFU count 

increased again at 24 h with no differences compared to growth in absence of ST. This 

demonstrates the ability of C. jejuni to survive in presence of bile salts. This ability is 

probably due to the activation of the CmeABC efflux pump that increases the 

resistance of C. jejuni to several antimicrobials (Lin et al., 2005). The 11168H wild-

type strain was grown in presence of ST to investigate if exposure to this bile salt 

would affect the oxidative stress response. No differences in sensitivity to H2O2 were 

observed when the wild-type strain was grown in 0.1% w/v ST. However, an increase 

in sensitivity to H2O2 was observed when grown in 0.2% w/v ST.  

The higher concentration of ST used was associated with an increase in the levels of 

stress for C. jejuni in vitro. However, this does not indicate that bile salts do not play 

a role in activating genes related to C. jejuni oxidative stress defence mechanism. As 

demonstrated previously, C. jejuni increases the expression of rrpB and katA (Malik-

Kale et al., 2008), which can increase the C. jejuni resistance to H2O2. When in the 

gut, C. jejuni is in contact with different bile salts that cause changes in gene 

expression, which can increase the bacteria resistance against hostile antimicrobial 
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compounds and ROS (Lin et al., 2005, Malik-Kale et al., 2008). A mixture of different 

bile salts may be more suitable for stimulating C. jejuni resistance to oxidative stress. 

 

4.3.5 OMVs 

Gram-negative bacteria secrete OMVs containing biologically active proteins 

extracellularly (Kulp and Kuehn, 2010). OMVs are a mechanism to deliver virulence 

factors to the environment as well as to host cells (Kuehn and Kesty, 2005). Therefore, 

bacteria can deliver a high concentration of effectors over greater distances (Kulp and 

Kuehn, 2010). OMVs contain bacterial lipids, membrane proteins and other insoluble 

compounds. Soluble compounds are protected within the OMVs from extracellular 

proteases (Kulp and Kuehn, 2010). 

Like other secretion systems, OMV secretion can be regulated (Kulp and Kuehn, 

2010). OMV production is influenced by environmental factors and bacterial stressors, 

which can increase vesiculation levels and change OMV content (Ellis and Kuehn, 

2010, Kulp and Kuehn, 2010). OMVs provide protection for planktonic cells as a 

short-term defence against lethal doses of antibacterial agents (Kulp and Kuehn, 

2010). Antibacterial agents increase OMV secretion, which then target these agents 

through binding and inactivation (Kulp and Kuehn, 2010). The increase in vesiculation 

provides the bacteria with better chances of survival (Ellis and Kuehn, 2010). 

It has been shown that P. aeruginosa can increase OMVs production under oxidative 

stress conditions (Sabra et al., 2003, Macdonald and Kuehn, 2013). van de 

Waterbeemd et al. (2013) demonstrated that oxidative stress acts as an intracellular 

signal to increase vesiculation in Neisseria meningitides. Proteomic analysis 

performed on Acinetobacter baumannii OMVs demonstrated the presence of catalase 

and superoxide dismutase (Kwon et al., 2009). Therefore, oxidative stress conditions 

may also increase the OMVs production in C. jejuni strains.  

OMV content from the C. jejuni 11168H wild-type strain was analysed by proteomic 

analysis indicating the presence of oxidative stress ezymes (Elmi et al., 2012). The 

oxidative stress ezymes identified were TrxA, TrxB, AhpC and Tpx (Elmi et al., 

2012). Further proteomic analysis of NCTC 11168 OMVs showed that Dps, Tpx and 

AhpC were present in the OMVs (Jang et al., 2014). However, 21 to 26% of the OMV 
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protein countent could not have been identified (Elmi et al., 2012, Jang et al., 2014). 

KatA and SodB were identified as associated with C. jejuni 11168H OMVs isolated 

in presence of ST (Elmi et al., unpublished data). Therefore, C. jejuni OMVs have the 

potential to act against toxic oxygen compounds as a defence mechanism.  

KatA or SodB have major roles in detoxifing ROS compounds and were identified as 

associated with C. jejuni OMVs (Elmi et al., unpublished data). Therefore, to further 

investigate the OMVs role in oxidative stress response, catalase and superoxide 

dismutase activity assays were performed. C. jejuni OMVs were demonstrated to have 

catalase activity due to the release of oxygen molecules when OMVs were in presence 

of H2O2. However, the exact concentration of catalase activity present in the OMVs 

was not possible to measure due to OMV protein content interference with the assay 

reagent. OMVs isolated from the 11168H wild-type strain, rrpA, rrpB, katA, perR 

mutants and rrpAB double mutant were shown to possess SOD activity. Only OMVs 

isolated from the katA mutant possessed a reduced SOD activity. An increase in SOD 

activity associated with OMVs was observed when the 11168H wild-type strain was 

grown in the presence of ST. It has been observed that C. jejuni can increase OMV 

production and protein content when grown in presence of ST (Elmi et al., unpublished 

data). ST also increased C. jejuni OMVs proteolytic activity (Elmi et al., unpublished 

data). This demonstrates that ST changes gene expression in C. jejuni and increases 

the response to stressful conditions, such as oxidative stress. Presence of bile salts may 

be a natural trigger to stimulate C. jejuni to produce more enzymes and enhance its 

defence mechanism. 

 

4.3.6 Conclusion 

The mutation of rrpA or rrpB appears to affect other bacterial responses as well as the 

peroxide and aerobic stress responses. Mutation of either rrpA or rrpB reduces the 

bacterial ability to survive the G. mellonella innate immune response. This study also 

showed that accumulation of toxic compounds in C. jejuni cells triggers an increase in 

biofilm formation. The rrpA and rrpB mutations increased biofilm formation. 

However, the rrpAB double mutant did not exhibit increased biofilm formation. The 

different assays performed demonstrated that C. jejuni uses different mechanisms to 

cope with hostile environments and to increase the bacterium chances of survival. The 
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presence of organic liquids further increases the chances of C. jejuni survival through 

an increase in biofilm formation. OMVs play a role in the C. jejuni oxidative stress 

response to neutralise toxic ROS compounds present in the extracellular space. Bile 

salts affect C. jejuni gene expression increasing bacterial resistance to hostile 

compounds, such as antimicrobials and ROS. It has been demonstrated that bile salts 

directly increase KatA expression (Malik-Kale et al., 2008). This study has 

demonstrated that bile salts increase SOD activity associated with OMVs. RrpA and 

RrpB appear to also play a role in both resistance to innate immune responses and in 

biofilm formation.  
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5 Analysis of the distribution of rrpA and rrpB in different C. jejuni 

wild-type strains 

 

5.1 Introduction  

Reanalysis of whole genome microarray data for 111 C. jejuni wild-type strains 

(Champion et al., 2005) indicated a significant difference in the distribution of rrpA 

and rrpB amongst C. jejuni strains, with rrpA identified in over 95% of these strains, 

whilst rrpB was identified in only 50% of these strains (Gundogdu et al., 2011). 

Sensitivity to peroxide and aerobic stress has also been shown to vary depending on 

whether a C. jejuni strain contains only rrpA or both rrpA and rrpB (Gundogdu et al., 

unpublished data). 

 

5.2 Results 

5.2.1 Screening for rrpA, rrpB and cosR using PCR with degenerate primers 

At the start of this study in April 2013, 20 C. jejuni strains from the Champion et al. 

(2005) study were screened for the presence of rrpA, rrpB and cosR using PCR with 

degenerate primers. This screen was performed in order to confirm the in silico 

reanalysis of the microarray data that indicated variation in the presence of rrpB 

amongst different C. jejuni wild-type strains. Degenerate primers allow screening to 

be performed for a specific gene even if there is variation in some nucleotide positions. 

Designed degenerate primers covered every possible nucleotide combination based on 

the published amino acid sequences. 

The C. jejuni strains from the Champion et al. (2005) study were isolated from 

different sources and further analysed by Stabler et al. (2013) using both microarray 

and MLST analysis. MLST analysis identified the C. jejuni strains as being either 

livestock-associated or water & wild-life-associated clonal complexes (Appendix 1). 

Ten isolates were randomly selected from the livestock-associated clonal complexes 

and ten from the water & wild-life-associated clonal complexes (Table 5.1). 
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Table 5.1 C. jejuni wild-type strains selected from livestock-associated clonal 

complexes and water & wild-life-associated clonal complexes 

Livestock Water & wild-life 

11919 13040 M1 40917 

11973 13249 12241 44119 

12450 13713 31481 47693 

12487 30280 33106 62914 

12912 47886 34007 64555 

 

 

 

PCR screening with degenerate cosR primers indicated that cosR is highly conserved 

amongst the C. jejuni wild-type strains screened (Figure 5.1). The reference strains 

also included in the PCR analysis were 11168H, 81-176, 81116 and C. coli 37. cosR 

was present in all these reference strains. 
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Figure 5.1 cosR degenerate primers were used to screen 20 isolates from 

livestock-associated or water & wild-life-associated clonal complexes. 

Lanes 1 and 17: ladder; Lane 2: M1; Lane 3: 12241; Lane 4: 31481; Lane 5: 

33106; Lane 6: 34007; Lane 7: 40917; Lane 8: 44119; Lane 9: 47693; Lane 

10: 62914; Lane 11: 64555; Lane 18: 11919; Lane 19: 11973; Lane 20: 

12450; Lane 21: 12487; Lane 22: 12912; Lane 23: 13040; Lane 24: 13249; 

Lane 25: 13713; Lane 26: 30280; Lane 27: 47886; Lanes 12 and 28: 

11168H; Lane 13 and 29: 81116; Lanes 14 and 30: 81-176; Lanes 15 and 

31: C. coli 37; Lanes 16 and 32: negative control. The size of the amplified 

fragment is 0.654 kb. 

 

 

PCR screening with degenerate rrpA or rrpB primers confirmed the variation in the 

distribution of rrpB amongst the different C. jejuni wild-type strains. Some wild-type 

strains contained only rrpA, whilst other strains contained both rrpA and rrpB. PCR 

screening with degenerate rrpA primers indicated that all strains from livestock-

associated and water & wild-life-associated clonal complexes contained rrpA. C. coli 

37 was the only strain that appeared not to contain rrpA (Figure 5.2). 

 

  1      2      3      4      5       6      7       8      9     10    11     12    13   14    15    16  

 17    18    19    20    21     22    23    24    25    26    27    28    29    30    31    32  
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Figure 5.2 rrpA degenerate primers were used to screen 20 isolates from 

livestock-associated or water & wild-life-associated clonal complexes. 

Lanes 1 and 17: ladder; Lane 2: M1; Lane 3: 12241; Lane 4: 31481; Lane 5: 

33106; Lane 6: 34007; Lane 7: 40917; Lane 8: 44119; Lane 9: 47693; Lane 10: 

62914; Lane 11: 64555; Lane 18: 11919; Lane 19: 11973; Lane 20: 12450; 

Lane 21: 12487; Lane 22: 12912; Lane 23: 13040; Lane 24: 13249; Lane 25: 

13713; Lane 26: 30280; Lane 27: 47886; Lanes 12 and 28: 11168H; Lane 13 

and 29: 81116; Lanes 14 and 30: 81-176; Lanes 15 and 31: C. coli 37; Lanes 

16 and 32: negative control. The size of the amplified fragment is 0.216 kb. 

 

 

PCR screening with degenerate rrpB primers indicated variation in the presence of 

rrpB amongst the strains. Most water & wild-life-associated strains did not contain 

rrpB, except one (strain 12241). However, most livestock-associated strains contained 

rrpB, except one (strain 13040). As predicted, the positive controls 11168H and 81-

176 contained rrpB, whilst the negative control 81116 and also C. coli 37 did not 

contain rrpB (Figure 5.3). 

  1      2      3      4      5       6      7       8      9     10    11     12    13    14    15     16  

 17    18    19    20    21     22    23    24    25    26    27    28     29    30     31    32  
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Figure 5.3 rrpB degenerate primers were used to screen 20 isolates from 

livestock-associated or water & wild-life-associated clonal complexes. 

Lanes 1 and 17: ladder; Lane 2: M1; Lane 3: 12241; Lane 4: 31481; Lane 5: 

33106; Lane 6: 34007; Lane 7: 40917; Lane 8: 44119; Lane 9: 47693; Lane 

10: 62914; Lane 11: 64555; Lane 18: 11919; Lane 19: 11973; Lane 20: 12450; 

Lane 21: 12487; Lane 22: 12912; Lane 23: 13040; Lane 24: 13249; Lane 25: 

13713; Lane 26: 30280; Lane 27: 47886; Lanes 12 and 28: 11168H; Lane 13 

and 29: 81116; Lanes 14 and 30: 81-176; Lanes 15 and 31: C. coli 37; Lanes 

16 and 32: negative control. The size of the amplified fragment is 0.228 kb. 

 

 

 

 

 

  

  1      2      3      4      5       6      7       8      9     10    11     12    13   14    15    16  
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5.2.2 Prevalence of the rrpA and rrpB genes amongst 270 C. jejuni strains 

The Stabler et al. (2013) study analysed a total of 270 C. jejuni strains based on whole 

genome microarray data and MLST analysis (Appendix 3). This study generated a 

phylogenetic tree that grouped C. jejuni isolates into nine subclades (C1 to C9). The 

subclades were divided into two categories based on source of isolation: livestock-

associated and water & wild-life-associated clonal complexes. The livestock-

associated strains dominated subclades C1 to C6, whilst the water & wild-life strains 

dominated subclades C7 to C9. 

The rrpA and rrpB gene distribution was investigated using the whole genome 

microarray data from the Stabler et al. (2013) study. rrpA was identified in 129/133 

strains within the C1-C6 subclades (97.0%) and in 130/137 strains within the C7-C9 

subclades (94.9%). In total rrpA was identified in 259/270 strains, indicating that vast 

majority of C. jejuni strains contained rrpA (Table 5.2) 

In contrast, rrpB was identified in 102/133 strains within the C1-C6 subclades (76.7%) 

and only in 19/137 strains in the C7-C9 subclades (13.9%). In total rrpB was identified 

in only 121/270 strains, indicating a more variable distribution according to subclade. 

Therefore, strains from livestock-associated subclades tend to contain both rrpA and 

rrpB, whilst strains from water & wild-life subclades tend to contain only rrpA. 

It was also observed that within both the livestock and water & wild-life clades, there 

were anomalous subclades. Within the C1-C6 subclades (livestock-associated), most 

strains contained rrpB. However, most strains from the C6 subclade did not contain 

rrpB. In the C7-C9 subclades (water & wild-life-associated), most strains did not 

contain rrpB. However, 5/15 strains from the C9i subclade contained both rrpA and 

rrpB. 
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Table 5.2 rrpA and rrpB gene distribution according to subclades generated by 

MLST analysis 

Livestock-associated 

Subclades rrpA rrpA & rrpB Neither 

C1 2 (10%) 27 (90%) - 

C2 - 27 (100%)  - 

C3 - 21 (100%)  - 

C4 1 (7.7%) 12 (92.3%)  - 

C5 5 (26.3%) 14 (73.7%)  - 

C6 20 (86.9%)  - 3 (13%) 

Water & wild-life-associated 

Subclades rrpA rrpA & rrpB Neither 

C7 24 (96%) 1 (4%) - 

C8 35 (89.7%) 4 (10.3%) - 

C9i 7 (46.7%) 5 (33.3%) 3 (20%) 

C9ii 45 (77.6%) 9 (15.5%) 4 (6.9%) 

 

 

 

5.2.3 Prevalence of rrpA and rrpB in 3,746 C. jejuni and 486 C. coli genomes 

A collaboration with the Institute of Food Research in Norwich allowed further 

investigation of the distribution of rrpA and rrpB using whole genome sequencing and 

MLST (Appendix 4). This analysis identified differences in rrpA and rrpB distribution 

amongst 4,232 Campylobacter genome sequences (3,746 C. jejuni and 486 C. coli) 

available in public databases (Cody et al., 2013, Brown et al., 2015). MLST identifies 

each strain to an ST due to a unique allelic profile of the seven housekeeping genes. 
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STs are grouped into clonal complexes (CC) by their similarity to a central allelic 

profile. 

The vast majority (>96.4%) of the 3,746 C. jejuni genomes contained rrpA, whilst the 

presence of rrpB varied amongst these genomes, with 36.3% of C. jejuni genomes 

containing rrpB. The presence of rrpB appeared to be linked with MLST clonal 

complex. Some clonal complexes were strongly associated with strains that contained 

both rrpA and rrpB, such as CC-21 and CC-61. All genomes in the CC-61 contained 

both genes. In the CC-21, the vast majority of strains contained both genes, with just 

a few containing only rrpA. These two clonal complexes are usually associated with 

livestock (Kwan et al., 2008, Rotariu et al., 2009, Stabler et al., 2013). However, 

strains in two other livestock-associated clonal complexes (CC-48 and CC-206) 

contained only rrpA. 

Some water & wild-life-associated clonal complexes contained only rrpA, such as 

CC-45, CC-283, CC-354, CC-443, CC-574, CC-658, CC-257 and CC-460. However, 

some water & wild-life-associated clonal complexes demonstrated variation in the 

distribution of rrpB, such as CC-353, CC-607, CC-22, CC-42, CC-573 and CC-403. 

This suggests that some water & wild-life-associated clonal complexes contain a 

mixed distribution of strains, with some strains containing both genes whilst other 

strains contain only rrpA. Strains belonging to CC-464 also demonstrated variation in 

the presence of rrpB. This clonal complex has not been previously reported to be 

classified as either livestock-associated or water & wild-life-associated. The vast 

majority of C. coli genomes contained neither rrpA nor rrpB. Furthermore, most of 

the C. coli strains were assigned to CC-828. Only 12 of the 486 C. coli strains 

contained an rrpA orthologue and all but one of these genomes were assigned to a 

different lineage (clade 3) (Figure 5.4). Analysis of the amino acid sequences of RrpA 

and RrpB indicated a relationship between some clonal complexes and truncated 

versions of RrpA and RrpB. Strains belonging to the CC-607 were found to encode a 

shorter RrpA protein sequence that lacks the N-terminal 27 amino acids. Furthermore, 

a percentage of C. jejuni strains assigned to CC-353 were found to have a RrpB protein 

sequence either lacking the N-terminal 29 amino acids, the C-terminal 29 amino acids, 

or a combination of both 29 N-terminal and 9 C-terminal amino acids (Figure 5.5).
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Figure 5.4 Prevalence of rrpA and rrpB amongst 3,746 C. jejuni and 486 C. coli genomes and MLST sequence types. Genomes were 

phylogenetically clustered as described in Section 2.5.9 (van Vliet and Kusters, 2015). The first two bars show the presence or absence of rrpA 

and rrpB. Red = presence, Grey = absence, Blue = C-terminal truncated, Light blue = N-terminal truncated, and Green = N- and C-terminal 

truncated RrpB. The third bar shows the RM system. Red indicates the organisation found in C. jejuni 81116 containing rloA and rloB, Blue 

indicates the organisation found in C. jejuni NCTC11168 containing rloH and mloB, and Grey indicates no organisation found. The fourth bar 

indicates the source of each strain. Red indicates isolation from animals (bovine, chicken, turkey and pig), Blue from other animals, Green from 

the environment (water, ducks and wild birds), Yellow from humans, and Grey from unknown sources. The fifth bar indicates the MLST clonal 

complexes where different colours represent different lineages. The asterisks at ST-42 and ST-353 indicate that these are mixed clonal complexes 

having a proportion of livestock-associated isolates. The lowercase letters indicate the approximate position of reference strains 81116 and M1 

(a), 81-176 (b), RM1221 (c) and NCTC 11168 (d). 

1
79
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Further statistical analysis of the data present in Appendix 4 was performed to 

investigate the association of rrpB with the source of isolation. Table 5.3 indicates that 

most of the clinical isolates had rrpA only, and around 30% had both genes. Most of 

the livestock strains did not have rrpA or rrpB, and similar percentages were found for 

isolates containing both genes or only rrpA. 

 

 

Table 5.3 rrpA and rrpB gene distribution related to the origin of the isolates 

 rrpA + rrpB rrpA only Neither Total  

Clinical 1111 (29.8%) 2128 (57%) 490 (13.2%) 3729 

Livestock 25 (23.6%) 36 (34%) 45 (42.4%) 106 

Other animals 21 (14.3%) 69 (46.9%) 57 (38.8%) 147 

Environmental 3 (33.3%) 4 (44.5%) 2 (22.2%) 9 

Unknown 197 (81.7%) 30 (12.5%) 14 (5.8%) 214 

 

 

The correlation between the C. jejuni genomes and the RM systems can be seen in 

Table 5.4. The presence of rrpB in C. jejuni genomes strongly correlates with the RM 

type IF hsd system, which is represented by NCTC 11168. The RM type IAB hsd 

system does not correlate with rrpB and is represented by 81116. 
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Table 5.4 rrpA and rrpB gene distribution according to the RM system 

 RM type IF 

11168 

RM type IAB 

81116 

Neither Total 

rrpA + rrpB 1339 (98.4%) 21 (1.5%) 1 (0.1%) 1361 

rrpA only 34 (1.6%) 2046 (90.8%) 172 (7.6%) 2252 

Neither 0 91 (68.4%) 42 (31.6%) 133 
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RrpA full-length and truncated versions 

CjNCTC11168_RrpA      -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 

Cj81116_RrpA          -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 

Cc76339_RrpA          VKNTKNSTCNYQECGFNYTLALISGKYKMSVLYCLYKDEIVRYNELNRILSPISFKTLTN 

Cj414_RrpA            MKNTKNSTCNYQEYGFNYTLALISGKYKMSVLYCLYKDKIVRYNELKRILNPISFKTLTN 

N-term_truncated      ----------------------------MSILYCLFRYEIVRYNELKRFLSSISFKTLTN 

C-term_truncated      -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 

                                                  **:****:: :*******:*:*..******** 

 

CjNCTC11168_RrpA      TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 

Cj81116_RrpA          TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCKWGEKDKKEKNA--- 

Cc76339_RrpA          VLRELESDGLITRKEYPQIPPKVEYSLSQKGQSFIPILQAMCDWGE-KNKRRIP--- 

Cj414_RrpA            VLRELENAGLIIRKEYPQIPPKVEYSLSKKGQSFIPILEAMCDWGRRKQKINILKIY 

N-term_truncated      TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCDWEEENKKLQGK--- 

C-term_truncated      TLRELENDGLIIRKEYA---------------------------------------- 

                      .*****. *** ****.                 

 

 

RrpB full-length and truncated versions 

CjNCTC11168_RrpB       MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 

Cc2544_RrpB            MKKYHSPCPVETTLNLIGNKWKILIIRELLDGEKRFGELRKNISATKNQNISQNVLTQNL 

N-term_truncated       -----------------------------MQGTKRFGELRKSISFTKNQNISQNVLTQNL 

N+C-term_truncated     -----------------------------MQGTKRFGELRKSISFTKNQNISQNVLTQNL 

C-term_truncated       MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 

                                                    ::* ********.** *************** 

 

CjNCTC11168_RrpB        RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 

Cc2544_RrpB             RELEEAKLLKRKVYAEVPPRVEYSLTLLGSSLESVLKSLEIWGDKYKNMN 

N-term_truncated        RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 

N+C-term_truncated      RELEEAKLIKRKVYAEVPPKVEYLLISLGNSLESILKSLEN--------- 

C-term_truncated        REIRRSKTDQTQSLCRSSSKG----------------------------- 

                        **:..:*  : :  .. ..:                               

                      

 

Figure 5.5 Presence of N- and C-terminal truncations in C. jejuni and C. coli 

RrpA and RrpB proteins. Amino acid sequences were obtained from C. jejuni 

NCTC 11168, 81116 and 414, and C. coli 2544 and 76339. Other truncated versions 

were obtained from genome sequences listed in Appendix 4. Asterisks mean identical 

amino acids, colons and full stops show conservative substitutions. Alignments were 

made using ClustalX2. Yellow blocks indicate identical regions in all proteins, 

including regions with truncated proteins. 
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5.2.4 Plasticity region investigation amongst 3,746 C. jejuni 

The great majority of C. jejuni strains contain rrpA, but the presence of rrpB is more 

variable. Based on this, further analysis was performed to investigate the genetic 

structure around the rrpA and rrpB genes. rrpA and rrpB are located near a type I 

Restriction-Modification (R-M) (hsd) system, which may suggest one possible 

explanation for the variation in the presence or absence of rrpB amongst different C. 

jejuni strains. 

The analysis of the 3,746 C. jejuni genome sequences identified differences in the 

distribution of genes flanking rrpA and rrpB. Two conserved flanking regions were 

identified with a more variable central region. The upstream conserved region contains 

genes with unknown function and rrpA, whilst the downstream conserved region 

contains the arsenic resistance operon (ars), a methyl-accepting chemotaxis protein 

(mcp) gene and a paralysed flagellum gene pflA. In between these two conserved 

regions, there is a variable region that contains one of two versions of a "transferable 

plasticity region" including the type I R-M (hsd) system (Figure 5.6). 

The NCTC 11168 version was used as a reference for strains with the variable region 

containing rrpB. The 81116 version was used as a reference for strains with the 

variable region lacking rrpB. The NCTC 11168 variable central region appears to be 

representative of all rrpB+ strains, whilst the 81116 variable central region appears 

representative of all rrpB- strains. 

C. coli genome sequences demonstrated a very similar structure to 81116. C. coli 

strains do not contain rrpB, and only a very few contain rrpA. This finding suggests 

that the transferable plasticity region does not occur in this region for C. coli. 
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Figure 5.6 The genomes of NCTC 11168 and 81116 differ in a variable central 

region containing a type I Restriction-Modification (hsd) system. The transferrable 

plasticity region surrounded by conserved genes is linked with the type I Restriction-

Modification (hsd) system, suggesting a mechanism for the variable distribution of 

rrpB. The figure shows the C. jejuni NCTC 11168 (rrpB+) and 81116 (rrpB-) genes 

and gene numbers. C. jejuni NCTC 11168 lacks the arsC and acr3 genes. arsP and 

arsR are inactivated and annotated as Cj1558/Cj1560 and Cj1561/Cj1562 

respectively. 
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5.3 Discussion 

Presence of rrpA and rrpB in the C. jejuni genome appears to influence oxidative stress 

resistance. Therefore, a search for the presence or absence of rrpA and rrpB amongst 

different C. jejuni strains was performed. The first screening of different C. jejuni 

strains was performed using PCR with degenerate primers. Further investigations were 

performed using both whole genome microarray data and whole genome sequencing 

data with a greater number of C. jejuni strains. The variation in the presence of rrpB 

led to an investigation of the genetic structure surrounding rrpA and rrpB. 

Screening for the cosR, rrpA and rrpB genes using PCR with degenerate primers was 

performed to determine the presence or absence of these genes in 20 different C. jejuni 

strains in order to confirm the reanalysis of the Champion et al. (2005) microarray 

data that indicated variation in the presence of rrpB amongst different wild-type strains 

(Gundogdu et al., 2011). A degenerate primer has a mix of nucleotide sequences that 

covers all possible nucleotide combinations for a given protein sequence (Linhart and 

Shamir, 2005). Degenerate primers permit some flexibility in the specificity allowing 

the amplification of a gene sequence with some variations (Souvenir et al., 2003). The 

more degenerate a primer, the more sequence combinations the primer mix contains 

(Linhart and Shamir, 2005). However, a few problems can arise from the use of 

degenerate primers, such as having to optimise the concentration of the degenerate 

primer pairs and the amplification of erroneous fragments (Souvenir et al., 2003). A 

few erroneous amplifications were observed in the present study. However, as the size 

of the genes screened for were known and the correct fragments amplified as clearer 

and brighter bands than the erroneous fragments, this was not considered a major 

problem. 

cosR was present in all strains screened using the degenerate primers. cosR is a highly 

conserved gene amongst different Campylobacter species, such as C. jejuni, C. coli, 

C. lari, C. fetus, C. curvus and C. concisus (Hwang et al., 2011). CosR is a regulator 

of 480 genes involved in different cell functions, such as energy metabolism, cell 

respiration, heat shock response and regulation of oxidative stress responses (Hwang 

et al., 2011, Hwang et al., 2012). CosR is an important regulator of the oxidative stress 

defence, as CosR negatively regulates sodB, dps, luxS and rrc expression and 
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positively regulates ahpC and katA expression (Hwang et al., 2011, Hwang et al., 

2012). 

The study of Stabler et al. (2013) assigned C. jejuni strains as either livestock-

associated or water & wild-life-associated clonal complexes based on the isolation 

source and MSLT analysis. PCR screening with degenerate primers for rrpA and rrpB 

demonstrated that all strains from livestock-associated subclades contained both rrpA 

and rrpB, except one strain that contained only rrpA. However, all strains from the 

water & wild-life subclades contained only rrpA, except one that contained both genes. 

This initial screening suggested that the rrpA and rrpB gene distribution could be 

related to the source of isolation and confirmed the reanalysis of the Champion et al. 

(2005) microarray data that indicated variation in the presence of rrpB amongst 

different wild-type strains. 

Additional analysis of the rrpA and rrpB gene distribution was then performed on 270 

C. jejuni strains using whole genome microarray data from the Stabler et al. (2013) 

study. This identified that the majority of the livestock-associated strains contained 

rrpA and rrpB, whilst the majority of the water & wild-life-associated strains 

contained only rrpA. These differences in the gene distribution suggest niche 

adaptation as the presence or absence of rrpB appears to correlate with the source of 

isolation (Stabler et al., 2013). 

A more in-depth analysis of the rrpA and rrpB gene distribution was performed using 

whole genome sequence data from 3,746 C. jejuni and 486 C. coli strains. The same 

pattern of rrpA and rrpB distribution was observed. The vast majority of C. jejuni 

strains contained rrpA, whilst only around 50% of the strains contained rrpB. With 

regard to C. coli strains, only very few contained rrpA, whilst most C. coli contained 

neither rrpA nor rrpB. 

These strains were further analysed by MSLT. MLST is a powerful tool that can 

investigate different genotypes based on the genetic diversity of the housekeeping 

genes (Sheppard et al., 2009). MLST can identify nucleotide differences in the 

housekeeping genes that allow the attribution of isolates to specific sources (Sheppard 

et al., 2009). MLST can also identify host-restricted and host generalist lineages that 

can be found in both animal and clinical samples (Sheppard et al., 2009, Sheppard et 

al., 2014). 
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In the present study, MLST analysis identified strains belonging to different clonal 

complexes. It was observed that some clonal complexes were more associated with 

strains containing both rrpA and rrpB genes (rrpB+), whilst others were more 

associated with strains containing only rrpA (rrpB-). Clonal complexes were identified 

as livestock-associated or water & wild-life-associated based on different studies 

(Kwan et al., 2008, Rotariu et al., 2009, Stabler et al., 2013). Other studies have also 

demonstrated the relationship between MLST clonal complex and source of isolation 

(Manning et al., 2003, Zautner et al., 2011). 

Variation in gene distribution can indicate niche adaptation (Stabler et al., 2013). 

Strains may have lost or gained rrpB, promoting some advantage in survival/resistance 

to a specific environment. In the present study, niche adaptation is suggested by the 

fact that strains with a specific profile (rrpB+ or rrpB-) were more related to a specific 

MLST clonal complex. Possibly C. jejuni has evolved genetically and adapted to 

survive under different conditions. Differences in gene distribution may affect 

different regulatory pathways that allow C. jejuni to survive under hostile oxygen 

conditions, such as in aerobic or anaerobic environments (Gaynor et al., 2004).  

Considering the 3,746 C. jejuni strains analysed by MSLT, a high percentage of strains 

identified in the CC-21 and CC-61 contained both rrpA and rrpB. Both CC-21 and 

CC-61 clonal complexes are defined as livestock-associated (Kwan et al., 2008, 

Stabler et al., 2013). This suggests that the presence of rrpA and rrpB may give an 

advantage to C. jejuni strains in the colonisation of livestock. In the Sheppard et al. 

(2009) study, most C. jejuni genotypes associated with human disease were 

genetically similar to isolates from chicken sources. Therefore, strains containing both 

rrpA and rrpB genes, which are related to livestock, might also be more likely to infect 

humans. Interestingly, the CC-21 and CC-61 are also two of the most associated with 

human infections (Manning et al., 2003). Therefore, the presence of rrpA and rrpB in 

C. jejuni strains may also be important for human infection. However, in this study, 

most of the genomes analysed were clinical isolates and contained only rrpA. 

Different truncated RrpA and RrpB amino acid sequences were identified in some C. 

jejuni isolates. However, no link was observed between the truncated versions and 

source of the isolates. The isolates with a truncated RrpA were related to the CC-607 

and lacked the N-terminal 27 amino acids. A percentage of C. jejuni strains belonging 
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to CC-353 had a truncated RrpB lacking either the N-terminal 29 amino acids, the C-

terminal 29 amino acids or lacked amino acids at both ends of the protein sequence. 

Gene truncation arises from a point mutation in the gene sequence, which can generate 

a stop codon resulting in interruption of the translation process (Clarke and Eriksson, 

2000). Gene truncation can lead to a non-functional protein. However, some truncated 

proteins may still be active or partially active (Clarke and Eriksson, 2000). C-terminal 

residues play an important role in protein folding (Fedyukina and Cavagnero, 2011). 

Truncation of C-terminal residues can result in loss of native protein conformation and 

the protein can become inactive (Fedyukina and Cavagnero, 2011). The loss of just a 

few C-terminal residues is enough to generate a protein compact losing some of its 

secondary structure (Fedyukina and Cavagnero, 2011). This suggests that RrpA and 

RrpB proteins lacking the C-terminal amino acids may not be functional. Further 

studies are necessary to investigate if these proteins are still active. 

Most strains belonging to CC-353 were isolated from humans and these strains 

contained both rrpA and rrpB. Dingle et al. (2002) demonstrated that CC-353 is highly 

associated with humans and chickens. This reinforces that livestock-associated clonal 

complexes tend to have both genes and are associated with human infection. 

In this study the CC-403 is classified as water & wild-life-associated with the vast 

majority of strains isolated from humans and containing only rrpA. However, Morley 

et al. (2015) identified the CC-403 as livestock-associated, but not associated with any 

avian species. The strains were normally isolated from pigs, cattle and humans 

(Morley et al., 2015). A great number of the CC-403 strains were isolated from 

humans, indicating that these strains have high capacity to cause diseases in humans 

(Morley et al., 2015). This suggests niche adaptation for C. jejuni strains from CC-

403, indicating that these strains have evolved and become less adapted to colonise 

avian hosts, but with greater capacity to infect humans (Morley et al., 2015). 

Further analysis of the genetic structure surrounding the rrpA and rrpB genes in the 

3,746 C. jejuni strains identified a putative plasticity region between two conserved 

regions. Both genes are located near a type I R-M (hsd) system. Restriction enzymes 

are widely present in bacteria and are responsible for recognition of a specific 

nucleotide sequence in a DNA molecule and then cleavage of the DNA (Murray, 

2000). R-M systems are a mechanism of bacterial defence that targets invading DNA 
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elements (Vasu and Nagaraja, 2013). R-M systems help to protect bacterial cells from 

foreign DNA thorough cleavage (Kobayashi, 2001). R-M systems are acquired by the 

bacterial genome from mobile elements through horizontal transfer (Kobayashi, 

2001). 

Normally, a restriction endonuclease is accompanied by a modification enzyme, with 

both enzymes comprising an R-M system (Murray, 2000). The modification enzyme, 

which is a DNA methyltransferase, protects the host DNA against the restriction 

endonuclease by methylation of specific nucleotides (Murray, 2000). Methylation 

activity ensures discrimination of bacterial self DNA, whilst DNA lacking methylation 

is recognised as non-self DNA (Vasu and Nagaraja, 2013). Unmethylated DNA will 

then be cleaved by the restriction endonuclease at specific sites. Cleavage occurs at 

phosphodiester bonds of endonucleotides (Vasu and Nagaraja, 2013). 

R-M systems are acquired by horizontal gene transfer through mobile genetic elements 

or by other means, such as natural transformation, or small genomic integration 

hotspots (Oliveira et al., 2014). Mobile genetic elements encode proteins that mediate 

their movement within the genome or can be inserted in a different genome, such as 

transposons, plasmids and bacteriophages (Frost et al., 2005). R-M systems can also 

occasionally cause evolutionary changes in a genome (Kobayashi, 2001). Many R-M 

systems are linked with a recombinase homologue or a transposase homologue, which 

are responsible for genome rearrangements (insertion or deletion) (Kobayashi, 2001, 

Furuta et al., 2010). R-M systems are essential for several bacterial DNA 

recombination processes. If the DNA cleaved is from a closely related bacterium, the 

DNA fragments can be used for homologous recombination (Vasu and Nagaraja, 

2013). 

R-M systems work at a selfish level, which means once incorporated into a bacterial 

genome, the R-M system cannot easily be removed (Kobayashi, 2001). This is 

demonstrated by the fact that an R-M operon on the bacterial chromosome cannot be 

easily replaced by homologous recombination (Kobayashi, 2001). If the R-M genes 

are lost, the unmethylated sites in the DNA can be digested by other R-M systems 

which can lead to cell death (Kobayashi, 2001). Therefore, an established R-M system 

becomes essential for the bacterial cell (Vasu and Nagaraja, 2013). 
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There are different types of R-M systems, such as type I, type II, type III and type IV 

systems (Murray, 2000). The classification is based on subunit composition, sequence 

recognition, cleavage position, co-factor requirements and substrate specificity (Vasu 

and Nagaraja, 2013). The C. jejuni NCTC 11168 genome sequence contains a putative 

type I R-M locus (Parkhill et al., 2000). Type I R–M systems are common amongst 

prokaryotes and have been found in several different bacterial species (Murray, 2000). 

The type I R-M system is a bi-functional, multi-subunit complex containing 

hsdR, hsdM and hsdS genes, where hsd denotes “host specificity of DNA” (Murray, 

2000, Miller et al., 2005). The sequence recognised by a hsd system is not the cleavage 

site (Loenen et al., 2014). Type I R-M enzymes translocate along DNA for 

considerable distances whilst remaining attached to their recognition sites. DNA will 

form large loops before being cleaved though breaking of phosphodiester bonds 

(Murray, 2000). DNA cleavage occurs randomly at asymmetric recognition site 

distances between 400 to 7,000 bp (Donahue and Peek, 2001). 

The HsdS subunit has recognition domains that are responsible for recognising a 

specific DNA sequence for restriction and modification activities (Murray, 2000, 

Donahue and Peek, 2001). The HsdR subunit is responsible for the cleavage of DNA 

and the HsdM subunit is responsible for DNA methylation (Donahue and Peek, 2001). 

Normally, hsdM and hsdS are transcribed from the same promoter, whilst hsdR is 

transcribed from a separate promoter (Murray, 2000).  

There are five type I R-M families, from A to E (Loenen et al., 2014). These families 

are categorised based on complementation tests, antibody cross-reactivity and amino 

acid sequence (Loenen et al., 2014). HsdR and HsdM proteins from different type I 

R-M families have regions of sequence homology. However, there is a low level of 

gene identity amongst the different type I families (Donahue and Peek, 2001).  

The analysis of the C. jejuni type I R-M system performed by Miller et al. (2005) used 

73 strains, including NCTC 11168, 81-176 and 81116, which are classical C. jejuni 

reference wild-types strains. This analysis was based on relatedness of nucleotide 

sequences and presence of characteristic spacer repeats within hsdS. Their results 

assigned some hsd systems to the classical type IC family, but also identified two new 

additional type I R-M families, termed type IAB and type IF (Miller et al., 2005). 

Some C. jejuni strains had similarities to both IA and IB families, but not enough to 
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be assigned to either one. These strains demonstrated a sister affiliation to both 

families. Therefore, a new family designated IAB was proposed (Miller et al., 2005). 

Similarly with the new IF family, the hsd locus demonstrated some similarities in the 

amino acid sequence to the ID family, but not enough to be assigned. Therefore, an 

additional IF hsd family was also proposed to be present in C. jejuni strains. 81116 

has a type IAB hsd system, whilst both NCTC 11168 and 81-176 have a type IF hsd 

system (Miller et al., 2005). 

Further analysis of the genetic structure surrounding the rrpA and rrpB genes in the 

3,746 C. jejuni strains identified a putative transferable plasticity region between two 

conserved regions. The variable central region contains one of two versions of a 

transferable plasticity region containing a type I R-M system. One version contains 

rrpB and the other version does not. Based on the Miller et al. (2005) study, different 

type I R-M families were observed amongst the different C. jejuni wild-type strains 

analysed. Further analysis demonstrated that C. jejuni strains belonging to the same 

R-M family have extensive gene rearrangements within the hsd loci. 

However, it has been suggested that low sequence similarity between the IC, IAB and 

IF families would make inter-family recombination events unlikely. Morley et al. 

(2015) also identified specific R-M systems in C. jejuni strains from the ST-403 

complex. These strains had specific intra-lineage recombination that regulated DNA 

acquisition and recombination. Both NCTC 11168 and 81-176 contain a type IF hsd 

system and both have the variable central region containing rrpB. This region is not 

mobile, but likely to undergo recombination within the IF family. The type IF hsd 

family represents the majority of isolates in the ST-21, ST-61, ST-42 and ST-353 

clonal complexes. 81116 contains a type IAB hsd system and has the variable central 

region that does not contain rrpB. This version of the plasticity region represents the 

majority of C. jejuni strains in all other clonal complexes. 

The Miller et al. (2005) study also described the presence of other ORFs in the hsd 

loci. Some ORFs were identified between hsdR and hsdS and designated rloA to rloH 

(R-linked ORF). Other ORFs were identified between hsdS and hsdM and designated 

mloA to mloB (M-linked ORF). The order of the C. jejuni hsd loci can vary amongst 

strains. The gene order in NCTC 11168 is hsdM-hsdS-hsdR, whilst the gene order in 

81116 is hsdR-hsdS-hsdM. 
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The recombination process is facilitated by the hsd system, so it is possible that rrpB 

was either acquired or lost as part of the mobile plasticity region. The version 

containing rrpB is strongly associated with the IAB hsd family system. IAB hsd locus 

demonstrated higher degree of diversity particularly with respect to rlo genes (Miller 

et al., 2005). The NCTC 11168 genome contains only one rlo gene (rloH). RloH has 

partial similarity to a class of ATP/GTP-binding proteins (Miller et al., 2005). All 

other rlo and mlo genes encode putative proteins with as yet unidentified functions. 

rlo and mlo encode similar proteins with more than 70% amino acid identity between 

them (Miller et al., 2005). 

The upstream conserved region contains rrpA and other genes encoding proteins with 

unknown functions. The downstream conserved region contains the arsenic resistance 

operon (ars), a methyl-accepting chemotaxis protein (mcp) gene, a paralysed 

flagellum gene pflA and two other genes encoding proteins with unknown functions. 

Arsenic is ubiquitously found in the environment, such as in soil, water and air, in both 

inorganic and organic forms (Diorio et al., 1995, Shen et al., 2013). Arsenic is a toxic 

compound for bacteria, inhibiting phosphorylation and hindering energy generation 

systems (Shen et al., 2013). Resistance mechanisms against arsenic compounds are 

essential for bacterial survival (Wang et al., 2009). Arsenic resistance operons are 

found in both Gram-positive and Gram-negative bacteria (Diorio et al., 1995). Arsenic 

resistance operons consist of three to five genes that are highly conserved (Diorio et 

al., 1995). Various genes are responsible for arsenic resistance, including 

arsR, arsA, arsB, arsC, arsD, arsH and arsM (Wang et al., 2009). 

C. jejuni RM1221 strain contains a four gene arsenic resistance operon encoding a 

transcriptional repressor (ArsR), an arsenate reductase (ArsC) together with a putative 

membrane permease (ArsP) and an efflux protein (Acr3) (Wang et al., 2009). AsrR 

controls the expression of the other ars genes (Rosen, 2002). ArsR negatively 

regulates the expression of ars genes in the presence of arsenite substrates (Shen et 

al., 2013). The role of ArsP in the arsenic resistance response remains to be clarified 

(Wang et al., 2009). The organic form of arsenic is used to feed farm animals for the 

food chain, including both livestock and poultry (Shen et al., 2013). C. jejuni is likely 

to be exposed to arsenic organic compounds that are present in the chicken gut 

(Sapkota et al., 2006). When excreted by poultry, these degrade into metabolites such 

as arsenite and arsenate (Sapkota et al., 2006). 
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NCTC 11168 and 81-176 are missing arsC and acr3 in the ars locus (Wang et al., 

2009). Furthermore, NCTC 11168 arsR and arsP are degenerated as result of a single-

nucleotide deletion in the ORF (Ahmed et al., 2002, Wang et al., 2009). Therefore, 

these two strains lack a functional ars operon. Strains that contain the ars operon are 

more resistant to arsenic (Wang et al., 2009). Whilst NCTC 11168 lacks a functional 

ars operon, the genome contains homologs of arsR, arsC and arsB (Wang et al., 2009, 

Shen et al., 2013). These genes are located far apart on the chromosome (Wang et al., 

2009). ArsB and Acr3 are two unrelated arsenite transporters broadly present in 

different bacteria (Rosen, 2002). arsB and acr3 are also present in C. jejuni strains 

(Wang et al., 2009, Shen et al., 2013). Some C. jejuni strains have either arsB or acr3, 

whilst some strains contain both genes (Shen et al., 2013). ArsA is an ATPase family 

member present in various bacteria, but absent from C jejuni (Wang et al., 2009, Shen 

et al., 2013). The structure of ArsA and ArsB are related to the multiple drug resistance 

ATP-driven efflux pump (Diorio et al., 1995). ArsA functions as an ATPase and ArsB 

contains transmembrane domains and has a role transporting arsenite out of the cell 

(Rosen, 2002). When ArsA is expressed in an operon together with ArsB, the 

detoxification of arsenite is more efficient (Dey and Rosen, 1995). However, ArsB 

can eliminate arsenite in the absence of ArsA (Dey and Rosen, 1995). When alone, 

ArsB uses the membrane potential in the efflux of arsenite (Wang et al., 2009). 

In C. jejuni NCTC 11168, ArsB is responsible for arsenite resistance, but not for 

arsenate resistance (Shen et al., 2013). However, ArsC can convert arsenate to arsenite 

to then be eliminated by ArsB (Shen et al., 2013). ArsB has a more important role in 

C. jejuni strains that lack the ars operon, such as NCTC 11168 (Shen et al., 2013). 

However, the ars operon provides a higher level of resistance than ArsB alone (Shen 

et al., 2013). C. jejuni requires either ArsB or Acr3 to resist arsenic in the environment 

(Shen et al., 2013). ArsC is responsible for arsenic resistance in C. jejuni strains that 

contain an ars operon. However, in the NCTC 11168 strain, ArsC does not appear to 

play a role in arsenic resistance (Shen et al., 2013). 

The pflA (paralysed flagella) gene is also present in the downstream conserved region. 

PflA is important for motility as mutation of pflA results in a strain with a paralysed 

flagellum (Yao et al., 1994). Strains where pflA has been mutated express a full length, 

but immobilised flagellum. Mutation of pflA also results in reduced invasion of 

epithelial cells (Yao et al., 1994).  
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mcp has a methyl-accepting chemotaxis protein (MCP) signalling domain and is also 

present in the downstream conserved region as seen in the NCTC 11168 genome 

annotation. MCPs are trans-membrane proteins responsible for sensing environmental 

signals then transmitting to chemotactic proteins to promote the chemotactic 

orientation (Wadhams and Armitage, 2004). MCPs interact with a periplasmic binding 

protein and are responsible for detecting chemotactic signals extracellularly 

(Wadhams and Armitage, 2004). MCP activates CheA resulting in phosphorylation of 

CheY, which is a response regulator responsible for regulating the direction of the 

flagella rotation (Lertsethtakarn et al., 2011). C. jejuni NCTC 11168 contains several 

putative MCPs that contain transmembrane motifs and periplasmic binding domains, 

such as Tlp1, Tlp2, Tlp3, DocB and DocC (Vegge et al., 2009). Mutation of any of 

these genes does not affect the chemotactic responses of the mutants compared to the 

wild-type strain (Vegge et al., 2009). This suggests that mutation of only one mcp 

gene does not affect chemotaxis due to the overlapping sensing mechanisms of other 

MCPs (Vegge et al., 2009). The chemotaxis mechanism is essential for C. jejuni 

colonisation (Marchant et al., 2002). 

This study has demonstrated that rrpA is conserved throughout C. jejuni strains, whilst 

the presence of rrpB is variable. rrpB is usually present in strains assigned to livestock-

associated clonal complexes. One possible reason for the variation in the presence of 

rrpB is that this gene is located in a variable region of the genome, whilst rrpA is 

located in a conserved region. The variable region contains an R-M modification 

system that may be responsible for the genetic variation of different C. jejuni strains. 

Further studies are required to confirm this hypothesis. 

  



195 
 

6 Analysis of C. jejuni strains isolated in Brazil 

 

6.1 Introduction 

The laboratory Coleção de Campylobacter (Campylobacter Collection) at the 

Fundação Oswaldo Cruz (Oswaldo Cruz Foundation, known as Fiocruz) in Rio de 

Janeiro, Brazil kindly provided 43 C. jejuni strains to be included in this study. The 

Fiocruz is attached to the Brazilian Ministry of Health and promotes health, social 

development, scientific and technological knowledge. The strains were isolated from 

three different sources: humans, food and the environment. Twenty strains were 

isolated from human stools, twenty from chicken meat, two from creek water and one 

from aviary drinking water. 

The epidemiology and symptomatology of Campylobacteriosis differs between 

developed and developing countries and the reasons behind this are not fully 

understood. Campylobacter infections in developed countries usually present with 

more severe symptoms compared to the disease presentation in developing countries. 

In developed countries, the disease occurs more frequently in children less than 4 years 

old, young adults and very elderly people (Padungton and Kaneene, 2003b, FSA, 

2015). However, in developing countries the disease is more prevalent in children 

under 2 years old and it is not common in adults (Coker et al., 2002, Padungton and 

Kaneene, 2003b). Asymptomatic older children with Campylobacter in their stools 

have been observed in developing countries, whilst this is not a common finding in 

developed countries (Coker et al., 2002, Quetz et al., 2010).  

The aim of this study was to perform phenotypic and genomic comparisons between 

these Brazilian isolates and reference C. jejuni isolates used commonly in research to 

identify any important differences. Oxidative stress resistance and biofilm formation 

assays were used to investigate the capacity of these strains to survive in the 

environment. 
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6.2 Results 

6.2.1 Sensitivity of Brazilian isolates to oxidative stress 

C. jejuni possesses complex and not fully understood defence mechanisms against 

oxidative stress (Atack and Kelly, 2009). Microaerophilic bacteria are sensitive to high 

oxygen concentrations (Ludwig, 2004), yet C. jejuni is able to survive in different 

adverse oxygen environments (Kaakoush et al., 2007, Hilbert et al., 2010). 

The sensitivity of the Brazilian isolates to in vitro oxidative stress was performed by 

exposure to H2O2 for 15 min under microaerobic conditions. Strains were exposed to 

four different concentrations of H2O2 (25, 50, 100 and 200 mM) as described in 

Section 2.4.6.1. Most of the chicken meat isolates were highly resistant to the different 

hydrogen peroxide concentrations used. All chicken meat isolates were resistant to 

100 mM H2O2 and only three isolates (1019, 1022 and 1057) exhibited complete 

sensitivity to 200 mM H2O2 (Figure 6.1 and Figure 6.2). The remaining isolates were 

partially resistant to 200 mM H2O2. 
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Figure 6.1 The sensitivity to hydrogen peroxide stress of Brazilian C. jejuni 

chicken meat isolates. Bacterial suspensions (OD600 1.0) were exposed to 50, 100 

or 200 mM H2O2 for 15 minutes at 37°C under microaerobic conditions. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three biological 

replicates. * = p <0.05; ** = p <0.01; *** = p <0.001; # no growth.  
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Figure 6.2 The sensitivity to hydrogen peroxide stress of Brazilian C. jejuni 

chicken meat isolates. Bacterial suspensions (OD600 1.0) were exposed to 50, 100 

or 200 mM H2O2 for 15 minutes at 37°C under microaerobic conditions. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three biological 

replicates. * = p <0.05; ** = p <0.01; *** = p <0.001; # no growth. 

 

 

The sensitivity of the Brazilian C. jejuni strains isolated from human stools to H2O2 is 

shown in Figure 6.3 and Figure 6.4. The human isolates in Figure 6.3 demonstrated a 

higher resistance to H2O2 compared to the isolates in Figure 6.4. 

Nine strains (478, 488, 492, 500, 507, 511, 593, 679 and 680) exhibited very high 

resistance to H2O2, surviving exposure to 200 mM H2O2. In comparison, the other 

eleven strains exhibited an increased sensitivity to H2O2. Seven of these strains (489, 

491, 499, 505, 600, 611 and 677) exhibited resistance to only 25 mM H2O2. Two 

further isolates (607 and 608) were resistant to 50 mM H2O2 and two other isolates 

(1479 and 1490) were resistant to 100 mM H2O2.  
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Figure 6.3 The sensitivity to hydrogen peroxide stress of Brazilian C. jejuni 

human isolates. Bacterial suspensions (OD600 1.0) were exposed to 50, 100 or 

200 mM H2O2 for 15 minutes at 37°C under microaerobic conditions. Serial 

dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. 

CFUs were counted after 48 h incubation. Data represents at least three biological 

replicates. * = p <0.05; *** = p <0.001. 
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Figure 6.4 The sensitivity to hydrogen peroxide stress of Brazilian C. jejuni 

human isolates. Bacterial suspensions (OD600 1.0) were exposed to 25, 50 or 100 

mM H2O2 for 15 minutes at 37°C under microaerobic conditions. Serial dilutions 

were prepared (10-1 to 10-6) and pipetted in duplicate onto BA plates. CFUs were 

counted after 48 h incubation. Data represents at least three biological replicates. * 

= p <0.05; ** = p <0.01; *** = p <0.001; # no growth. 

 

 

The sensitivity of the three Brazilian environmental isolates to H2O2 was also 

investigated. One strain was isolated from aviary drinking water (463), whilst the other 

two were isolated from creek water (830 and 831). Two of the environmental isolates 

(463 and 830) were resistant to 100 mM H2O2. The other environmental isolate (831) 

was only resistant to 25 mM H2O2 (Figure 6.5). 
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Figure 6.5 The sensitivity to hydrogen peroxide stress of Brazilian C. jejuni 

environmental isolates. Bacterial suspensions (OD600 1.0) were exposed to 25, 

50 or 100 mM H2O2 for 15 minutes at 37°C under microaerobic conditions. 

Serial dilutions were prepared (10-1 to 10-6) and pipetted in duplicate onto BA 

plates. CFUs were counted after 48 h incubation. Data represents at least three 

biological replicates. *** = p <0.001; # no growth. 

 

 

6.2.2 Ability of the Brazilian isolates to form biofilms 

Biofilm formation is important for C. jejuni survival in hostile environments (O'Toole 

et al., 2000). C. jeuni forms biofilm under different conditions (Reeser et al., 2007). 

Environmental signals trigger biofilm formation, such as nutrient starvation, 

temperature, pH, osmolarity and changes in oxygen concentration (O'Toole et al., 

2000, Reeser et al., 2007). 
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6.2.2.1 Biofilm formation under microaerobic conditions 

The ability of the Brazilian isolates to form biofilms under microaerobic conditions 

was investigated. Biofilm formation in MH broth was investigated as described in 

Section 2.4.9. 

All the chicken meat isolates demonstrated the capacity to form biofilms under 

microaerobic conditions. These strains demonstrated a mean absorbance of 0.18. Two 

strains (1013 and 1053) demonstrated a significant enhanced ability to form biofilm 

under microaerobic conditions compared to the mean of the other isolates (Figure 6.6). 

 

Figure 6.6 Capacity of the Brazilian C. jejuni chicken meat isolates to form 

biofilms under microaerobic conditions. Bacterial suspensions were prepared from 

24 h BA plates and MH broth was inoculated to an OD600 of 1.0. MH broths were pre-

incubated for 5 h, then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. 

Plates were incubated at 37ºC for 72 h under microaerobic conditions. Biofilms were 

stained with 1% (w/v) crystal violet, destained and the OD595 recorded. Data represents 

at least three biological replicates. ** = p <0.01; *** = p <0.001 compared to the mean 

(dashed line) OD595 of 0.18 for all 20 chicken meat isolates.  
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The Brazilian human isolates also demonstrated the capacity to form biofilms under 

microaerobic conditions. The strains demonstrated a mean absorbance of 0.17. One 

isolate (1479) demonstrated a significant greater ability to form biofilm compared to 

the mean of the other strains (Figure 6.7). 

 

Figure 6.7 Capacity of the Brazilian C. jejuni human isolates to form biofilms 

under microaerobic conditions. Bacterial suspensions were prepared from 24 h BA 

plates and MH broth was inoculated to an OD600 of 1.0. MH broths were pre-

incubated for 5 h, then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. 

Plates were incubated at 37ºC for 72 h under microaerobic conditions. Biofilms were 

stained with 1% (w/v) crystal violet, destained and the OD595 recorded. Data 

represents at least three biological replicates. * = p <0.05 compared to the mean 

(dashed line) OD595 of 0.17 for all 20 human isolates.  

 

 

The Brazilian environmental isolates also demonstrated the ability to form biofilms 

under microaerobic conditions. These strains demonstrated a mean absorbance of 

0.18. None of the environmental isolates had any significant difference in the ability 

to form biofilms compared to the mean of these isolates (Figure 6.8).  
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Figure 6.8 Capacity of the Brazilian C. jejuni environmental isolates to 

form biofilms under microaerobic conditions. Bacterial suspensions were 

prepared from 24 h BA plates and MH broth was inoculated to an OD600 of 

1.0. MH broths were pre-incubated for 5 h, then the OD600 was re-adjusted 

to 0.1 in 1 ml in 24 well-plates. Plates were incubated at 37ºC for 72 h under 

microaerobic conditions. Biofilms were stained with 1% (w/v) crystal 

violet, destained and the OD595 recorded. Data represents at least three 

biological replicates. Mean 0.18 (dashed line). 

 

 

6.2.2.2 Biofilm formation under aerobic conditions 

The ability of the Brazilian isolates to form biofilms under aerobic conditions was also 

investigated. Biofilm formation in MH broth was investigated as described in Section 

2.4.9. The chicken meat strains demonstrated a mean absorbance of 0.17. Four chicken 

meat strains demonstrated significant enhanced ability to form biofilms under aerobic 

conditions (1013, 1014, 1016 and 1022). One strain (1052) demonstrated significant 

reduced biofilm formation compared to the mean of the other isolates (Figure 6.9). 
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Figure 6.9 Capacity of the Brazilian C. jejuni chicken meat isolates to form 

biofilms under aerobic conditions. Bacterial suspensions were prepared from 24 h 

BA plates and MH broth was inoculated to an OD600 of 1.0. MH broths were pre-

incubated for 5 h, then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. 

Plates were incubated at 37ºC for 72 h under microaerobic conditions. Biofilms were 

stained with 1% (w/v) crystal violet, destained and the OD595 recorded. Data 

represents at least three biological replicates. * = p <0.05; ** = p <0.01 compared to 

the mean (dashed line) OD595 of 0.17 for all 20 chicken meat isolates. 

 

 

The human strains demonstrated a mean absorbance of 0.17. Three human strains 

demonstrated a significantly enhanced ability to form biofilms under aerobic 

conditions (505, 607 and 1479). One human strain (488) demonstrated a significantly 

reduced capacity to form biofilms compared to the mean of the other strains (Figure 

6.10). 
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Figure 6.10 Capacity of the Brazilian C. jejuni human isolates to form biofilms 

under aerobic conditions. Bacterial suspensions were prepared from 24 h BA 

plates and MH broth was inoculated to an OD600 of 1.0. MH broths were pre-

incubated for 5 h, then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. 

Plates were incubated at 37ºC for 72 h under microaerobic conditions. Biofilms 

were stained with 1% (w/v) crystal violet, destained and the OD595 recorded. Data 

represents at least three biological replicates. * = p <0.05; ** = p <0.01 compared 

to the mean (dashed line) OD595 of 0.17 for all 20 human isolates. 

 

 

The Brazilian environmental isolates also demonstrated the ability to form biofilms 

under aerobic conditions. The environmental strains demonstrated a mean absorbance 

of 0.17. None of the environmental isolates had any significant difference in the ability 

to form biofilms compared to the mean of these isolates (Figure 6.11). 
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Figure 6.11 Capacity of the Brazilian C. jejuni environmental 

isolates to form biofilms under aerobic conditions. Bacterial 

suspensions were prepared from 24 h BA plates and MH broth was 

inoculated to an OD600 of 1.0. MH broths were pre-incubated for 5 h, 

then the OD600 was re-adjusted to 0.1 in 1 ml in 24 well-plates. Plates 

were incubated at 37ºC for 72 h under microaerobic conditions. 

Biofilms were stained with 1% (w/v) crystal violet, destained and the 

OD595 recorded. Data represents at least three biological replicates. 

Mean 0.17 (dashed line). 

 

 

6.2.3 Whole genome sequencing 

Whole genome sequencing was performed using Illumina MiSeq platform for all 43 

Brazilian isolates as described in Section 2.5.16.6 (Appendix 6). This technique allows 

the investigation of the complete bacterial genome, allowing the identification of 

differences in gene content, mutations and gene distribution amongst the strains. 

Comparisons between different strains can be made and single nucleotide 
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polymorphism identified. Whole genome sequencing is also a useful tool for 

epidemiological investigations (Kao et al., 2014). 

 

6.2.4 Prevalence of rrpA and rrpB in Brazilian C. jejuni isolates 

The distribution of rrpA and rrpB in the 43 Brazilian isolates was investigated using 

their whole genome sequences. BLAST searches were performed based on the RrpA 

and RrpB amino acid sequences of the NCTC 11168 wild-type genome, as described 

in Section 2.5.17. Blastx translates the whole genome sequences into amino acid 

sequences, and then compares the translated genomes to the target amino acid 

sequence. 

The presence or absence of rrpA and rrpB, as well as the source of each C. jejuni strain 

is demonstrated in Table 6.1. Results are shown in percentage of amino acid similarity 

to NCTC 11168. A cut-off of 50% amino acid similarity was chosen for a gene to be 

considered as present.  

Thirteen of the C. jejuni human isolates contained only rrpA, whilst only four strains 

(488, 492, 499 and 593) contained rrpB. However, three strains (489, 491 and 609) 

isolated from humans were identified as containing neither rrpA nor rrpB. The 

opposite was found in the C. jejuni chicken meat isolates, where most isolates 

contained both rrpA and rrpB. Seven chicken meat isolates contained only rrpA and 

13 isolates contained both genes. For the environmental isolates, two strains (463 and 

831) were identified as containing neither rrpA nor rrpB, whilst the other 

environmental strain (830) contained only rrpA (Table 6.1). 
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Table 6.1 Amino acid similarity of RrpA and RrpB from 43 Brazilian C. jejuni 

strains compared to NCTC 11168.  

Strain rrpA rrpB Sample source 

487 68%  -  human stool 

488 100% 89% human stool 

489  - - human stool 

491  - -  human stool 

492 100% 100% human stool 

499 100% 94% human stool 

500 89% -  human stool 

505 96% -  human stool 

507  93% -  human stool 

511 89% -  human stool 

593 100% 100% human stool 

600 76% -  human stool 

607 96% -  human stool 

609 -  -  human stool 

611 93% -  human stool 

677 96% -  human stool 

679 99% -  human stool 

680 100% -  human stool 

1479 99% -  human stool 

1490 99% -  human stool 

463 -  -   aviary water 
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830 93% -  creek water 

831  - -  creek water 

1013 100% 100% poultry meat 

1014 100% 100% poultry meat 

1015 99% -  poultry meat 

1016 100% 80% poultry meat 

1018 99% -  poultry meat 

1019 100% -  poultry meat 

1020 90% -  poultry meat 

1021 76% -  poultry meat 

1022 100% 80% poultry meat 

1023 100% 80% poultry meat 

1024 100% 80% poultry meat 

1032 100% 80% poultry meat 

1050 100% 100% poultry meat 

1051 100% -  poultry meat 

1052 100% 100% poultry meat 

1053 100% -  poultry meat 

1054 100% 80% poultry meat 

1055 100% 80% poultry meat 

1056 100% 100% poultry meat 

1057 100% 97% poultry meat 

Percentages indicate amino acid similarity to NCTC 11168 wild-type strain.  

– indicates less than 50% amino acid similarity to the NCTC 11168 wild-type 

strain. 
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6.2.5 Presence of pathogenicity genes 

Amino acid sequences were also used for pathogenicity gene searches in the different 

Brazilian strain genomes, as described in Section 2.5.17. Searches were performed to 

determine the presence or absence of pathogenicity genes based on the similarity to 

NCTC 11168 amino acid sequences. A cut-off of 50% amino acid similarity was 

chosen for a gene to be considered as present. The pathogenicity genes investigated 

are listed below (Table 6.2).  

Most of the pathogenicity genes searched for in the genome sequences of the 43 

Brazilian isolates were highly conserved. The genes present in all strains were cadF, 

flaC and racR (Table 6.3 and Table 6.4). Only one strain demonstrated absence of 

flpA, dnaJ, hipO, peb1A and pldA. Five strains had low similarity for one or two of the 

cdtABC genes. Strain 600 had low similarity for cdtA. Strain 463 had low similarity 

for cdtB. Strains 491 and 499 had low similarity for cdtC. Strain 831 had low similarity 

for cdtB and cdtC. Six strains had low similarity for ciaB. Seven strains had more than 

50% similarity with flaA. However, 36 strains had very low similarity to flaA. Strain 

491 had several genes identified as absent, including cdtC, ciaB, flpA, dnaJ, hipO, 

jlpA, peb1A and pldA, which all had low similarities to the respective NCTC 11168 

amino acid sequences. 
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Table 6.2 List of pathogenicity genes searched for in the whole genome 

sequences of the 43 Brazilian isolates and the function of the encoded protein 

Gene Function 

cdtA Encodes CtdA which is a subunit of the Cytolethal Distending Toxin. 

CtdA might play a role in adhering to cell surface receptors (Lara-

Tejero and Galan, 2001). 

cdtB Encodes CtdB which is the active subunit of the Cytolethal Distending 

Toxin. CdtB has DNase activity and causes cell cycle arrest (Elwell 

and Dreyfus, 2000). 

cdtC Encodes CtdC which is a subunit of the Cytolethal Distending Toxin. 

CtdC might play a role in adhering to cell surface receptors (Lara-

Tejero and Galan, 2001).  

ciaB Encodes CiaB which is Campylobacter invasion antigen B. CiaB is 

required for invasion of epithelial cells (Konkel et al., 2004). 

cadF Encodes CadF which is a C. jejuni adhesin that has fibronectin binding 

capacity (Konkel et al., 1997). 

dnaJ Encodes DnaJ which is a heat shock protein responsible for regulating 

bacterial heat shock proteins. DnaJ is also required for chick 

colonisation (Konkel et al., 1998). 

flpA Encodes FlpA which is a fibronectin binding protein, an important 

adhesin in C. jejuni (Flanagan et al., 2009). 

flaA Encodes FlaA which is flagellin A, the major flagellin sub-unit and 

important for motility (Wassenaar et al., 1991). 
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flaC Encodes FlaC which is flagellin C. FlaC is secreted to the extracellular 

milieu and binds to the surface of epithelial cells (Song et al., 2004). 

Important for innate immune response modulation (Faber et al., 2016). 

hipO Encodes HipO which is a hippuricase enzyme. HipO is responsible for 

hydrolysing hippurate. Detection of hipO differentiates between C. 

jejuni and C. coli (Linton et al., 1997). 

jlpA Encodes JlpA which is a surface-exposed lipoprotein. JlpA is an 

adhesin important for adherence to intestinal epithelial cells (Jin et al., 

2001). 

peb1A Encodes PEB1 which is surface-exposed lipoprotein. PEB1 is an 

important adhesin in C. jejuni (Pei and Blaser, 1993). 

pldA Encodes PldA which is an outer membrane phospholipase A with 

haemolytic activity (Grant et al., 1997). 

racR Encodes RacR which is a response regulator important for chicken 

colonisation (Bras et al., 1999). 
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Table 6.3 Presence of pathogenicity genes amongst Brazilian isolates based on gene similarity to 11168H wild-type strain 

Strain cadF cdtA cdtB cdtC ciaB flpA dnaJ flaA flaC hipO jlpA peb1A  pldA racR 

487 99% 93% 100% 100% 37% 98% 99% 50% 100% 72% 98% 99% 48% 100% 

488 98% 100% 100% 100% 82% 99% 99% 39% 99% 99% 98% 99% 56% 99% 

489 87% 64% 78% 66% 79% 78% 86% 51% 95% 56% 70% 93% 80% 94% 

491 54% 60% 59% 20% 21% 16% 24% 56% 56% 40% 12% 39% 28% 51% 

492 98% 100% 100% 100% 99% 99% 99% 39% 100% 100% 88% 100% 99% 100% 

499 78% 76% 100% 33% 44% 100% 99% 38% 95% 100% 50% 100% 56% 100% 

500 100% 100% 100% 100% 30% 98% 99% 33% 99% 99% 43% 100% 93% 100% 

505 98% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 99% 99% 99% 

507 97% 100% 100% 100% 95% 100% 99% 37% 100% 99% 98% 100% 100% 99% 

511 100% 100% 99% 100% 95% 98% 100% 45% 98% 99% 98% 100% 99% 100% 

593 98% 100% 100% 100% 62% 99% 99% 39% 100% 98% 52% 100% 68% 100% 

600 66% 48% 84% 69% 26% 85% 53% 20% 91% 73% 98% 99% 67% 96% 

607 99% 100% 100% 100% 99% 99% 99% 33% 99% 100% 98% 99% 99% 99% 

609 87% 63% 78% 66% 91% 90% 93% 27% 94% 56% 70% 93% 84% 97% 

611 100% 100% 100% 100% 99% 99% 98% 30% 98% 98% 100% 99% 97% 99% 

677 99% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 99% 99% 99% 

679 99% 100% 100% 100% 99% 98% 99% 80% 95% 98% 92% 99% 88% 100% 

680 100% 100% 100% 100% 99% 100% 100% 35% 100% 99% 98% 99% 98% 100% 

1479 100% 100% 100% 100% 99% 99% 99% 41% 99% 98% 98% 100% 100% 100% 

1490 100% 100% 100% 100% 70% 100% 100% 38% 100% 99% 98% 99% 98% 100% 

463 87% 63% 45% 67% 92% 90% 93% 25% 94% 56% 70% 93% 85% 97% 

Red indicates less than 50% gene similarity to C. jejuni NCTC 11168 strain  2
14
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Table 6.4 Presence of pathogenicity genes amongst Brazilian isolates based on gene similarity to 11168H wild-type strain 

Strain cadF cdtA cdtB cdtC ciaB flpA dnaJ flaA flaC hipO jlpA peb1A  pldA racR 

830 100% 99% 100% 100% 80% 100% 94% 34% 99% 98% 98% 99% 99% 87% 

831 87% 63% 41% 46% 92% 90% 94% 36% 95% 56% 70% 93% 81% 94% 

1013 99% 100% 100% 100% 81% 99% 99% 82% 99% 98% 98% 100% 98% 100% 

1014 99% 75% 100% 100% 80% 99% 89% 52% 100% 51% 98% 69% 99% 100% 

1015 100% 100% 100% 100% 81% 99% 98% 38% 100% 98% 98% 100% 100% 100% 

1016 92% 100% 100% 100% 68% 99% 97% 35% 98% 98% 49% 100% 94% 100% 

1018 100% 100% 100% 100% 68% 99% 99% 40% 99% 98% 98% 100% 100% 100% 

1019 99% 100% 100% 100% 87% 100% 99% 34% 98% 60% 98% 100% 85% 100% 

1020 99% 100% 100% 100% 99% 98% 99% 38% 98% 98% 98% 100% 99% 100% 

1021 99% 100% 100% 100% 33% 98% 99% 81% 98% 74% 98% 100% 90% 100% 

1022 99% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 100% 98% 100% 

1023 99% 100% 100% 100% 82% 99% 99% 33% 99% 98% 98% 100% 98% 100% 

1024 98% 100% 100% 100% 99% 99% 99% 41% 99% 98% 98% 100% 98% 100% 

1032 99% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 100% 98% 100% 

1050 98% 100% 100% 100% 99% 99% 99% 36% 100% 100% 99% 100% 99% 100% 

1051 98% 100% 100% 100% 99% 99% 99% 36% 100% 100% 99% 100% 99% 100% 

1052 98% 100% 99% 100% 81% 99% 99% 39% 100% 100% 51% 100% 99% 100% 

1053 99% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 100% 98% 100% 

1054 99% 100% 100% 100% 99% 99% 99% 36% 99% 98% 98% 100% 98% 100% 

1055 99% 100% 100% 100% 99% 99% 99% 33% 99% 98% 98% 100% 98% 100% 

1056 98% 100% 100% 100% 59% 99% 88% 36% 97% 100% 99% 100% 99% 100% 

1057 98% 89% 100% 100% 99% 99% 99% 39% 100% 100% 99% 100% 99% 100% 

Red indicates less than 50% gene similarity to C. jejuni NCTC 11168 strain 2
15
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6.2.6 Presence of the Type VI Secretion System 

The T6SS has a cluster of 13 conserved genes responsible for the secretion system 

functionality (Basler et al., 2012, Wang et al., 2015). The T6SS delivers effectors to 

attack other bacteria and is required for full virulence (Tseng et al., 2009, Wang et al., 

2015). Gene searches based on the amino acid sequences from the C. jejuni 414 wild-

type genome were performed for all Brazilian isolates as described in Section 2.5.17. 

Thirty of the Brazilian isolates did not contain any of the T6SS genes. Eight isolates 

(487, 492, 511, 593, 679, 1014, 1051 and 1479) were identified as containing some tss 

genes, albeit not all of the 13 T6SS genes required for an active T6SS (Table 6.5). 

Only 5 isolates (488, 1050, 1052, 1056 and 1057) contained all the 13 T6SS genes and 

only one was a human isolate (488). However, strain 488 contained two genes (tssG 

and tssM) with a low similarity compared to the reference 414 strain. Four isolates 

from chicken meat (1050, 1052, 1056 and 1057) also contained all the 13 T6SS genes. 

Two further chicken meat isolates (1014 and 1051) contained 12 of the 13 T6SS genes, 

with only tssA identified as absent. 
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Table 6.5 Presence of Type 6 secretion system genes amongst Brazilian isolates based on gene similarity to 414 wild-type strain 

Strain tssA tssB tssC tssD tssE tssF tssG tssH tssI tssJ tssK tssL tssM 

487  - -  15.7% 70.2% 96.9% -  44.0% 89.3% 64.0%  -  - -  -  

488 85.1% 95.7% 97.1% 70.2% 96.9% 96.2% 45.0% 57.0% 55.1% 81.8% 97.0% 91.0% 27.3% 

492  -  - 90.3% 70.2% -  39.6% -  -  87.8%  -  -  - -  

511 - 95.7% 97.1%  - 96.9% 96.2% 92.4% 46.6% 88.7% - -   - 55.4% 

593  - -  76.7% -  96.9% -  91.7% 43.0% 88.7%  - 26.7% 94.1% 30.0% 

679  -  - 97.3% 99.4% 96.2% 95.8% 92.4% 65.4% 54.4% 94.6% 96.8% 91.0% 89.6% 

1479 48.0% 95.7% 97.5%  - 96.9% 96.2% 92.4%  - 58.0%  - -   -  - 

1014  - 95.7% 97.1% 99.4% 96.9% 96.2% 92.4% 90.9% 55.0% 94.6% 94.8% 93.2% 64.3% 

1050 84.8% 95.7% 97.1% 99.4% 96.9% 96.2% 92.4% 90.9% 55.0% 94.6% 97.0% 91.9% 90.6% 

1051 -  87.2% 97.1% 99.4% 96.9% 96.2% 92.4% 90.6% 55.0% 94.6% 97.0% 91.9% 90.6% 

1052 84.8% 95.7% 97.1% 99.4% 96.9% 96.2% 92.4% 90.9% 55.0% 94.6% 97.0% 91.9% 90.6% 

1056 84.8% 95.7% 97.1% 99.4% 96.9% 96.2% 92.4% 90.9% 55.0% 94.6% 97.0% 91.9% 90.6% 

1057 74.2% 95.7% 97.1% 74.9% 96.9% 96.2% 92.4% 90.9% 55.0% 94.6% 97.0% 91.9% 90.6% 

Red indicates less than 50% gene similarity to C. jejuni 414 strain 

Thirty of the Brazilian isolates did not contain any of the T6SS genes 

2
17
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6.2.7 Brazilian isolates MLST analysis 

MLST was used to further characterise the Brazilian isolates based on the nucleotide 

sequence of seven housekeeping genes as described in Section 2.5.18. MLST allows 

a comparison amongst different strains from different origins and laboratories. The 

PubMLST database was last updated on 18th May 2016. This data analysis was 

generated in August 2016. The 43 Brazilian isolates were assigned to 17 different STs. 

The rrpA and rrpB gene distribution was also investigated and compared to the 

identified STs, as performed previously in Section 5.2.3. 

Fourteen strains were assigned to a unique ST, whilst the remaining strains were 

distributed amongst three STs (Table 6.6). Strains 680 and 1490 that only contain rrpA 

were assigned to ST-2782 and were both isolated from humans. Strains 1015, 1018 

and 1479 also contained only rrpA and were assigned to ST-1359. Eight strains (488, 

492, 593, 1050, 1051, 1052, 1056 and 1057) were assigned to ST-353. ST-353 was 

the ST with most strains assigned. All these strains contained both rrpA and rrpB, 

except strain 1051 that contained only rrpA. Isolates from both human and chicken 

meat were assigned to ST-353 and ST-1359.  

Fifteen strains (34.8%) could not be assigned to any ST because the housekeeping 

gene allelic profiles did not match any of the defined STs present in the PubMLST 

database. The novel MLST types are going to be uploaded to the C. jejuni PubMLST 

database. Once uploaded, the novel profiles will be assigned to a new allele number 

and added to the publicly available database. 

Twelve strains from chicken meat, 2 from human and 1 environmental strain were not 

assigned to any ST due to a unique allelic profile. These strains are not listed in Table 

6.6. 
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Table 6.6 MLST analysis for 25 of the 43 Brazilian isolates 

Strain ST Source rrpA/rrpB 

463 860 aviary water - 

487 3852 human rrpA 

489 1166 human - 

499 21 human rrpA rrpB 

500 443 human rrpA 

505 41 human rrpA 

507 332 human rrpA 

600 3630 human rrpA 

607 5913 human rrpA 

609 829 human - 

611 660 human rrpA 

679 5860 human rrpA 

831 830 creek water - 

680 2782 human rrpA 

1490 2782 human rrpA 

1479 1359 human rrpA 

1015 1359 chicken meat rrpA 

1018 1359 chicken meat rrpA 

1020 463 chicken meat rrpA 

488 353 human rrpA rrpB 

492 353 human rrpA rrpB 

593 353 human rrpA rrpB 
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1050 353 chicken meat rrpA rrpB 

1051 353 chicken meat rrpA 

1052 353 chicken meat rrpA rrpB 

1056 353 chicken meat rrpA rrpB 

1057 353 chicken meat rrpA rrpB 

 

 

6.2.8 Plasticity region investigation amongst Brazilian isolates 

The 43 Brazilian isolates were also investigated with respect to the genomic structure 

flanking the rrpA and rrpB genes. As seen in Section 5.2.4, analysis of other C. jejuni 

genomes revealed a genetic structure with two conserved flanking regions and a 

variable central region. There are two different central region versions, one in which 

rrpB is present and another in which rrpB is absent. All the Brazilian strains genome 

sequences were visualised using Artemis (Sanger Institute) software. The Brazilian 

strains that contained both rrpA and rrpB (rrpB+) were compared to NCTC 11168 

genome region (Table 6.6), whilst strains that contained only rrpA (rrpB-) (Table 6.7) 

or contained neither gene (rrpA˗ rrpB˗) were compared to the 81116 genome region 

(Table 6.8). 

The upstream conserved region was highly conserved amongst all rrpB+ and rrpB˗ 

isolates. The Brazilian strains had all genes from the upstream region present, with 

only a few genes identified as probably fragmented. Only strain 1052 was identified 

as not containing the Cj1544c gene in the upstream conserved region. This upstream 

conserved region could not be identified amongst any of the rrpA˗ rrpB˗ strains. 

All rrpB+ strains contained hsdR, hsdS and hsdM from the R-M system. rloH was 

present in the variable central region between hsdS and hsdM in all rrpB+ strains. 

However, two strains contained a fragmented version of rloH. Only strain 499 

contained mloB in the variable central region between hsdS and hsdM. All other rrpB+ 

isolates did not contain any ORF present between hsdS and hsdM. Nine isolates 
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contained a fragmented rrpB gene sequence, which comprises 45% of the strains that 

were identified as rrpB+.  

In the rrpB+ downstream conserved region, only a few strains were identified as not 

containing the following genes: arsR, arsC, Cj1561, Cj1562 and Cj1563c. A few 

strains were identified where arsR and arsC appear to be transcribed together with the 

absence of a stop codon between the genes. This was the case for strains 1013, 1022, 

1023, 1024, 1032, 1050, 1054, 1055, 1056 and 1057. This was also observed for 

Cj1561 and Cj1562, which also appear to be transcribed together in all these same 

strains, as well as strain 1016. Strain 593 contained four genes (arsR, arsC, Cj1561 

and Cj1562) that appear to be transcribed without any stop codons in between them. 

mcp and pflA were present in all the rrpB+ strains. However, mcp was truncated in 

most strains. mcp and pflA were also fragmented in a few strains. 

Considering the variable central region amongst the rrpB˗ isolates, only strains 507, 

511, 1019, 1020, 1051 and 1053 contained all the hsd genes. Only one strain (507) 

contained rloA and rloB. Four strains (511, 679, 1479 and 1490) contained rloC, one 

(611) contained rloF and three (1019, 1051 and 1053) contained rloH instead of rloA 

or rloB downstream of hsdR.  

Most rrpB˗ strains were identified with several genes absent from the central variable 

region and from the downstream conserved region. Four strains (487, 830, 1018 and 

1021) were identified with all the genes absent from the central variable region. All 

the remaining rrpB˗ strains contained some of the genes belonging to the central 

variable region. Similar observations were made for the rrpB˗ strains in the 

downstream conserved region, where some genes were absent. arsR, arsC, Cj1459 

and Cj1460c were mostly absent amongst rrpB˗ strains. mcp was absent in four strains 

(500, 511, 679 and 1479). mcp was truncated or fragmented in all other strains. pflA 

was highly conserved. However, pflA was absent from strain 511. Furthermore, pflA 

was fragmented in three strains (600, 680 and 1021). 

Few genes from the plasticity region could be identified in the rrpA˗ rrpB˗ strains. 

These strains appear to have a completely different genomic structure, with the 

absence of the R-M plasticity region containing the type I R-M (hsd) system. Some 

genes (hsdR, hsdM, asrC, arsC and pflA) were identified due to genomic annotation 

and were present in different regions of the genome.  
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Table 6.6 Plasticity region of Brazilian isolates containing both rrpA and rrpB 

 11168H genes     rrpB positive         

     rrpA   hsdR rloH hsdS mloB hsdM   rrpB arsR arsC    mcp pflA 

Strain 1542 1543 1544c 1545c 1546 1547 1548c 1549c 1550c 1551c 1552c 1553c 1555c 1556 1558 1560 1561 1562 1563c 1564 1565c 

488 + + + + + + + + + + - + + + - + + - + + + 

492 + + + + + + + + + + - + 2 + + + - - + + + 

499 + + + + + + + + 2 + + + + + - - - - + + 2 

593 + + + + + + + + + + - + 2 + + + + + 

1013 + + + + + + + + + + - + + 2 + + + + + 

1014 + + + + + + + + + + - + 2 + - + - - - + 2 

1016 + 2 2 + + + + 2 + + - + + 2 - + + + + + 

1022 2 2 + + + + + + + + - + + 2 + + + + + 

1023 + + + + + + + + + + - + + 2 + + + + + 

1024 + + + + + + + + + + - + + 2 + + + + + 

1032 + + + + + + + + + + - + + 2 + + + + + 

1050 + + + + + + + + + + - + + 2 + + + + + 

1052 + + - + + 2 2 2 2 + - + 2 + - + - - - 2 2 

1054 + + + + + + + + + + - + + 2 + + + + + 

1055 + + + + + + + + + + - + + 2 + + + + + 

1056 + + + + + + + + + + - + + + +  2 + + + + 

1057 + + + + + + + + + + - + 2 + + + + + + 

+ gene presence / + shorter gene sequence compared to NCTC 11168 strain 

- gene absence / 2 truncated gene 

Absence of | between genes indicates lack of stop codon 2
22
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Table 6.7 Plasticity region of Brazilian isolates containing only rrpA gene  

 81116 genes     rrpB negative        

     rrpA   hsdR rloA rloB hsdS hsdM         arsR arsC   mcp pflA 

Strain 1441 1442 1443c 1444c 1445 1446 1447 1448 1449 1450 1451 1452 1453c 1454c 1455c 1456 1457 1458 1459 1460c 1461 1462c 

487 + + + + + - - - - - - - - - - - - - - - + + 

500 + + + + + + + + - - - - - - - - - - - - - + 

505 + + + + + 2 + - - - - + + + + - + - - + 2 + 

507 + + + + + + + + + + + + + - - + + + + + + + 

511 + + + + + + + 2 rloC - + + - 2 + - - - - - - - 

600 2 + 2 + + + + + - - - - - - - - + - - + + 2 

607 + + + + + 2 + - - - - + + + + - + - - + + + 

611 + + + + + + + + rloF - - - - - - - - - - - 2 + 

677 + + + + + 2 + - - - - + + + + - + - - + + + 

679 + + + + + + + + rloC - - - - - - - - - - - - + 

680 + + + + + 2 + + - - - + + + + + + - - + 2 2 

1479 + + + + + + + + rloC - - - - - - - - - - - - + 

1490 + + + + + 2 + + rloC - - - - - - - - - - - + + 

830 + + + + + + + - - - - - - - - - 2 - - - 2 + 

1015 + + + + + + + + - - - - - - - - - - - - 2 + 

1018 + + + + + + + - - - - - - - - - - - - - + + 

1019 + + + + + + + + rloH - + + - - - - - - - + + + 

1020 + + + + + + + + - - + + + 2 2 - + + + + + + 

1021 2 2 + + + + - - - - - - - - - - - - - - + 2 

1051 + + + + + + + + rloH - + + - - - - + - - - + + 

1053 + + + + + + + + rloH - + + - - - - + - - + + + 

+ gene presence / + shorter gene sequence compared to NCTC 11168 strain 

- gene absence / 2 truncated gene 2
23
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Table 6.8 Plasticity region of Brazilian isolates containing neither rrpA or rrpB 

 81116 genes     rrpB negative        

     rrpA   hsdR rloA rloB hsdS hsdM         arsR arsC   mcp pflA 

Strain 1441 1442 1443c 1444c 1445 1446 1447 1448 1449 1450 1451 1452 1453c 1454c 1455c 1456 1457 1458 1459 1460c 1461 1462c 

489 - - - - - - - 2 - - - + - - - - + + - - - + 

491 - - - - - - - 2 - - - + - - - - + + - - - 2 

609 - - - - - - - + - - - + - - - - + + - - - + 

463 - - - - - - - + - - - + - - - - + + - - - + 

831 - - - - - - - - - - - + - - - - + + - - - + 

+ gene presence compared to NCTC 11168 strain 

- gene absence 

2 truncated gene 

 

2
24
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6.3 Discussion 

For phenotypic characterisations, the 43 Brazilian strains were investigated for 

oxidative stress resistance and the capacity to form biofilms. Whole genomic 

sequencing was performed for all 43 strains and the assembled genomes searched for 

pathogenicity genes. MLST analysis was also performed to further characterise the 

Brazilian strains. This information could contribute to the field of C. jejuni studies in 

Brazil. 

 

6.3.1 Oxidative stress 

C. jejuni is the leading cause of bacterial gastrointestinal infections in humans 

worldwide. Bacterial metabolism produces low levels of ROS that are normally 

neutralised by constitutive antioxidant defences (Paiva and Bozza, 2014). However, 

C. jejuni can experience higher ROS concentrations and associated stresses when the 

bacterium is exposed to the host immune defence or environmental oxygen levels 

(Murphy et al., 2006). C. jejuni is commonly found in chicken meat products 

(Berndtson et al., 1996, Golz et al., 2014), demonstrating that the bacterium is well 

adapted to survive in these types of food products and under environmental oxygen 

levels. 

The Brazilian chicken meat isolates were shown to be highly resistant to H2O2, with 

most of these isolates able to resist a high level (> 100mM) of H2O2 exposure. In the 

present study, different strains exhibited different sensitivities to H2O2. This was also 

observed by Kaakoush et al. (2007), where different C. jejuni strains demonstrated 

differences in oxygen tolerance. C. jejuni can survive in chicken meat at 4ºC for 14 

days (Sampers et al., 2010). C. jejuni can also survive in other types of meat, such as 

beef and pork for long periods at 4ºC (Balamurugan et al., 2011). C. jejuni was also 

shown to be able to survive in co-culture with Pseudomonas species for 48 h at 35ºC 

under atmospheric oxygen concentrations (Hilbert et al., 2010). In the Hilbert et al. 

(2010) study, C. jejuni was co-incubated with Pseudomonas species because the 

Pseudomonadaceae are a well-adapted food-spoiling family commonly found in 

meats. These studies demonstrated the C. jejuni ability to survive in meat products 

under high oxygen concentrations and in presence of other bacteria. In agreement, the 
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Brazilian chicken meat isolates were shown to be highly capable of resisting H2O2 

stress and probably are also highly capable of surviving environmental oxygen 

concentrations. 

The Brazilian human isolates were also investigated for sensitivity to H2O2 stress and 

demonstrated variable levels of sensitivity to H2O2, with some strains being highly 

resistant and others exhibiting increased sensitivity. C. jejuni is a complex bacterium 

and the fundamental requirements for host cell colonisation have not yet been fully 

identified. However, the capacity to resist to H2O2 and other ROS are an important 

factor in order to survive the host immune responses to bacterial infection (Knight, 

2000). Immune cells, such as neutrophils and macrophages, recognise and engulf 

invading bacteria (Knight, 2000). Bacteria then trigger the respiratory burst, which 

makes phagocytes elevate their oxygen consumption (Paiva and Bozza, 2014). The 

respiratory burst increases the oxygen uptake, culminating with ROS formation by 

NADPH oxidase (NOX2) to eliminate invading microorganisms (Knight, 2000, Paiva 

and Bozza, 2014). In order for pathogenic bacteria to survive, either bacterial enzymes 

must neutralise the toxic ROS compounds or a mechanism to evade phagocytosis is 

required. The host immune response will vary depending on the surface antigens 

displayed by different microorganisms (Paiva and Bozza, 2014). The increase in ROS 

levels will then cause direct damage to the microorganisms, such as lipid peroxidation, 

cleavage of DNA strands, nucleotide oxidation and deamination, as well as oxidation 

of methionine residues (Paiva and Bozza, 2014). The respiratory burst generates O2
− 

which will be rapidly dismutated to H2O2 by SOD that causes direct oxidative damage 

to many pathogens (Paiva and Bozza, 2014). The variable resistance to H2O2 of the 

human isolates demonstrates that resistance to oxidative stress is important for 

surviving ROS generated by immune system. However, other mechanisms may have 

a more important role in gut colonisation. 

The Brazilian environmental isolates also demonstrated variable resistance to H2O2 

stress. Two of the environmental isolates demonstrated higher resistance to H2O2 

stress, whilst the other isolate was shown to be more sensitive to H2O2 stress. The 

presence of C. jejuni in river water is a common finding, and this can be attributed to 

wild bird faecal contamination (Savill et al., 2001, Carter et al., 2009, Van Dyke et 

al., 2010). Cools et al. (2003) demonstrated that C. jejuni from different sources are 

capable of surviving in drinking water for several days. Cools et al. (2003) also 
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demonstrated that poultry isolates survived for longer periods (over 30 days) 

compared to human and water isolates at 4ºC (Cools et al., 2003). In this study, all 

chicken meat isolates were highly resistant to H2O2, whilst human and environmental 

isolates had variable resistance to H2O2. This suggests that chicken isolates have 

greater capacity of survival under hostile conditions. 

Most of the C. jejuni strains in the Talibart et al. (2000) study became non-culturable 

(VBNC) after 30 days in water at 4ºC. This suggests that water provides a stressful 

environment for C. jejuni cells, with the bacteria exposed to different stresses, such as 

oxidative, oligotrophic, hypothermal and hypo-osmotic stress (Talibart et al., 2000). 

This reinforces the fact that C. jejuni strains are highly capable of surviving in many 

different hostile environments. 

 

6.3.2 Biofilm formation 

The ability of C. jejuni to form biofilms is important for bacterial survival. However, 

according to Reeser et al. (2007), biofilm formation does not correlate with 

pathogenicity. Different factors, such as temperature, nutritional compounds and 

oxygen concentration, affect biofilm formation (Reeser et al., 2007). C. jejuni ability 

to form biofilms is an important feature for resisting in hostile environments (Brown 

et al., 2015). C. jejuni can form biofilms on various abiotic surfaces (Reeser et al., 

2007).  

In this study, the Brazilian C. jejuni isolates demonstrated the capacity for biofilm 

formation. The mean OD595 reading for the Brazilian isolates biofilm formation was 

similar to the OD595 reading for 11168H biofilm formation under microaerobic and 

aerobic conditions (see Chapter 4). This is an important feature that demonstrates a 

capacity to persist in the environment. Biofilm formation depends on environmental 

factors. However, variation in individual cell surface structures and molecules are also 

important in determining bacterial attachment to surfaces and biofilm formation 

properties (Van Houdt and Michiels, 2010). 

Nutrient availability can affect C. jejuni capacity to form biofilms. It has been 

demonstrated that low nutrient media supports biofilm formation better than rich 
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nutrient media (Reeser et al., 2007). Therefore, strains were grown in Mueller Hinton 

broth instead of Brucella broth. Mueller Hinton broth contains beef infusion and casein 

hydrolysate that provides nitrogen and vitamin sources. Brucella broth is a more 

nutrient rich media compared to Mueller Hinton, containing casein, digested animal 

tissue, yeast extract, dextrose and sodium chloride. Mueller Hinton broth has been 

demonstrated to be more compatible with C. jejuni biofilm formation (Reeser et al., 

2007).  

In the Reeser et al. (2007) study, biofilm formation was increased under favourable C. 

jejuni conditions, such as a microaerobic atmosphere. In the Reuter et al. (2010) study, 

C. jejuni strains showed a greater ability to form biofilms under aerobic conditions 

compared to microaerobic conditions. However, this difference in biofilm formation 

was only observed after 48 h incubation, whilst after 72 h, the level of biofilm 

formation was the same under aerobic and microaerobic conditions (Reuter et al., 

2010). These two studies contained significant differences in methodology, which 

could explain the different results observed. The Reeser et al. (2007) study 

investigated M129 wild-type strain biofilm formation using Mueller Hinton broth in 

polystyrene plates at 37ºC. The Reuter et al. (2010) study investigated 11168 wild-

type strain biofilm formation using Brucella broth in glass tubes at 42ºC. Differences 

in the temperature and abiotic surface, as well as variation between strains, probably 

influenced the differences in C. jejuni biofilm formation observed in these two studies.  

Bacterial biofilm formation has major implications within the food industry, creating 

a persistent source of food contamination (Van Houdt and Michiels, 2010). Biofilms 

are believed to contribute to C. jejuni survival in the food chain (Brown et al., 2015). 

Biofilms in the food industry are a high risk for food contamination. Furthermore, 

biofilms are highly associated with persistent human bacterial infections (Srey et al., 

2013). Biofilm formation in food processing plants is common and can occur rather 

rapidly (Van Houdt and Michiels, 2010). Organic residues on surfaces of food 

processing materials facilitate the attachment of bacteria initiating biofilm formation 

(Srey et al., 2013). The food industry requires efficient strategies to decontaminate 

food processing equipment and to eliminate bacterial biofilms (Simoes et al., 2010). 

Antimicrobial disinfectants widely used in the food industry are known to be more 

efficient against planktonic bacteria and less efficient against bacteria within biofilms 
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(Srey et al., 2013). Biofilms create a protection for bacterial cells from exposure to 

disinfectant products (Van Houdt and Michiels, 2010). 

Pre-existing biofilms facilitate C. jejuni attachment and biofilm formation (Trachoo et 

al., 2002). Trachoo et al. (2002) co-cultured C. jejuni with pre-existent biofilms, such 

as a Pseudomonas biofilms, demonstrating that co-cultured biofilms enhanced the 

survival of C. jejuni. Trachoo and Frank (2002) tested different sanitisers on C. jejuni 

cells and on co-cultured biofilms. The results showed that the susceptibility of C. jejuni 

was decreased in biofilms, reducing the effectiveness of the sanitisers (Trachoo and 

Frank, 2002). 

 

6.3.3 Presence of pathogenicity genes amongst the Brazilian isolates 

Blastx searches based on amino acid sequence were performed for pathogenicity genes 

on all the Brazilian isolates. Gene sequence searches are routinely used by researchers 

to investigate sequence homology amongst different strains. Sequences that share 

significant similarity are considered homologs, indicating that the two sequences have 

similar structure and a common ancestor (Pearson, 2013). Amino acid similarity 

searches are much more sensitive than nucleotide similarity searches (Pearson, 2013). 

DNA alignments tend to have less accurate statistical analysis and miss the detection 

of homologs (Pearson, 2013). Brazilian isolates whole genomes were mapped to 

NCTC 11168 as reference strain. The use of a reference strain is important for a correct 

assembly as this method provides better output than the de novo assembly. A few of 

the Brazilian strains contained neither rrpA nor rrpB. Since the vast majority of C. 

jejuni strains in Chapter 5 contain rrpA, the presence of hipO was included in the gene 

searches to confirm if the Brazilian isolates were all identified correctly as C. jejuni 

strains. hipO encodes a hippuricase enzyme which converts hippuric acid to benzoic 

acid and glycine (Hani and Chan, 1995). This gene differentiates between C. jejuni 

and C. coli because hipO is only present in C. jejuni (Hani and Chan, 1995). The 

hippuricase biochemical test is routinely used to differentiate C. jejuni from C. coli. 

However, some C. jejuni strains produce only low levels of hippuricase leading to 

false-negative results (Totten et al., 1987, Denis et al., 1999). False-positive results 

for C. coli in the biochemical test have also been observed (Denis et al., 1999).  
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cadF is a highly conserved gene and CadF is important for bacterial adhesion to 

intestinal epithelial cells (Konkel et al., 2005). The cadF identity level amongst C. 

jejuni strains is high at above 90%, as well as for C. coli strains. However, the identity 

level between the two species is about 88% (Shams et al., 2016). Therefore, cadF can 

also be used to differentiate between the two species (Shams et al., 2016). Identity 

indicates the percentage of residues that are in the exact same position comparing two 

different sequences (Fassler and Cooper, 2011). Similarity indicates that residues have 

similar properties, but are not identical when comparing two different sequences 

(Garner, 2012). Similarity searches are widely used and reliable. A high similarity 

infers similar protein structure and homology (Pearson, 2013). 

Strains 463, 489, 491, 609 and 831 contained neither rrpA nor rrpB. These strains also 

demonstrated similarity above the cut-off, but at not a very high level (around 50%) 

compared to NCTC 11168 HipO. These strains also demonstrated CadF similarity 

below 90%, and as a consequence, they also had less than 90% identity compared to 

NCTC 11168. These observations suggest that these strains were incorrectly identified 

as C. jejuni. Further investigation using PCR primer sequences was performed to 

correctly identify the Campylobacter species (Wang et al., 2002). PCR primers of 

species-specific genes were Blasted against the genome of each one of the unidentified 

Brazilian strains. All these isolates were identified as C. coli based on Blast searchers 

using C. coli glyA primers. Three other strains also showed low similarity to either 

CadF or HipO. Strain 1014 had low HipO similarity, but high CadF similarity. Further 

genome analysis demonstrated assembly error for hipO, which explains the low 

similarity to NCTC 11168 hipO. Strains 499 and 600 had less than 90% CadF 

similarity, but high HipO similarity. Further Blast analysis demonstrated 100% cadF 

similarity to different C. jejuni strains, which confirmed that these isolates are C. 

jejuni. Strain 491 was identified as C. coli.  This explains the strain low similarity for 

several of the genes investigated. Whole genome sequencing can also be used to 

identify species. This can be done by Blast seachers of species-specific genes against 

the whole genome of the strains that need to be identified.  

In this study, the cdtABC operon was highly prevalent amongst the C. jejuni strains. 

However, a few strains had one of the three genes missing. cdt genes are highly 

conserved and prevalent in C. jejuni and C. coli strains isolated from chicken (Eyigor 
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et al., 1999, Bang et al., 2001). However, cdt genes are more associated with C. jejuni 

strains (Bang et al., 2001, Martinez et al., 2006, Jain et al., 2008). Furthermore, C. 

coli strains produce much lower levels of the CDT toxin (Eyigor et al., 1999, Bang et 

al., 2001). Mutation of cdt genes can generate a strain unable to produce CDT toxin 

(Abuoun et al., 2005). C. jejuni strains containing cdtB are more adherent and invasive 

to HeLa cells as compared to strains without cdtB (Jain et al., 2008). cdt genes are 

highly prevalent in strains isolated from humans (Fernandes et al., 2010, Mortensen 

et al., 2011). However, the presence of these genes does not correlate with severity of 

the infection (Mortensen et al., 2011). cdtB is a DNase I homolog that damages DNA 

(Jinadasa et al., 2011). CDT causes cell death of several mammalian cell lines. 

However, the mechanism of apoptosis is still not clear (Jinadasa et al., 2011). CdtB 

induces Interleukin-8 from human intestinal cells (Borrmann et al., 2007, Van Deun 

et al., 2007). Intestinal inflammation and necrosis are observed in intestines of 

experimentally infected mice (Jain et al., 2008). 

Most Brazilian isolates had flaA absent, only three strains demonstrated a high degree 

of similarity to NCTC 11168 FlaA, whilst four strains had around 50% similarity. 

FlaA is the major flagellin in C. jejuni (Wassenaar et al., 1991). FlaA is required for a 

fully functioning flagella and for invasion of epithelial cells (Joslin and Hendrixson, 

2009). Absence of flaA reduced motility and colonisation of chickens (Wassenaar et 

al., 1993). A C. jejuni flaA mutant produces a truncated flagella filament, but was still 

able to secrete Cia proteins (Yao et al., 1994, Konkel et al., 2004). However, a 

minimum flagella structure is required to secrete Cia proteins (Konkel et al., 2004). 

Further investigation into the Brazilian isolates motility should be performed. 

However, it is unlikely that these isolates have non-functional flagella. The Brazilian 

strains flaA may have a less conserved sequence compared to NCTC 11168. 

Six Brazilian isolates demonstrated the absence of ciaB. CiaB is important for invasion 

of epithelial cells (Rivera-Amill et al., 2001, Konkel et al., 2004). This suggests that 

these strains may have an invasion defect. Further studies about invasion capacity 

should be performed on these strains to confirm any invasion deficiency. Different 

studies have demonstrated that 5% to 9% of C. jejuni strains lack ciaB (Zheng et al., 

2006, Talukder et al., 2008). 
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Except for strain 491, all the Brazilian isolates had flpA, dnaJ, flaC, peb1A, pldA and 

racR. Flanagan et al. (2009) also showed that cadF, jlpA, peb1A, and flpA are 

conserved amongst C. jejuni strains. cadF, flpA, jlpA and peb1A are genes that code 

for important C. jejuni adhesins responsible for binding to host intestinal epithelial 

cells. Absence of CadF, FlpA or Peb1 has been shown to reduce the ability of C. jejuni 

to adhere to and invade intestinal epithelium cells (Pei and Blaser, 1993, Monteville 

et al., 2003, Flanagan et al., 2009). Whilst JlpA is a lipoprotein important for adhesion, 

the lack of JlpA has been shown to have no influence on invasion (Jin et al., 2001). It 

is suggested that JlpA triggers the host immune response and is important for cell 

signalling (Jin et al., 2003). Three Brazilian strains did not contain jlpA in this study. 

Further studies are necessary to better understand the role of JlpA. PldA is a 

phospholipase A located in the outer membrane that has haemolytic activity important 

for C. jejuni virulence (Grant et al., 1997). pldA was present in all the Brazilian strains. 

In C. concisus, PldA demonstrated haemolytic and cytolytic activities (Istivan and 

Coloe, 2006). Further investigation is necessary to better understand the role of PldA 

during C. jejuni infection.  

All Brazilian strains contain flaC and racR. dnaJ was absent from one strain. FlaC is 

a conserved protein that plays an important role in cell invasion (Song et al., 2004). 

The absence of flaC leads to an invasion defect. FlaC depends on a functional 

flagellum to be exported extracellularly (Song et al., 2004). racR was highly prevalent 

amongst the Brazilian isolates. This is in agreement with the Talukder et al. (2008) 

study that showed racR present in 100% of the C. jejuni strains analysed. The RacR 

response regulator and DnaJ play a role in the colonisation of chick intestinal cells 

(Konkel et al., 1997, Bras et al., 1999) and may be important for human infection. 

 

6.3.4 rrpA and rrpB gene distribution and hydrogen peroxide stress 

The rrpA and rrpB gene distribution were investigated in the Brazilian isolates. Most 

of the Brazilian strains isolated from humans contained only rrpA, whilst most of the 

chicken meat isolates contained both genes.  

The NCTC 11168 genome was the selected as the template that all other genomes 

were mapped against. 39.5% of the Brazilian isolates contained both rrpA and rrpB. 
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Most of these strains were isolated from poultry meat, whilst only a few were isolated 

from humans. All poultry meat isolates demonstrated high resistance to H2O2 stress. 

These strains contained either only rrpA or both genes, which suggests that presence 

of rrpA or rrpB did not affect the resistance to H2O2 stress. 

With regards to the human isolates, five isolates demonstrated increased sensitivity to 

H2O2 and these contained only rrpA. However, all other human isolates containing 

only rrpA were highly resistant to H2O2. The human isolates containing both genes 

were also highly resistant to H2O2 stress. However, only one human isolate 

demonstrated increased sensitivity to H2O2 stress compared to all other isolates 

containing both rrpA and rrpB. 

Strains with neither rrpA nor rrpB, which are probably not C. jejuni, demonstrated 

variable sensitivity to H2O2. Three strains were isolated from humans. Two 

demonstrated increased sensitivity to H2O2 and the other was resistant to 50 mM H2O2. 

The other two strains lacking both rrpA and rrpB were from environmental sources. 

One environmental strain was highly sensitive whilst the other had increased 

resistance. Further analysis is required to identify the species of these isolates. 

It has been suggested that strains containing only rrpA exhibit increased resistance to 

H2O2 stress. In Chapter 3, it was shown that the 81116 and M1 strains (which contain 

only rrpA) were more resistant to H2O2 compared to 11168H and 81-176 (which 

contain both genes). Analysis with a greater number of C. jejuni strains has also 

showed that strains containing only rrpA were more resistant to H2O2 stress compared 

to strains containing rrpA and rrpB (Gundogdu et al., unpublished data). This does not 

seem to apply to the Brazilian isolates. The Brazilian isolates had a more variable 

profile of sensitivity to H2O2 stress based on the rrpA and rrpB gene distribution. rrpA 

and rrpB genes may be playing only a minor role regarding the resistance to H2O2. 

However, a greater number of Brazilian strains should be investigated. 

 

6.3.5 rrpA and rrpB gene distribution and MLST 

The Brazilian isolates were analysed by MLST and assigned to STs. MSLT allows the 

investigation of different bacterial populations within the same species based on 
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variation of housekeeping genes (Dingle et al., 2002). Housekeeping genes evolve 

slowly because they are under stabilising selection to maintain metabolic functions 

(Urwin and Maiden, 2003). This means that nucleotide variation in the housekeeping 

genes are favoured by synonymous substitution, which will not alter the protein amino 

acid sequence (Urwin and Maiden, 2003). 

It was observed that 34.8% of the strains had completely new genetic characteristics 

in the housekeeping genes, so they could not be assigned to a specific ST. These strains 

exhibited new allelic sequences not previously identified in the C. jejuni PubMLST 

database. The identification of these new profiles could be useful for Brazilian 

researchers. Future Brazilian researchers will be able to identify other strains that have 

the same ST profiles identified in this study. These new profiles could indicate 

evolution due to local environmental pressure. This information can also be useful for 

other South American countries that may also identify different Campylobacter 

isolates with the same profile. Future research will also reveal if these novel ST 

profiles are related only to Brazil or if they are also found in other countries.  

As observed in Section 5.2.3, rrpB gene distribution is related with MLST clonal 

complexes. Some clonal complexes were more associated with strains containing only 

rrpA, or containing both rrpA and rrpB. This is in agreement with a different study 

that demonstrated that some C. jejuni metabolism-related features are more associated 

with specific STs (de Haan et al., 2012). However, it was suggested that this may be 

a consequence of host ST association (de Haan et al., 2012) or niche adaptation 

(Manning et al., 2003). 

Eight Brazilian isolates were assigned to ST-353. All these strains contained rrpA and 

rrpB, except one, which contained only rrpA. Strains assigned to this ST were isolated 

from both human and chicken meat sources. These findings are in agreement with the 

Dingle et al. (2002) study that demonstrated that ST-353 is associated with human 

disease, but also with live chickens and chicken meat. In Section 5.2.3, strains assigned 

to ST-353 were mostly isolated from humans and contained both genes. 

Most of the Brazilian human isolates only contained rrpA (rrpB-) and were assigned 

to several different clonal complexes, such as ST-2782. Only one human isolate was 

identified as belonging to ST-21 and contained both genes. ST-21 belongs to the clonal 

complex ST-21, which is highly related to human infections (Manning et al., 2003). 
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This clonal complex also contains a high percentage of rrpB+ strains, as seen in 

Section 5.2.3. ST-21 is also defined as livestock-associated (Kwan et al., 2008, Stabler 

et al., 2013). ST-2782 also belongs to clonal complex 21 and is associated with human 

infection based on analysis performed in Section 5.2.3 (Appendix 4). The association 

of an ST with a source may indicate that the isolates have adapted to a specific niche. 

Niche adaptation may create a selective pressure to maintain the genetic structure 

(Manning et al., 2003). 

As seen in Section 5.2.3, it is suggested that the presence of rrpA and rrpB in C. jejuni 

strains may be important for human infection and colonisation. Some strains that affect 

humans seem to be related to livestock-associated clonal complexes and, therefore, 

are rrpB+. However, this does not seem to apply to the Brazilian isolates, as most 

human isolates were rrpB-. To determine whether this is a trend in Brazil, further 

investigations should be performed with a larger number of strains. 

Loss or gain of genes can be an evolutionary process due to selection pressures 

(Morley et al., 2015). Some STs, such as ST-403 are associated with gene decay and 

multiple independent deletions and mutations, which indicates evolution and niche 

adaptation (Morley et al., 2015). 

 

6.3.6 Plasticity region investigation amongst Brazilian isolates 

The Brazilian isolates were investigated for genomic structure of the plasticity region 

surrounding rrpA and rrpB based on whole genome sequence data. Next generation 

genomic sequencing is a short-read sequencing platform widely used in research, 

which, however, has some limitations (Nowrousian, 2010). The short sequence read 

system is prone to make errors on genomic assembly (Nowrousian, 2010). Highly 

fragmented genomes will have a decreased genome assembly quality (Klassen and 

Currie, 2012). Sequencing fragmented ORFs can generate biased information and 

issues with annotation (Klassen and Currie, 2012). Small gene sequences can have a 

false-negative annotation, whilst a fragmented ORF can have a false-positive 

annotation to each of the ORF fragments separately (Klassen and Currie, 2012). The 

Brazilian isolate genomes contained several fragmented genes, which might have 

occurred due to assembly problems. 
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The genetic structure of the two conserved regions and the variable central region of 

11168H (rrpB+) and 81116 (rrpB-) were used as templates to compare with the 

Brazilian isolates. rrpB+ isolates demonstrated a highly conserved genomic structure 

including both flanking regions and the central plasticity region. All rrpB+ isolates 

contained the R-M hsd system. All strains contained rloH in the ORF between hsdR 

and hsdS. However, there was one gene absent in all rrpB+ isolates, except one, which 

was mloB. This indicates that highly frequently no gene was inserted in the ORF 

between hsdS and hsdM.  

Some genes present in the Brazilian isolates were identified as truncated. Truncation 

could have happened due to a frameshift mutation as reported by Miller et al. (2005). 

They also identified truncated genes in the hsdR gene region due to a frameshift 

mutation. These genes are presumably non-functional. Frameshift mutations are 

probably caused by slipped-strand mispairing within an upstream coding repeat 

(Miller et al., 2005).  

rrpB- isolates had several genes absent. Most of the absent genes were from either the 

central variable region or the downstream conserved region. No gene was missing 

from the upstream conserved region. This demonstrated a higher genetic variability 

for the Brazilian rrpB- strains and that the downstream region was less conserved. 

However, the gene absence could have risen from assembly problems.  

 

6.3.7 Conclusion 

Brazilian chicken meat isolates were shown to be highly resistant to H2O2. This 

highlights the risk of meat contamination and the high capability of C. jejuni to survive 

under hostile conditions. Brazilian human isolates had variable resistance to H2O2. All 

Brazilian strains demonstrated the ability to form biofilms, which is also an important 

feature for surviving in the environment and important for food contamination in the 

food industry. RrpA and RrpB did not seem to correlate with the strains ability to resist 

H2O2. However, this should be confirmed using a greater number of strains.  
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7 Final Discussion 

 

7.1 Role of RrpA and RrpB in regulation C. jejuni oxidative stress 

The investigations in this study into the role of RrpA and RrpB in the regulation of C. 

jejuni oxidative stress responses have shown that these two regulators play a role in 

both the peroxide and aerobic stress responses.  

RrpA and RrpB were identified as members of the MarR-type family of transcriptional 

regulators which have a winged helix-turn-helix DNA binding motif (Kumarevel et 

al., 2009). This domain is present in different bacteria, such as S. typhimurium and E. 

coli (Kumarevel et al., 2009). MarR regulators are involved in important biological 

processes, such as antibiotic resistance, oxidative stress and pathogenesis (Saridakis 

et al., 2008, Kumarevel, 2012). However, the exact mechanisms of regulation are not 

well understood (Saridakis et al., 2008).  

Different regulatory proteins belonging to the MarR family have been shown to have 

a dimer structure based on crystal structure analysis (Saridakis et al., 2008, Kumarevel 

et al., 2009). The regulators form homodimer structures and each monomer has a 

winged helix-turn-helix DNA binding motif (Kumarevel, 2012). The homodimers 

bind to double-stranded DNA (Kumarevel, 2012). As RrpA and RrpB belong to the 

MarR family, these regulators may also form homodimers. However, further 

investigation is necessary to confirm the RrpA and RrpB structures. 

The mechanism of regulation by MarR transcriptional regulators involves changes of 

conformation in the DNA binding domain upon effector binding (Saridakis et al., 

2008). The effector modulates the DNA binding capacity through changes in the 

protein conformation (Saridakis et al., 2008). The exact effector of RrpA and RrpB is 

still not known. However, ROS may be a potential effector of these regulators. RrpA 

and RrpB are self-regulators that repress their own transcription. RrpA and RrpB may 

be sensitive to ROS, which could change the protein conformation preventing the 

binding to DNA. This would then up-regulate rrpA and rrpB expression, allowing 

RrpA and RrpB to regulate the expression of other genes. RrpA regulates katA and 

rrpB expression. How RrpB regulates KatA is still unknown. Other regulators of C. 

jejuni oxidative stress defence, such as PerR, Fur and CosR may also have a role 

regulating the expression of RrpA and/or RrpB. As suggested by RNA seq data, Fur 



238 
 

might regulate rrpB expression. We could speculate that regulators such as PerR, Fur 

and CosR could regulate rrpA negatively, and thus, RrpA would regulate katA 

positively. Analysis of gene expression demonstrated that RrpA directly regulates 

katA expression and also regulates rrpB expression (Figure 7.1). Preliminary analysis 

did not suggest RrpB regulation of katA expression, even though the rrpB mutant 

demonstrated to affect katA expression. 

 

 

Figure 7.1 Schematic diagram of the roles of RrpA, RrpB and other oxidative 

stress regulators. Circles indicate transcriptional regulators, and squares indicate 

enzymes. Arrows indicate positive regulation. Lines with blunt ends indicate negative 

regulation. Dash lines indicate putative regulation. 

 

 

The rrpAB double mutant demonstrated the opposite phenotype compared to the single 

mutants. The double mutant exhibited increased resistance to hydrogen peroxide, 

menadione and cumene hydroperoxide. However, the double mutant did not exhibit 

an increase in either KatA activity or SodB activity. Furthermore, mutation of both  
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rrpA and rrpB does not seem to affect the expression of katA, sodB or ahpC. The RNA 

seq analysis performed on the rrpAB double mutant also did not indicate any effect on 

expression of these three genes. However, the RNA isolation was performed after 

microaerobic growth under non-oxidative stress conditions. rrpA and rrpB expression 

are probably both induced in the presence of ROS and/or under aerobic conditions. 

Therefore, RNA-seq should also be performed on the wild-type strain and rrpA, rrpB 

and rrpAB mutants after exposure to oxidative stress and after growth under aerobic 

conditions in order to investigate further changes in gene expression in the different 

mutants and also whether rrpA and rrpB expression will be affected in the wild-type 

strain. 

 

7.2 Variation in the presence of RrpB 

Horizontal gene transfer is important for bacterial evolution and genetic diversity 

providing niche adaptation advantages (Wiedenbeck and Cohan, 2011). The evolution 

from non-pathogenic to pathogenic bacteria occurs through the acquisition of 

virulence genes via horizontal gene transfer (Maurelli, 2007). Gene transfer is highly 

related to sequence similarity and to bacteria belonging to the same environmental 

niche (Polz et al., 2013). Horizontal gene transfer and gene loss are mechanisms that 

can lead to genome differences between two closely related bacterial species (Polz et 

al., 2013). Closely related genomes can have genomic differences due to evolution 

based on the ecological niche adaptation of a local population (Polz et al., 2013). 

Bacteria can become more pathogenic or better adapted to a specific environment 

through gain or loss of genes (Maurelli, 2007).  

Speciation is the irreversible process where a bacterial lineage splits, which can occur 

through the acquisition or loss of genes that will differentiate a bacterial ecological 

niche (Wiedenbeck and Cohan, 2011). This may be a subtle difference in ecological 

requirements and bacterial capabilities (Wiedenbeck and Cohan, 2011). However, it 

can lead to independent evolutionary trajectories of a population (Polz et al., 2013). 

The genomic changes occur due to mutation of single nucleotides or amino acids, or 

genomic insertions and deletions (Maurelli, 2007). C. jejuni and C. coli descended 

from the same ancestor. C. jejuni and/or C. coli may have acquired or lost genes that 

then separated them into two different species. C. jejuni and C. coli possess core genes 
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and dispensable genes (Lefebure et al., 2010). Bacterial species are differentiated 

based on the core genes (Lefebure et al., 2010). C. jejuni and C. coli have developed 

a small number of unique core genes (Lefebure et al., 2010). The recombination of 

core genes between the two species is not a common feature (Lefebure et al., 2010).  

Variation in the distribution of rrpB was observed amongst C. jejuni strains with rrpB 

found to be present in roughly 50% of the strains. The vast majority of C. jejuni strains 

contain rrpA, which is located in a conserved region of the genome. Only very few C. 

coli strains contain rrpA. Therefore, we can speculate that C. jejuni acquired rrpA after 

the species split or that C. coli may have lost rrpA in the evolutionary process. Gene 

loss is a type of genetic change which has great potential for bacterial diversity and 

adaptation (Albalat and Canestro, 2016). Loss of a gene or reduced expression 

sometimes confer beneficial effect to the bacteria (Koskiniemi et al., 2012). C. jejuni 

and C. coli genomic differences lead to differences in prevalence in animal host 

species and environmental sources (Lefebure et al., 2010). This was observed in the 

MLST analysis which demonstrated specific clonal complexes associated to each 

species. 

Normally, new genes are acquired through horizontal gene transfer from highly related 

organisms (Nasvall et al., 2012). The rrpB gene was identified within a genetic 

plasticity region containing an R-M system. R-M systems are acquired through 

horizontal gene transfer of mobile elements (Furuta et al., 2010). R-M systems can 

move independently from the rest of the genome. It is suggested that R-M systems 

generate bacterial diversity by promoting homologous recombination and genomic 

rearrangements, such as deletions and insertions (Kobayashi, 2001, Furuta et al., 

2010). rrpB may have been acquired together with the R-M system genes through 

horizontal gene transfer or through recombination. Mobile genetic elements are 

important for adaptation to a specific niche, which is also a model for bacteria 

speciation (Wiedenbeck and Cohan, 2011). Genetic variable regions can be acquired 

through homologous recombination, when this variable region is located between two 

conserved regions (Koskiniemi et al., 2012). This is in agreement with the variable 

region observed containing R-M system and rrpB, which was located in between two 

conserved regions. This contributes to the presence of variable islands within core 

regions in the bacterial genome (Koskiniemi et al., 2012). However, new genes can 

also arise from copies of duplicated genes (Nasvall et al., 2012). The extra copy is 
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then able to acquire one or more mutations providing a new beneficial function 

(Nasvall et al., 2012). Another possibility is that rrpB is a duplication of rrpA, and that 

accumulated mutations differentiated rrpB from rrpA. RrpA has 43.6% identity and 

58.4% similarity to RrpB. If two sequences share more than 40% identity, it is very 

likely that they have similar function (Pearson, 2013). However, change of a few 

residues can cause dramatic differences in enzyme activity (Pearson, 2013). 

Depending on the environmental pressure, the duplication can be maintained or lost 

(Nasvall et al., 2012). Normally, redundant gene copies tend to undergo deleterious 

mutations more often than beneficial ones, leading to inactivation of the duplicated 

gene (Nasvall et al., 2012). Many C. jejuni strains lacking rrpB did not seem to have 

any disadvantage compared to strains containing rrpB. Two C. jejuni reference strains 

containing both rrpA and rrpB were shown to be naturally more sensitive to H2O2 

stress compared to reference strains containing only rrpA. Analysis of a greater 

number of C. jejuni wild-type strains also demonstrated that strains containing only 

rrpA have a tendency to be more resistant to H2O2 (Gundogdu et al., unpublished data). 

Therefore, strains lacking rrpB have a tendency to be more resistant to peroxide stress. 

However, RrpB may have had a more essential role under different environmental 

conditions due to selective pressure. As it was observed, selective pressure was 

probably the reason why strains containing rrpB were conserved to just a few specific 

MLST clonal complexes. Duplicated genes may be dispensable if they are involved in 

redundant metabolic processes (Nasvall et al., 2012). RrpB may have a redundant or 

complementary function to RrpA and is not essential for C. jejuni strains. Loss of rrpB 

may give an advantage to the C. jejuni strains to survive oxidative stress or the 

presence of RrpB may confer an advantage in colonising specific niches. 

 

7.3 Analysis of Brazilian C. jejuni strains 

The analysis of the Brazilian C. jejuni strains highlighted both phenotypic and 

genomic differences compared to other C. jejuni strains in this study. Brazilian C. 

jejuni strains may have adapted differently due to distinct environmental pressures and 

niche adaptations. It was observed that the variation in the presence of rrpB in the 

Brazilian strains did not appear to influence the strains resistance to H2O2 stress. The 

Brazilian isolates exhibited variable resistance to H2O2 stress, which did not correlate 



242 
 

to the presence or absence of rrpB. The opposite was observed for other C. jejuni 

strains, where the presence of rrpB influenced resistance to H2O2 stress.  

The genomic structure of the Brazilian strains containing rrpB was very similar to 

NCTC 11168. However, strains lacking rrpB were shown to have very different 

genetic structure compared to other C. jejuni strains distributed worldwide. The 

number of Brazilian isolates analysed in this study was not large, further investigation 

with a greater number of Brazilian strains will be necessary to confirm whether the 

resistance to H2O2 stress is related to the presence or absence of rrpB. Strains from 

different parts of Brazil should also be analysed to observe if this feature is restricted 

to a region of Brazil or if that is a trend across the whole country. 

Genomic typing techniques, such as MLST, are important tools to better understand 

C. jejuni epidemiology. C. jejuni epidemiology is still not very clear, and there is 

evidence that this bacterium behaves differently in developed and developing 

countries. There are not many studies using MLST in Brazil. Therefore, more 

investment for genome typing and epidemiology studies are necessary. The use of 

tools such as MLST is crucial for an understanding of C. jejuni epidemiology and 

evolution (Maiden, 2006). 

MLST can achieve high levels of discrimination (Perez-Losada et al., 2013). It also 

gives precise locality of data related to strain distribution (Perez-Losada et al., 2013). 

MLST is a widespread technique that can be easily reproduced worldwide. The 

information obtained by the MSLT can be uploaded and shared throughout the world 

via the Internet. Thus, the data generated can be readily compared among laboratories 

on publicly available databases (Maiden, 2006, Perez-Losada et al., 2013). 

This study discovered new STs based of MLST technique. The new Brazilian STs are 

going to be uploaded to the online database where they will be assigned a unique ST 

number based of each allele fragment sequenced (Maiden, 2006). This information 

will be available for any researcher worldwide. This information can be useful as 

researchers can compare their own profiles to the profiles presented in this study. 

MLST can also detect evolutionary changes in the genome of populational studies. 

With this technique, ST profiles can be tracked globally for similar genotypes. MLST 

can identify lineages most linked with livestock, humans or both sources, and also 

identify which strains are more virulent (Maiden, 2006). 
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It is important to integrate all the information acquired from the isolates analysed by 

MLST. If researchers combine genomic and epidemiological data with the geographic 

information, they will have a clear picture of the pathogens analysed and resources to 

develop methods to prevent the spread of infectious pathogens (Perez-Losada et al., 

2013). 

Brazil is the second major chicken meat producer and the major exporter in the world 

(Clements, 2016, Workman, 2016). However, Brazil does not have legislation to 

control or to monitor Campylobacter in poultry products. Currently, biosecurity 

measures are used by farmers to control Campylobacter in flocks. However, these 

measures are not enough to avoid flock contamination. Slaughter houses also apply 

strict measures of disinfection and decontamination of all their equipments to avoid 

cross contamination. However, these measures are also not enough to control 

Campylobacter in the industry. Therefore, multiple measures should be taken to 

reduce the level of Campylobacter contamination in poultry before slaughter to try to 

reduce the levels of contamination in the industry, and thus, reduce the risk of human 

infection. The Brazilian government needs to invest more in Campylobacter research 

and to create surveillance programs to clarify the dimension of Campylobacteriosis in 

Brazil. 

It is essential to study C. jejuni physiology and the mechanisms of survival in hostile 

environments to fully comprehend the epidemiology of this human pathogen for the 

development of effective intervention strategies.  

RNA seq is an excellent technique to investigate changes in gene expression under 

optimal conditions and under extreme conditions. The next analysis should use RNA 

seq to investigate changes in gene expression under different types of oxidative stress. 

Investigating these changes in gene expression under different conditions will give a 

clearer picture of how oxidative stess regulators change the gene expression to survive 

under hostile conditions. These changes in gene expression should be compared to 

gene expression under standard growth conditions in microaerobic conditions to 

understand which genes are essential for survival in hostile environments. RNA seq 

together with population genetic analysis will, hopefully, provide valuable 

information that can be paramount to develop essential control measures for C. jejuni, 

and efficiently reduce the number of human infections.   
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Appendix 1 

Strains used in this study 

C. jejuni strain Description Reference 

11168H A hypermotile derivative of the 

original sequence strain NCTC 

11168 that shows higher levels of 

ceacal colonisation in a chick 

colonization model 

Karlyshev et al., 2002 

Jones et al., 2004 

11168H rrpA 

mutant 

Kanamycin cassette inserted into 

the rrpA gene 

Gundogdu et al., 2001 

11168H rrpB 

mutant 

Kanamycin cassette inserted into 

the rrpB gene 

Gundogdu et al., 2001 

11168H rrpAB 

double mutant 

Kanamycin cassette inserted into 

the rrpA gene and 

Chloramphenicol cassette inserted 

into the rrpB gene 

Gundogdu et al., 2001 

11168H katA 

mutant 

Kanamycin cassette inserted into 

the katA gene 

LSHTM Campylobacter 

Resource Facility 

11168H perR 

mutant 

Kanamycin cassette inserted into 

the perR gene 

LSHTM Campylobacter 

Resource Facility 

11168H ahpC 

mutant 

Kanamycin cassette inserted into 

the ahpC gene 

LSHTM Campylobacter 

Resource Facility 

11168H rrpB 

perR double 

mutant 

Kanamycin cassette inserted into 

the perR gene and 

Chloramphenicol cassette inserted 

into the rrpB gene 

This study 
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81116  Genetically stable strain which 

remains infective in avian models 

Wassenaar et al., 1991 

81116 rrpA 

mutant 

Kanamycin cassette inserted into 

the rrpA gene 

LSHTM Campylobacter 

Resource Facility 

81-176  Highly virulent and widely 

studied laboratory strain, isolated 

from milkborne outbrake  in USA 

Korlath et al., 1985 

81-176 rrpA 

mutant 

Kanamycin cassette inserted into 

the rrpA gene 

LSHTM Campylobacter 

Resource Facility 

81-176 rrpB 

mutant 

Kanamycin cassette inserted into 

the rrpB gene 

LSHTM Campylobacter 

Resource Facility 

M1 Isolated from human with 

diarrhea 

Champion et al., 2005 

M1 rrpA mutant Kanamycin cassette inserted into 

the rrpA gene 

LSHTM Campylobacter 

Resource Facility 

11919 Isolated from chicken Champion et al., 2005 

11973 Isolated from chicken Champion et al., 2005 

12450 Isolated from chicken Champion et al., 2005 

12487 Isolated from chicken Champion et al., 2005 

12912 Isolated from bovine Champion et al., 2005 

13040 Isolated from chicken Champion et al., 2005 

13249 Isolated from chicken Champion et al., 2005 
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13713 Isolated from bovine Champion et al., 2005 

30280 Isolated from human with 

diarrhea 

Champion et al., 2005 

47886 Isolated from human with 

septicemia 

Champion et al., 2005 

12241 Isolated from ovine Champion et al., 2005 

31481 Isolated from human 

asymptomatic  

Champion et al., 2005 

33106 Isolated from human 

asymptomatic 

Champion et al., 2005 

34007 Isolated from human with 

septicaemia 

Champion et al., 2005 

40917 Isolated from human with bloody 

diarrhea 

Champion et al., 2005 

44119 Isolated from human with 

septicaemia 

Champion et al., 2005 

47693 Isolated from chicken Champion et al., 2005 

62914 Isolated from human vomiting Champion et al., 2005 

64555 Isolated from human with bloody 

diarrhea 

Champion et al., 2005 

CCAMP 487 

 

Isolated from human faeces  Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 
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CCAMP 488 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 489 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 491 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 492 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 499 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 500 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 505 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 507 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 511 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 593 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 



279 
 

CCAMP 600 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 607 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 609 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 611 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 677 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 679 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 680 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1479 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1490 

 

Isolated from human faeces Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 463 

 

Isolated from poultry drinking 

water 

Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 
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CCAMP 830 

 

Isolated from creek stream water 

from sewage treatment station 

Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 831 

 

Isolated from creek stream water 

from sewage treatment station 

Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1013 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1014 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1015 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1016 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1018 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1019 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1020 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1021 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 
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CCAMP 1022 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1023 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1024 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1032 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1050 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1051 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1052 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1053 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1054 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1055 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 
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CCAMP 1056 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 

CCAMP 1057 

 

Isolated from poultry meat Oswaldo Cruz Foundation 

(FIOCRUZ – Brazil) 
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Appendix 2 

 

Amino Acids Alignments using ClustalW2 

 

RrpA - Cj1546 

CG8421_          -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

1336             -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

LMG9872          -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

140-16_          -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

HB93-13_         -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

1213             -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

81116_           -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

23264            -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

S3_              -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

RM1221           -MTKENSQCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

260.94_          -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

2008-988_        -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIMRYNELKRFLSSISFKTLTN 59 

81-176           -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

11168            -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

11168-BN148      -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

ICDCCJ07001      -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

PT14             -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

60004            -MTKENSPCNFEECGFNYTLALINGKYKMSILYCLFRYEIVRYNELKRFLSSISFKTLTN 59 

414              MKNTKNSTCNYQEYGFNYTLALISGKYKMSVLYCLYKDKIVRYNELKRILNPISFKTLTN 60 

                   ..:** **::* *********.******:****:: :*:*******:*..******** 

 

CG8421_          TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCDWEEENKKLQGK--- 113 

1336             TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCDWEEENKKLQGK--- 113 

LMG9872          TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCKWGEKDKKGKNA--- 113 

140-16_          TLRELEYDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCKWGEKDKKGKNA--- 113 

HB93-13_         TLRELENDGLIIRKEYAQIPPKVEYNLSKRGQSLIPILQAMCKWGEKDKKEKNA--- 113 

1213             TLRELENDGLIIRKEYAQIPPKVEYNLSKRGQSLIPILQAMCKWGEKDKKEKNA--- 113 

81116_           TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCKWGEKDKKEKNA--- 113 

23264            TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMCKWGEKDKKGKNA--- 113 

S3_              TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

RM1221           TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

260.94_          TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

2008-988_        TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

81-176           TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

11168            TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

11168-BN148      TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

ICDCCJ07001      TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

PT14             TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKKCLN- 115 

60004            TLRELENDGLIIRKEYAQIPPKVEYSLSKRGQSLIPILQAMSKWGKKDKKGKNA--- 113 

414              VLRELENAGLIIRKEYPQIPPKVEYSLSKKGQSFIPILEAMCDWGRRKQKINILKIY 117 

                 .*****  ********.********.***:***:****:**..* ...:* :      

 

Primers 

Forward: CGFNYT – TGY GGN TTY AAY TAC ACN 

Reverse: PPKVEY – CCN CCN AAR GTN GAR TAC  (Original) 

       GGN GGN TTY CAN CTY ATG  (Complementary) 

       GTA YTC NAC YTT NGG NGG  (Reverse) 
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RrpB - Cj1556 

 

LMG23357         MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISSTKNQNISQNVLTQNL 60 

LMG9872          MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISSTKNQNISQNVLTQNL 60 

81-176_          MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

87330            MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

129-258          MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

305              MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

IA3902           MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

CF93-6           MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

84-25            MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

LMG9879          MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

11168            MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

11168-BN148      MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

LMG23269         MKKYHSLCPIETTLNLIGNKWKILIIRDLLQGTKRFGELRKSISFTKNQNISQNVLTQNL 60 

                 ******************************************** *************** 

 

LMG23357         RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

LMG9872          RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

81-176_          RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

87330            RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

129-258          RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

305              RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

IA3902           RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

CF93-6           RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

84-25            RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

LMG9879          RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

11168            RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

11168-BN148      RELEEAKLIKRKVYAEVPPKVEYSLTSLGNSLESILKSLENWGNSYKNIV 110 

LMG23269         RELEEAKLIKRKVYAER----------LSTHLHL---------------- 84 

                 ****************           *.. *.                  

 

Primers 

Forward:  CPIETT – TGY CCN ATH GAR ACN ACN 

Reverse:  PPKVEY – CCN CCN AAR GTN GAR TAC  (Original) 

   GGN GGN TTY CAN CTY ATG  (Complementary) 

   GTA YTC NAC YTT NGG NGG  (Reverse)  
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CosR – Cj0355c 

 

81116_           MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

11168-BN148      MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

81-176           MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

11168            MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

LMG23223         MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

414              MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGI 60 

2008-872         MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLSDGDGA 60 

RM1221_          MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

IA3902           MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

S3               MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

PT14             MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

1997-10          MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

260.94_          MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

LMG23263         MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

doylei           MRILVIEDEISLNKTIIDNLNEFGYQTDSSENFKDGEYFIGIRHYDLVLANWTLPDGDGA 60 

                 ******************************************************.****  

 

81116_           ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

11168-BN148      ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

81-176           ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

11168            ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

LMG23223         ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKSGADDFVKKPLDFDILLARIEARLRLGG 120 

414              ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

2008-872         ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

RM1221_          ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLARIEARLRLGG 120 

IA3902           ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLARIEARLRLGG 120 

S3               ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLARIEARLRLGG 120 

PT14             ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLARIEARLRLGG 120 

1997-10          ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLVRIEARLRLGG 120 

260.94_          ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVAKPLDFDILLARIEARLRLGG 120 

LMG23263         ELVNTIKHKSPRTSVMIMSSKTDKETEIKALKAGADDFVTKPLDFDILLARIEARLRLGG 120 

doylei           ELVNTVKHKSPRTSVMIISSKTDKETEIKALKAGADDFVKKPLDFDILLARIEARLRLGG 120 

                 *****:***********:**************:****** *********.********** 

 

81116_           TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

11168-BN148      TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

81-176           TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

11168            TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

LMG23223         TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

414              TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

2008-872         TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

RM1221_          TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

IA3902           TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

S3               TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

PT14             TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

1997-10          TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

260.94_          TNVIKIEDLVIDPDEEKITYKDQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

LMG23263         TNVIKIEDLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

doylei           TNVIKIENLVIDPDEEKITYKGQDIELKGKPFEVLTHLARHSDQIVSKEQLLDAIWEEPE 180 

                 *******:*************.************************************** 

 

81116_           LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

11168-BN148      LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

81-176           LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

11168            LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

LMG23223         LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

414              LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

2008-872         LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

RM1221_          LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

IA3902           LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

S3               LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

PT14             LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

1997-10          LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

260.94_          LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

LMG23263         LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

doylei           LVTPNVIEVAINQIRQKMDKPLNISTIETVRRRGYRFCFPKKS 223 

                 ******************************************* 
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Primers 

Forward: VIEDEI – GTN ATH GAR GAY GAR ATH 

Reverse: FCFPKK – TTY TGY TTY CCN AAR AAR  (Original) 

   AAR ACR AAR GGN TTY TTY  (Complementary) 

 

   YTT YTT NGG RAA RCA RAA  (Reverse)  
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Appendix 3. Prevalence of the rrpA and rrpB genes amongst 270 C. jejuni strains 
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MLST clonal complexes and prevalence of the rrpA and rrpB genes amongst 270 

C. jejuni strains. Isolates are coloured according to clonal complex; ST-21 (red), ST-

45 (green), ST-353 (blue), ST-257 (pink), ST-206 (orange), unassigned (black, bold) 

and untyped (black, unbold). Figure adapted from Stabler et al., 2013. 


