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ABSTRACT 

Emerging evidence suggests that NK cells could be important in the early effector 

response induced by vaccination, supported by vaccine antigen-specific CD4 IL-2 

production and antigen-antibody immune complexes. 'Memory-like' NK cells, with 

heightened responsiveness can be also generated by pre-activation with cytokines. 

I found that NK cell differentiation is accelerated in Africans in The Gambia compared 

to age-matched UK residents and that this is linked to reduced functional NK cell 

responses to cytokines. This effect may also relate to a high burden of human 

cytomegalovirus (HCMV) infection in this population, with all Gambian study subjects 

infected by 3 years of age. There is also significant variation in lymphoid and myeloid 

cell populations with increasing age. Additionally, I found that a deletion of the 

NKG2C gene, a receptor important for recognition of HCMV infected cells, results in 

delayed NK cell differentiation. Furthermore, the allele frequency of the NKG2C gene 

deletion is higher in The Gambia compared to other countries studied to date. The 

frequency of the deletion allele did not change with age. 

I went on to investigate the impact of this advanced differentiation phenotype on NK 

cell responses in two vaccination studies: Gambian subjects of all ages made 

negligible NK cell CD107a, CD25, and IFN- responses to influenza or DTPiP vaccine 

antigens. No enhancement of these responses was observed after vaccination. 

However, vaccination resulted in intrinsic changes to NK cells with enhancement of 

NK cell IFN- responsiveness to exogenous cytokines. The main source of IFN- was 

derived from a population of CD56dimNKG2C+CD57- NK cells. These less 

differentiated cells may retain some capacity to control HCMV infection, and at the 

same time represent a possible target for generation of 'memory-like' NK cells in vivo 

in vaccine induced NK cell responses. 
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HRP:               Horseradish peroxidase  

H1N1:  Haemagglutinin 1 Neuraminidase 1 influenza A virus antigen 

H3N2:   Haemagglutinin 3 Neuraminidase 2 influenza A virus antigen 

Id2:                  DNA-binding protein inhibitor ID-2 

IE:                   Immediate Early 

IFN:   Interferon 

IFN-:   Interferon- (gamma) 

Ig:   Immunoglobulin 

IL:   Interleukin 

rIL-12:              Recombinant human Interleukin-12 

rIL-18:   Recombinant human Interleukin-18 

ITAM:   Immunoreceptor Tyrosine-based Activation Motif 

ITIM:   Immunoreceptor Tyrosine-based Inhibition Motif 
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K562:   Human erythroleukaemic cell line K562 

KIR:   Killer Immunoglobulin-like Receptor 

LCC:   Low Concentration of Cytokines 

LFA-1:             Lymphocyte Function-Associated antigen 1 

LPS:                Lipopolysaccharide 

LSHTM:  London School of Hygiene and Tropical Medicine  

MAPK:            Mitogen-activated protein kinases 

MCMV:  Murine cytomegalovirus 

mDC:   Myeloid Dendritic Cells 

MFI:   Mean Fluorescence Intensity 

MHC:   Major Histocompatibility complex 

MIP-1α:           Macrophage Inflammatory Protein 1-alpha 

MIP-1β:           Macrophage Inflammatory Protein 1-beta 

MRC:   Medical Research Council  

MRC ING:  Medical Research Council International Nutrition Group 

NCR:   Natural Cytotoxicity Receptors  

NCAM:  Neural Cell Adhesion Molecule 

NK:   Natural Killer  

NKG2D:          Natural-Killer Group 2, member D 

OAS:               Oligoadenylate synthase 

OPD:              Ortho-Phenylenediamine  

PAMP:  Pathogen Associated Molecular Patterns 

PBMC:  Peripheral Blood Mononuclear Cells 

PBS:                Phosphate Buffered Saline 
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PCR:   Polymerase Chain Reaction 

pDC:   Plasmacytoid Dendritic Cells 

Ph.D.:             Doctor of Philosophy 

PI3K:              Phosphoinositol-3-kinase  

PKB:               Protein Kinase B  

PSG:              Penicillin, Streptomycin, and L-glutamine  

PT:   Pertussis Toxin  

PRR:   Pattern Recognition Receptors 

RANTES:        Regulated And Normal T cell Expressed and Secreted 

Ras:                Rat Sarcoma 

RNA:               Ribonucleic Acid 

RPM:   Revolutions per minute  

RPMI:             RPMI-1640  

RIG-I like        Retinoic acid-inducible gene 1-like 

SCC:   Scientific Coordinating Committee  

SLT:   Secondary Lymphoid Tissues 

STAT:   Signal Transducer and Activator of Transcription 

T-bet:   Homologous transcription factor Tbx21 

TCR:  T Cell Receptor 

TIV:   Trivalent Influenza Vaccine  

TLR:   Toll-Like Receptors 

TMB:                3,3′,5,5′-Tetramethylbenzidine 

TNF-α:            Tumour Necrosis Factor 

TOX:   Thymocyte selection-associated high-mobility group box protein 
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TT:   Tetanus Toxoid 
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1.1 INTRODUCTION 

The human immune system has evolved to recognize and eliminate or control 

harmful pathogens from our body whilst at the same time having other mechanisms 

that tolerate self-antigens. Traditionally, the immune system can be divided into two 

parts, which are the innate immune system and the adaptive immune system.  

The innate immune system is the first line of immune responses that recognise 

antigens by using germ-line encoded pattern-recognition receptors (PRR) to identify 

conserved pathogen associated molecular patterns (PAMP) present on viral, bacterial 

and fungal pathogens (Iwasaki and Medzhitov, 2015). When the PRR bind these 

pathogens, this stimulates an inflammatory response and other innate defence 

mechanisms essential in pathogen clearance. PRR include cell membrane surface 

sensors, such as C-type lectin receptors (CLR), toll-like receptors (TLR), leucine-rich 

repeat containing receptors, as well as intracellular sensors of nucleic acid like OAS 

proteins and cGAS and RIG-I like receptors (Iwasaki and Medzhitov, 2015). These 

PRR are very important in the induction of the adaptive immune responses, as they 

define the type and origin of the infection and instruct adaptive lymphocytes to clear 

the infection. Generally, the innate immune system uses two modes of recognition: 

cell-intrinsic recognition mediated by cytosolic sensors and cell-extrinsic sensor 

recognition expressed by specialised cells like myeloid cells. The detection of 

extracellular pathogens is mainly induced by plasma membrane receptors on innate 

cells such as dendritic cells and macrophages expressing surface TLR1, 2, 4, 5 & 6 

and CLR (dectin 1 and 2). These receptors specialise in recognising conserved 

pathogen structures such as LPS and flagellin. Intracellular sensors in the endosome 

including TLR3, 7 8 & 9 identify components of intracellular pathogens, in particular, 

bacterial CpG DNA and viral RNA and DNA (Iwasaki and Medzhitov, 2015).  

Innate leukocytes include cells of both myeloid and lymphoid origin. These include 

granulocytes (neutrophils, eosinophils, basophils), classical antigen presenting cells 

(monocytes, macrophages and myeloid and plasmacytoid dendritic cells (DCs)) and 

natural killer cells. The activation of these innate immune cells induces the secretion 

of a series of chemokines and pro- or anti-inflammatory cytokines important in 

pathogen clearance, tissue repair, and recruitment of other immune cells. It is the 

combination of these secretory factors at a given site of infection that can influence 

the outcome of an immune response. 
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Another mechanism of innate pattern recognition is via identification of ‘missing self’ 

on infected cells. This approach is employed by natural killer cells to detect stressed 

and pathogen-infected host cells (Iwasaki and Medzhitov, 2015, Kiessling et al., 

1975a). Briefly, inhibitory receptors on natural killer cells identify MHC class I 

molecules thereby blocking cytotoxic killing of normal cells. However, virally-infected 

cell and transformed cells decrease their expression of MHC class I molecules; in this 

manner the inhibitory signals are not activated and then natural killer cells are 

licensed to mediate target cell cytotoxicity. 

The second line of immune defence, the adaptive immune system, is mainly made up 

of two types of immune cells, namely, T lymphocytes and B lymphocytes and their 

secreted molecules. There are two phases of adaptive immune responses; that is 

primary and secondary adaptive responses. The primary adaptive response is 

activated the first time the host encounters the pathogen and triggers antigen 

processing and presentation by accessory cells to antigen-specific T cells and B cells, 

along with co-stimulation signals, which stimulates an immune response. This also 

leads to differentiation of memory cells. The secondary adaptive response is the 

immune responses induced by a second infection with a previously encountered 

antigen or pathogen. A similar pattern of activation is initiated but this time because of 

the presence of clonally expanded memory cells induced during the primary 

response, the secondary adaptive responses is faster and more targeted to control 

the antigen or pathogen. 

The T and B lymphocyte lineages possess the important property of immunological 

memory. Immunological memory is described as the capacity of immune cells to 

generate qualitatively and quantitatively enhanced immune responses following 

reinfection with a similar pathogen or antigen. T lymphocytes express T cell receptors 

(TCR) which recognise antigenic peptides from pathogens when presented in the 

context of major histocompatibility complex (MHC) class I and class II molecules. B 

lymphocytes express surface immunoglobulins which act as B cell receptors (BCR) 

for recognition of protein (and carbohydrate) antigens in tertiary conformation. The 

unique specificity of mature T and B cell receptors for individual peptides and 

proteins, combined with the ability of these cells to clonally expand upon reactivation 

against a similar antigen or pathogen, allows the adaptive immune system to develop 

memory.  
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The initial antigenic priming of adaptive immune responses normally requires several 

days and the generation of sufficient numbers of mature memory T and B cells can 

take weeks to fully develop and can often involve multiple exposures to a particular 

infection. Innate immune mechanisms, therefore, provide critical control within the 

first few days of an infection before the development of effective adaptive control 

mechanisms. 

Thus, the interplay between these innate and adaptive immune responses is crucial 

in determining the outcome of a given infection or responses to vaccination. Any 

imbalance in any one of these two main responses could lead to immunodeficiency or 

autoimmunity diseases or chronic infections. 

Natural Killer cells are typically activated early in infection as a consequence of the 

production of cytokines by PAMP-activated cells of granulocyte and myeloid lineages. 

In addition, NK cells can express receptors for T cell-derived cytokines and 

antibodies, making them uniquely placed to bridge immediate early innate responses 

with adaptive T and B cell responses. At the same time, NK cells possess several 

effector functions, including cytolytic activity and cytokine production, which can 

contribute to the control of infections during primary and secondary immune 

responses.  

Natural killer cell have a natural cytotoxic capacity to eliminate  transformed tumours 

or virally infected cells without the need for prior priming or exposure, thus, the name 

‘natural killer’. Apart from been cytotoxic, NK cells are can also secret cytokines that 

can modulate neutrophil, dendritic cell, and macrophages (Moretta et al., 2005). They 

provide an essential early innate source of pro-/ anti-inflammatory cytokines including 

interferon-, tumour necrosis factor-, interleukin-10 in diverse physiological and 

pathological situations (Vivier et al., 2011). NK cells also produce growth factors 

including interleukin-3, granulocyte colony-stimulating factor, and granulocyte 

macrophage colony-stimulating factor, although their role in growth is not fully 

elucidated. Additionally, NK cells also secret different types of chemokines such as C-

C motif chemokine Ligand- 2 (CCL)-2, CCL3, and C-X-C motif chemokine Ligand 8 

important in immune cell co-localization and trafficking during immune responses 

(Walzer et al., 2005, Vivier et al., 2011). Specifically, T cell responses in secondary 

lymphoid tissues can directly be modulated by IFN- secreted by NK cells following 

migration from peripheral tissue to the lymph nodes, and the cytokines produced by 

NK cells can also indirectly modulate dendritic cells function by killing immature DC 
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(Martin-Fontecha et al., 2004, Vivier et al., 2011). NK cells through the induction of 

viral target cell debris can enhance CD4, CD8 cytotoxic lymphocyte function and IgG 

immune responses (Robbins et al., 2007, Krebs et al., 2009). In contrast, NK cells 

can negatively influence T lymphocyte immune responses (Andrews et al., 2010).  

NK cells also express receptors to adhere to endothelial cells. Some of these 

receptors include CD62L, which binds to addressins, α4β1 integrin which binds to 

vascular cell adhesion protein 1 and CX3C chemokine receptor 1 which binds to 

membrane bound C-X3-C motif ligand 1 (Vivier et al., 2008). C-X3-C motif ligand 1 

can induce NK cells to kill endothelial cells leading to its contribution to vascular 

pathogenesis during injury, in transplantation and certain viral infections (Yoneda et 

al., 2000, Bolovan-Fritts and Spector, 2008, Rieben and Seebach, 2005). In contrast, 

a subset of NK cells promotes angiogenesis during pregnancy.  Specifically, decidual 

NK cells can produce proangiogenic factors like placental growth factor and vascular 

endothelial growth factors to allow placental development during pregnancy (Hanna 

et al., 2006). 

This thesis explores how NK cells mature in an African population in response to 

infection and how vaccination influences the functional responses of these cells. 

1.1.1 Natural Killer cells 

Natural Killer (NK) cells are immune effector cells that are derived from 

haematopoietic stem cells and specifically originate from common lymphoid 

progenitor cells. NK cells belong to a group of related lymphocytes called innate 

lymphoid cells (ILC). They are classified as Group 1 ILC, developing from Id2 

progenitor cells through interleukin-15 (IL-15) and thymocyte selection-associated 

high-mobility group box (TOX) protein expression and, in common with cytotoxic T 

cell subsets, express NFIL3, Eomes and T-bet transcription factors (Walker et al., 

2013, Kiessling et al., 1975b, Kiessling et al., 1975a). In humans, NK cells make up 

5-15% of the peripheral blood lymphocyte population. They are large granular 

lymphocytes that express germ-line encoded inhibitory and activating receptors which 

regulate the recognition of transformed and intracellular pathogen-infected cells 

(Kiessling et al., 1975b, Freud and Caligiuri, 2006). In contrast to T and B 

lymphocytes, which undergo antigen-specific T cell receptor and B cell 

immunoglobulin gene assortment, NK cells do not rearrange their germ-line receptor 

genes. NK cell receptors nonetheless exhibit considerable diversity. Through these 

receptors, NK cells survey target cells by binding to classical MHC class I, MHC class 
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I related molecules, co-stimulatory ligands and cytokines in order to achieve an 

equilibrium between becoming cytotoxic or cytokine-producing effector cells against 

transformed or infected somatic cells and being tolerant to healthy somatic cells 

(Caligiuri, 2008, Colucci et al., 2003). Furthermore, in contrast to T and B 

lymphocytes, NK cells do not require priming to be activated in order to produce 

cytokines and chemokines to modulate other immune cells (Colucci et al., 2003). 

 

1.1.2 Natural Killer cell development 

1.1.2.1  Developmental subsets in humans 

NK cells are derived from cluster of differentiation 34+ (CD34+) bone marrow 

haematopoietic stem cells and their development and maturation comprises 

progressive alterations of cellular phenotype and function. Using cell surface 

receptors, human NK cell development has been categorized into five stages, 

namely, pro-NK, pre-NK, immature NK (iNK), CD56bright NK and CD56dim NK cells. 

However, these stages are not necessarily sequential; it only means that at some 

stage of NK cell development the cells would have expressed characteristics of the 

above mentioned stages. The process of NK cell development involves different 

organs as they migrate from the bone marrow to secondary lymphoid tissues (SLT) 

where maturation occurs before they emerge as functional effector cells.  For these 

cells to fully mature, they require essential signals such as FMS-like tyrosine kinase 3 

ligand (FLT3L), interleukin 15 (IL-15) and c-kit ligand (Briercheck et al., 2010, 

Grzywacz et al., 2010). 

Until now, a unique biomarker for the identification of all human NK cells has not been 

identified and therefore, a combination of biomarkers are used to define NK cell 

phenotype. Using flow cytometry, human NK cells are defined as lymphocytes that 

express CD56 (the 140-kDa isoform of neural cell adhesion molecule 1) but which 

lack expression of the universal T cell receptor component CD3 epsilon (Caligiuri, 

2008). CD56 is acquired between the pre-NK and the iNK stage of NK cell 

development. Following the latter stage, NK cells acquire high levels of CD56 

(CD56bright). However, these cells later lose some expression of CD56 and gain or 

lose the C-type lectin-like receptor component CD94, becoming CD56dim NK cells. 

Although, they acquire additional receptors such as CD16 (FcRIII receptor, low 
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affinity receptor for the Fc portion of Immunoglobulin G) and killer immunoglobulin-like 

receptors (KIR) (Briercheck et al., 2010). 

Due to the expression of high levels of CCR7 and CD62L on CD56bright cells, these 

cells home to and are enriched in SLT, where they encounter DCs and macrophages. 

These myeloid accessory cells produce cytokines that activate NK cells and promote 

the secretion of inflammatory cytokines, including interferon-, (IFN-), which in turn 

further potentiate antigen-presenting cell function. However, CD56dim NK cells are 

mainly involved in immune-surveillance for signs of atypical expression of MHC class 

I molecules on the surface of transformed or infected cells, in a process termed 

‘missing-self’ recognition. Apart from CD56dim NK cells, which are abundant in blood, 

spleen and bone marrow, all the other NK cell intermediate stages are predominantly 

present in SLT (Briercheck et al., 2010, Caligiuri, 2008). 

It has not yet been formally proven that NK cell maturation takes place in SLT, 

although existing evidence suggests that SLT might be important in NK cell 

development as there is increased expression of CCR7 and CD62L on the 

intermediate pre, pro and iNK cells, and also because of the enriched presence of 

membrane bound IL-15 important in NK development on resident DCs. However, the 

presence of a sizeable compartment of CD56bright cells in blood suggests that their 

maturation may not be exclusively confined to SLT (Briercheck et al., 2010).   

Two main NK cell populations have been described in peripheral human blood: 

CD56dim CD16bright which represents about 90% of peripheral NK cell and 

CD56brightCD16-/dim, accounting for the remaining 10%. The CD56bright cells 

principally have cytokine-producing and immunoregulatory functions whilst CD56dim 

cells are enriched for cells exhibiting both cytotoxicity and cytokine secretion. Some 

researchers divide NK cells into five subsets on the basis of their CD16 expression, 

namely: CD56bright CD16-, CD56bright CD16dim, CD56dim CD16-, CD56dim 

CD16+ and CD56- CD16+ (Poli et al., 2009, Cooper et al., 2001a, Domaica et al., 

2012). 

 

1.1.2.2  Mechanisms of NK cell development 

Expression of interleukin 15 receptor common β (CD122) and γ chains (CD132) is 

required for the development of NK cells through the activation of STAT5a and 



INTRODUCTION   CHAPTER 1 

29 | P a g e  

 

STAT5b. Human and mouse data show that NK cells lacking these STAT molecules 

were unable to differentiate from progenitors to immature NK cells (Eckelhart et al., 

2011, Kofoed et al., 2003, Cichocki et al., 2013). STAT5 signalling molecules are 

thought to exert their effects on NK cells by activation of phosphoinositol-3-kinase 

(PI3K), PKB and Ras and MAPK signalling pathways via growth-factor-receptor-

bound protein 2-associated binder-2 (Gab2) and additionally by promotion of 

expression of anti-apoptotic genes like Mcl-1, Bcl-xl and Bcl-2 (Nyga et al., 2005, 

Debierre-Grockiego, 2004). IL-15 receptor is particularly known to induce the 

activation of the E4bp4 transcription factor which is essential in NK cell development. 

It has been shown that mice deficient in E4bp4 lack mature NK cells and that E4bp4 

transcription factor induces the expression of GATA3 and Id2 critical in the 

development of NK cells from NK progenitor cells to immature NK cells (Gascoyne et 

al., 2009). However, the development of immature to mature NK cells also requires 

the transcription factor thymocyte selection-associated high-mobility group box 

protein (TOX). The expression of Id2 did not salvage NK cell maturation of these cells 

and it should be noted that TOX-deficient NK progenitor cells express normal levels 

of IL-15 receptors on the cell surface (Aliahmad et al., 2010). Eomes and the 

homologous transcription factor Tbx21 (T-bet) constitute another set of critical 

transcription factors important in NK cell maturation. T-bet mainly influences 

maturation from NK progenitor cells to immature NK cells, whilst Eomes affects later 

stages of maturation (Gordon et al., 2012). Other transcription factors that are still 

essential for normal NK cell development include the ETs-family transcription factors 

PU.1, Spil and GATA2 (Cichocki et al., 2013).  

1.1.3 Natural Killer cell receptors  

NK cell function is regulated in order to achieve a balance between tolerance to 

healthy cells and cytotoxicity against malignant or infected cells. Such regulation 

involves a sophisticated repertoire of surface receptors expressed by NK cells. These 

receptors comprise three main groups, namely: natural killer cytotoxicity receptors 

(NCR: including NKp46, NKp30 and NKp44), which may directly recognise viral 

ligands (Mandelboim et al., 2001, Mandelboim and Porgador, 2001); immunoglobulin-

like receptors, including inhibitory or activating killer immunoglobulin-like receptors 

(KIR) (such as KIR2DL1 or KIR2DS1), and Leucocyte immunoglobulin-like receptors 

(LIR), which recognise classical and non-classical MHC class I; and C-type lectin-like 

receptors like CD94/NKG2A and NKG2C/E, which recognise HLA-E and HL-A G  

(see Table 1.1)(Farag et al., 2002, Almeida-Oliveira et al., 2011, Dorak, 2012). 
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Additionally, NK cells also express CD16, an antibody binding receptor and co-

stimulatory receptors such as 2B4, DNAM-1 and CD2 essential in effective NK cell 

immune responses (Vivier et al 2011). 

 

Table 1.1: Natural killer receptor family. 

NK Receptor Family Known Ligands 

NCR (NKp30, NKp44, NKp46) Influenza haemagglutinin 

CD94/NKG2 Receptors  MHC Class Ib (HLA-E) 

KIR 

(KIR and LIR) 

HLA-A, -Bw, -Cw, -G  

LIR binds MHC Class Ia -G 

Adapted from (Dorak, 2012) 

 

1.1.4 Direct receptor mediated NK cell activation 

Ligands for NK cell surface molecules CD16, NKG2D, LFA-1, DNAM-1, and CD244 

receptors expressed on Drosophila cells have been incubated with human NK cells to 

investigate the production of chemokines and cytokines through target cell-mediated 

NK activation. Fauriat et al showed that CD56dim NK cells were more potent cytokine 

and chemokine producers than CD56bright NK cells upon target cell mediated 

activation. RANTES, MIP-1α, and MIP-1β chemokines were produced within an hour 

of activation, whilst, IFN-γ and TNF-α were released later (3 and 5 hours, 

respectively). Activation of NKG2D, CD16 and 2B4 were enough to induce 

chemokine release. However, IFN-γ and TNF-α release necessitated additional 

receptor activation (Fauriat et al., 2010).   

NCRs belong to the immunoglobulin superfamily of receptors. NKp46, NKp80, and 

NKp30 are expressed on resting NK cells whilst NKp44 is induced after IL-2 

stimulation. Inhibition of these receptors blocks NK cell activation (Pegram et al., 

2011). Tumour cells can release nuclear factor HLA-B associated transcripts which 

can bind NKp30 (Pogge von Strandmann et al., 2007). NKp30 is also an important 

receptor mediating NK cell interactions with dendritic cells (Ferlazzo et al., 2002, 
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Moretta, 2002). NKp30 also binds B7-H6 on K562 tumour cells (Pegram et al., 2011, 

Brandt et al., 2009). NKp80 interacts with activation-induced C-type lectin to enhance 

lysis of tumour cells. NKp46 and NKp44 are known to bind to influenza virus 

haemagglutinin (Mandelboim and Porgador, 2001). 

KIR receptors play an essential role in maintaining tolerance to self-tissue antigens. 

KIR receptors bind to class I polymorphic HLA-A, B and C molecules. Their binding to 

HLA results in signal transduction of inhibitory or activating receptors. Activating KIR 

(for which there are 6 different genes) have DAP-12 (with immunoreceptor tyrosine-

based activating motif) while inhibitory KIR (for which there are 9 genes) have 

immunoreceptor tyrosine-based inhibitory motif in their cytoplasmic domain (Pegram 

et al., 2011, De Re et al., 2015).   

In relation to adaptive immune responses, antibodies can directly activate NK cells 

via CD16. CD16 is a low affinity FcRIIIa receptor mainly expressed on CD56dim NK 

cells (Oboshi et al., 2016, Leibson, 1997). This receptor cross-link immune 

complexes that are formed when IgG binds an antigen by specifically recognising the 

constant (Fc) region of the IgG antibody. Binding of the immune complex activates 

CD16 immunoreceptor tyrosine-based activating motif (ITAM) in the cytoplasmic 

domain and signals via CD3 and MAP kinase pathways to activate NK cells in what 

is called antibody-dependent cellular cytotoxicity (ADCC). CD16 activation results in 

the release of cytolytic granules that contain lytic proteins such as perforin and 

granzymes. Cytolytic granule membranes contain lysosome associated membrane 

protein-1 (LAMP-I or CD107a); when these granules fuse with the NK cell membrane 

during degranulation, the CD107a is exposed on the surface of the cell. This allows 

surface expression of CD107a to be used as a surrogate marker of NK cell 

degranulation (Burkhardt et al., 1989, Tschopp and Nabholz, 1990, Cooper et al., 

2001a). The interaction of CD16 with immune complexes in the presence of IL-18 can 

induce both surface CD107a expression and IFN- secretion (Nielsen et al., 2016, 

Srivastava et al., 2013).  

It is also possible that NK cells may also directly be triggered via TLRs. This has been 

shown in human NK cells where early endosomes contain TLR9.  KIR3DL2+ NK cells 

were directly activated through co-internalisation of KIR3DL2-CpG 

oligodeoxynucleotide complex in these cells (Sivori et al., 2010). 
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1.1.5 Cytokine mediated regulation of Natural Killer cell activation 

During an infection, innate immune cells are activated either through direct 

recognition of pathogenic molecules or indirectly by immune signalling molecules 

produced by accessory cells, which leads to initiation, amplification and modulation of 

immune responses to protect against the infection. In addition to the functional 

consequences of direct activating and inhibitory receptor ligation, signals produced by 

accessory cells as a result of the recognition of pathogen-associated molecular 

patterns (PAMP) during an infection influence the activation of NK cells (Horowitz et 

al., 2012b, Newman and Riley, 2007, Karre, 2008).   

Negative regulation of NK cells can, for instance, be mediated through transforming 

growth factor-β (TGF-β) or interleukin 10 (IL-10) released by accessory cells 

(Newman and Riley, 2007).  Cytokines produced by monocytes and DCs in response 

to TLR ligation promote NK cell activation in a cell-contact dependent manner; these 

signals override the inhibitory signal produced by ligation of MHC class I molecules 

(Evans et al., 2011, Horowitz et al., 2010, Newman and Riley, 2007, Long et al., 

2008). The accessory cells also produce cytokines and chemokines for the 

recruitment of NK cells, including type I interferons (IFN-α & β) important in sustaining 

NK cell cytotoxic function.  Interleukin-12 (IL-12) is essential in driving NK cell type II 

interferon (IFN-) secretion (Horowitz et al., 2012b) (Figure 1.2).  

 

Accessory cells activate NK cells using both contact and cytokine dependent 

mechanisms. This has been demonstrated with different bacterial and viral infections 

(Newman and Riley, 2007). Consequently, some viruses have evolved to inactivate 

NK cells, an immune evasion mechanism that highlights the importance of NK cells in 

viral clearance. For example, vaccinia virus produces IL-18 binding proteins that 

inhibit accessory cell-derived IL-18 in order to deactivate and evade NK cell 

cytotoxicity (Reading and Smith, 2003). Other accessory cells, like plasmacytoid DCs 

(pDCs) play an important role in viral clearance. In later stages of murine 

cytomegalovirus (MCMV) infection, NK cytotoxic function is sustained by pDC-derived 

IFN-α in a TLR9 dependent manner; at the same time, IFN-secretion by NK cells is 

reduced due to decreased availability of IL-12 (Delale et al., 2005). However, during 

early stages of infection, myeloid differentiation primary response 88 MyD88/TLR9 
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NK cell induction can be maintained by IFN-α and IL-12 secretion (Delale et al., 2005, 

Tabeta et al., 2004, Newman and Riley, 2007).  

Additionally, myeloid DCs (mDCs) induce NK cell activation through both cytokine 

and contact-dependent processes. In mice, MCMV infected CD11b+ mDC can 

activate NK cells via IFN-α and NKG2D contact-dependent pathways, whilst IFN-

secretion is maintained by IL-18 produced by DCs. Myeloid DC TLR9 signalling was 

shown not to be essential in activating NK cells through this pathway (Andoniou et al., 

2005). However, these cells required TLR2/3 signalling to stimulate NK cells 

(Barbalat et al., 2009, Szomolanyi-Tsuda et al., 2006). Thus, different cytokines can 

induce NK cell responses. Henceforth, I will focus on the cytokines relevent to our 

vaccine model. 

Interferon (IFN-) is a type II interferon required for both innate and adaptive 

immunity. The main source of IFN- is CD8+ T cells and T helper 1 CD4 cells and 

natural killer (NK) cells (Schroder et al., 2004, Yu et al., 2006). It should be noted that 

either an excess or a deficiency in IFN- production can seriously influence both 

autoimmunity as well as pathogen and malignant tumour clearance in humans and in 

mice, highlighting the importance of regulating IFN- in protective immunity (Jouanguy 

et al., 1999, Street et al., 2002, Bouma and Strober, 2003). Functionally, IFN- 

potentiates anti-microbial and anti-tumour activation pathways through different 

routes, such as enhancing the activity of antigen presenting cells like macrophages 

via increased antigen processing and presenting capacity; or by attracting and 

facilitating the maturation and effector functions of different types of cells (Schroder et 

al., 2004).  

Antigen presenting cells, such as macrophages and dendritic cells produce pro-

inflammatory cytokines like interleukin (IL)-12, IL-18, and IL-15, which can induce 

IFN- release (Cooper et al., 2001b, Fehniger et al., 1999). IL-12, IL-18 and IL-15 can 

induce the transcription factor T-bet, which can control the production of IFN- in NK 

cells and T cells (Yu et al., 2006). NK cells are known in both human and mice to 

constitutively express IFN- messenger RNA available for rapid immune responses 

(Hammarlund et al., 2016). 

On the other hand, IL-12 is a key cytokine in mediating IFN- secretion. IL-12 signals 

through IL-12 receptor β1 and β2 heterodimer subunits (Chua et al., 1994, Presky et 

al., 1996, Yu et al., 2006). The binding of IL-12 to its receptors on NK cells triggers 
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the activation of the Janus kinases Tyk2 and Jak2. These kinases relay the signal by 

phosphorylating tyrosine and serine amino acids to activate signal transducer and 

activator of transcription factor (STAT)-4 and p38 mitogen-activated protein kinase 

leading to the production of IFN- by NK cells (Watford et al., 2004, Zhang and 

Kaplan, 2000, Visconti et al., 2000). 

In parallel, IL-18 on NK cells signals through the binding of its receptor subunit 

interleukin 18 receptor-α (IL-18Rα) (or IL-1 receptor related protein) and interleukin 

18 receptor accessory protein (IL-18RAP) (or accessory protein-like receptors) (Akira, 

2000, Born et al., 1998). The activation of these receptors can trigger STAT-3, MAPK 

and MyD88-NFB signalling pathways (Nakanishi et al., 2001). However, IL-18 alone 

does not significantly stimulate IFN- release, due to the low affinity of the IL-18R 

binding receptor. Nonetheless, type I interferon, interferon-α (IFN-α) through the 

induction of MyD88 and IL-12 in combination can substantially upregulate IL-18 

receptors (IL-18Rα and IL-18RAP) (Sareneva et al., 2000, Yu et al., 2006, Nakanishi 

et al., 2001, Akira, 2000). The synergy of IL-12 and IL-18 signalling induces a range 

of transcription factors such as AP-1, NFB, STAT-4. The binding sites for these 

transcription factors are situated around the IFNG locus (Akira, 2000, Nakanishi et al., 

2001). 

Thus, taken together, in appreciation of NK cell function it is important to consider 

how accessory cells influence NK cells. These cells could prove to be very important 

sources of chemokines and cytokines vital in the recruitment and activation of NK 

cells. However, immune cell phenotype is known to be influenced by herpes viruses, 

especially, human cytomegalovirus (HCMV) infection. HCMV is recognized to 

influence NK cell differentiation. Therefore, it is relevant that we understand how 

these viruses affect NK cell function. 

 

1.1.6 Human cytomegalovirus  

HCMV belongs to a family of viruses called Herpesviridae, which is divided into three 

subfamilies: alpha, beta and gamma. HCMV belongs to the betaherpesviruses sub 

family. It is made up of four main components which are: the core, the capsid, the 

tegument and the envelope. HCMV has about 230 genes of which 54 are membrane 

proteins present on the envelope of the virus. As with all herpesviruses, HCMV 

expresses gB and gH/gL glycoproteins important for viral entry into the host cell (Britt, 
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2008, Vanarsdall and Johnson, 2012, Hanley and Bollard, 2014).  HCMV infection is 

one of the leading causes of congenital mental retardation and deafness. These 

viruses can be secreted in saliva and breastmilk, which can lead to early postnatal 

infection in children. In premature infants, HCMV infection can cause pneumonia, 

neutropenia and thrombocytopenia. HCMV infection is also common in 

immunodeficient, and immunosuppressed patients (Muntasell et al., 2013).     

HCMV viruses reside in myeloid lineage and CD34+ haematopoietic cells (Hanley 

and Bollard, 2014). As HCMV infects a new cell it translates the immediate early (IE) 

proteins within 2 hours, without the requirement of new viral protein synthesis (Hanley 

and Bollard, 2014). These IE proteins are essential in viral replication; suppression of 

these IE proteins is associated with HCMV latency and expression is correlated with 

reactivation (Paulus and Nevels, 2009). It is thought that granulocyte-macrophage 

colony stimulating factor and tumour necrosis factor-α induce monocyte differentiation 

into dendritic cells or macrophages. This process activates the viral IE-1 promoter 

and induces HCMV reactivation (Bunde et al., 2005, Hanley and Bollard, 2014). How 

these cytokines induce activation is still under investigation, but it is clear that CD8 T 

cells specific for IE protein are essential for viral control (Bunde et al., 2005). 

The immune system uses different mechanisms to control HCMV infection, ranging 

from innate immune cytokine secretion through cellular immunity to humoral 

immunity. This process involves T cells, B cells and antibodies as well as NK cell 

effector functions (Muntasell et al., 2013).  Recent data suggest that HCMV induced 

NKG2C+ NK cell populations may help in tumour control during malignant disease 

(acute myeloid leukaemia) after stem cell transplantation (Green et al., 2013, Ito et 

al., 2013, Foley et al., 2012). It is also known that NK cells are important in herpes 

viral control in humans (Biron et al., 1989). This highlights the importance of NK cells 

in providing protective immune responses against herpesviruses in humans. 

However, NK cells are not the only immune cell important for viral control; it has been 

shown that HCMV gB and gH glycoproteins can induce Toll Like Receptor-2 on 

fibroblasts via NFB to promote pro-inflammatory cytokine release for viral control 

(Boehme et al., 2006).  

Antibodies against HCMV are an important mechanism of viral control. It has been 

revealed in animal that HCMV specific antibodies protect the animal from death but 

do not prevent HCMV infection (Hanley and Bollard, 2014, Bratcher et al., 1995). In 
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humans, the immune system generates a range of antibodies against viral proteins 

like pp65 on the viral tegument, gB, gH and IE-1 glycoproteins (Britt et al., 1990). 

Cellular immunity is important for viral control and it has been demonstrated that the 

percentage of CD8 specific T cells generated in response to HCMV antigens in 

seropositive individuals can reach around 10% of circulating CD8 T cell population 

(Olsson et al., 2000, Hanley and Bollard, 2014), and mainly targets IE proteins and 

pp65 receptors (Wills et al., 1996, Sylwester et al., 2005). Similar to CD8 T cells, 9% 

of CD4 T cell respond to HCMV antigens in infected people (Hanley and Bollard, 

2014). These CD4 and CD8 T cells recognize 59% of all viral open reading frames 

(Sylwester et al., 2005). However, both CD8 and CD4 T cells are essential in viral 

control of HCMV infection and reactivation (Hanley and Bollard, 2014). 

Despite all of these protective mechanisms that our immune system uses to control 

HCMV, this virus has developed diverse mechanisms of immune evasion for both 

innate and adaptive immune cells. HCMV has Unique Short (US) and Unique Long 

(UL) gene regions in its genome encoding gene products. These gene products help 

in multiple ways to avoid either immune recognition or immune cell effector function. 

Table 1.2 summarises the different mechanisms by which HCMV can inhibit NK cell 

function (Hanley and Bollard, 2014). HCMV gene products US2, US3, US6, US10 

and US11 inhibit HLA class I molecule surface expression, resulting in reduced 

detection by CD8 T cells (Wilkinson et al., 2008).  

 

UL40 is a HCMV conserved viral peptide presented on HLA-E class Ib molecules. 

The UL40 sequence of which includes a peptide that mimics the signal sequence 

peptide of HLA-Ia molecules which binds with high affinity to HLA-E. Its function is not 

fully understood, but it is known to stabilise HLA-E expression on the surface of 

infected cells, thereby triggering the inhibitory CD94/NKG2A+ receptor and thus 

evading NK cell killing (Braud et al., 1998). 
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Table 1.2: Mechanisms of HCMV immune evasion. 

HCMV Gene  Mechanism of evasion  Effect on immune system 

UL18 MHC Class I homologue  Inhibition of NK cell via KIR 

UL40 HLA-E  Inhibition of NK cell via CD94/NKG2A  

UL142, UL16 Down regulation of ligands 
 Retention of MICA (by UL142), MICB, 

ULBP1 and ULBP2 (by UL-16)  
US2, US3, 
US6, US10, 
US11 MHC Class I down-regulation 

 
Decreased presentation of HCMV 
antigens to CD8+ T cells 

UL83 (pp65) HCMV-IE-1 sequestration 
 T cells cannot target first genes 

expressed upon reactivation 

UL36, UL37 Inhibitors of apoptosis 
 Decrease in phagocytosis of infected 

cell by antigen presenting cells 

UL111a IL-10 homolog  Immune suppression 
 

Adapted from (Hanley and Bollard, 2014). 

 

1.1.7 CD94/NKG2C acts as an activating receptor for HCMV 

Natural killer group 2A (NKG2A) and natural killer group 2C (NKG2C) are type II cell 

surface membrane receptors that originate from the CD94/NKG2 C-type lectin family 

of receptors and are covalently attached to the CD94 glycoprotein (Lazetic et al., 

1996, Heidenreich et al., 2012) to form heterodimeric receptors. They are encoded by 

the NK gene complex on human chromosome 12 (Guma et al., 2004). These two 

receptors recognise nonamer peptides derived from leader sequences of classical 

MHC class I molecules, Human Leucocyte Antigen-A HLA-A, -B, -C and -G, 

presented on the non-classical MHC class Ib molecule Human Leucocyte Antigen-E 

(HLA-E) on target cells. HLA-E molecules are expressed at low frequency on 

nucleated cells and function as ligands for CD94/NKG2 receptors on CD8 T cells and 

NK cells (Braud et al., 1998, Gong et al., 2012). HLA-E class Ib can be presented as 

HLA-ER107 having Arginine at position 107 or as HLA-EG107 with Glycine instead 

(Sullivan et al., 2008). This class Ib molecule has also been shown to bind Hsp60 and 

present some pathogen peptides but their specific role in this is still unknown 

(Ulbrecht et al., 1998, Nattermann et al., 2005, Michaelsson et al., 2002). Importantly, 

a peptide from HCMV, UL40 binds with high affinity to HLA-E and can stabilise the 

expression of HLA-E on HCMV infected cells (Tomasec et al., 2000); polymorphism 

within the viral peptide has been presented to modulate the affinity of the NKG2C 

receptor binding (Heatley et al., 2013) (Table 1.2).  
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Figure 1.1: CD94/NKG2 Receptors (NKG2C and NKG2A) receptors. 

Activating receptor NKG2C binds DAP12 which contains an intracellular immunoreceptor 

tyrosine-based activating motif (ITAM). NKG2A receptors have an intracellular 

immunoreceptor tyrosine-based inhibitory motif (ITIM) inducing an inhibitory signal. Adapted 

from (Roitt I et al., 2006). 

 

NKG2A is an inhibitory receptor containing an intracellular immunoreceptor tyrosine-

based inhibitory motif (ITIM). This motif recruits protein tyrosine phosphatase 

containing SH2 domain-1 (SHP-1) to inhibit NK cell function (Guma et al., 2004). 

NKG2C, in contrast, binds DAP12, which contains an intracellular immunoreceptor 

tyrosine-based activating motif (ITAM) and induces NK cell activation (Figure 1.1) 

(Gong et al., 2012). The binding affinity of the inhibitory CD94/NKG2A for HLA-E is 

higher than the affinity of the activating CD94/NKG2C receptors; this is potentially 

important in providing tolerance against NK cell targeted cytotoxicity. CD56bright NK 

cells express more CD94/NKG2A than do CD56dim cells (Beziat et al., 2010).  

Exposure to human cytomegalovirus appears to have a unique relationship with NK 

cell activation and receptor expression. NK cell activation and preferential expansion 

of NKG2C+ NK cells can be induced with human cytomegalovirus (HCMV)-infected 

fibroblasts in culture and NKG2C expansion is seen ex vivo in HCMV healthy 

seropositive individuals (Beziat et al., 2012, Guma et al., 2006). It has been 

suggested that HCMV might trigger NKG2C+ NK cell expansion and differentiation 

thereby changing the NK cell compartment. CD56dim NK cells expressing high levels 

of NKG2C+ have been shown to be terminally differentiated and polyfunctional. 

Terminally differentiated CD56dim NKG2C+ NK cells have been characterised as 
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cells with low frequencies of NKG2A, NKp46, NKP30, CD161 and Siglec-9 whilst 

comprising a high frequency of LIR-1, KIR and CD57 expressing cells. Following 

detailed analysis of NKG2C receptors, two subsets have been identified, that is 

NKG2Cdim NK cells, which express NKG2A and NKG2Chi NK cells, which do not 

have NKG2A receptors. However, both of these cells equally express the activating 

receptors NKG2D and CD16 (Muntasell et al., 2013). NKG2Chi NK cells are found in 

approximately half of HCMV seropositive individuals and NKG2Cdim NK cells are 

seen in some HCMV+ in cord blood and all HCMV- negative people (Muntasell et al., 

2013).  

Furthermore, these NKG2C+ NK cells have limited IFN-secretion capacity following 

interleukin-12/-18 (IL-12/-18) stimulation whilst retaining high cytotoxic capacity 

(Beziat et al., 2012, Beziat et al., 2010). However, IL-12 driven activation of NKG2C+ 

NK cells can induce expression of NKG2A, possibly providing a negative-feedback 

mechanism to control the activated signalling pathway (Saez-Borderias et al., 2009). 

NKG2A+ KIR- NK cells are nonetheless cytotoxic towards immature DC, which is 

controlled by HLA-E expression on the DC (Della Chiesa et al., 2003). It should be 

noted that NKG2C receptors can also be expressed by T lymphocytes such as 

TRCαβ, CD4, CD8, and TCRδ T cells (Muntasell et al., 2013). 

 

1.1.8 HCMV promotes NK cell differentiation (CD57 expression) 

HCMV infection induces NKG2C+CD57+ NK cells (Hendricks et al., 2014, Lopez-

Verges et al., 2011). It is though that in acute HCMV infection NKG2C+ NK cells 

expand and acquire CD57 molecules on their surface as they differentiate to become 

mature cells (Lopez-Verges et al., 2011). Consequently, NK cells have been 

observed to acquire CD57 expression with maturation and age. CD57 (HNK-1) is a 

terminally sulfated  trisaccharide N-glycan neural cell adhesion molecule expressed 

on CD56dim NK cells and CD28-CD8+ T cells. However, it is predominantly 

expressed in different cell types of the nervous system (Focosi et al., 2010). CD57 

has been shown to bind to CD62L, P-selectin, laminin and amphoterin and CD57-

dependent adhesion has been associated with cell-to-cell and cell-to-matrix 

interactions during cell migration processes. Expression of CD57 on T cells is 

associated with replicative immunosenescence. These cells have impaired ability to 

undergo cell division cycles and they are vulnerable to activation induced cell death. 
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Nonetheless, they still have the potential to secrete cytokines (Focosi et al., 2010, 

Nielsen et al., 2013).  

CD57 expression on CD56dim NK cells may occur due to remodelling of NK cell 

subsets towards terminal differentiation (Gayoso et al., 2011). CD57+ NK cells show 

increased activation after contact with MHC-deficient target cells but reduced 

responsiveness to cytokine-dependent activation (Bjorkstrom et al., 2010, Lopez-

Verges et al., 2010, Nielsen et al., 2013). These cells have a highly mature 

phenotype with increased cytotoxicity abilities, including antibody dependent 

cytotoxicity using CD16 receptors whilst having shortened telomeres and reduced 

proliferative capacity (see Table 1.3) (Lopez-Verges et al., 2010, Solana et al., 2012). 

It is proposed that NK cell differentiation progresses from CD56bright to CD56dim 

CD57- to CD56dim CD57+ NK cells (Gayoso et al., 2011). 

It has been observed that the frequency of NK cells expressing activating receptors 

NKp46/30, NKG2D and inhibitory CD94-NKG2A significantly decreases with age 

whilst the population expressing inhibitory KIR and LIR-1 receptors increase with age, 

suggesting a change in the balance of receptors regulating NK cell function (Lutz et 

al., 2005, Sundström et al., 2007). Le Garff-Tavernier and colleagues (2010) 

compared NK cell function and phenotype in healthy new-born, middle-age, old and 

in the very old individuals.  This study had similar findings to the proposed shift in 

receptor expression, demonstrating that cord blood had low frequencies of KIR and 

LIR-1 expressing cells (Le Garff-Tavernier et al., 2010, Almeida-Oliveira et al., 2011). 
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Table 1.3: NK cell maturation stages. 

Maturation from CD56bright to CD56dimCD57- to CD56dim CD57+ 

CD56bright CD56dimCD57- CD56dimCD57+ 

Cytokine+++ Natural cytotoxicity Natural cytotoxicity 

CD16-/dim CD16+ CD16++  

CD94/NKG2Ahigh CD94+ CD94+/- 

KIR- KIR+ KIR++ 

Long telomeres  Shorter telomeres 

High proliferation  Limited proliferation 

Adapted from (Solana et al., 2012). 

 

1.1.9 ‘Memory’ Natural Killer cells 

1.1.9.1  MCMV- and hapten-associated NK memory in mice 

Contemporary advances in the understanding of NK cell biology suggest that NK cells 

may have immunological ‘memory’ or recall potential during some secondary viral 

infections. This has been shown through the enhancement of NK cell activation 

observed in secondary antigen re-exposure. This NK cell ‘memory-like’ characteristic 

was first observed during murine cytomegalovirus virus (MCMV) infection. It has been 

demonstrated that Ly49H+ NK cells expand in primary MCMV infection after binding 

to MCMV m157 protein. Following re-exposure of these ‘memory’ NK cells to MCMV, 

these cells were protective against MCMV infection as they had increased potential to 

secret cytokines, degranulate and replicate compared to ‘naïve’ NK cells (Sun et al., 

2009, Horowitz et al., 2012b). Another form of NK cell ‘memory’ has been shown in 

murine adoptive transfer of primed, hepatic Ly49C-I (+) NK cells. These cells induced 

contact hypersensitivity reactions following adoptive transmission of NK cells from 

donors who had previously been sensitized with 2, 4-dinitrofluorobenzene and 

oxazolone hapten molecules (O'Leary et al., 2006).  
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In humans, equivalent populations of HCMV-driven ‘memory’ NK cell can be 

generated by contact-dependent interaction of NKG2C receptors with infected HLA-E 

expressing target cells, and CD14+ monocytes IL-12 production (Cerwenka and 

Lanier, 2016, Rolle et al., 2014). However, whether ‘memory’ NK cells can 

differentiate in the absence of NKG2C (e.g. in homozygous NKG2C gene deletion 

donors) is still unknown, although in this case expansion may be driven by activating 

KIR (KIR2DS2, KIR2DS4 and KIR3DS1) suggesting a possible role for these 

activating KIR in ‘memory’ NK cell expansion (Beziat et al., 2013, Muntasell and 

Pupuleku, 2016, Della Chiesa et al., 2014).  

1.1.9.2  ‘Adaptive’ NK cells 

HCMV has more recently been shown to be associated with NK cell differentiation 

resulting in the generation of ‘adaptive’ NK cells which tend to express high levels of 

NKG2C, CD16, LIR-1 and CD57 whilst they lack NKG2A, CD161, NKp46, and NKp30 

although there are exceptions to this surface phenotype (Vieira Braga et al., 2015). 

Early NK cells express cell signalling proteins common to T, B and myeloid lineages 

essential to its effector functions. However, late mature, highly differentiated 

‘adaptive’ NK cells lose the expression of certain B and myeloid cell related signalling 

proteins, which correlates with hyper-methylation in the promoter regions of these 

genes, the methylation pattern of these NK cells being very similar to those of 

cytotoxic effector CD8 T cells (Schlums et al., 2015, Tesi et al., 2016). HCMV 

seropositive individuals have ‘adaptive’ NK cells that are FcɛR- and have reduced 

expression of SYK and EAT-2 signalling molecules (Zhang et al., 2013, Schlums et 

al., 2015). These cells had similar properties to cytotoxic T cells and have enhanced 

expression of DAP12-coupled activating receptors (Schlums et al., 2015). ‘Adaptive’ 

NK cells can be defined as cells that have lost expression of the transcription 

promyelocytic leukemia zinc finger molecule (PLZF) and often also lack FcɛR-, SYK 

and EAT-2 signalling molecules. These transcription factors can regulate chromatin 

remodelling, thereby influencing gene expression (Schlums et al., 2015).  

‘Adaptive’ NK cells have reduced cytokine responsiveness, which is in particular 

strongly associated with diminished expression of PLZF. Interestingly, these cells do 

not respond to autologous T cell-mediated activation (Schlums et al., 2015, Lee and 

Maeda, 2012) which could have implications for NK cell responses to vaccines. In 

addition, PLZF is known to regulate the target genes of IL-12 and IL18 receptors 

resulting in reduced responsiveness to cytokines (Gleimer et al., 2012, Schlums et 
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al., 2015). PLZF has been shown to be essential in inducing IFN-stimulated genes 

important in IFN- secretion in NK cells and patients with PLZF mutations have an 

altered NK cell phenotype where these cells produce increased amount of IFN- (Xu 

et al., 2009, Eidson et al., 2011).  

1.1.9.3  Cytokine-induced ‘memory-like’ NK cells 

Cytokines also play an important role in the generation of ‘memory-like’ NK cells, as it 

has been observed that mice that lack IL-12, IFN- and IFN-α receptors fail to 

develop memory NK cells. However, it should be noted that using human PBMC and 

HCMV infected fibroblasts, only IL-12 (and not IL-15, IL-18 or the IFN-α receptor) was 

shown to be important in generating ‘adaptive’ NKG2C NK cells (Rolle et al., 2014). 

However, in humans, no single cytokine was found to be uniquely required to 

generate ‘memory-like’ NK cells (Cooper et al., 2009). Conversely, IL-12 is known to 

be redundant in HCMV infected individuals, as IL-12 functional mutations did not 

influence HCMV infection control (Bustamante et al., 2008). In mice, IL-12 and IL-18 

secreted in response to MCMV infection, induce the up-regulation of the high affinity 

chain IL-2 receptor, CD25 (IL-2Rα) (Lee et al., 2012, Ni et al., 2012). Also in humans, 

up-regulation of CD25 after cytokine pre-activation enhances NK cell responsiveness 

to low concentration of IL-2 (Leong et al., 2014). 

Cytokine-induced memory NK cells can be generated, through in vitro incubation of 

mouse NK cells with IL-12, IL-15, and IL-18 and these expanded NK cells have an 

increased ability to secret IFN- up to 4 months post adoptive transfer (Keppel et al., 

2013, Cooper et al., 2009). The same IFN- potentiation is seen in human NK cells 

that are treated with IL-12, IL-15, and IL-18 then re-stimulated with cytokine or target 

cell line (Romee et al., 2012, Ni et al., 2012). These cytokine-induced ‘memory-like’ 

NK cells are similar to HCMV driven NKG2C+ NK cells, as they both have stable 

demethylation of the IFNG locus conserved non-coding sequence 1 (CNS1). This 

evidence suggests that ‘memory-like’ NK cells can be generated in the absence of 

antigens (Cerwenka and Lanier, 2016).   

In summary, in humans, ‘adaptive’ NK cells have been defined as NKG2ChiCD57+ 

cells lacking NKG2A receptors. These cells are also known to lack FcεRI, SYK and 

EAT-2 signalling molecules with low expression of PLZF transcription factor. In 

individuals homozygous for the NKG2C gene deletion, these cells express inhibitory 

KIR2DL for self HLA class I ligands and activating KIR2DS2, KIR2DS4 and KIR3DS1 
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in some instances. Conversely, cytokine-induced ‘memory-like’ NK cells, which may 

be distinct from adaptively expanded NK cell populations, express NKG2C, CD94, 

NKG2A and CD69 receptors and tend to lack CD57 (Cerwenka and Lanier, 2016, 

Romee et al., 2012).  

 

1.1.10 Natural Killer cells and vaccination 

Evidence thus far suggests that there is a mechanism for induction of ‘memory-like’ 

NK cells after vaccination which resembles the pre-activation of NK cells by cytokines 

such as IL-12, IL-15 and IL-18. These ‘memory-like’ NK cells may have enhanced 

responsiveness to CD4+ T cell derived IL-2; moreover, IL-2 production is also 

enhanced post-vaccination (Figure 1.2) (Horowitz et al., 2012b, Long et al., 2008, He 

et al., 2004, O'Leary et al., 2006, Cooper et al., 2009). This recall antigen-induced IL-

2-mediated activation may prove to be valuable in enhancing NK cell anti-pathogen 

effector function after vaccination. Horowitz et al. (2010) have shown that CD69, an 

early activation marker, CD107a a degranulation marker, IFN-production and 

perforin release by NK cells were all enhanced following vaccination with inactivated 

rabies vaccine in an antigen-specific T cell and IL-2-dependent manner (Figure 1.2). 

These NK cells responded faster than CD8+ T cells following re-exposure to rabies 

antigens and secreted most of the IFN-within the first 24 hours.  Similar NK cell 

recall potentiation has been observed in response to several different vaccines, 

including the RTS,S/AS01 malaria vaccine, Bacillus Calmette-Guérin (BCG), 

Hepatitis B (HB) and influenza  vaccines (He et al., 2004, Long et al., 2008, Evans et 

al., 2011, Horowitz et al., 2012a). However, this recall response is heavily influenced 

by the HCMV infection status of the vaccine recipient (Nielsen et al., 2015, Goodier et 

al., 2016). This raises the possibility that the NK response to vaccination may be very 

different in the UK (where HCMV prevalence is relatively low) compared to countries 

(such as The Gambia) where HCMV infection is almost universal and occurs very 

early in life (Goodier et al., 2014). Thus, in this thesis I present an investigation of NK 

cell responses to trivalent influenza vaccine and diphtheria, tetanus, pertussis and 

polio virus vaccination in The Gambia.  
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Figure 1.2: Recall NK cell activation in adaptive immune responses. 

Pathogen invasion during primary infection stimulates PRR of antigen presenting cells (APC) 

to prompt innate signals (cytokines & receptors activation) to induce a limited NK cell 

activation (left of dotted line). In an adaptive immune response, re-exposure to a similar 

pathogen simultaneously induces antigen presenting cell signals and a potent antigen-specific 

CD4+ T cells IL-2 secretion, leading to a rapid and robust ‘adaptive’ NK cell secretion of 

effector molecules, killing of transformed target cells and proliferation. Image from (Horowitz et 

al., 2012b)  
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1.1.11 A Knowledge gap in vaccine responses 

Non-heritable environmental influences on the human immune system are emerging 

as a key factor driving immune response heterogeneity including differential vaccine 

responses (Brodin et al., 2015). In particular, chronic infections like HCMV infection 

are known to drive not only maturation and differentiation of NK cells but also of other 

immune cells. Variation in vaccine efficacy and effectiveness in developed and 

developing countries is emerging as a new and important area of research (Lamberti 

et al., 2016), as it is becoming apparent that these variations in efficacy can partially 

be attributed to the heterogeneity of the immune system of these different 

populations. Differences in immune phenotype and function could in turn be attributed 

to different environmental exposure to acute and chronic infections. 

Although vaccination has saved more lives than any other medical intervention, 

millions of children still die of vaccine preventable diseases, particularly in sub-

Saharan Africa (Feikin et al., 2016, Lamberti et al., 2016).  This highlights the gap of 

knowledge that still exists on understanding how vaccines work and how to improve 

the efficacy of the current expanded programme of immunization. Also, with the 

emerging of contagious diseases like Zika and Ebola viruses, as well as the 

persistence of endemic infectious diseases like malaria and tuberculosis, we need to 

develop better mechanisms of activating and regulating T cells, B cells and other 

innate immune cells like natural killer cells, to provide effective initial and late 

immunological responses that can protect different populations.   

We still do not fully understand how natural killer cells coordinate with other immune 

cells in protective responses generated by vaccination, and how this varies between 

populations. Understanding the genotypic and phenotypic differences within the 

natural killer cell population and also between different human populations will 

enhance our abilities to develop better vaccines in order to save lives and improve 

health. This is particularly important in developing countries like The Gambia, where 

many children still die of vaccine preventable diseases and there is a high burden of 

chronic infections, including HCMV.  
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1.1.12 Aims of this research project 

The aims of this Ph.D. project were to characterise natural killer cell genotype, 

phenotype and function in an African (Gambian) population, where there is a high 

burden of human cytomegalovirus infection and to investigate how this influences 

natural killer cell function after vaccination.  

Specifically, the following objectives were studied: 

1. I investigated how natural killer cells differentiated and matured with 

increasing age in a Gambian cohort (Chapter 3). I hypothesised that natural 

killer cell phenotype and function would change with increasing age.  

2. I evaluated natural killer cell function following a single vaccination with 

trivalent influenza vaccine immunization, with responses followed up to 24 

weeks post vaccination (Chapter 4). I hypothesised that natural killer cell 

function would be potentiated after primary vaccination in a CD4+ IL-2 

dependent and B cell antibody dependent manner. 

3. Finally, I examined the role of natural killer cells after secondary booster 

vaccination with diphtheria, tetanus, pertussis and poliovirus vaccine with NK 

cells responses followed up to 4 weeks after boosting (Chapter 5). I 

hypothesised that natural killer cell function would be enhanced post booster 

vaccination through T and B cell responses. 
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2.1 INTRODUCTION 

The aim of my Ph.D. was to characterise Natural Killer (NK) cell genotype, phenotype 

and effector function in Gambians, particularly focusing on natural killer cell effector 

function after vaccination. For this purpose, four different studies were conducted 

during the period January 2012 to March 2016.  

Initially, as described in Chapter 3, I investigated in detail the phenotypic 

differentiation of natural killer cells and related this to their functionality, to the 

presence of an NK cell receptor gene deletion and to infection with human 

cytomegalovirus. The data presented in this study were derived from 191 individuals, 

between the ages of 1 to 49 years, resident in the villages of Keneba, Manduar, and 

Kantong Kunda, in The Gambia. Based on the observation of a high frequency of a 

deletion allele for the activating NK cell receptor, NKG2C in this study, we extended 

these observations to further genotype 1485 individuals from the Keneba Biobank, 

between the ages of 1 to 88 years.  

In Chapter 4, the role of natural killer cells in primary vaccine-induced responses 

using 2012-2013 seasonal trivalent influenza vaccine (TIV) was investigated in 68 

subjects from Keneba, Manduar, and Kantong Kunda, The Gambia. Because of the 

strong impact of age and HCMV infection on NK cell function observed in Chapter 3, 

this vaccination study was stratified into three age-defined groups. Additionally, the 

impact of giving a booster (secondary) vaccination in enhancing NK cell responses 

was investigated in children.  

Subsequently in Chapter 5, I investigated the role of NK cells in booster vaccination 

using the ‘Repevax’ booster vaccine containing Diphtheria, Tetanus, Pertussis and 

inactivated Poliomyelitis virus (DTPiP).  

Thus, all of the samples used in these studies were collected in The Gambia, 

specifically in Kiang West, Lower River Region of The Gambia. However, the 

samples for the ‘Repevax’ booster study were collected from Sukuta, Kombo North 

District, West Coast Region, The Gambia. 
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2.2 THE STUDY POPULATION 

The Republic of The Gambia is a sub-Saharan African country in West Africa. It is 

bordered by Senegal on three sides and on the western side by the northern Atlantic 

Ocean. The population of The Gambia was 1,967,709 as of 2015, with a rural 

population of 40.4% and an urban population of 59.6% (The United States Central 

Intelligence Agency, 2016). 

Most of the data presented in Chapter 3 and Chapter 4 were collected from the Kiang 

West Longitudinal Population Study Cohort (Hennig et al., 2015). This cohort consists 

of 36 villages with a population size of about 14 000 people as shown in Figure 2.1. 

This population comprises 79.9% Mandinka, 16.2% Fula, and 2.4% Jola ethnicities. 

The Kiang West Demographic Surveillance System captures all inhabitants of this 

region every three months. All residents of this region are given a specific West Kiang 

number that is used to identify the person and also track their movement within this 

region or outside the specified demographic zone (Hennig et al., 2015). It is through 

this system that the potential list of study participants of any study in the area is 

generated using the specific study criteria (based on specified inclusion and exclusion 

characteristics).  

With regards to the ‘Repevax’ booster vaccination study, a demographic surveillance 

system was not available in Sukuta, therefore, potential study participants were 

recruited through a local youth organization called ‘Service for Peace’ and through 

door-to-door compound visits within the area. Sukuta is a peri-urban town of Kombo 

North District and forms part of the 9 districts of Brikama Area Council (Figure 2.2). 

This district is populated by 344,756 people. Sukuta is predominantly of Mandinka 

ethnicity (The Gambia Bureau of Statistics, 2013).  
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Figure 2.1: Map of West Kiang, Lower River Region, The Gambia.  

District of West Kiang showing the locations of Keneba, Manduar, and Kantong Kunda 

villages. (Picture taken from Google map image). 
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Figure 2.2: Map of Sukuta, Kombo North District, West Coast Region, The Gambia.  

This map indicates the location of Sukuta and MRC Unit The Gambia, Fajara. (Picture taken 

from Google map image). 
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2.3 ETHICAL APPROVALS 

 

The London School of Hygiene & Tropical Medicine Ethics Committee, The MRC Unit 

The Gambia Scientific Coordinating Committee (SCC) and The Gambia Government/ 

MRC Joint Ethics Committee all gave approval for each of the studies presented in 

this thesis. Each study is identified through the SCC number below: 

I. SCC number: 1269, Immune correlates of breakthrough infections of HBV 

after vaccination, approved on the 10th of May 2012 (Chapter 3). 

II. SCC number: L2015.17, Control of CMV infections and NK cell receptor 

genotypes in West Kiang residents (adjunct to L2012.44 Exome variation in 

West Kiang residents; SCC1185, L2010.97 and L2012.31 (Keneba Biobank); 

SCC1269:  Immune correlates of breakthrough infections of HBV after 

vaccination, approved on the 8th of June 2015 (Chapter 3). 

III. SCC number: 1309, Age-related alterations in natural killer cell function after 

influenza vaccination, approved on the 31st of December in 2012 (Chapter 4). 

 
IV.  SCC number: 1372, Does booster vaccination enhance IL-2 driven NK cell 

responses, approved on the 16th of May 2014 (Chapter 5). 

 

The Gambia Medicines Board also gave approval for the importation of the two 

vaccines used in the vaccination studies, see Appendix XVII and XX for the approval 

letters. The approval letters for all studies are attached on Appendix XII to XL at the 

end of the thesis. 

Additionally, before each study started, a village meeting was held with the Alkalos 

(local name for the head of the village) and village elders to inform them of the study 

aims and intentions. The samples collected and the different laboratory techniques 

performed to investigate our hypotheses are set out below. 
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2.4 PERIPHERAL BLOOD MONONUCLEAR CELL 

SEPARATION 

In the two vaccination studies presented in Chapters 4 and 5, 30 ml of blood from 

adults and 5 ml from children, collected in sodium heparinised (BD vacutainer, 

Oxford, UK) tubes, were layered onto 15 ml and 6 ml of Lymphoprep TM (Axis-Shield, 

Stockport, UK), respectively, to separate peripheral blood mononuclear cells (PBMC), 

using density gradient centrifugation. The tubes were spun for 30 minutes at 1800 

revolutions per minute (rpm) at 22°C, with zero brake. Two to four ml of plasma were 

aliquoted and stored at -80°C for future antibody or cytokine analysis by ELISA or 

multiplex immunoassay or for autologous plasma cell culture. PBMC were transferred 

into fresh 50 ml Falcon tubes and washed with RPMI PSG (RPMI 1640 containing 2 

mM L-glutamine, 100 IU/ml of Penicillin and Streptomycin (Gibco® Life Technology, 

ThermoFisher Scientific, USA)), centrifuging at 1600 rpm for 7 minutes. Supernatants 

were then discarded and the cells re-suspended.  Twenty ml of medium was added 

for adult samples or 5 ml of RPMI for samples from children and cells were filtered 

through a 70 µm nylon cell strainer (BD Falcon cell strainer, California, USA), 5 ml of 

RPMI was used to wash the filter. Cell counting was then performed after diluting the 

suspension 1:1 in Trypan Blue (0.4% Sigma-Aldrich, USA).  Following the removal of 

PBMC for ex vivo staining, the remaining PBMC were cryo-preserved in freezing 

medium (5% DMSO in Fetal Calf Serum, FCS) at -80oC (1 X 107 PBMC per vial) 

overnight in Nalgene cryo-boxes containing isopropanol (Mr. Frosty™ Freezing 

Container, Thermo-Fisher Scientific Inc, Waltham, USA) before they were transferred 

into liquid nitrogen. These cells were at the end of the week transported from the 

Keneba field station to the main MRC Laboratories at Fajara using a Liquid Nitrogen 

(LN2) dry shipper and were stored in the Natural Killer cell project liquid nitrogen 

dewar. 

Ex vivo staining is defined as PBMC that have been isolated and stained without in 

vitro stimulation. And in vitro staining is defined as PBMC that have been cultured in 

vitro with various exogenous stimuli for 5 or 18 hours before staining, as appropriate. 

 

 



MATERIALS & METHODS  CHAPTER 2 

66 | P a g e  

 

 

2.5 RECOVERY OF CRYOPRESERVED PBMC 

PBMC vials were transported from the LN2 room to the lab using a 'Mr Frosty™' 

container cooled to -80ºC or on dry ice, where available. Following wiping of vials with 

70% ethanol to decontaminate exposed surfaces, 20 ml RPMI (supplemented with 

1%v/v Penicillin, Streptomycin and L-Glutamine solution (PSG), (Gibco, Paisley, UK), 

pre-warmed in a 37ºC water-bath was used to quickly thaw the PBMC using a 1 ml 

pipette, the remaining vials being kept on dry ice or in the Mr Frosty until required. 

Cells were washed by centrifugation at 1700 rpm for 10 minutes. The supernatant 

was discarded to remove the freezing medium containing dimethyl sulfoxide (DMSO). 

Then another 20 ml of RPMI (PSG) with 200 µl of FCS was added and re-spun at 

1700 rpm for 7 minutes. Following this spinning, the supernatant was discarded and 

the cells re-suspended in 3 ml of 0.5% FCS RPMI in a 4 ml sterile capped tube 

(Falcon polypropylene, USA). A 1:1 dilution of samples with Trypan Blue was then 

used to count the cells. After counting the samples were spun at 1500 rpm for 10 

minutes and the cells re-suspended at a concentration of 2 X107 PBMC/ml in the 

required final volume. The PBMC were allowed to rest for 30 minutes before the in 

vitro T cell assay, while for the in vitro NK cell assays, the cells were rested for at 

least 3 hours prior to stimulation.  

 

2.6 IN VITRO PBMC CULTURE CONDITIONS 

All NK cell assays were conducted in a final volume of 100 µl per well with 2.5 X105 

PBMC per well, whereas, the T cell assays were conducted in a final volume of 200 µl 

with 5 X105 PBMC per well. All assays were carried out in RPMI containing 10% 

pooled AB serum (Sigma-Aldrich, USA) or 10% autologous plasma. The precise 

PBMC culture conditions are described in each specific chapter but were generally as 

follows: Medium alone: No antigen 0.1% FCS RPMI; Target antigen: vaccine/target 

antigen in 0.1% FCS RPMI; Low Concentration of Cytokines (LCC) 12.5pg/ml 

recombinant rIL-12 (Peprotech, London, UK) + 10ng/ml rIL-18 (R&D systems, 

Abingdon, UK) in RPMI (+PSG) 1% FCS; High Concentration of Cytokine (HCC) 

5ng/ml rIL-12 + 50ng/ml rIL-18 in RPMI (+PSG) 1% FCS. 
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In order to assess vaccine responses, I added a low concentration of cytokine (LCC) 

of rIL-12 and rIL-18 to the vaccine antigens. This low concentration cannot by itself 

activate NK cells but compensates for the lack of PAMPs in the purified subunit 

vaccine antigens; PAMPs are required to induce production of accessory cytokines 

(such as IL-12 and IL-18) by antigen presenting cells and these cytokines are 

essential for NK activation.  

In order to assess the functional capacity of the NK cells, we cultured the PBMC 

overnight for 18 hours at 37⁰C, 5% CO2. Generally, the functional characteristics of 

the NK cells were assessed by using CD107a as a degranulation marker, CD25 as a 

proliferation marker and IFN- as cytokine production potential.  

In assessing NK cell cytoxicity, we used CD107a, which is an endosomal marker that 

fuses with cell membrane during degranulation to release granules containing 

perforin and granzymes essential in cytotoxicity (Al-Hubeshy et al., 2011, Aktas et al., 

2009). As CD107a is expressed on the surface it is used as a measure for 

degranulation. However, because it is known that CD107a can be recycled on the cell 

surface of NK cells, we added anti-CD107a antibodies at the beginning of the culture 

to allow for the cumulative quantification of CD107a degranulation (Betts et al., 2003). 

Resting NK cell express low levels of CD25 (IL-2Rα), this is a high affinity receptor for 

IL-2 and functions in combination with CD132 (common  chain) and CD122 

(common β chain) which are constitutively expressed on resting NK cells. Therefore, 

increased expression of CD25 signifies NK cell activation and also increased 

sensitivity to IL-2.  

IFN- is an important cytokine essential in NK cell responses to infection and 

tumours. It helps in inducing the activation of macrophages (phagocytes) and also 

Th1 immune responses. As it is secreted from the NK cell, I used Brefeldin A and 

Monensin to block secretion and allow the cytokine to accumulate; I then stained the 

cells for intracellular IFN-γ. Brefeldin A reallocates intracellular proteins from 

cis/medial Golgi to the endosomal reticulum, while Monensin prevents protein 

secretion by blocking Golgi transmembrane protein trafficking from the endoplasmic 

reticulum to the Golgi (Schuerwegh et al., 2001). This mechanism of blocking allows 

the accumulation and detection of IFN- in the NK cells.  
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2.7 EX VIVO STAINING OF PBMC FOR FLOW 

CYTOMETRY  

After counting, the PBMC were washed by spinning at 1600 rpm for 10 minutes at 

22°C and re-suspended at 2 X 107 cells/ ml. Fifty µl of the cell suspension containing 

1 X 106 cells were taken from each individual PBMC sample for staining for each 

antibody panel tested in flow cytometry. The specific conditions are given in the 

respective chapters of the thesis.  

The general, the ex vivo staining procedure is as follows: 50 µl of cell suspension per 

sample was split into replicate wells on a 96 well U-bottomed tissue culture plate and 

then washed in FACS buffer (0.1% Foetal Calf Serum (FCS), 5mM EDTA, pH8 and 

0.05% Sodium Azide). Specific combinations of antibodies were added to each well 

according to the panel specifications and cells were stained for 30 minutes. 

Following staining, the cells were washed to remove excess unbound antibodies by 

spinning at 1800 rpm for 5 minutes and fixed with 75 µl of Cytofix/Cytoperm (BD 

Biosciences, California, USA) for 15 minutes in the dark at room temperature. The 

Cytofix buffer was washed off using 175 µl of 1X Perm wash (BD Biosciences, 

California, USA) by centrifugation at 2000 rpm for 5 minutes. The supernatant was 

discarded and cells re-suspended. Cell surface panels were re-suspended in 300 µl 

of FACS buffer and reserved for acquisition. Intracellular staining panels were further 

stained, for 15 minutes in the dark at room temperature, to detect intracellular 

cytokines. Following incubation, the plate was again washed in 1X Perm wash and 

cells re-suspended in 300 µl FACS buffer and transferred from the microtitre plate to 

1.2 ml alpha micro-tubes (Alpha Laboratories Ltd, Hampshire, UK). The samples 

were acquired within 2-3 days post staining.   

For staining after in vitro culture, the precise antibody panels used are detailed in the 

individual results chapters.  

 

2.8 COMPENSATION OF FLOW CYTOMETERS 

To control and monitor the flow cytometer analyser settings, daily alignment beads 

were run before acquiring the stained samples. Compensation beads were prepared 
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weekly, by adding 2 drops of the positive and negative BD comp beads (BD 

Biosciences, California) into 400 µl of FACS Buffer. Then, 50 µl of the bead 

suspension was added to each of the 8 single fluorochrome tubes. One µl of each 

individual fluorochrome-conjugated anti-human monoclonal antibody was added to a 

separate tube and incubated at 4⁰C for 15 minutes. Subsequently, the beads were 

washed by centrifugation at room temperature for 5 minutes at 1800 rpm. These 

beads were re-suspended in 300µl FACS Buffer and were used to compensate the 

analysers.  PBMC were acquired in The Gambia by means of either a Cyan™ ADP 

(Dako) using Summit™ Software or LSRIII® Fortessa (BD Biosciences, Oxford, UK) 

flow cytometer using FacsDiva® software, and in London we acquired using LSRII® 

(BD Biosciences, Oxford, UK), flow cytometer using FacsDiva® software.  

Analysis was performed using FlowJo® (TreeStar, USA). FlowJo analyses were done 

by using fcs files. For each file a singlet gate was drawn to select only single cell data 

using forward scatter height (FSC-H) against forward scatter area (FSC-A) (Figure 

2.3A). This step allows the exclusion of clumps or doublets or triplets or large number 

of cells that might mislead the interpretation of the result. Then the singlets are used 

to create the lymphocyte gate, using FSC-A on the x-axis and side scatter area (SSC-

A) on the y-axis. The FSC-A indicates cell size while SSC-A indicates the relative 

cellular granularity (cell complexity). This lymphocyte gating strategy also allows the 

differentiation of live and dead cells as it excludes dead cells with lower FSC and 

higher SSC. Because of the limited number of channels per panel, this gating 

strategy allowed us to gate out dead cells without having to use a dead cell marker 

(Figure 2.3).  

Using the lymphocyte gate, NK cells were defined as CD3-CD56+ lymphocytes 

(Figure 2.3C). In the literature, NK cell CD56bright and CD56dim subsets are defined 

as CD56+ and CD16 receptors, however, it has been observed that this strategy of 

gating (using CD16) is not reliable because in vitro NK cell stimulation can lead to 

downregulation of CD16 making it difficult to track the cell population of interest. So 

the strategy I used in this thesis, to identify NK cell CD56bright and CD56dim subsets 

was using any of the following strategy where it was appropriate: (1) CD56 vs CD3 

using LSRII (Chapter 3); (2) CD56 vs SSC-log using the Cyan (Chapter 4); (3) CD56 

vs FSC-H using the LSRIII Fortessa (Chapter 5) to distinguish the CD56bright and 

CD56dim NK cell subsets. Where less than 100 events were obtained in the NK cell 

gate, that sample was excluded from the analysis. Also where less than 50 
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CD56bright events were obtained, this population was excluded from the analysis of 

the functional data. 

The CD56bright and CD56dim NK cells can be separated based on their CD56 

expression, CD56bright express more CD56 than CD56dim NK cells. For further 

maturation analyses, CD56bright NK cells do not express CD57 (a late differentiation 

marker), whilst CD56dim NK cells can be identified into three subsets based on CD57 

expression. Creating CD56dimCD57-, CD56dimCD57intermediate (or int) and 

CD56dimCD57+ NK cells (Figure 2.3D). 

NK cell functional activation was measured by gating CD56 against CD107a for 

degranulation (Figure 2.3I), CD56 against CD25 (Figure 2.3G), and CD56 vs IFN- 

(Figure 2.3H). 

 

Figure 2.3: General gating strategy used in this thesis. 

(A) Singlet gate, (B) lymphocyte gate, (C) NK cell gate, (D) CD57 NK subsets, (E) NKG2A 

expression, (F) NKG2C expression and (G) CD25 (H) IFN-γ and (I) CD107a expression. 

Representative dot plots from participant S1 visit 1 (29 years) recruited from the influenza 

vaccination study. 
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2.9 ENZYME-LINKED IMMUNOSORBENT (ELISA) 

ASSAYS 

2.9.1 BioELISA cytomegalovirus kit 

A commercially available kit was used to measure HCMV-pp65 antigen specific-IgG  

in the plasma samples from the individuals studied in Chapter 3 and 4 (Biokit, 

Barcelona, Spain) (BIOKIT, 2012). In brief, human IgG antibodies against CMV were 

detected in both plasma and serum. A 96 well plate was pre-coated with CMV pp65 

antigens and 100 µl of diluted samples and controls were incubated for 1 hour at 

37⁰C to allow the binding of CMV specific antibodies. Plasma samples were initially 

diluted 1:500 and repeated at higher (1:1000) or lower (1:100) dilution where samples 

were out of range on the standard curve.  After sample incubation the plate was 

washed 3X with 300 µl of washing buffer (Phosphate buffer containing 1% Tween 20 

and 0.01% Thimerosal). 

One hundred µl of rabbit anti-human IgG antibody conjugated to peroxidase was 

added in all wells except the blank well and incubated for 30 minutes at 37⁰C to 

detect bound anti-CMV IgG. Excess, unbound, conjugated antibodies were removed 

by washing 3X with 300 µl of wash buffer. One hundred µl of the substrate TMB 

(3,3′,5,5′-Tetramethylbenzidine) solution was then added in each well including the 

blank well and was allowed to develop for 10 minutes, the reaction being stopped 

with 100 µl of 1N sulphuric acid. The Optical Density (OD) values were read at 450nm 

using the Dynex Technology; MRX TC II Dynex Technologies (USA) ELISA plate 

reader. Microsoft Excel (Microsoft 2007) was used to plot a linear graph using the OD 

calibrators standard curve on each plate and to calculate the unknown concentration 

of HCMV IgG plasma antibodies. 

 

2.9.2 Epstein-Barr Virus ELISA kit 

Levels of Epstein-Barr Virus (EBV) antibodies were monitored in our study cohorts 

using a commercially available kit to measure IgG specific for Epstein-Barr Virus 

nuclear antigen 1 (EBNA-1) (Euroimmun, Lubeck, Germany). These IgG antibodies 
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are only detected late in infection and remain at stable levels in serum long after 

infection (Euroimmun, 2014). The procedure is briefly described below:  

The plates were commercially pre-coated with EBNA-1 antigen and 100 µl of the 

calibrators, positive and negative controls and the diluted samples were added into 

their respective wells according to the plate layout. The plates were then incubated 

for 30 minutes at room temperature (+18⁰C to +25⁰C). Following the incubation, the 

plates were washed three times using 300 µl of the kit wash buffer (1X dilution). One 

hundred µl of enzyme conjugate (peroxidase-labelled anti-human IgG) was then 

added to each well and the plate was incubated for 30 minutes at room temperature. 

After washing 3 times with 300 µl of wash buffer as above, 100 µl of 

chromogen/substrate (TMB/H2O2) solution was added to each well and the colour 

was allowed to develop for 15 minutes at room temperature. The reaction was 

stopped by adding 100 µl of stop solution (0.5M sulphuric acid). The photometric 

measurement was done at 450nm wavelength using the MRX TC II Dynex 

Technologies (USA) ELISA plate reader, in London. Microsoft Excel (Microsoft 2007) 

was used to plot a linear graph using the known OD calibrators on each plate and to 

calculate the unknown concentration of EBV IgG antibodies. 

 

2.10 NKG2C RECEPTOR GENOTYPING 

In both the natural killer maturation (Chapter 3) and influenza vaccination (Chapter 4) 

studies, genotyping was performed on each subject to detect the presence or 

absence of the gene encoding NKG2C in extracted DNA samples according to the 

method of Miyashita et al (Miyashita et al., 2004). 

DNA extraction was done using Promega DNA extraction kit (Promega Corporation, 

Madison, USA) (Promega Corporation, 2016). Two hundred µl of whole blood was 

stored at -80ºC until DNA extraction. Concisely, the whole blood was thawed for 15 

minutes, then transferred into pre-labeled sterile 1.7ml PCR microtubes. Six hundred 

µl of cell lysis solution was added and mixed. The blood was incubated for 10 minutes 

at room temperature. The tube was spun at 16 000xg (gravitational force) for 40 

seconds at room temperature. The supernatant was discarded without disturbing the 

pellet. Subsequently, 500 µl of cell lysis solution was added and incubated for 10 

minutes then spun at 16 000xg for 40 seconds and the supernatant discarded as 

above. Additionally, 200µl of nuclear lysis solution added to the microtubes, the 
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pipette was used to dissolve the pellets by pipetting down and up about 5-6 times. If 

clumps were still visible the tubes were left at room temperature for about 1 hour and 

30 minutes to allow the clumps to dissolve. Then, 100 µl of nuclear lysis solution was 

added if the clumps persisted. One hundred µl of protein precipitation solution was 

added to the nuclear lysate and mixed by vortexing for 10-20 seconds. After this, the 

tube was spun for 3 minutes at 16000xg at room temperature.  

Subsequently, the supernatant was transferred after spinning in fresh tubes 

containing 200ul of 70% isopropanol, then mixed until the thread-like strands were 

visible. The tube was spun again at 16000xg for 2 minutes. The supernatant was 

discarded and 200ul of 70% ethanol was added to the tubes and mixed gently by 

inverting the tube several times to wash the DNA pellet and the side of the microtube. 

Finally, the tube was spun at 16000xg for 2 minutes, the supernatant was discarded, 

the tube was inverted for 10-15 minutes to remove excess ethanol and the DNA was 

suspended by addition of 20µl of DNA rehydration solution to the tubes. The DNA 

was stored at 2-8ºC until NKG2C assay was done. 

A Phusion® High-Fidelity Polymerase Chain Reaction (PCR) kit was used to amplify 

the wild type NKG2C gene or the deletion mutant using sequences internal to the 

gene or in 5' and 3' flanking regions, respectively. A master mix of PCR reagents 

were prepared (Table 2.1). For each sample <100ng/ml of DNA was used for the 

PCR reaction. The primers for detection of wild type NKG2C genotypes were 

NKG2C200_F (5'-AGTGTGGATCTTCAATGATA-3') and NKG2C200_R (5’-

TTTAGTAATTGTGTGCATCCT-3’), yielding a 200bp band product. The primers for 

detecting the NKG2C deletion were BREAK411_F 

(5'ACTCGGATTTCTATTTGATGC3') and BREAK411_R 

(5'ACAAGTGATGTATAAGAAAAAG3'), yielding a 411bp band product. 
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Table 2.1: NKG2C receptor genotyping PCR master mix: 

The reagent content of the Phusion® kit master mix reaction for NKG2C genotyping. 

PHUSION (HF) 1x (µL) per sample 

Buffer 5X (Red cap) 4.0 
dNTPS 10mM 0.4 
PF201 (10uM) 0.5 
PR201 (10uM) 0.5 
PF411 (10uM) 1.0 
PR411 (10uM) 1.0 
TAQ DNA polymerase 0.1 
Total  7.5 

 

The reactions were amplified on an AB Applied Biosystems VeritiTM Thermal Cycler 

using the following temperature and time specifications: Step 1 cycle X10: 95⁰C for 3 

seconds, 94⁰C, 65⁰C & 72⁰C each 30 seconds for annealing. Step 2 cycle X26: 94⁰C, 

55⁰C & 72⁰C each for 30 seconds and 72⁰C for 10 seconds and 10⁰C maintained at 

infinity. Subsequently, the samples were run on a 1.5% agarose gel for 50 minutes at 

120 Volts. NKG2C homozygous gene deletion had 411 bp (base pairs) band only and 

homozygous NKG2C gene had 200 bp band only, whilst heterozygous NKG2C 

donors had both bands of 200 bp and 411 bp. The image was acquired using 

GeneSnap software. 

2.11  STATISTICAL ANALYSIS 

Non-parametric Wilcoxon matched paired tests were performed to analyse paired 

sample data within the study groups and the Kruskal-Wallis test was used for 

unpaired comparisons between groups. Linear trend analyses were done using 

repeated measure ANOVA. GraphPad Prism (GraphPad Software 6) was used to 

prepare the diagrams and statistical analysis. Significant differences between groups 

were defined as having a p value of *p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.   
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3   CHAPTER 3:  

RAPID NATURAL KILLER CELL 

MATURATION WITH AGE IN A GAMBIAN 
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INFECTION  
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3.2 INTRODUCTION 

Natural Killer (NK) cells are effector lymphocytes that are essential in the control of 

viral infections and tumour cells (Lanier, 2005, Kiessling et al., 1975). The phenotype 

of these cells is known to change with age. NK cells differentiate from less mature 

CD56bright NK cells to more mature CD56dim NK cells. CD56bright cells express c-

kit and high levels of the C-type lectin-like receptor CD94/NKG2A, CD62L and natural 

cytotoxicity receptors (NCR) NKp30 and NKp46, and lack the expression of KIR, 

CD16 and CD57 receptors/ molecules (Bjorkstrom et al., 2010, Cooper et al., 2001, 

Juelke et al., 2010, Lopez-Verges et al., 2010). These cells constitutively express 

high levels of cytokine receptors that make them highly responsive to exogenous 

cytokines. On the contrary, the more mature CD56dim NK cells express CD16 and 

variable levels of NKG2A, KIR, and NCRs, despite this variability they still preserve 

their ability to release IFN- and have greater cytotoxic potential (Cooper et al., 2001). 

The variability of expression of these receptors on CD56dim NK cells correlates with 

the acquisition of CD57 on their surface (Bjorkstrom et al., 2010, Lopez-Verges et al., 

2010, Juelke et al., 2010). CD56dim NK cells lacking expression of CD57, that is 

CD56dimCD57- NK cells, resemble CD56bright NK cells both in phenotype and 

function (White et al., 2014). In contrast, CD56dimCD57+ NK cells have lower 

proliferative capability with shorter telomeres and reduced competence to secrete 

IFNNonetheless, these cells are highly proficient at degranulation via their 

CD16/FcRIII antibody receptors (Bjorkstrom et al., 2010, Lopez-Verges et al., 2010, 

White et al., 2014). CD57 expression is highly correlated with the acquisition of 

NKG2C activating receptors on NK cells, but their developmental and functional 

association is still poorly comprehended (Saghafian-Hedengren et al., 2013, Wu et 

al., 2013). 

Inflammation is believed to make an important contribution to the process of NK cell 

differentiation, specifically, during infections and in conditions which result in loss of 

immune homeostasis. Nonetheless, the mechanism whereby inflammatory pathways 

influence NK cell differentiation in the long-term, is still not fully elucidated (Hazeldine 

and Lord, 2013). This interpretation is based on evidence showing that CD57 (a 

marker of late differentiation) could be induced on NK cells in culture with high 

concentrations of IL-2 (Lopez-Verges et al., 2010).  
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More significantly, however, NKG2C+ NK cell populations are expanded in human 

cytomegalovirus (HCMV) seropositive individuals and when NK cells are co-cultured 

with HCMV infected fibroblasts (Guma et al., 2004, Guma et al., 2006b, Mela and 

Goodier, 2007, Tanaka et al., 2009). This process is mediated, at least in part by the 

stabilisation of the CD94-NKG2C ligand HLA-E on the cell surface by HCMV encoded 

peptides (Borrego et al., 1998, Djaoud et al., 2016, Rolle et al., 2014). Furthermore, 

other studies have shown that during acute HCMV infection, CD57+NKG2Chi NK 

cells are highly expanded (Lopez-Verges et al., 2011) and this has also been seen in 

people co-infected with HCMV and other viruses including Epstein Barr virus (EBV) 

(Saghafian-Hedengren et al., 2013), hantavirus (Bjorkstrom et al., 2011), hepatitis 

viruses (Beziat et al., 2012a) and chikungunya virus (Petitdemange et al., 2011). 

Importantly, however, cytokines including IL-15 can contribute to NK cell expansion in 

response to HLA-E expressing or HCMV-infected target cells (Guma et al., 2006a, 

Beziat et al., 2012b). 

In Caucasians, NK cell differentiation increases gradually with increasing age. It has 

also been observed that there is significant variability in NK cell phenotype and 

function with increasing age in these populations, comparing cord blood, young 

children, adults and the elderly (Almeida-Oliveira et al., 2011, Hayhoe et al., 2010, Le 

Garff-Tavernier et al., 2010, Lutz et al., 2005, Sundstrom et al., 2007). Young children 

have greater proportions of CD56brightCD16- and NKG2A+NKG2C- NK cells 

compared to adults, and younger adults have increased proportions of these cells 

compared to the elderly (Almeida-Oliveira et al., 2011, Hayhoe et al., 2010, Le Garff-

Tavernier et al., 2010, Lutz et al., 2005, Sundstrom et al., 2007). Likewise, expression 

of NCR+ and NKG2D+ NK cell receptors is reported to decline with increasing age, 

associated with diminished expression of CD62L and gain of CD57 (Almeida-Oliveira 

et al., 2011, Bjorkstrom et al., 2010, Juelke et al., 2010, Sundstrom et al., 2007). NK 

cell cytokine secretion also declines with increasing age, whereas cytotoxic capacity 

is maintained (Hazeldine and Lord, 2013, Le Garff-Tavernier et al., 2010, Nogusa et 

al., 2012). On the other hand, little is known about the phenotypic and functional 

capacity of NK cells in older children and teenagers. 

The pathways through which NK cell differentiation is influenced by age are still 

unknown. In HCMV seronegative individuals receiving allogeneic haematopoietic 

stem cell transplant, the initial NK cell subsets that repopulate in circulation are the 

CD56bright or CD56dimCD94+ NK cells. CD57+ and KIR+ NK cells re-appear after 

around 12 months (Bjorkstrom et al., 2010, Della Chiesa et al., 2012). In contrast, 
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among HCMV seropositive donors who reactivate HCMV after transplantation, 

NKG2C+CD57+ NK cells can be identified within 3 months and the patient’s pre-

transplantation repertoire is restored within 6 months (Della Chiesa et al., 2013b). 

This indicates that HCMV infection is a substantial driver of NK cell differentiation 

(Della Chiesa et al., 2012, Foley et al., 2012b).  

The commonest cause of congenital infection is human cytomegalovirus, leading to 

sensorineural hearing loss and intellectual impairment (Dollard et al., 2007, Griffiths 

and Lumley, 2014). Worldwide about 0.7% of neonates are born with congenital 

HCMV infection. From these 13.5% and 12.7% have symptoms at birth and after 

follow-up, respectively. The awareness of HCMV infection worldwide is generally low 

both in developed and developing countries (Cannon et al., 2012). Additionally, 

HCMV infection is a common complication of transplantation, mostly, in 

haematopoietic stem cell transplantation. This can occur through the reactivation in 

the transplant recipient or through primary infection (Azevedo et al., 2015).  

The prevalence of HCMV infection may have severe consequences, especially, 

increasing the risk of acquiring additional infections, development of cancers or 

autoimmune diseases. Evidence indicates that NK cell phenotype and function could 

be altered by certain infections in people and that the extent of this may be 

determined by the occurrence of HCMV and other viruses. To better understand the 

ability of NK cells to adapt to HCMV and other infections across the lifespan and the 

consequences for NK cell functional differentiation, we performed detailed 

characterisation of NK cell phenotype and function in Gambian children and adults 

known to have a high burden of HCMV and other infections.  
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3.3 METHODS & MATERIALS 

3.3.1 Study subjects 

Study approvals were obtained from the ethics committees of The Gambia 

Government/Joint MRC Unit The Gambia and London School of Hygiene and 

Tropical Medicine. The first part of this chapter details a study of NK and T cell 

functional phenotype in relation to herpes infection and NKG2C genotype in 191 

study participants aged 1-49 years, recruited from the villages of Keneba, Manduar, 

and Kantong Kunda. Subsequently, NKG2C genotyping studies were extended to 

incorporate 1485 individuals extending across the age range (aged 1-88 years) 

recruited from the entire West Kiang District, in Lower River Region, The Gambia, 

including the above mentioned villages. 

Informed consent was obtained from all study participants, including 

parental/guardian consent from those under the age of 17 years. Anyone with 

pregnancy, or having an acute or chronic infection/ disease, or known to be HIV 

seropositive, was excluded from the study. Study participants’ plasma was assayed 

for IgG against HCMV (BioKit, Spain), tetanus toxoid (HOLZEL Diagnostika, Cologne, 

Germany), Hepatitis B surface antigen (DiaSorin, Vercelli, Italy) and Epstein Barr 

Virus nuclear antigen (Euroimmun, Germany). Subject characteristics are shown in 

Table 3.1. 

3.3.2 Hepatitis B surface Antigen ELISA 

Briefly, direct competitive sandwich assay technique was used to determine the 

amount of HBsAg specific antibodies in this cohort (DiaSorin S.p.A., Vercelli, Italy), 

the plate wells were pre-coated with human Hepatitis B surface Antigens (HBsAg), 

then the diluted samples and calibrators having anti-HBs antibodies were added and 

incubated for 2 hours at 37ºC then washed using a wash buffer. The enzyme tracer 

made of anti-human HBsAg conjugated to horseradish peroxidase (HRP) was added 

and incubated for 1 hour at 37ºC. This enzyme allowed binding of HBs specific 

antibodies still present in the well after the wash. Subsequently, the wells are washed 

and the chromogen/substrate was added for 30 minutes at room temperature, then a 

blocking reagent was added to stop the reaction and the plate read using 450nm 

wavelength on the ELISA plate reader. The calibrator OD values were used to 

prepare a standard curve which was plotted against known IU/L concentration 

(DiaSorin S.p.A., Vercelli, Italy). 
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3.3.3 Tetanus toxoid ELISA 

The HOLZEL Tetanus toxoid IgG ELISA kit was used to determine the amount of 

Tetanus-specific IgG in our samples (HOLZEL diagnostika, Cologne, Germany). 

Tetanus antigens were pre-coated on the plate surface of the wells. Then, the 

standards and diluted plasma samples were added into the wells to allow binding 

between the Tetanus-specific IgG antibodies in the plasma/ standards and Tetanus 

toxoid antigens on the plate. The plates were incubated for an hour at room 

temperature, then washed with 1X wash solution, in order to remove unbound 

antibodies. Subsequently, anti-human IgG peroxidase conjugate was added and 

incubated for 30 minutes. After washing as above, the TMB (3,3′,5,5′-

Tetramethylbenzidine) substrate solution was added and incubated for 20 minutes, 

allowing colour development in the wells. The reaction was stopped by adding a stop 

solution. The resulting OD values were measured at 450 nm wavelength. The known 

standard concentrations in IU/ml were plotted against the standard OD values to 

determine the unknown sample concentrations. 

 

3.3.4 Peripheral blood mononuclear cells (PBMC) preparation and 

culture 

PBMC were isolated by density gradient centrifugation (Histopaque, Sigma, UK), as 

described in Chapter 2. We analysed cells both ex vivo and after 18 hours cell culture 

with cytokines [5ng/ml rhIL-12 (Peprotec, London, UK) plus 50ng/ml rhIL-18 (R&D 

systems, Oxford, UK)] or K562 cells (an E:T ratio of 2:1) in 10% pooled AB serum 

(Sigma-Aldrich, USA). Anti-CD107a FITC-conjugated (BD Biosciences) was added 

throughout the PBMC culture. Brefeldin A and Monensin (BD Biosciences) were 

added after 15 hours. 

3.3.5 Flow cytometry 

PBMC were incubated with combinations of the following monoclonal antibodies: 

Panel 1: anti-CD3-V500, anti-CD94-FITC, anti-NKG2A-APC, anti-CD8-PeCy7, anti-

CD57-e450, and anti-CD16-APC-e780 (All Ebiosciences), anti-NKG2C-PE (R&D 

Systems), and anti-CD56-PeCy7 (BD Biosciences). Panel 2: anti-CD3-V500, anti-

CD4-PE, anti-CD45RA-APC-H7, anti-CD8-PeCy7, anti-CD27-FITC, anti-CD28-

PeCy7, and anti-CCR7-APC (All Ebiosciences), and anti-CD56-PeCy7 (BD 
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Biosciences). Panel 3: anti-CD45-FITC, anti-CD11c-PE, anti-CD19-PeCy5, anti-

CD123-efluor450, and anti-CD14-APCe780 (All Ebiosciences). Panel 4: anti-CD3-

V500, anti-CD57-e450, anti-CD25PE, and anti-IFN--APC-efluor780 (All 

Ebiosciences), anti-CD56-PeCy7, and anti-CD107a-FITC (both BD Biosciences). 

PBMC were acquired on an LSRII® flow cytometer using FacsDiva® software. And 

analysis was performed using FlowJo® (TreeStar).  

3.3.6 NKG2C genotyping 

Whole blood (200ul) was used for DNA extraction (Wizard genomic DNA extraction 

kit, Promega, UK) and NKG2C genotype was assayed by PCR using Phusion® High 

Fidelity PCR kits as described in Chapter 2 (New England Biolabs, UK) (Miyashita et 

al., 2004).  

3.3.7 Statistical analysis 

Statview and Stata version 13.1 and GraphPad Prism version 6 were used for 

statistical analysis. Cubic splines in linear regression models; p-values (F-test) and R-

squared values were obtained from these models, using a non-linear effects of age.  

ANOVA was used to assess responses of individuals of different genotype. Wilcoxon 

signed rank test was used to compare differences between NK cell subsets. 

 

3.4 RESULTS 

3.4.1 High rates of HCMV and EBV infection in the study 

population 

HCMV infection rates are high in Africa and therefore, as expected, only 4 of the 191 

individuals were HCMV seronegative; seronegative individuals were aged between 1 

and 3 years, suggesting HCMV infection occurs within the first 3 years of life within 

this entire population, with a prevalence of 97.9% (Table 3.1). Interestingly, anti-

HCMV antibody titres were significantly higher in children under 10 years old than in 

older individuals suggesting that optimal control of HCMV infection takes several 

years to develop (Table 3.1). Epstein Barr virus (EBV) infection was also common, 

with 75% of the entire cohort being sero-positive for EBV nuclear antigen (EBNA). 

EBNA sero-positivity rates were lowest in children ≤ 2 years old and anti-EBNA titres 
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tended to be higher in older children and adolescents aged under 15 years than in 

older individuals (Table 3.1).  
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Table 3.1: Cohort characteristics. 

Age 
group,   

HCMV 
IgG1, HCMV IgG titer, IU/mL, EBV nuclear antigen EBV nuclear antigen IgG titer, NKG2C genotype, n (%)* 

years 
n 

(male/female) n (%) median (range) IgG1, n (%) IU/mL, median (range) +/+ +/- -/- 

1-2 23 (9/14) 20 (86.9) 487.5 (81.8-845.2)† 12 (52.2) 107.0 (48.5-178.6) 11 (47.8) 10 (43.4) 2 (8.7) 

3-5 19 (6/13) 18 (94.7) 288.4 (80.9-1681.8) 13 (68.4) 134.0‡ (32.5-328.7) 7 (37.8) 10 (52.6) 2 (10.5) 

6-9 18 (11/7) 18 (100) 361.1 (89.2-2200.2){ 16 (88.9) 103.6 (33.1-219.7) 8 (47.0) 7 (41.2) 2 (11.8) 

10-12 20 (10/10) 20 (100) 215.4 (43.4-1693.6) 18 (90.0) 119.3§ (37.2-359.5) 8 (44.4) 8 (44.4) 2 (11.1) 

13-15 23 (10/13) 23 (100) 252.6 (51.5 21057.9) 16 (70.0) 114.6 (29.7-193.4) 11 (47.8) 10 (43.4) 2 (8.7) 

16-19 23 (11/12) 23 (100) 177.6 (61.2-678.1) 18 (78.2) 99.9 (23.9-195.2) 10 (47.6) 8 (38.1) 3 (14.3) 

20-25 22 (11/11) 22 (100) 252.5 (81.5-828.4) 19 (86.4) 93.9 (27.6-171.7) 11 (52.4) 8 (38.1) 2 (9.5) 

26-39 22 (13/9) 22 (100) 165.9 (39.0-968.4) 19 (86.4) 88.8 (24.9-272.7) 14 (73.7) 3 (15.7) 2 (10.5) 

40-49 21 (10/11) 21 (100) 191.2 (53.5-735.2) 13 (61.9) 73.4 (24.0-183.2) 14 (70.0) 4 (20.0) 2 (10.0) 

Total 191 (91/100) 187 (97.9) 252.6 (39-2200.1) 145 (75.9) 101.8 (23.9-359.5) 94 (51.9) 68 (37.6) 19 (10.5) 

*NKG2C genotypes were obtained from a total of 181 individuals. 

†Significantly higher anti-HCMV IgG titers compared with 16- to 19-year-olds and all groups older than 26 years; p<0.05, analysis of variance. 

‡Significantly elevated anti-EBV nuclear antigen IgG titers compared with all groups older than 16 years. 

{Significantly higher anti-HCMV IgG titers compared with all groups older than 16 years; p<0.01, analysis of variance. 

§Significantly elevated anti-EBV nuclear antigen IgG titers compared with all groups older than 20 years. 
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3.4.2 Redistribution of NK cell numbers and frequencies with age 

CD56bright NK cells are the least differentiated subset of NK cell in human peripheral 

blood. They are the only NK cells to express the stem cell factor c-kit and 

constitutively express a number of cytokine receptors. In contrast CD56dim cells are 

phenotypically and functionally more differentiated. NK cell numbers and frequencies, 

and the distribution of CD56bright and CD56dim subsets, were therefore analysed by 

age group (Figure 3.1). The gating strategy for NK cells and CD56bright and dim 

subsets is shown in Figure 3.1A. Consistent with previous reports which cover 

American and European subjects across the life-span (Almeida-Oliveira et al., 2011, 

Hayhoe et al., 2010, Le Garff-Tavernier et al., 2010, Lutz et al., 2005, Sundstrom et 

al., 2007), the proportion of NK cells among peripheral blood lymphocytes increased 

significantly with age and was maximal around 15 years of age (Figure 3.1B).  Within 

the total NK cell population, the proportion of CD56bright NK cells reduced rapidly 

and significantly with increased age (Figure 3.1C) and the frequency of CD56dim 

cells increased (Figure 3.1D), the overall NK cell subset distribution being stable from 

about 10 years of age and above (Figure 3.2).The absolute number of peripheral 

blood CD56bright and CD56dim NK cells decreased with age, and therefore the 

increased frequency of CD56dim cells in older individuals did not compensate for the 

overall reduction in total NK cell numbers (Figure 3.2, Table 3.2). Two distinct phases 

of phenotypic NK cell differentiation occur with a transition at around 10 years of age 

(Figure 3.2).  
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Figure 3.1: Age-related changes in NK cell frequencies.  

(A) Natural killer cells were identified within PBMC after gating on singlets and viable 

lymphocytes. CD56+CD3- NK cells were then subsequently gated into CD56bright and 

CD56dim subsets. Frequencies of (B) all NK cells, (C) CD56bright, and (D) CD56dim NK 

cells, are shown for each age group. Representative dot plot from a 20 year old male donor. 

Horizontal bars represent median values, boxes extend from the 25th to the 75th percentile and 

whiskers represent the 95th percentiles. Asterisks represent significant trends across the entire 

cohort (*** p<0.001, F-test). 
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Figure 3.2: Cubic spline models showing changes in NK cell and NK cell subset 

distribution with age across the entire cohort.  

Linear regression models were fitted as a natural cubic spline to the data in which age was 

included. Figure 3.2 A, C and E, percentages of NK cells and CD56bright and CD56dim 

subsets corresponding to Figure 3.1 (and as gated in Figure 3.1A). Figure 3.2 B, D and F, 

absolute numbers of CD3-CD56+ and CD56bright and CD56dim subsets. R2 and p values (F-

test) are shown. 
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Table 3.2: Changes in absolute numbers of NK cell subsets in different age groups. 

 1 Cells/μl blood, median (range) 

 

 
Early and very marked changes in NK cell phenotype contrasted with more gradual 

changes in the differentiation phenotype of T cells (Figure 3.3). Consistent with 

previous studies (Czesnikiewicz-Guzik et al., 2008, Koch et al., 2008), there was a 

steady decline in the frequencies of naïve CD4+and CD8+T cell, with accompanying 

increases in the proportions of effector memory (TEM) and central memory T cells 

(TCM). However, in contrast to previous studies (Czesnikiewicz-Guzik et al., 2008, 

Koch et al., 2008), the proportion of terminally differentiated T effector memory cells 

expressing CD45RA (TEMRA) was already high in young children, particularly 

observed within CD8+ T cells and this did not vary significantly with increasing age. 

High frequencies of highly differentiated T cells are likely due to frequent exposure to 

pathogens in infancy in our study population (Table 3.3 and 3.4). 

 

 

 

 

 

 

Age 

group 
CD3-CD56+   

 

CD56br CD16-  

 

CD56dimCD16+  CD94+ NKG2A+  NKG2C+ CD57+ 

≤2 359 (54-1587)
1  17 (5-89) 343 (117-1614) 291 (46-1463) 217 (44-777)  40 (0-905)  97 (4-1226) 

3-5 188 (80-839)  14 (4-41) 253 (84-924) 158 (41-752)  122 (51-487)  40 (0-351)  69 (19-588) 

6-9 96 (24-669)  8 (3-15) 150 (32-327) 81 (14-245)  44 (13-286)  41 (0-239)  36 (5-495) 

10-12 154 (40-656)  6.5 (1.7-24) 163 (51-818) 110 (24-571)  59 (22-235)  27 (0-271)  64 (14-393) 

13-15 227 (65-584)  9 (3-45) 280 (90-759) 129 (54-403)  59 (20-274)  35 (0-344)  80 (20-349) 

16-19 150 (28-774)  6 (3-22) 193 (50-924) 121 (17-671)  43 (20-327)  39 (0-343)  68 (8-529) 

20-25 179 (53-364)  6 (2-18) 201 (28-374) 143 (23-323  52 (26-185)  35 (0-259)  89 (9-288) 

26-39 110 (20-161)  6 (1-17) 177 (65-544) 89 (10-213)  44 (17-132)  12 (0-82)  60 (16-126) 

40-49 115 (24-249)  5 (1-12) 168 (36-408) 99 (20-217)  43 (13-134)  36 (0-128)  73 (13-189) 
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Figure 3.3: Changes in T cell maturation with age.  

(A) T cell differentiation status was assessed after gating on CD4 or CD8 and subsequently on 

naïve (TN), central memory (TCM), effector memory (TEM) and terminally differentiated 

effector memory (TEMRA) using a combination of CD45RA and CCR7. Frequencies of naïve 

and memory subsets are shown in age stratified groups for CD4+ (B-E) and CD8+ T cells (F-I). 

Age group stratification is defined on Figure 3.1. Representative dot plot from a 20 year old 

male donor. Horizontal bars represent median values, boxes extend from the 25th to the 75th 

percentile and whiskers represent the 95th percentiles. Asterisks represent significant trends 

across the entire cohort (* p<0.05, **p< 0.01, *** p<0.001, F-test). 
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Table 3.3: Changes in CD4+T cell memory and senescence with age.  

1 Cells/μl blood, median (range). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Age 
group  

CD3+CD4+  
T cells  

CD4+  
Naive 

CD4+  
TCM 

CD4+ 
TEM  

CD4+  
TEMRA 

CD4+ 
CD28- 
CD57-  

≤2 3381 
(1437-9315)

1
  

1923 
 (963-7201)  

197  
(37-369)  

682 
 (206-1673)  

177  
(78-535)  

921 
 (343-3270)  

3-5 2461 
(1187-4508)  

1646 
(708-2692)  

104  
(50-426)  

493  
(296-2317)  

88 
(56-188)  

497 
 (195-1871)  

6-9 1056 
(469-1727)  

620 
(283-1150)  

58 
(18-152)  

263  
(98-719)  

32 
 (11-162)  

285 
 (89-527)  

10-12 1012 
(583-2144)  

564 
(291-1181)  

60 
(17-194)  

344 
(162-1000)  

43 
(8-106)  

230 
 (26-925)  

13-15 1140 
(748-2010)  

622 
 (255-931)  

58 
(14-240)  

441 
(216-955)  

45  
(17-82)  

356 
(69-1154)  

16-19 1064 
(608-1638)  

557  
(235-1172)  

52  
(16-168)  

379 
 (109-523)  

29 
 (9-155)  

290 
 (31-415)  

20-25 946 
(394-1695)  

417 
 (186-827)  

46 
(20-173)  

360 
(90-693)  

39 
 (8-73)  

287 
 (109-591)  

26-39 732  
(425-1760)  

322 
(76-931)  

49  
(28-160)  

302 
(160-752)  

25  
(10-86)  

241 
 (98-954)  

40-49 702 
(333-1478)  

250  
(55-881)  

52 
(17-196)  

335 
 (113-718)  

25 
 (9-81)  

198  
(83-528)  
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Table 3.4: Changes in CD8+ T-cell memory and senescence with age.  
1 Cells/μl blood, median (range). 

  

 
We have defined three distinct populations within CD56dim NK cells according to 

expression of the differentiation marker CD57: CD57-, CD57+ and those with 

intermediate CD57 expression (CD57int) (White et al., 2014) (Figure 3.4A). The 

frequency of CD57-CD56dim within NK cells declined significantly with age with 

parallel increases observed in the proportions of CD57+ NK cells (Figure 3.4B). The 

proportion of CD57int cells changed little across the age range, consistent with cells 

transitioning at a constant rate through this stage of differentiation (Figure 3.4B). 

Strikingly, and in contrast to the linear differentiation towards memory phenotype 

observed for T cells, this was a biphasic process, with the most marked changes in 

CD57-defined subsets evident in children up to 5 years of age, and change occurring 

by 10 years of age (Figure 3.5 A-C). 

The frequency of NK cells expressing CD94, which normally combines as a 

heterodimer with either NKG2A and NKG2C at the cell surface, remained stable 

throughout life, suggesting that there may also be limited variation in proportions of 

NK cells expressing either NKG2A or NKG2C (Figure 3.4C-F, 3.5D). However, within 

Age 
group  

CD3+CD8+  
T cells  

CD8+  
Naive 

CD8+  
TCM 

CD8+ 
TEM  

CD8+  
TEMRA 

CD8+ 
CD28- 
CD57-  

≤2 1730 
(494-3917) 

1 
1245 
(270-2890)  

30  
(6-394)  

389 
(89-1135)  

167 
(31-938)  

408 
(146-1747)  

3-5 977 
(582-3659)  

746 
(353-2023)  

24 
(13-203)  

217 
(150-1881)  

84  
(25-498)  

245 
(86-1518)  

6-9 474 
(242-1085)  

306 
(176-640)  

14 
(7-183)  

134  
(41-338)  

43 
(5-127)  

115 
(25-449)  

10-12 466 
(230-1467)  

311 
(144-880)  

18 
(5-249)  

169 
(72-698)  

61  
(6-186)  

124  
(8-646)  

13-15 553 
(210-1969)  

349 
(132-1234)  

23 
(3-142)  

231 
(42-776)  

74 
 (6-324)  

172 
(16-1164)  

16-19 448 
(176-806)  

314 
(110-594)  

19 
(3-118)  

171 
(29-260)  

46 
 (4-123)  

101 
(8-230)  

20-25 399 
(102-1132)  

259 
(77-706)  

16 
(2-132)  

170  
(23-413)  

44  
(5-275)  

112 
(28-648)  

26-39 313 
(109-1192)  

215 
(41-705)  

12 
(4-66)  

131 
 (76-519)  

30  
(5-211)  

102  
(34-664)  

40-49 338 
(118-575)  

183 
(52-365)  

15 
(5-60)  

143  
(47-373)  

24  
(1-137)  

82 
 (29-326)  

 



NK CELL MATURATION & AGE CHAPTER 3 

93 | P a g e  

 

CD94+ NK cells, the frequency of NKG2A+ cells declined with increasing age (Figure 

3.4F, p=0.03, ANOVA) with parallel increases in the proportions of NKG2C+ cells 

(Figure 3.4F), p=0.02, ANOVA). Increasing proportions of NKG2C+ NK cells did not 

result in an overall increase in NKG2C+ NK cell numbers due to the overall decline in 

absolute NK cell numbers Table 3.2. 
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Figure 3.4: Age related changes in frequencies of CD57 and C-type lectin-like receptor 

expressing NK cell subsets. 

(A) CD56dim cells were gated into CD57-, CD57intermediate (int) and CD57+ subsets. The 

CD57- population was gated using an isotype matched control reagent and the CD57+ gate 

was set at an MFI of 3000. (B) Frequency distribution by age group of CD57-, CD57int and 

CD57+ subsets within the CD56dim NK cell population. Asterisks denote statistically 

significant trends for changes in NK cell subset frequency by age (*** p<0.001, F-test). (C, E) 

Gating strategy for CD94+NKG2A+ and CD94+NKG2C+ cells within the CD56dim NK cell 

subset. Frequencies of CD94+ (D), NKG2A+ and NKG2C+ (F) NK cells by age group. 

Asterisks denote statistically significant differences in frequencies of NKG2A+ and NKG2C+ 

cells by age group (* p<0.05, ANOVA). (A, C, E) representative dot plot from a 29 year old 

male donor. Horizontal bars represent median values, boxes extend from the 25th to the 75th 

percentile and whiskers represent the 95th percentiles. Age groups are as shown in Figure 3.1. 
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Figure 3.5: Cubic spline models showing changes in NK cell maturation and C-type 

lectin-like receptor defined NK cell subsets with age across the entire cohort.  

(A-C) Models of changes in frequencies of CD57-defined subsets corresponding to data 

shown in Figure 3.4. (D-F) Changes in the frequencies of CD94, NKG2A and NKG2C 

expressing NK cells, (as gated in Figure 3.4C and E). G, H. Changes in MFI of CD57 on 

NKG2A+ and NKG2C+ NK cells (corresponding to data shown in Figure 3.4F). R2 and p values 

(F-test) are shown. 

 

3.4.3 NKG2C+ cells contribute to increases in highly differentiated 

CD57+ NK cells 

The contribution of changes in the frequencies of NKG2A+ and NKG2C+ NK cells to 

increased proportions of CD57+ cells with age were then investigated (Figure 3.6). 
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Frequencies of CD57int and CD57+ NK cells within NKG2A+ cells increased 

significantly with increasing age, with a reciprocal decline in the frequencies of 

CD56dim CD57- cells (Figure 3.6A). However, the majority of NKG2A+ NK cells 

remained relatively undifferentiated (CD57-) even in the oldest study subjects (Figure 

3.6A). 

Conversely, NKG2C+NK cells contain a high frequency of CD57+ cells even in 

infants under 2 years old; the majority of NKG2C+ NK cells co-express CD57+ by 5 

years of age (Figure 3.6B). The geometric mean fluorescence intensity (MFI) for 

CD57 expression was very low on NKG2A+ NK cells over the entire age span but the 

MFI of NKG2C expression increased significantly in NKG2C+ cells with increasing 

age (Figure 3.6C, 3.5G, 3.5H) consistent with pronounced and rapid differentiation of 

NKG2C+ NK cells in this cohort. Rapid expansion and differentiation within the 

NKG2C+ NK cell subset is most likely linked to acquisition of HCMV infection in utero 

or perinatally in this Gambian study population. Moreover, anti-HCMV IgG titre was 

weakly negatively associated with the proportion of CD57+ NK cells (Figure 3.7), 

consistent with an association between advanced NK cell differentiation and control 

of HCMV infection. 
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Figure 3.6: CD57 is preferentially expressed on NKG2C+ NK cells.  

CD56dim NK cells were gated as shown in Figure 3.1A and the frequency of CD57-, CD57int 

and CD57+ cells was determined within (A) CD94/NKG2A+ or (B) CD94/NKG2C+NK cells, by 

age group. (C) Mean fluorescence intensity (MFI) for CD57 expression on NKG2A+ and 

NKG2C+ NK cells by age group. Horizontal bars represent median values, boxes extend from 

the 25th to the 75th percentile and whiskers represent the 95th percentiles. Asterisks denote 

statistically significant trends by age within each subset (**p<0.01, *** p<0.001, F-test). Age 

groups are as shown in Figure 3.1. 
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Figure 3.7: The frequency of mature CD57+ cells is inversely correlated with HCMV IgG 

titre.  

A positive correlation is observed between HCMV IgG titre and the percentage of CD57- NK 

cells (A) and a negative correlation with the percentage of CD57+ NK cells (C) whereas no 

significant effect is observed for the CD57intermediate (int) subset (B). R2 and p values (F-

test) are shown. 

 

Infection with Epstein Barr Virus (EBV) has been associated with altered NK cell 

phenotype in HCMV exposed Europeans (Saghafian-Hedengren et al., 2013). A 

minor increase in CD56dim cell frequencies was observed in EBNA IgG seropositive 

subjects (Figure 3.8C) whereas no impact of EBV status was observed on the overall 

distribution or MFI of other NK cell differentiation markers or subsets (Figure 3.8A, B, 

D-G). This is consistent with other studies showing no significant impact on 

NKG2C+CD57+ NK cells during acute EBV co-infection in HCMV infected subjects 

(Hendricks et al., 2014). 
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Figure 3.8: Limited impact of EBV serostatus on NK cell subset distribution.  

The frequencies of total NK cells (A) CD56bright (B) CD56dim (C) CD94 (D) NKG2A (E) 

NKG2C (F) and the Mean Fluorescence Intensity (MFI) for CD57 (G) and frequencies of CD57 

defined subsets (H) were compared in EBNA sero-negative and sero-positive individuals. 

*p<0.01. 
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3.4.4 Rapid functional maturation of NK cells during childhood in 

The Gambia 

The consequences of these phenotypic changes were then investigated to determine 

whether the differentiation towards CD57+ NK cells influenced functional capacity. 

NK cell degranulation (CD107a), CD25 and IFN-expression were assessed by flow 

cytometry within PBMC cultured in vitro with K562 target cells, with high 

concentrations of cytokines (rIL-12 and rIL-18; HCC) or left unstimulated in tissue 

culture medium only (Figure 3.9). Spontaneous low level degranulation and IFN- 

production was observed amongst unstimulated cells from children below the age of 

10 years, perhaps indicating ongoing NK cell activation in vivo in infants in our study 

population (Figure 3.9C, I). K562 cells consistently stimulated increased NK cell 

degranulation but this did not vary across the age range (Figure 3.9D). In contrast, 

degranulation and upregulation of CD25 and IFN- production in response to HCC 

(Figure 3.9E,H,K) were all strongly age-related, with significantly higher frequencies 

of responding cells being observed in children under the age of 10 years compared to 

older subjects, using cubic spline model (Figure 3.10). 

We next investigated to what extent the redistribution of CD57-defined NK cell 

subsets with increasing age contributed to overall changes in NK cell function. 

Degranulation and CD25 and IFN- expression were therefore analysed across the 

age range within gated CD56bright, CD56dimCD57-, CD57int and CD57+ subsets. 

The spontaneous (medium alone) NK cell degranulation (CD107a expression) 

observed in children was mainly associated with activity within CD56dimCD57- cells 

(Figure 3.11A) whilst spontaneous CD25 and IFN- production was mainly observed 

within CD56bright cells (Figure 3.11B,C). CD107a and CD25 expression were 

observed in all NK cell subsets after incubation with K562 cells. Although these 

responses did not vary significantly with age, they were significantly higher in CD57- 

cells compared to CD57int and CD57+ cells (Figure 3.11D,E). Less mature NK cells 

express higher levels of the NKp30 activating receptor (a receptor for B7-H6 on K562 

cells) which could explain the preferential responsiveness of CD56dimCD57- NK cells 

(Brandt et al., 2009, Fiegler et al., 2013). Unsurprisingly, little IFN-γ secretion from 

any NK cell subset was observed in response to K562 cells after 18 hours of 

stimulation (Figure 3.11F). 

CD57- NK cells contained the highest frequencies of cells degranulating in response 

to cytokine stimulation (Figure 3.11G) and both cytokine-induced CD25 expression 
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and IFN- production declined with progressive NK cell differentiation, being highest 

in the CD56bright subset and lowest in the CD56dimCD57+ subset (Figure 3.11H, I). 

A tendency towards increasing CD107a and CD25 expression was observed with 

increasing age in CD57int and CD57+ NK cells after cytokine stimulation (Figure 3.11 

G, H), which however only reached significance when infants less than 2 years old 

were compared with the oldest adults (p<0.01; ANOVA with correction for multiple 

comparisons).  

Although small age-associated changes in NK cell function may occur within CD57-

defined subsets, overall changes in NK cell function with age is most strongly affected 

by the redistribution of these subsets within NK cells. 
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Figure 3.9: Age-associated changes in NK cell 

function.  

Example flow cytometry plots are shown for CD3-

CD56+ lymphocytes from a 1 year old (A) and a 22 

year old (B), cultured in medium alone (upper 

panels) or stimulated with high concentrations of 

IL-12+ IL-18 (HCC, lower panels) and assayed for 

degranulation (CD107a), CD25 and IFN-γ 

expression. C-K: NK cells were assayed for 

degranulation (C-E), CD25 (F-H) or IFN- (I-K) 

expression after in vitro culture in medium alone 

(C, F, I) or with K562 target cells (D, G, J) or IL-12 + 

IL-18 (HCC; E, H, K). Horizontal bars represent 

median values, boxes extend from the 25th to the 

75th percentile and whiskers represent the 95th 

percentiles. Asterisks denote significant age 

related trends for frequencies of NK cells 

expressing CD107a, CD25 or IFN-(**p<0.01;*** 
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p<0.001, F-test). 

 
Figure 3.: Age-associated changes in NK cell function.
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Figure 3.10: Cubic spline models showing changes in rIL-12 + rIL-18 induced NK cell 

function with age across the entire cohort. 

A. CD107a B. CD25 and C. IFN-expression in gated CD3-CD56+ NK cells. (Models 

correspond to data shown in Figure 3.9E, H, K) R2 and p values (F-test) are shown. 
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Figure 3.11: NK cell 
function reflects CD57 
expression, irrespective of 
age.  
Bright (CD56brightCD57-), 

CD57- (CD56dimCD57-

),CD57int 

(CD56dimCD57int) and 

CD57+ (CD56dimCD57+) 

NK cell subsets were 

analysed for CD107a (A, D, 

G),CD25 (B, E, H) or IFN- 

(C, F, I) after in-vitro 

culture in medium alone 

(A-C), with K562 target 

cells (D-F) or with IL-12 + 

IL-18 (HCC; G-I).Horizontal 

bars represent median 

values, boxes extend from 

the 25th to the 75th 

percentile and whiskers 

represent the 95th 

percentiles. There were no 

significant age-related 

trends in response within 

any of the subsets. 

Asterisks denote 

statistically significant 

differences between CD57-, 

CD57int and 

CD57+subsets. (p<0.001 

for all comparisons, 
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Wilcoxon-signed rank). 

 

Figure 3NK cell function reflects CD57 expression, irrespective of age.
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3.4.5 Impact of NKG2C genotype on NK cell numbers and 

phenotype 

Several studies in different populations have reported a gene deletion at the NKG2C 

locus which results in a loss of surface expression of the activating receptor NKG2C 

in NK cells from homozygous NKG2C-/- individuals (Miyashita et al., 2004, Muntasell 

et al., 2013, Rangel-Ramirez et al., 2014, Noyola et al., 2012). NKG2C genotype was 

assessed by a single tube PCR assay (Miyashita 2004). We genotyped 181 of the 

subjects in this study, as described in Chapter 2; a representative agarose gel is 

shown in Figure 3.12A. Nineteen of 181 individuals tested from this cohort (10.5%) 

were NKG2C-/- (and lacked surface expression of NKG2C gene) whereas 68 

individuals were heterozygous (37.6%), resulting in a NKG2C allele frequency of 

29.3%. NKG2C-/- individuals were distributed evenly across age groups and between 

the sexes (Figure 3.12B, Table 3.1). 
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Figure 3.12: NKG2C genotype distribution in the cohort and representative example of 

an NKG2C genotyping gel. 

(A) Representative example of NKG2C genotyping for 3 study subjects. Lane 1 = base pair 

ladder; Lane 2 = homozygous deletion for NKG2C; Lane 3 = homozygous wild type; Lane 4 = 

heterozygote. The NKG2C gene deletion gives a band at 411 bp (base pairs) and the wild 

type genotype gives a band at 200bp. Heterozygotes have both the 200bp and 411bp bands. 

(B) Percentage NKG2C genotype frequency. The dark bar represents homozygous NKG2C, 

open bar depicts heterozygous individuals, whilst the grey bar represents NKG2C gene 

deletion. Data presented is derived from 181 individuals. 
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Consistent with published data, NKG2C genotype did not affect the overall 

proportions of total NK cells and CD56bright or CD56dim subsets (Noyola et al., 

2012), although NKG2C-/- children below 10 years of age had lower absolute 

numbers of NK cells compared to children heterozygous for the deletion (Figure 

3.13D). Strikingly, NKG2C-/- individuals had significantly lower frequencies of 

CD56dimCD94+ NK cells compared to NKG2C+/- and NKG2C+/+ individuals (Figure 

3.14A). Absolute numbers of NKG2A+ cells were unaffected by genotype (Figure 

3.15B), whereas consistent with the observed effects on the frequencies of these 

cells, the absolute numbers of CD94+ cells were significantly reduced in NKG2C-/- 

individuals (Figure 3.15A).  

The ratios of CD94+NKG2A+ to CD94+NKG2C+ cells are therefore likely to be 

determined by the expansion of CD94+NKG2C+ cells rather than a switch from 

NKG2A+ cells to NKG2C+ NK cells. A significant gene dosage effect was observed 

on the frequencies of NK cells with NKG2C surface expression with individuals 

heterozygous for NKG2C having display both intermediate frequencies (Figure 3.14B) 

and absolute numbers (Figure 3.15A,D) of CD94+NKG2A+ and CD94+NKG2C+ 

cells. The MFI for NKG2C expression was partially reduced in NKG2C+/- compared 

to NKG2C+/+ individuals within the entire cohort, (Figure 3.16A) and after splitting the 

cohort by two age groups (Figure 3.16B) although this did not reach statistical 

significance in either case. Significantly lower frequencies of CD57+ NK cells were 

observed in NKG2C-/- children (under 10 years of age) compared to both 

heterozygous and homozygous NKG2C+ children, a reciprocal increase being 

observed in the proportions of CD57- and CD57int NK cells (Figure 3.14C). No 

impact of NKG2C genotype was observed on the frequencies of NK cells expressing 

CD57 in individuals over 10 years old, constituent with maximal differentiation being 

achieved by this age. 
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Figure 3.13: NKG2C genotype has limited effects on frequencies and absolute numbers 

of NK, CD56bright and CD56dim cells in children. 

Frequencies and absolute numbers of NK cells across the entire cohort (A, B) and (C, D) in 

groups stratified according to age (<10 and 10-49 years old). Frequencies (E,G) and (F,H) 

absolute numbers of CD56bright and CD56dim NK cells. 
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Figure 3.14: Effect of NKG2C genotype on NK cell maturation phenotype and HCMV 

antibody titre.  

(A) Frequency of CD94+ cells within the CD56dim NK cell population in individuals with zero 

(NKG2C-/-), one (NKG2C+/-) or two (NKG2C+/+) copies of the NKG2C gene. (B) Impact of 

NKG2C genotype on the frequencies of CD94+ NK cells expressing either NKG2A+(NKG2C-) 

or NKG2C+(NKG2A-) cells. (C) Impact of NKG2C genotype on the frequency of CD57-, 

CD57int and CD57+ NK cells in subjects<10 and ≥ 10 years of age. (D) Anti-HCMV antibody 

titres by age (years) and NKG2C genotype. Horizontal bars represent median values, boxes 

extend from the 25th to the 75th percentile and whiskers represent the 95th percentiles. 

Asterisks denote statistically significant differences between genotypes for all comparisons 

shown (p<0.05, *** p< 0.001, ANOVA). 
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Figure 3.15: Impact of NKG2C genotype on absolute numbers of NK cell subsets.  

(A) CD94+ NK cells, (B) NKG2A+ or NKG2C+ NK cells and (C) CD57 defined NK cell subsets 

are shown for all study subjects. (D-F) Effect of NKG2C genotype on study subjects grouped 

according to ages <10 or 10-49 years old; (D) CD94+ NK cells, (E) NKG2A+ or NKG2C+ NK 

cells or (F) CD57-defined subsets. * p<0.05, ANOVA. 
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We then hypothesised that because NKG2C is directly involved in responses to 

HCMV, individuals lacking expression of NKG2C may have less effective control of 

HCMV infection. Lack of recognition of HCMV-infected cells would also be consistent 

with the NK cells of NKG2C-/- children being overall less differentiated than cells of 

wild type or heterozygous children (as shown above in Figure 3.14C). To investigate 

whether NKG2C genotype affects control of HCMV, we examined the relationship 

between age, genotype and anti-HCMV antibody titres (Figure 3.14D). In this case we 

assumed that high anti-HCMV IgG titres reflected poorer control of HCMV infection. 

Anti-HCMV antibody titres were significantly higher in NKG2C-/- compared to 

NKG2C+/+ children (under 10 years of age) (Figure 3.14D) consistent with more 

limited control of HCMV infections leading to more frequent virus reactivations which 

result in boosting of antibody responses in these children. No relationship was 

observed between NKG2C genotype and anti-HCMV IgG titre in older individuals. 

Furthermore, the observed effect appeared to be HCMV specific as no effect of 

NKG2C genotype was observed in children on the titres of antibodies to infant 

tetanus toxoid, hepatitis surface antigen and EBV vaccine antigens (Figure 3.17A, B 

C). 

 
Figure 3.16: Expression levels of NKG2C in NKG2C+/- and +/+ individuals. 

The mean fluorescence intensity (MFI) is shown for NKG2C in (A) all +/+ and +/- study 

subjects and (B) in individuals grouped into age strata (<10 and 10-49 years old). 
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Figure 3.17: NKG2C genotype does not affect antibody titres to vaccine antigens. 

No significant impact of genotype is observed on titres of antibody against Tetanus Toxoid 

(anti-TT IgG, IU/ml) (A) or Hepatitis B surface antigen (anti-HBsAg, IU/ml) (B) and Epstein-

Barr Virus nuclear antigen (anti-EBNA IgG, IU/ml) (C) in children (<10 years old) or in adults 

(10-49 years old). 
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3.4.6 Comparison of NK cell phenotype and functionality between 

matched Gambian and UK donors 

The burden of HCMV in our Gambian cohort as shown in Table 3.1 was 97.9% while 

in our UK cohort it was 36% (Goodier et al., 2016). As we have observed this 

variation in HCMV exposure, we wanted to compare NK cell phenotype and function 

between these two populations with very different HCMV exposure. The data was 

reanalysed and compared with age-matched UK donors between the ages of 20-49 

years.  

Although HCMV+ UK subjects had lower proportions of NKG2A+ NK cells than 

HCMV- UK subjects, the Gambian subjects had a significantly higher proportions of 

NK cells expressing both NKG2A and NKG2C receptors when compared to either 

group of UK subjects (Figure 3.18A, B). The HCMV- UK donors had the lowest 

proportions of NKG2C+ NK cells (Figure 3.18B). Similarly, Gambian subjects had 

higher proportions of NK cells expressing the late differentiation marker CD57+ NK 

cells compared to both HCMV+ and HCMV- UK donors (Figure 3.18C). Functionally, 

the NK cells of Gambian subjects were less likely to express CD25 or IFN- after 

stimulation with cytokines than either UK set of subjects (Figure 3.18 E, F). However, 

there was no significant difference in NK cell degranulation (CD107a) between the 

three groups (Figure 3.19D). 
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Figure 3.18:  Elevated frequencies of C-type lectin-like receptor positive NK cell 

subsets and reduced NK cell functional capacity in Gambian compared to UK adults. 

The frequencies of CD57+ (A), NKG2A+ (B) and NKG2C+ (C) within CD56dim NK cells are 

compared between Gambian adults (n=65) and HCMV seronegative (n=78) and HCMV 

seropositive UK adults (n=43) aged between 20 and 49 years. Frequencies of cells expressing 

CD107a (D), CD25 (E) and IFN- (F) were determined within total NK cells. PBMC (D, E, F) 

were cultured in high concentrations of cytokines alone (rIL-12 5ng/ml + rIL-18 

50ng/ml).Boxes represent median values and boxes extend from the 25th to the 75th percentile 

and whiskers represent the 95th percentiles. Asterisks denote statistically significant ** p<0.01, 

*** p<0.001, p<0.0001, Mann-Whitney U test.  
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3.4.7 Extension of NKG2C genotyping study to a larger cohort from 

the West Kiang region of The Gambia 

The genotyping studies described above in the context of our initial studies on NK 

differentiation and HCMV infection were extended to a larger sample size in order to 

obtain a more precise estimate of the allele frequencies in The Gambia and to extend 

the analysis to a wider age range, incorporating samples from adults aged 50-88 

years old. In addition, ongoing studies, which have not yet been completed and are 

therefore not presented in this thesis, aim to further establish the relationship 

between anti-HCMV IgG titre and NKG2C genotype in this extended cohort. To 

further investigate the frequency of NKG2C within our study population, 1825 DNA 

samples were processed for NKG2C genotyping using the Phusion® kit as described 

in Chapter 2. We excluded 340 of these samples from the analysis for inconclusive 

results and/or duplication. After filtering out these, 1485 samples had appropriate 

NKG2C genotype data used for analysis. Of these, sex was known for only 1479 

subjects. There were 870 females and 609 males within this cohort with the age 

range of 1 to 88 years (Table 3.5). 

Table 3.5: Characteristics of the extended cohort. 

 
This table shows the distribution of sex and age within our cohort. 

Age Group Male Female Total 

1-10 415 345 760 

11-20 140 165 305 

21-30 5 93 98 

31-40 2 126 128 

41-50 9 66 75 

51-60 11 38 49 

61-70 18 25 43 

71-80 8 10 18 

81-90 1 2 3 

Total 609 870 1479* 
 

 

*Sex data available for only 1479 individuals, instead of the overall 1485 samples processed. 
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3.4.7.1  NKG2C genotype distribution within the West Kiang region 

The NKG2C allele frequency in our initial cohort was 29.3%, substantially higher than 

in other reported countries with average frequency of 20% (Table 3.6) (Miyashita et 

al., 2004, Li et al., 2015). We therefore increased our sample size to confirm the 

validity of this observation. Consequently, we analysed DNA samples from 1485 

individuals from West Kiang across different age groups. Surprisingly, an allele 

frequency of 36.9% was observed, higher than in our initial studies. We identified 225 

individuals who were homozygous for the deletion allele (15.2%) while 645 individuals 

(43.4%) were heterozygotes and 615 (41.4%) were homozygous for the wild type 

NKG2C allele (Figure 3.19).  

 

 

 

Figure 3.19: Frequency of NKG2C genotype distribution in West Kiang, The Gambia. 

Distribution of NKG2C genotypes within West Kiang District, The Gambia. The dark bar 

represents NKG2C+/+ homozygous gene, the open bar depicts NKG2C+/- heterozygous gene 

and the grey bar represents NKG2C-/- homozygous gene deletion. This data was obtained 

from the DNA of 1485 individuals within West Kiang.  
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The genotype frequencies observed within our extended cohort do not correspond 

with Hardy-Weinberg (H-W) equilibrium (Chi Squared, p=0.009). The expected 

frequency for the homozygous NKG2C gene deletion if in H-W equilibrium should be 

13.6% instead of 15.2% (see calculation below). A recent publication of adults 

sampled in different regions of The Gambia however estimates a homozygous 

NKG2C deletion frequency of 13.5% and an overall frequency for the deletion of 

36.2%, (Goncalves et al., 2016) similar to our observation of an allele of frequency of 

36.9%. It should be noted in our extended cohort that almost half of the samples were 

collected from children below 10 years of age. Lack of conformity to H-W equilibrium 

may result from sampling bias as some of these children may be closely related and 

there is an increased representation of heterozygous individuals (644) increasing the 

probability of detecting the deletion and reducing the homozygous NKG2C+ genotype 

frequency. 

Calculation of Hardy-Weinberg equilibrium 

Observed numbers 

+/+= 615; -/+= 645; -/-= 225 

Allele frequency of NKG2C gene and NKG2C gene deletion=  

((2X homozygous NKG2C gene number) + heterozygous NKG2C number)/ (2* total 

number) 

Allele frequency NKG2C gene= ((2*615) +645)/ (2*1485) = 0.631 and  

Allele frequency NKG2C deletion= ((2*225) +645)/ (2*1485) =0.369  
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Expected numbers 

Formula= Homozygous NKG2C gene² X 2 (heterozygous) X homozygous 

NKG2C deletion² 

Homozygous NKG2C gene: (0.631) X (0.631)1485 = 591, 39.9% 

Heterozygous NKG2C gene: 2(0.631) X (0.369)1485 = 692, 46.6% 

homozygous NKG2C deletion: (0.369) X (0.369)1485 = 202, 13.6% 
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3.4.7.2  NKG2C genotype in different regions of the world 

Table 3.6: Distribution of NKG2C genotype around the world. 

Characteristic Mexico Germany Holland Japan Spain China Tanzania Gambia∞ 
Gambia West 

Kiang 

 N= 300 280 
 

105 245 137 
 

1123 
 

509 787 
 

1485 

Genotype 
 n  

(%) 
        

  

+/+ 
240  
(80) 

196 
 (70) 

67 
(63.8) 

156 
(63.7) 

83 
(60.6) n/a 

329 
(64.6) 

316 
(40.2) 

615 
 (41.4) 

+/- 

 
58 

(19.3) 
70  

(25) 
34 

(32.4) 
79  

(32.2) 
48  

(35) n/a 
156 

(30.7) 
363 

(46.1) 
645 

 (43.4) 

-/- 

 
2 

 (0.66) 
14 
 (5) 

4  
(3.8) 

10 
 (4.1) 

6 
 (4.4) n/a 

24 
 (4.7) 

108 
(13.7) 

225  
(15.2) 

%  
10.33 

  
17.5 

  
20 
  

20.2 
  

21.9 
  

20.3-
26.8 

  
20 
  

36.2 
  

36.9 
  allele deletion 

 

Reference: Mexico (Rangel-Ramirez et al., 2014); Germany (Noyola et al., 2012); Holland (Miyashita et al., 2004); Japan (Miyashita et al., 2004); Spain (Moraru et 

al., 2012); China (Li et al., 2015); Tanzania (Goncalves et al., 2016); The Gambia∞ (Goncalves et al., 2016). 
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3.4.7.3  NKG2C genotype distribution with age 

A selective advantage of NKG2C deletion allele carriage over the life course, or a 

sampling bias within our cohort leading to H-W disequilibrium might be expected to 

result in differences in genotype across the lifespan. We therefore assessed    

genotype frequencies within individuals stratified by age to assess if NKG2C allele 

frequency changed with age, in particular whether there was any bias towards 

carriage of the deletion allele within the youngest age group. No significant variation 

of NKG2C genotype was observed with age (Figure 3.20A). Furthermore, despite 

over half of the individuals tested being under 10 years of age within this sample 

(760/1485 individuals; Figure 3.20B, Table 3.5) no difference in the distribution of 

NKG2C genotypes was observed compared to the other age-defined strata. Table 3.6 

shows the distribution of NKG2C allele frequencies around the world showing that it is 

higher in The Gambia than in other known countries. 

 

 

 
Figure 3.20: NKG2C genotype distribution with age. 

Percentage (A) and absolute numbers (B) of individuals with each NKG2C genotype. The dark 

bar represents NKG2C+/+ homozygous gene, the open bar depicts NKG2C+/- heterozygous 

gene and the grey bar represents NKG2C-/- homozygous gene deletion. This data was 

obtained from the DNA of 1485 individuals between the ages of 1-80 years within West Kiang. 

Chi-square test. 
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3.5 DISCUSSION 

NK cells differentiate to mature status as people age. At the same time, it is now 

being recognized that genetic and environment factors also influence this 

differentiation process. These factors create heterogenic populations of NK cells that 

are genetically, phenotypically and functionally diverse at the epidemiological level 

(Parham and Moffett, 2013) as well as within the host (Horowitz et al., 2013). NK cell 

function can considerably be altered by these factors (Le Garff-Tavernier et al., 2010, 

Luetke-Eversloh et al., 2013, Yu et al., 2013) and emerging evidence suggests that 

this could be linked to different health outcomes (Hazeldine and Lord, 2013). 

NK cell differentiation can significantly be influenced by age, by affecting mainly their 

phenotype and function. However, it is still unclear if this is an intrinsic ageing 

process or a marker of prolonged, cumulative environmental exposures (Almeida-

Oliveira et al., 2011, Hayhoe et al., 2010, Le Garff-Tavernier et al., 2010, Lutz et al., 

2005, Sundstrom et al., 2007). This confounding effect can clearly be demonstrated 

in HCMV infection, making it difficult to untangle the effects of infection from intrinsic 

age and NK cell function (Foley et al., 2012a, Foley et al., 2012b, Guma et al., 2004). 

Most NK cell publications do not account for HCMV infection status thereby impeding 

data interpretation. Recent studies from our group, however, demonstrate that 

changes in NK cell phenotypic and functional characteristics do indeed vary with age 

in HCMV negative individuals but that these changes are exacerbated at all ages in 

HCMV positive subjects (Nielsen et al, 2015).  To address this issue further, 

comprehensive phenotypic and functional studies are needed from diverse genetic 

populations in different settings and across the lifespan.  

The results presented in this chapter represent a comprehensive study of NK cell 

phenotype and function from infancy to mature adulthood, the first such study in The 

Gambia where the confounding effects of HCMV infection status are moderated due 

to high prevalence of this infection since infancy. 

Generally, we observed that the proportions of less mature CD56bright and 

CD56dimCD57- NK cells decreased and proportions of CD56dimCD57+ NK cells 

increased with age. On the other hand, transitional CD57int NK cells were present at 

similar frequencies in all age groups, signifying that maturation of CD57- to CD57+ 

NK cells may occur at a comparable rate irrespective of age. Age associated changes 

in CD57- and CD57+ NK cell proportions may therefore reflect differential rates of 

proliferation or apoptosis of these two phenotypes rather than altering rates of cell 
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conversion. It should be noted that the rate of proliferation and apoptosis in human 

NK cells is reportedly very high but how this varies between CD57 subsets is unclear. 

Also, less mature CD56bright NK cells have longer telomeres than differentiated 

CD56dim NK cells (Lutz et al., 2011, Ouyang et al., 2007, Chan et al., 2007).  

A prominent observation in this cohort is the high proportion of fully differentiated, 

CD56dimNKG2C+CD57+ NK cells in young children and infants. These subsets of 

NK cell represent up to 50% of all NK cells in infants (1-2 years) and up 80% of NK 

cells in children (6-9 years), with mature adult proportion (~30-70%) reached by the 

age of 10 years. In Caucasians, the frequency of CD57+ NK cells increases from zero 

at birth (cord blood) to a median frequency of ~50% in adults (Le Garff-Tavernier et 

al., 2010) with higher proportions in HCMV+ (30-70%) than in HCMV- individuals (25-

50%) (Campos et al., 2014). The proportion of CD57+ NK cells in HCMV-infected 

Gambians adults is notably higher than in age-matched HCMV-infected UK adults, 

signifying more extensive NK cell maturation in Gambians.  HCMV infection may 

occur earlier in life in Gambians than in UK donors and this may account for this 

observation or it might be due to higher exposure in The Gambia to other 

acute/chronic infections which drive NKG2C+CD57+ NK cell polarization in HCMV+ 

individuals. Further studies comparing HCMV+ and HCMV- children from regions with 

lower HCMV acquisition will help to answer this.  

In this cohort, co-infection of HCMV and EBV did not significantly alter NK 

differentiation cell phenotype or function, with the notable exception of a modest 

enrichment of CD56dim cells in co-infected individuals. To some extent this is in 

agreement with other studies showing that EBV+ HCMV co-infection, but not EBV 

alone was correlated with mature NK cell differentiation compared to HCMV infection 

only (Saghafian-Hedengren et al., 2013) and is consistent with slight enhancement of 

differentiation from CD56bright to CD56dim NK cells observed elsewhere (Hendricks 

et al., 2014). In addition, it is thought that HCMV infection influences NK and T cell 

differentiation by distinct mechanisms, because the biphasic kinetic of NK cell 

differentiation is not reflected by a comparable differentiation pattern for memory T 

cell populations (Bengner et al., 2014). 

 

Age associated differences in NK cell functionality were mainly due to variations in 

the frequencies of CD57- and CD57+ NK cells. Cytokine-induced CD107a, CD25 

expression and IFN-γ secretion all decline with acquisition of CD57 expression, in 
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European adults (Bjorkstrom et al., 2010, Juelke et al., 2010, Lopez-Verges et al., 

2010, White et al., 2014). This also corresponds with diminished IL-12 and IL-18 

surface receptors (White et al., 2014). This association between CD57 expression 

and NK cell function is also observed in the Gambians studied here. Therefore, as 

CD57 expression particularly on NKG2C+ NK cells is to a great degree associated 

with HCMV infection, it seems that early in life HCMV infection rapidly skews the 

entire NK cell repertoire to receptor-mediated or antibody dependent cytotoxicity at 

the expense of cytokine-driven responses (Costa-Garcia et al., 2015, Muntasell and 

Pupuleku, 2016, Noyola et al., 2012, Lopez-Botet et al., 2014). This phenomenon of 

skewed NK cell function is much more manifest among HCMV sero-positive Gambian 

adults than HCMV sero-positive UK adults, again probably reflecting an earlier age of 

HCMV infection or increased occurrence of co-infections in The Gambia. Deficiencies 

in NK cell functionality early in life in some infants could contribute to links between 

perinatal HCMV infection, stunted growth and increased rates of hospitalisation, as 

observed in Zambian children (Gompels et al., 2012).  

Consistent with the high prevalence of HCMV infection early in life in our cohort, and 

the recognition of CD57+NKG2C+ NK cell expansion in HCMV+ individuals (Guma et 

al., 2004), frequencies of NKG2C+ cells were high in all age groups in our cohort. 

Adult frequencies of NKG2C+ cells were achieved by the age of 6-9 years, however, 

the very young children had a lower frequency than older age groups. This 

observation suggests that expansion of the NKG2C+ NK cell subset commences 

early after HCMV infection and may continue for some years. This is consistent with 

data from transplant recipients with acute HCMV infection or reactivation where the 

proportion of NKG2C+ NK cells surges within 4 weeks of infection/reactivation and 

continues to rise for at least 12 months (Foley et al., 2012a, Foley et al., 2012b, 

Lopez-Verges et al., 2011). Also, it has previously been shown that higher 

frequencies of NKG2C+ NK cells were observed in HCMV+ compared to HCMV- 

children under the age of 2 years (Monsivais-Urenda et al., 2010).  

Both in African and Caucasian adults, NKG2C+ NK cells induced by HCMV infection 

tend to co-express CD57 (Lopez-Verges et al., 2011) although both the frequency of 

NKG2C+ cells expressing CD57 and the median MFI of CD57 expression were lower 

in children under the age of 2 years than in older individuals. By contrast, CD57 is 

expressed only at low intensity on NKG2A+ NK cells within all age groups. We 

observed, as previously described, that NKG2A+ NK cells express low levels of 

CD57. This is consistent with a model in which HCMV UL40 peptides bind to HLA-E 
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leading to its stabilisation on the surface of HCMV infected cells where this drives NK 

cell expansion, differentiation and expression of NKG2C+ NK cell (the activating 

receptor on NK cells for HLA-E) and CD57. At the same time such stabilisation would 

be expected to inhibit differentiation and expansion of cells expressing NKG2A+ 

which is the inhibitory receptor for HLA-E (Della Chiesa et al., 2013a, Guma et al., 

2006b, Prod'homme et al., 2012, Ulbrecht et al., 2000). 

It should be noted that CD94/NKG2C and CD94/NKG2A may not be the only NK cell 

receptors for HCMV recognition (Prod'homme et al., 2007, Arnon et al., 2005, Della 

Chiesa et al., 2014a). NKG2C-/- gene deletion was associated with delayed – but not 

complete lack of - NK cell differentiation and maturation. Importantly, NKG2C+/+ 

individuals had higher proportions of NKG2C+ NK cells than NKG2C+/- subjects 

(Muntasell et al., 2013) and the proportion and absolute numbers of CD94+ cells also 

correlated with NKG2C copy number, consistent with the hypothesis that NKG2C+ 

NK cell numbers expand by proliferation rather than by transformation from NKG2A+ 

NK cells. Interestingly, normal frequencies of CD56dim NK cells in NKG2C-/- 

individuals with reduced overall expression of CD94, raises queries about which 

supplementary NK cell receptors might be expressed on these cells in order to 

maintain NK cell homeostasis and HCMV latency. HCMV reactivation in recipients of 

NKG2C-/- stem cells drives differentiation of functional KIR+NKG2A- NK cells (Della 

Chiesa et al., 2014b) suggesting that activating KIR may compensate for 

CD94/NKG2C gene deletion. Importantly persistent expansions of KIR+NKG2A-

NKG2C-NK cells have been reported in HCMV sero-positive adults, in particular, cells 

expressing activating KIR2DS1 and KIR2DS4 (Beziat et al., 2013).  

NKG2C-/- donors had lower frequency of CD57+ NK cells than in those with one or 

more copies of NKG2C, particularly children aged under 10 years, consistent with 

activation and expansion of NKG2C+ cells prior to their acquisition of CD57. Recent 

studies by Muntasell et al are also relevant in this context where activating KIR+ 

expansions are enriched in NKG2C+/- and -/- individuals (Muntasell and Pupuleku, 

2016). It would be interesting to identify whether delayed NK cell differentiation in 

HCMV-infected NKG2C-/- subjects is seen in other populations, whether this confers 

any survival benefit or whether this is offset by impaired control of HCMV (as implied 

by the significantly higher anti-HCMV antibody titres). These studies will require large 

sample size to achieve statistical power, which will depend on both the prevalence of 

both the NKG2C gene deletion allele and HCMV infection. The 36.9% allele 

frequency of the NKG2C deletion in The Gambia cohort is higher than that recorded 
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elsewhere. Our observation is consistent with that of a recent study done by 

Gonclaves et al, where they show a similar frequency in The Gambia (36.2% allele 

frequency, Table 3.6) (Goncalves et al., 2016). Although in our study the prevalence 

of homozygous NKG2C gene deletion did not conform to Hardy-Weinberg 

equilibrium, we think this might have been because of the bias of the sampling of our 

cohort, including sampling of people from the same families.  

The NKG2C deletion frequency ranges from 10% in Mexico, 20% in Japan, Spain, 

Holland, Tanzania and China to 36% in The Gambia. It would be interesting to further 

investigate the reason for the observed disparity between Tanzania and The Gambia 

as these two populations might have the same level of HCMV infection exposure 

(Manicklal et al., 2013). The reason for these disparity is still unknown (Muntasell et 

al., 2013, Rangel-Ramirez et al., 2014, Zeng et al., 2013) but it is possible that the 

deletion offers some selective advantage e.g. via mechanisms operating in utero. 

Mother to child transmission of HCMV in utero is likely to be common in our study 

population. For example, it may be that reduction of overt immune responses to 

HCMV in the placenta reduces the likelihood of placental damage and placental 

insufficiency. If so, then balancing selection may be operating with heterozygous 

individuals able to control HCMV infection without incurring damage in utero.  

Even though there is almost universal HCMV infection in our cohort, we have 

observed a diverse array in NK cell phenotype and function within each age defined 

strata. This heterogeneity could be partially explained by host genetic variability 

(Horowitz et al., 2013), although, there is also a potential for variability in key viral 

proteins which interact with the innate immune system or which regulate viral fitness 

to play a role. Co-infection of HCMV with other pathogens could also shape NK cell 

maturation (Bjorkstrom et al., 2011, Petitdemange et al., 2011), (Saghafian-

Hedengren et al., 2013, Saghafian-Hedengren et al., 2009). Additional studies will be 

required to understand whether inflammatory cytokines induced in response to other 

pathogens co-stimulate and promote NK cell differentiation or whether certain 

pathogens mediate costimulatory effects via specific ligands for receptors on 

CD57+NKG2C+ NK cells.  

In conclusion, this study demonstrates rapid phenotypic and functional NK cell 

differentiation in a population with almost universal prevalence of HCMV infection. 

The expression of CD57 and/or NKG2C receptors appears to significantly influence 

NK cell phenotype.  These findings highlight the need to further investigate the impact 
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of early life HCMV infection on the efficacy of NK cell protective immune responses 

against different infections in ageing.  
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4 CHAPTER 4:  

THE IMPACT OF INFLUENZA 

VACCINATION ON NK CELL RESPONSES 

IN HCMV+ GAMBIANS  
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4.1 INTRODUCTION 

Annually, about 3-5 million cases of influenza are reported worldwide and 250-

500,000 of these cases are fatal (UK Department of Health, 2012). Influenza viruses 

are RNA viruses belonging to the Orthomyxoviridae family. They cause infection of 

the respiratory tract and are transmitted from person-to-person via sneeze or cough 

droplets. There are three types of influenza viruses, namely, influenza virus A, B and 

C. Influenza A and B occur more frequently than C, which is why it is not included in 

seasonal influenza vaccines. Healthy individuals recover from influenza infection after 

about a week. However, influenza infection can cause severe morbidity and mortality 

in the very young and in adults over 65 years and those at high risk of chronic heart, 

lung and kidney diseases (UK Department of Health, 2012, World Health 

Organization, 2012 ). The importance of influenza as a global health problem has 

been confirmed during the 2009 influenza A (H1N1) pandemic, causing 59 million 

cases, about 200,000 hospitalizations and over 12,000 deaths in the United States 

alone. This pandemic mainly affected those over 50 years (Bautista et al., 2010). 

These facts warrant resources to be focused on influenza virus research and its 

treatment. 

The best manner to protect people against influenza is by giving them seasonal 

influenza vaccination. The seasonal influenza vaccines provide protection against 

three circulating influenza virulent strains. These strains usually include two type A 

influenza virus strains and one type B strain. These vaccines are expected to induce 

the production of memory B and T cells within 2 weeks of vaccination (UK 

Department of Health, 2012). The UK Department of Health (2012) recommends that 

all pregnant women, those with underlying chronic diseases and all those over 65 

years of age should receive a single dose of influenza vaccine. Children aged 6 

months to 9 years are recommended to receive a booster shot at least 4 weeks after 

the primary vaccination if they have not previously received an influenza vaccine (UK 

Department of Health, 2012). 

Both adaptive and innate immunity are altered with ageing. Such immune maturation 

has important consequences for the ability of individuals to mount protective immune 

responses, including those elicited by vaccines. It is important to study the innate 

immune response in young individuals where the immune system is not fully 

developed and in the elderly where the immune system is fully matured as this may 
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have consequences on the quality and magnitude of the vaccine-induced responses 

(Almeida-Oliveira et al., 2011).  

In healthy ageing, the CD56bright NK cell subset decreases in frequency whilst the 

CD56dim subset increases with age resulting in an overall augmentation in NK cell 

numbers in human peripheral blood. Studies in healthy elderly subjects have 

furthermore demonstrated that whilst the overall proportion of NK cells increased, 

their cytotoxic capacity is unaltered. Preservation of NK cell cytotoxicity in the elderly 

is associated with better health status (Gayoso et al., 2011). 

However, seasonal influenza vaccines do not always provide full protection against 

influenza infection in the young and the very old. Meta-analyses have shown that the 

efficacy of influenza vaccines has been inconsistent and, in some cases, very low. 

This raises the need to develop improved vaccines that would offer better protection 

(Grubeck-Loebenstein et al., 2009, Gross et al., 1995, Osterholm et al., 2012, 

Jefferson et al., 2012). Currently, new vaccines are tested using correlates of memory 

CD4 T helper 1 for macrophage mediated responses, CD4+ T helper 2 for B cells, 

antibody production and CD8+ recall immune responses to judge how useful and 

effective vaccines would be. For vaccines with limited efficacy there is a need to 

develop novel mechanisms to enhance protection. Optimising CD4 T cell derived IL-2 

mediated NK activation or NK cell-mediated ADCC may be a useful strategy to render 

vaccines more effective.  

The aim of this research project was to examine alteration of natural killer cell 

phenotype and effector function up to 24 weeks post seasonal trivalent influenza 

vaccination and to study the impact of age, in a Gambian population with very high 

prevalence of HCMV infection in people of all ages. And our secondary aim was to 

assess the potential of NK cell activation after booster vaccination. 
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4.2 STUDY OBJECTIVES  

The following primary objectives were investigated:  

1. To describe the ex vivo phenotype of CD45+ white blood cells, mainly 

peripheral myeloid and lymphoid subsets, including detailed NK cell subset 

phenotypic analysis, before and up to 6 months after influenza vaccination. 

2. To describe in vitro peripheral blood NK cell responses (CD107a, CD25, and 

IFN-) to influenza antigens among vaccinated participants and the stability of 

these responses up to 6 months after vaccination using the trivalent influenza 

vaccine (TIV) antigen and also single strain antigens of the vaccine. 

3. To describe the effect of booster vaccination with influenza vaccine on NK cell 

function 9 months after primary vaccination in children. 

4. To compare the functional phenotype and magnitude of NK responses among 

individuals of different ages: that is 2-6 years, 20-30 years and 60-75 years of 

age. 

5. To assess the role of influenza-specific CD4+ helper T cell IL-2 production 

and vaccine-induced antibodies in supporting NK cell responses. 

 

 

4.3 METHODS & MATERIALS 

4.3.1 Study subjects   

This study was approved by the Medical Research Council (MRC) Scientific 

Coordinating Committee (SCC), The Gambia Government and MRC Joint Ethics 

Committee (SCC reference number 1309), London School of Hygiene and Tropical 

Medicines Observational / Interventions Research Ethics Committee (LSHTM Ethics 

reference 6331) and The Republic of The Gambia Medicines Board. 

The timeline was planned such that sample collection time points fall outside the 

influenza season, to reduce the impact of natural exposure, which in this region 

occurs annually between October and December (World Health Organization, 2012 ).  

In February 2013, following written informed consent from study participants or their 

legal guardians, 68 healthy participants were recruited from three West Kiang 

villages, namely, Keneba, Manduar, and Kantong Kunda in West Kiang in the Lower 
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River Region of The Gambia. These study participants were selected to represent 

one of the three age-stratified groups: 2-6, 20-30 and 60-75 years. 

Study subjects were enrolled by a trained nurse excluding anyone with chronic 

disease, infections or influenza-like signs and symptoms during the previous 3 

months and anyone with an axillary temperature of ≥ 38°C. Pregnant women and 

individuals potentially allergic to vaccine products and anyone with previous history of 

influenza vaccination were also excluded.  

Axillary temperature was taken and whole blood samples collected at baseline (pre-

vaccination). Participants were then vaccinated with the 2012-2013 seasonal 

Trivalent Sanofi Pasteur inactivated influenza split virion vaccine (Batch number 

J8322; expiry July 2013). Vaccine safety monitoring was done through a home visit 

by a nurse within a week of vaccination to monitor possible adverse reactions to the 

vaccine. Subsequent blood samples were taken at 1, 3 and 6 month(s) post-

vaccination. 

For children aged between 2 and 6 years, it was required that a second dose be 

given to boost the vaccine response. Ethical permission was obtained to delay this 

booster vaccination until after the completion of the 6 months follow-up visit (to allow 

comparison of responses to a single vaccination across all age groups) however, this 

meant that the booster vaccination would be due at a time when the 2012-2013 

seasonal influenza virus vaccine would have expired. Therefore, the equivalent 2013-

2014 seasonal influenza virus vaccine (Batch number K7231-4; June 2014) was 

given instead.  

In the primary vaccination study, we administered intramuscularly the WHO 

recommended vaccine strains for the 2012-2013 influenza vaccine for northern 

hemisphere winter: the trivalent Influenza A/California/7/2009 (H1N1) pdm09-like 

virus; Influenza A/Victoria/361/2011 (H3N2)-like virus; and Influenza 

B/Wisconsin/1/2010-like virus, trade mark Sanofi Pasteur MSD. In the children, the 

secondary booster vaccination was the 2013-2014 influenza virus season vaccine for 

northern hemisphere winter: the quadrivalent Influenza A/California/7/2009 (H1N1) 

pdm09-like virus; Influenza A/Victoria/361/2011 (H3N2)-like virus derived from 

influenza A/Texas/50/2012; and Influenza B/Massachusetts/02/2012 virus, trademark 

Sanofi Pasteur MSD. 
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4.3.2 Ex vivo staining of freshly isolated PBMC  

The ex vivo staining was done as described in Chapter 2. Briefly, after counting, the 

cells were washed by spinning at 1600 rpm for 10 minutes at 22°C and re-suspended 

at 2 X 107 cells/ ml. Fifty µl of the cell suspension containing 1 X 106 cells were taken 

for staining with 4 ex vivo panels per sample. Namely:  

Panel 1 NK cell functional panel: CD107a-FITC; NKG2C-PE, CD25-PerCP-Cy5.5, 

CD56-PE-Cy7, CD57-e450, CD3-V500, NKG2A-APC, IFN--APC-e780;  

Panel 2 NK cell phenotype panel: CD27-FITC, NKG2C-PE, CD8-PerCP-Cy5.5, 

CD56-PE-Cy7, CD57-e450, CD3-V500, LIR-1-APC, CD16-APC-e780; (data not 

presented) 

Panel 3 Dendritic cell, monocyte/ macrophage, T and B cell phenotype:  CD45-FITC, 

CD11c-PE, CD19-PerCP-Cy5.5, CD56-PE-Cy7, CD123-e450, CD3-V500, CD40-

APC, CD14-APC-e780;  

Panel 4: T cell phenotype panel: CD27-FITC, CD4-PE, CD8-PerCP-Cy5.5, CD28-PE-

Cy7, CD57-e450, CD3-V500, CCR7-APC, CD45RA -APC-H7.  

The samples were analysed by flow cytometry within 2-3 days of collection and 

staining. PBMC were acquired using Cyan ADP flow cytometer and LSRII flow 

cytometer on FacsDiva® software. All FACS data analyses were performed using 

FlowJo® (TreeStar) as described in Chapter 2.    

4.3.3 HCMV & EBV ELISA 

The HCMV and EBV assays were performed as described in Chapter 2. Sixty eight 

samples were assayed for plasma human cytomegalovirus IgG (BioELISA CMV IgG 

3000-1216, Barcelona, Spain) and anti-Epstein-Barr virus nuclear antigen (anti-

EBNA-1) IgG (EI 2793-9601 G, Euroimmun Medizinische Labordiadnostika, Lubeck, 

Germany). 

 

4.3.4 Influenza virus antigen ELISA 

Briefly, 0.5 µg/ml of vaccine (Trivalent Influenza Vaccine (TIV), H1N1, H3N2 & 

influenza B) antigens were coated on 96-well plates overnight at 4⁰C. The following 
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day the plates were washed 4 times with washing buffer (containing 250mL of 20X 

PBS + 2.5mL of Tween 20 + 4.7475L dH2O) then blocked with blocking buffer 

(containing 1% skimmed milk powder in washing buffer) for an hour at room 

temperature, and subsequently washed 4 times again. Fifty µl of standard, negative 

control, AB plasma, blank or serum samples were added per well, sealed and 

incubated for 2 hours at 37⁰C. Post sample incubation, the plates were washed 7 

times and 50 µl of 1:15 000 dilution of horseradish peroxidase HRP-conjugate 

(Promega Cooperation, Madison, USA) was added and incubated at room 

temperature for 1 hour 30 minutes. Plates were subsequently washed 7 times. One 

hundred µl of ortho-phenylenediamine (OPD) (Sigma, P9187, Saint Louis, USA) was 

added per well and plates were incubated at room temperature for 12 minutes in the 

dark. The stop solution of 25 µl 2M H2SO4 sulphuric acid was used to stop the 

reaction in all wells and the plates read at 492 nm using Dynex technologies MRX TC 

II reader. A standard curve of known Optical density (OD) was plotted against known 

Arbitrary ELISA Units/ml (AEU/ml) concentration for each ELISA plate, and the 

unknown values were derived using the standard curve. Further dilutions (1:100 and 

1:2000) were performed for samples with initial readings below or above the standard 

curve. 

4.3.5 In vitro cell culture assay 

The specific in vitro procedures are described in Chapter 2. In order to assess the 

functional capacity of the NK cells, we cultured the PBMC overnight for 18 hours at 

37⁰C, 5% CO2. Most of the NK cells were cultured using 10% human male AB serum 

(Sigma-Aldrich®, Saint Louis, USA) conditions apart from the autologous plasma 

experiments at the end of this chapter. Generally, the functional characteristics of the 

NK cells were assessed by using CD107a as a degranulation marker, CD25 as an 

activation marker and IFN- for cytokine production potential. The rationale of the 

markers is discussed in Chapter 2.  

4.3.6 T cell in vitro culture  

PBMC were cultured at 37⁰C, 5% CO2, in 10% human AB serum (Sigma-Aldrich®, 

Saint Louis, USA). The PBMC were cultured with or without TIV antigens (2.5µg/ml) 

for 5 hours and Brefeldin A and Monensin added after 2 hours of in vitro culture.  
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4.3.7 Statistical analysis 

Non-parametric Wilcoxon matched paired tests were employed to analyse paired 

sample data within the study groups and Kruskal-Wallis tests were used for unpaired 

comparisons between different age groups and subsets, where applicable. GraphPad 

Prism (GraphPad Software 6) was used to prepare the diagrams and for statistical 

analysis. Significant difference between subsets was defined as having a p value of 

*p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  

 

4.4 RESULTS 

The aim of this study was to evaluate the induction of seasonal TIV antigen-specific 

CD4+ T helper cell-dependent and antibody-dependent NK cell activation, after 

primary and secondary influenza vaccinations. The secondary aims were to observe 

how long these responses would last post vaccination and how the NK cell responses 

are affected by age.  

Overall, I collected matched samples for 68 individuals, of which 22 were children in 

the youngest (2-6 years) age groups, 21 were young adult (20-30 years) and 25 were 

in the oldest (60-75) age group. The median age in each group was 3.9, 21.7, and 65 

years, respectively.  Similar numbers of male and female donors were recruited within 

each age group (Table 4.1). 

It is well known that NK cell maturation can be influenced by human cytomegalovirus 

(HCMV) infection (Guma et al., 2004, Guma et al., 2006, Lopez-Verges et al., 2011). 

It has previously been shown in Chapter 3, that our study population has a high 

prevalence of HCMV infection, therefore, we went on to examine the exposure to 

HCMV and Epstein-Barr virus (EBV) in our vaccination cohort using ELISA to 

determine the amount of IgG antibodies specific to these two herpes viruses. Table 

4.1 shows that, as expected, HCMV is highly prevalent in our cohort with only two 

individuals having a negative IgG antibody ELISA result, one in the youngest age 

group and one in the oldest age group. Consistent with the findings in our previous 

study, children had a higher median anti-HCMV IgG (398 IU/ml) titre than young 

adults (238 IU/ml), although not significant in this case. However, a significant 

increase in the median antibody titre was observed in 60-75 (580 IU/ml)year olds 

compared to children, Kruskal-Wallis test ∞ (Table 4.1). This extends the data shown 
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in Chapter 3, where the oldest subjects were under 50 years and suggest HCMV 

reactivation may be occurring in the elderly in our cohort (Table 4.1).  

There was no significant variation in anti-EBNA IgG levels between the age groups, 

although EBV seroprevalence increased with age (Table 4.1). In this cohort, the 

overall frequencies of individuals homozygous for the NKG2C wild type gene was 

44.1%, heterozygous individuals were 42.6% and 13.2% were homozygous for the 

NKG2C gene deletion (therefore allele frequency = 34.6%). 



NK CELL & INFLUENZA VIRUS VACCINATION    CHAPTER 4 

144 | P a g e  

 

Table 4.1: Cohort characteristics: Baseline NKG2C genotype, HCMV and EBV IgG antibody levels. 

 

∞HCMV IgG antibody levels significantly different between the youngest and oldest age groups (*p<0.05). 

Age Group 

 

 

HCMV IgG+ 

HCMV IgG 

titer, IU/ml 

EBV nuclear 

antigen 

EBV nuclear antigen 

IgG titer 

NKG2C genotype n (%) 

(Years) 

N 

(Male/Female) 

Median Age 

n (%) Median (range) IgG+, n (%) 
RU/ml, median 

(range) 

+/+ +/- -/- 

 

 

2-6 

22 
 

21 (95.5) 398 (35-2942)∞ 19 (86.4) 76 (17-185) 12 (54.5) 7 (31.8) 3 (13.6) 

(11/11) 3.9 

20-30 

21 
 

21 (100) 238 (54-798) 19 (90.5) 103 (8-178) 7 (33.3) 10 (47.6) 4 (19.0) 

(13/8) 21.7 

60-75 

25  

24 (96.0) 580 (72-8618)∞ 24 (96.0) 76 (3-192) 11(44.0) 12 (48.0) 2 (8.0) 

(13/12) 65.0 

Total 68 (37/31)  66 (97.1) 398 (35-8618) 62 (91.2) 85 (3-185) 30 (44.1) 29 (42.6) 9 (13.2) 
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In order to understand the role of NK cells in vaccination, we need to identify the 

specific subsets of NK cells that are circulating in peripheral blood. It has previously 

been shown that mature NK cells have limited ability to respond to exogenous 

cytokine stimulation but remain able to mediate ADCC (White et al., 2014, Nielsen et 

al., 2015). The different types of cells that might influence our vaccine responses 

were examined, namely, T cells, B cells, antigen presenting cells and NK cells. 

4.4.1 Significant variation of ex vivo phenotype of white blood cells 

between the different age groups 

We examined the proportions of PBMC expressing the following lymphoid and 

myeloid markers: CD19+CD14-: B cells, CD11c+CD14-: myeloid DC, CD123+CD11c-

: plasmacytoid DC, CD14+CD11c-: Monocytes, CD56+CD3-: NK cells, and 

CD3+CD56-: T cells.  CD45 was used to identify myeloid as well as lymphoid cells. 

The gating strategy is shown in Figure 4.1. 

 

Figure 4.1: Lymphoid and myeloid cell gating strategy 

Figure 4.1A illustrates the time gate, (B) singlet gate, (C) lymphocyte and myeloid cells gate, 

(D) CD45 white blood cells gate, (E) CD56+CD3- NK cells and CD3+CD56- T cells, (F) 

CD19+CD14- B cells, (G) CD14+CD11c+ monocytes and CD11c+CD14- myeloid DC, and (H) 

plasmacytoid DC. Representative dot plots from participant S11 visit 1 (20 years-young adult) 

recruited from the influenza vaccination study. 
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The proportion of NK cells increases with age (Figure 4.2A), and a similar observation 

was also seen in the absolute number of NK cells (data not shown). The median 

proportion of NK cells increased from 5% in the children to about 8% in the young 

adult group. The older adult group had median NK cell frequency of 10%. There was 

no observable difference between the age groups in the overall proportions of T cells 

(Figure 4.2B) but the frequency of B cells (Figures 4.2C) and absolute number of B 

cells (data not shown) significantly decreased with increasing age. Monocyte 

frequency (Figure 4.2D) was not different between the children and the older adults. 

However, there was a significant increase in the proportion of monocytes between 

children and the younger adults. Myeloid dendritic cell (mDC) frequency increased 

with age (Figure 4.2E) between the children and older adults, but not when 

comparing children and younger adults, however, the frequency of plasmacytoid 

dendritic cells (pDC) did not vary with age (Figure 4.2F). Generally, there was no 

significant difference observed in these lineage marker defined cells pre- and post-

vaccination (data not shown).  
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Figure 4.2: Age-related variation in baseline proportions of lymphoid and myeloid cell 

populations.  

Lymphoid and myeloid cell subset distribution at baseline between the three age groups (2-6, 

20-30, 60-75 years). These cells were stained ex vivo without stimulation. Data are shown for 

68 subjects. (A) CD56+CD3- NK cells, (B) CD3+CD56- T cells, (C) CD19+CD14- B cells, (D) 

CD14+CD11c+ monocytes, (E) CD11c+CD14- myeloid DC, and (F) plasmacytoid DC. In box 

and whisker plots, the horizontal bar indicates median frequency, the boxes extend 25th-75th 

percentile range and the whiskers indicate 95th percentiles. Statistical analysis was performed 

on samples using Kruskal-Wallis test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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4.4.2 T cell subset ex vivo phenotype varies with age 

4.4.2.1  Changes in proportions of naive and effector CD4 T cells 

with age 

CD4+ T helper cell production of IL-2 is an essential component in the potentiation of 

NK cells by immunization (Horowitz et al., 2010). This implies that any variation with 

age in the size of the CD4+ T helper cell population may influence NK cell activation. 

There was no significant difference in CD3 and CD8 expression amongst the age-

stratified groups, however, the CD4 population seems to increase with age (data not 

shown). The T cell phenotype may affect proliferative and phenotypic characteristics 

pre- and post-vaccination and the proportions of different memory subsets may vary 

with age. T cell subsets were assessed by removing doublets and identifying 

CD3+CD4+ cells and CD3+CD8+ cells and using CD45RA and CCR7 markers for the 

characterization of naïve, effector memory (EM), central memory (CM) and terminally 

differentiated effector memory (TEMRA) cells. Mature and potentially senescent 

CD4+ and CD8+ T cells were identified using CD28 and CD57 expression. 
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Figure 4.3: Gating strategy for T lymphocytes subsets. 

(A) singlet gate, (B) lymphocyte gate, (C) CD3+ T cells, (D) CD3+CD8+ T cells and 

CD3+CD4+ T cells, (E) CD57 expression on CD3+CD8+ T cells and (H) CD57 expression on 

CD3+CD4+ T cells. T cell CCR7 and CD45RA-defined CD8+ (F) and CD4+ (I) subsets and 

terminally differentiated CD28-CD57+ CD8+ (G) and CD4+ (J) T cells. Representative dot 

plots from participant S9 visit 4 (74 years) recruited from the influenza vaccination study. 
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Figure 4.4: Baseline frequencies of CD4+ T helper cell subsets vary with age. 

CD4 T cell subset distribution at baseline is shown for the three age groups (2-6, 20-30, 60-75 

years), gated from CD3+CD4+ T cells. Data are shown for 68 subjects, (A) CD45RA+CCR7+ 

naïve T cells, (B) CD45RA+CCR7- TEMRA cells, (C) CD45RA-CCR7+ central memory cells, 

and (D) CD45RA+CCR7+ effector memory T cells. In box and whisker plots, the horizontal bar 

indicates median frequency, the boxes extend 25th-75th percentile range and the whiskers 

indicate 95th percentiles. Statistical analysis was performed on samples using Kruskal-Wallis 

test, *p<0.05, ****p<0.0001. 

Consistent with expectations, a decrease in naive CD4+ and CD8+ T cell subsets, 

and a parallel increase in effector memory subsets were observed with age. As 

expected, the naïve CD4+ helper T cell (CD3+CD4+CD45RA+CCR7+) population 

was considerably higher in children with a median proportion of 50% compared to the 

other two groups (Figure 4.4A). These data demonstrate a general decrease in the 

naïve CD4 T helper population with age. By contrast, the EM (CD3+CD4+CD45RA-

CCR7-) population increased with age (Figure 4.4D). The older adults had the highest 

frequency of EM (about 60%), which was significantly higher than among the 

children. The children had the lowest median proportion of CD4+ effector memory 

(EM) cells. Neither the CD4+ central memory (CM) (CD3+CD4+CD45RA-CCR7+) nor 
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the terminally differentiated effector memory (TEMRA) cells 

(CD3+CD4+CD45RA+CCR7-) differed in frequency between the groups (Figure 4.4 

B, C). Also, there was no significant different between proportions of CD4+ T helper 

cell subsets pre- and post-vaccination (data not shown). 

4.4.2.2  Proportions of naive and effector CD8 T cells vary with age 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Baseline frequencies of CD8 T helper cell subsets vary with age. 

CD8 T subset distribution at baseline between the three age groups (2-6, 20-30, 60-75 years), 

gated from CD3+CD8+ T cells. These cells were stained ex vivo without stimulation. Data are 

shown for 68 subjects. (A) CD45RA+CCR7+ naïve cells, (B) CD45RA+CCR7- TEMRA cells, 

(C) CD45RA-CCR7+ central memory cells, and (D) CD45RA+CCR7+ effector memory CD8+ 

T cells. In box and whisker plots, the horizontal bar indicates median frequency, the boxes 

extend 25th-75th percentile range and the whiskers indicate 95th percentiles. Statistical analysis 

was performed on samples using Kruskal-Wallis test, ***p<0.001, ****p<0.0001. 

 

Cytotoxic CD8+ T cells kill target cells in a MHC class I restricted manner. This 

mechanism of targeted cell death is important in complementing recognition of target 

cells missed by NK cells. The proportion of CD8+ naïve T cells 

(CD3+CD8+CD45RA+CCR7+) significantly decreases with age (Figure 4.5A). More 

than 70% of CD8+ T cells were naïve in children aged 2-6 years, whilst this 
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proportion was approximately 65% among younger adults and as low as 40% in older 

adults. The frequency of CD8+ effector memory (EM) increases 

(CD3+CD8+CD45RA-CCR7-) cells with age (Figure 4.5D). Children had EM median 

percentage of about 20%, whilst older adult adults had a frequency of over 40%. 

Proportions of both CD8+ TEMRA (CD3+CD8+CD45RA+CCR7-) and CD8+ CM 

(CD3+CD8+CD45RA-CCR7+) were not significantly different between the age groups 

(Figure 4.5 B,C). 

4.4.2.3  Changes in T cell senescence markers with age  

Highly differentiated CD4+ and CD8+ T cells acquire CD57 and lose the expression 

of the co-stimulatory molecule CD28 and several groups have proposed that these 

phenotypes are associated with functional senescence (Fulop et al., 2013). I 

therefore, investigated whether there were age-related changes in T cell phenotype 

evident in this cohort which could impact on vaccine responsiveness. The oldest 

adults displayed a higher frequency of CD4+ CD28-CD57+ cells compared to children 

and young adults (Figure 4.6A). Interestingly and similarly to the observations 

described in Chapter 3, a high frequency of CD28-CD57+ CD8+ T cells was observed 

in children and older adults. The young adults had a significantly lower proportion of 

CD28-CD57+ CD8 T cells than the other age groups (Figure 4.6B). 

 

 

 

 

 

 

Figure 4.6: Baseline expression of CD28 and CD57 on T cell subsets changes with age.  

CD28-CD57 expression on CD4 and CD8 T cell subsets at baseline among the three age 

groups (2-6, 20-30, 60-75 years), gated from CD3+ T cells. These cells were stained ex vivo 

without stimulation. Data are shown for 68 subjects. Frequency of CD4+CD28-CD57+ (A) and 

CD8+CD28-CD57+ (B) T cells, the horizontal bar indicates median frequency, the boxes 

extend 25th-75th percentile range and the whiskers indicate 95th percentiles. Statistical analysis 

was performed on data using Kruskal-Wallis test, **p<0.01, ***p<0.001. 
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4.4.3  Baseline, ex vivo NK cell subset proportions change with 

age 

In view of the increasing proportion of NK cells observed with age, I wanted to further 

characterise the NK cell phenotype in this study population to assess variations that 

may exist between the young and old and which could impact on NK cell function. At 

the same time, we also looked for ex vivo differences in functional markers before 

and 1 month after vaccination. The gating strategy is shown below (Figure 4.7).  

 

Figure 4.7: Gating strategy for NK cell subsets. 

(A) Singlet gate, (B) lymphocyte gate, (C) NK cell gate, (D) CD57 NK subsets, (E) NKG2A 

expression, (F) NKG2C expression and (G) CD25 (H) IFN-γ and (I) CD107a expression. 

Representative dot plots from participant S1 visit 1 (29 years) recruited from the influenza 

vaccination study. 
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4.4.3.1  Increase in proportions of NK cells is mainly due to 

enrichment for CD56dim cells 

In this ex vivo analysis, NK cells have been defined as CD56+CD3- lymphocytes and 

subsequently, subpopulations of CD56bright and CD56dim populations were also 

identified (Figure 4.8). 

 

Figure 4.8: Baseline frequencies of total (CD3-CD56+), CD56bright and CD56dim NK cell 

subsets with age. 

NK cell subsets at baseline between the three age groups (2-6, 20-30, 60-75 years), gated 

from CD56+CD3- NK cells. These cells were stained ex vivo without stimulation. (A) 

Proportion of all lymphocytes that are CD56+CD3- NK cells and (B,C) proportion of NK cells 

that are CD56bright (B) or CD56dim NK cells (C). In box and whisker plots, the horizontal bar 

indicates median frequency, the boxes extend 25th-75th percentile range and the whiskers 

indicate 95th percentiles. Statistical analysis was performed on samples using Kruskal-Wallis 

test, *p<0.05, **p<0.01, ***p<0.001. 
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At baseline, and consistent with the data shown in Chapter 3, the 2-6 years age 

group had a significantly higher frequency of CD56bright cells than the other two age 

groups (Figure 4.8B). The median proportion of CD56bright cells was about 9%. This 

was higher than the other two groups, which were around 5% for both age groups. As 

expected, the increased frequency of CD56bright cells resulted in children having a 

significantly lower frequency of CD56dim cells than the older age groups (Figure 

4.8C). This was about 91% for the children and 95% and 94% for the 20-30 and 60-

75 years age groups, respectively. Thus, this result indicates that children had a 

greater number of CD56bright cells than adults; however, they had a lower proportion 

of CD56dim. 

4.4.3.2  The proportion of CD57+ NK cells increases with age 

CD57+ expression was not different between the age groups in the CD56bright NK 

cells, (Figure 4.9A) but CD56dim NK cells expressing CD57+ increased with age 

(Figure 4.9B). Young children expressed a median of about 50% CD57+ cells. The 

young adults had a median frequency of 60% whilst in the older adults the frequency 

was about 65%.  

 

Figure 4.9: Baseline ex vivo CD57+ expression on CD56dim NK cells increases with 

age.  

CD57 expression on NK cells subsets at baseline between the three age groups (2-6, 20-30, 

60-75 years), gated from CD56+CD3- cells. These cells were stained ex vivo without 

stimulation. Data are shown for 68 subjects. Frequency of CD57 on (A) CD56bright and (B) 

CD56dim NK cells. In box and whisker plots, the horizontal bar indicates median frequency, 

the boxes extend 25th-75th percentile range and the whiskers indicate 95th percentiles. 

Statistical analysis was performed on samples using Kruskal-Wallis test, **p<0.01. 

2 - 6 2 0 - 3 0 6 0 - 7 5

0

1 0

2 0

3 0

4 0

 C
D

5
7

+
 (

%
)

C D 3 - C D 5 6
b r i g h t

2 - 6 2 0 - 3 0  6 0 - 7 5

0

2 0

4 0

6 0

8 0

1 0 0
* *

 C
D

5
7

+
 (

%
)

C D 3 - C D 5 6
d i m



NK CELL & INFLUENZA VIRUS VACCINATION    CHAPTER 4 

156 | P a g e  

 

HCMV is known to be highly prevalent in our study cohort as shown in Table 4.1. 

NKG2C is an activation receptor on NK cells that recognises HCMV infected cells and 

the expansion of the NKG2C+ subset has been associated with HMCV infection. The 

expression of NKG2A, an inhibitory receptor, and NKG2C on NK cells is mutually 

exclusive, meaning that most of the cells have either NKG2A or NKG2C, but not both 

(Figure 4.10B). Figure 4.10A demonstrates the negative correlation that exists 

between NK cells expressing NKG2C and NKG2A in the 2-6 years old age group 

within our study population. Interestingly, considerable heterogeneity is observed for 

the expression of these markers in the children, which may reflect age at HCMV 

infection, viral load or host genotype.  

 

Figure 4.10: Mutually exclusive expression of NKG2A and NKG2C on NK cells of 

children (2-6 years). 

(A) There is a negative correlation between proportions of NK cells expressing NKG2C and 

NKG2A receptors. (B) Shows gating of NKG2A+ and NKG2C+ NK cells, gated from 

CD56+CD3- NK cells. These cells were stained ex vivo without stimulation. Data are shown 

for 22 children; each data point represents an individual donor. 

The proportion of NKG2A+ NK cells was significantly higher in children aged 2-6 

years compared to young adults (Figure 4.11A). However, consistent with an early 

maturation of NK cells in The Gambia, this observed difference was no longer 

significant comparing young and old adults. The children had a median 

CD56+NKG2A+ percentage of about 50%, whilst both younger and older adults had 

median percentages of less than 40%. This was also seen after influenza vaccination. 

NKG2C expression on NK cells was not different between children and adults (Figure 

4.11B). Children had a median percentage NKG2C+ of about 30%, whilst the young 
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and old adults had median NKG2C+ frequency of 21% and 30%, respectively. A 

similar pattern was also observed post influenza vaccination, and is consistent with 

known high rates of HCMV infection early in life in the study population. Therefore, 

high frequencies of NKG2C+ NK cells are already apparent by 6 years of age in this 

cohort. 
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Figure 4.11: Ex vivo, baseline proportions of NK cells expressing NKG2A and NKG2C 

varies with age. 

Proportion of NKG2A and NKG2C on NK cells subsets at baseline between the three age 

groups (2-6, 20-30, 60-75 years), gated from CD56+CD3- NK cells. These cells were stained 

ex vivo without stimulation. Data are shown for 68 subjects. Frequency of NKG2A+ (A) and 

NKG2C+ (B) NK cells. In box and whisker plots, the horizontal bar indicates median 

frequency, the boxes extend 25th-75th percentile range and the whiskers indicate 95th 

percentiles. Statistical analysis was performed on samples Kruskal-Wallis test, *p<0.05. 

4.4.3.3  NKG2A is highly expressed on CD56brightCD57- NK cells, 

whereas CD56dimCD57+ (CD57+) NK cells are enriched for 

NKG2C expression 

In order to assess whether differences in the frequencies of NKG2A+ and NKG2C+ 

NK cells between adults and children was related to the differentiation phenotype, the 

proportions of these cells were examined within CD57-defined subsets. Higher 

frequencies of CD56brightCD57- NK cells expressed NKG2A than the other CD57 

subsets (Figure 4.12A) and NKG2A expression decreased as NK cells differentiate 

from CD56brightCD57-(CD56bri) to CD56dimCD57- (CD57-) through CD57int 

(CD57int) to CD56dimCD57+ (CD57+) (Figure 4.12A). This observation is not 

affected by age, as there was no difference between the age groups. Similar patterns 
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were seen after influenza vaccination (data not shown). Conversely, higher 

proportions of CD56dimCD57+ (CD57+) cells expressed NKG2C compared to the 

CD57- subsets (Figure 4.12B). In summary, no difference was observed in the subset 

distribution of NKG2C+ NK cells between different age groups. However, as a 

significant increase in the overall frequencies of CD56dimCD57+ NK cells was 

observed between adults and children this is likely to result in higher numbers of 

highly differentiated CD57+NKG2C+ cells with increasing age. 

 

 

 

 

 

 

 

 

 

 

 

 

 



NK CELL & INFLUENZA VIRUS VACCINATION    CHAPTER 4 

159 | P a g e  

 

 N
K

G
2

A
+

(
%

)

C
D

5
6

b
r

i 

C
D

5
7

-
 

C
D

5
7

in
t
e

r
 

C
D

5
7

+
 

C
D

5
6

b
r

i 

C
D

5
7

-
 

C
D

5
7

in
t
e

r
 

C
D

5
7

+
 

C
D

5
6

b
r

i 

C
D

5
7

-
 

C
D

5
7

in
t
e

r
 

C
D

5
7

+
 

0

2 0

4 0

6 0

8 0

1 0 0

   2 - 6 2 0 - 3 0 6 0 - 7 5

A

* * * *

*

* * * *

*

* * * *

*

*
N

K
G

2
C

+
 (

%
)

C
D

5
6

b
r
i

C
D

5
7

-

C
D

5
7

in
te

r

C
D

5
7

+

C
D

5
6

b
r
i

C
D

5
7

-

C
D

5
7

in
te

r

C
D

5
7

+

C
D

5
6

b
r
i

C
D

5
7

-

C
D

5
7

in
te

r

C
D

5
7

+

0

2 0

4 0

6 0

8 0

1 0 0

2 -6 2 0 -3 0 6 0 -7 5

B
* * * *

* *

* * * * * * * *

* *

(Y e a rs )

 

Figure 4.12: Baseline expression of NKG2A decreases and NKG2C increases, with the 

acquisition of CD57 receptors. 

Expression of NKG2A and NKG2C in CD57-defined NK cell subsets (CD56bright, 

CD56dimCD57-, CD56dimCD57inter, and CD56dimCD57+) within each of the three age 

groups (2-6, 20-30, 60-75 years), gated from CD56+CD3- NK cells. These cells were stained 

ex vivo without stimulation. Data are shown for 68 subjects. Frequency of NKG2A (A) and 

NKG2C (B) NK cells among all NK cells. In box and whisker plots, the horizontal bar indicates 

median frequency, the boxes extend 25th-75th percentile range and the whiskers indicate 95th 

percentiles. Statistical analysis was performed on paired samples using Wilcoxon signed-rank 

test, *p<0.05, **p<0.01, ****p<0.0001. 
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4.4.3.4  The effect of vaccination on NK cell functional markers ex 

vivo  

The expression of NK cell functional markers was investigated ex vivo to test whether 

any residual vaccine induced effects persisted 1 month after vaccination. The only 

significant effect of vaccination was that CD107a expression was slightly but 

significantly decreased in children post vaccination compared to pre-vaccination, 

consistent with a higher frequency of CD56bright cells in the children (Figure 4.13A). 

Ex vivo staining reveals no significant expression of CD25 and IFN- before 

vaccination and no significant up-regulation up to 4 weeks post-vaccination (Figure 

4.13 B,C).  

 

Figure 4.13: Ex vivo expression of CD25, CD107a, and IFN- by NK cells before and after 

influenza vaccination.  

Ex vivo NK cell (A) CD107a, (B) CD25, and (C) IFN- frequencies at pre- and post-vaccination 

within the three age groups (2-6, 20-30, 60-75 years), gated from CD56+CD3- NK cells. 

These cells were stained ex vivo without stimulation. Data are shown for 68 subjects. In box 

and whisker plots, the horizontal bar indicates median frequency, the boxes extend 25th-75th 

percentile range and the whiskers indicate 95th percentiles. Statistical analysis was performed 

on paired samples using Wilcoxon signed-rank test, *p<0.05. 
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4.4.3.5  Pre- and post-vaccination NK cell responses to in vitro 

restimulation with influenza antigen  

I hypothesized that trivalent influenza virus (TIV) immunization will induce influenza 

antigen-specific CD4+ helper T cells and influenza-specific antibodies which enhance 

NK cell activation and effector function on re-exposure to similar antigens. Because 

different people will have different levels of pre-existing influenza IgG antibodies, I 

initially standardised our experiment using pooled AB+ serum in all culture conditions. 

No change in the frequencies of CD107a, CD25 or IFN-γ expressing NK cells were 

observed after vaccination following restimulation of PBMC with TIV antigens alone or 

TIV in combination with low concentrations of accessory cell cytokines (LCC: rIL-12 

12.5pg/ml + rIL-18 10ng/ml) (Figures 4.14, 4.16, and 4.17). Baseline NK cell 

responses to antigens were not significantly different from those observed at 4, 12 

and 24 weeks after vaccination. However, the addition of TIV antigens induced a 

significant CD107a production (****p<0.0001) at baseline, 4, 12 and 24 weeks after 

vaccination (Figures 4.14). 
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Figure 4.14: CD107a+ NK cells were not induced by in vitro restimulation post influenza 

vaccination.  

Frequencies of CD107a+ NK cells at baseline (Week 0) compared to 4, 12 and 24 weeks post 

TIV vaccination, gated from CD56+CD3- cells. The cells were cultured in (M) Medium alone, 

TIV alone, (LCC) low concentration of cytokines [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml] alone 

and LCC plus TIV vaccine antigen. Data are shown for 61 subjects; each dot representing the 

frequency of CD107a+ NK cells from a single individual, the red bar represents the median 

frequency. Statistical analysis was performed on paired samples using Wilcoxon signed-rank 

test, ****p<0.0001. 

 

In addition, we hypothesised that influenza antigen-driven NK cell responses to 

influenza antigens may decline with increasing age of vaccinated individuals as a 

result of either impaired T or B lymphocyte responses or of age-associated changes 

in NK cell phenotype and function. However, there was no significant difference in 

CD107a expression between the three different age groups (Figure 4.15). This 

analysis is based on LCC/TIV as this gave the optimal responses in our experiment. 
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Figure 4.15: No significant difference in TIV-induced NK cell CD107a+ expression 

between age groups after vaccination.  

NK cell CD107a expression in response to LCC or LCC/TIV at baseline (Week 0) compared to 

4, 12 and 24 weeks post TIV vaccination, stratified by age group (2-6, 20-30, 60-75 years), 

gated from CD56+CD3- cells. The cells were cultured in (LCC) low concentrations of 

cytokines [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml] plus TIV antigen (LCC+ TIV). Data are shown 

for 61 subjects; each dot representing the frequency of CD107a+ NK cells from a single 

individual, the red bar represents median frequency. Statistical analysis was performed on 

paired samples using Wilcoxon signed-rank test. 
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Figure 4.16: CD25+ expression by NK cells after in vitro restimulation with TIV antigens 

was not potentiated post influenza vaccination. 

Frequency of NK cells expressing CD25 after in vitro restimulation at baseline (Week 0) 

compared to 4, 12 and 24 weeks post TIV vaccination, gated from CD56+CD3- NK cells. The 

cells were cultured in (M) Medium alone, TIV alone, (LCC) low concentrations of cytokines 

[rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml] alone and plus TIV vaccine antigen (LCC+ TIV). Data 

are shown for 61 subjects; each dot representing the frequency of CD25+ NK cells from a 

single individual, the red bar represents median frequency. Statistical analysis was performed 

on paired samples using Wilcoxon signed-rank test. 
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Figure 4.17: No significant potentiation of NK cell IFN- production in response to TIV 

post influenza vaccination. 

Proportion of IFN- by NK cells after in vitro restimulation at baseline (Week 0) compared to 4, 

12 and 24 weeks post TIV vaccination, gated from CD56+CD3- cells. The cells were cultured 

in (M) Medium alone, TIV alone, (LCC) low concentrations of cytokines [rIL-12: 12.5 pg/ml & 

rIL18: 10 ng/ml] alone and plus TIV vaccine antigen (LCC+ TIV). Data are shown for 61 

subjects; each dot representing the proportion of IFN-+ NK cells from a single individual, the 

red bar represents median frequency. Statistical analysis was performed on paired samples 

using Wilcoxon signed-rank test. 

4.4.3.6  Vaccination enhances NK cell IFN- responses to high 

concentrations of accessory cell cytokines 

The effector function of NK cells post-vaccination was also assessed after stimulation 

in vitro with high concentrations of rIL-12 and rIL-18 in combination. I did not observe 

a change in CD107a and CD25 expression in response to rIL-12 and rIL-18 after 

vaccination (Figure 4.18A, B). However, I saw a significant enhancement of NK cell 

IFN- responsiveness to rIL-12 and rIL-18 up to 24 weeks post-vaccination (Figure 

4.19C).  
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observed within the youngest age group compared to older people at baseline (0) and 

24 weeks only (Figure 4.20). Although there is a trend towards the enhancement of 

IFN- production post influenza vaccination in those aged between 2-6 and 20-30 

years, it was only statistically significant in the oldest age group (60-75 years, 

**p<0.01, (Figure 4.20).  

 

 

Figure 4.18: High concentrations of cytokines did not potentiate NK cell CD107a and 

CD25 responses post-vaccination. 

NK cell CD107a and CD25 expression after in vitro stimulation with HCC at baseline (Week 0) 

and 4, 12, and 24 weeks post TIV vaccination, gated from NK cells. PBMC were cultured in 

high concentrations of cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 

65 subjects, each individual dot representing the frequency of CD107a+ or CD25+ NK cells 

before and after vaccination, the red bar represents median frequency. Statistical analysis 

was performed on paired samples using Wilcoxon signed-rank test. 
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Figure 4.19: NK cell IFN- responses to high concentrations of cytokines are 

significantly enhanced up to 24 weeks post vaccination. 

NK cell IFN- (C) expression after restimulation with HCC at baseline (Week 0) NK cells and 

4, 12 and 24 weeks post TIV vaccination, (A,B) gated from NK cells. PBMC were cultured in 

high concentrations of cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 

65 subjects; each dot represents the frequency of IFN-+ NK cells in a single individual before 

and after vaccination, red bar represents median frequency. Statistical analysis was 

performed on paired samples using Wilcoxon signed-rank test, *p<0.05, **p<0.01. 

Representative dot plots from participant S11 visit 1 (21.6 years) recruited from the influenza 

vaccination study. 
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Figure 4.20. Vaccination-induced potentiation of NK cell IFN- response to cytokines in 

old adults only (60-75 years). 

Age-stratified (2-6, 20-30, 60-75 years) NK cell IFN- expression after in vitro restimulation 

with HCC at baseline (Week 0) NK cells and 4, 12 and 24 weeks post TIV vaccination, gated 

from CD56+CD3- cells. PBMC were cultured in high concentrations of cytokines alone (rIL-12 

5ng/ml + rIL-18 50ng/ml). Data are shown from 61 subjects; each dot represents the 

frequency of IFN-+ NK cells in a single individual before and after vaccination, the red bar 

represents median frequency. Statistical analysis was performed on paired samples using 

Wilcoxon signed-rank test, **p<0.01. 
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4.4.3.6.1 Vaccination-induced enhancement of IFN- production 

occurs mainly within CD56bright and CD56dimCD57- NK cells 

As there was a significant potentiation of IFN- production in response to high 

cytokine concentrations post-vaccination, and as less well differentiated NK cells are 

known to respond better to cytokines, we wanted to investigate the source of the IFN-

 within the CD56- and CD57-defined NK cell subsets. No overall change in the 

proportion of the CD57 subsets was observed post-vaccination (Figure 4.21B). 

However, IFN- was primarily produced by CD56bright and CD56dimCD57- (CD57-) 

NK cells (Figure 4.22). Furthermore, it is these subsets which show a significant 

enhancement in the frequencies of IFN- production in post-vaccination samples in 

response to high concentrations of cytokines, with no enhancement being observed 

within CD56dimCD57+ (CD57+) NK cells (Figure 4.22).  
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Figure 4.21: No change in the frequencies of CD56 and CD57-defined NK cell subsets 

after vaccination. 

Frequencies of CD56 and CD57-defined (CD56bright, CD56dimCD57- and CD56dimCD57+) 

NK cell subsets (B) at baseline (Week 0) NK cells compared to 4, 12 and 24 weeks post TIV 

vaccination, (A) gated from CD56+CD3- cells. PBMC were cultured in high concentrations of 

cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 65 subjects; each dot 

represents the frequency of NK cells in a single individual before and after vaccination, the red 

bar represents median frequency. Statistical analysis was performed on paired samples using 

Wilcoxon signed-rank test. Representative dot plots from participant S47 visit 1 (2.2 years) 

recruited from the influenza vaccination study. 
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Figure 4.22: Post vaccination enhancement of IFN- production by high concentration 

of cytokines was due to increased IFN-γ production by CD56bright and CD56dimCD57- 

NK cells.  

HCC induced IFN-γ production among CD56bright, CD56dimCD57- and CD56dimCD57+ NK 

cell subsets at baseline (Week 0) NK cells compared to 4, 12 and 24 weeks post TIV 

vaccination, gated from CD56+CD3- cells. PBMC were cultured in high concentrations of 

cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 65 subjects; each dot 

represents the frequency of IFN-+ NK cells in a single individual before and after vaccination, 

the red bar represents median frequency. Statistical analysis was performed on paired 

samples using Wilcoxon signed-rank test, *p<0.05. 
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4.4.3.6.2 Enhanced frequencies of IFN- producing CD56dim NK 

cells within both NKG2C-CD57- and NKG2C+CD57- subsets 

after influenza vaccination 

It has been shown in Chapter 3 that there is a high exposure of HCMV infection within 

Gambian population, with nearly all individuals being sero-positive by 3 years of age 

(Bello, 1992, Goodier et al., 2014, Bello and Whittle, 1991).  

As expansions of NKG2C+/CD57+ NK cells have been directly linked to HCMV 

infection and these cells come to dominate the NK cell repertoire in our Gambian 

study subjects from an early age (Chapter 3), to specifically delineate which NK 

subset was producing the IFN-, we categorised the CD56dim NK cells according to 

the expression of these late markers of differentiation, that is, NKG2C and CD57. 

There was no change in the frequency of NKG2C and CD57-defined subsets before 

and after vaccination (Figure 4.23C), except for a small but apparently significant 

decrease, in the proportion of NKG2C-CD57+ NK cells at 12 weeks post vaccination 

compared to baseline.  
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Figure 4.23:  The frequency of NKG2C and CD57-defined subsets does not change post 

vaccination. 

Frequency of NKG2C and CD57-defined NK cells subsets, (NKG2C-CD57-, NKG2C+CD57-, 

NKG2C-CD57+, and NKG2C+CD57+) at baseline (Week 0) compared to 4, 12 and 24 weeks 

post TIV vaccination, gated from CD56dim cells. PBMC were cultured in high concentrations 

of cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 65 subjects; each 

dot represents the frequency of NK cells in a single individual before and after vaccination. 

Statistical analysis was performed on paired samples using Wilcoxon signed-rank test. 

Representative dot plots from participant S57 visit 1 (63.6 years) recruited from the influenza 

vaccination study. 
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Higher frequencies of NK cells producing IFN- in response to HCC were observed 

within both NKG2C-CD57- and NKG2C+CD57- subsets but not within CD57+ cells 

(Figure 4.24). These data are consistent with CD56dimCD57- cells making superior 

responses to cytokines, whether or not they express NKG2C. Enhancement of IFN- 

production in CD57-NKG2C+ cells also support a model whereby HCMV-driven 

expansions of these cells, which maintain strong cytokine responsiveness, occurs 

prior to the acquisition of CD57. 

 

 

Figure 4.24:  Increased HCC-induced IFN-γ among NKG2C-CD57- and NKG2C+CD57- 

CD56dim NK cells after vaccination. 

HCC-induced IFN-γ production by distinct NKG2C/CD57-defined NK cells subsets, (NKG2C-

CD57-, NKG2C+CD57-, NKG2C-CD57+, and NKG2C+CD57+) at baseline (Week 0) 

compared to 4, 12 and 24 weeks post TIV vaccination, gated from CD56dim NK cells. Values 

in brackets () indicate the percentage of responders post vaccination. PBMC were cultured in 

high concentrations of cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 

65 subjects; each dot represents the frequency of NK cells in a single individual before and 
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after vaccination. Statistical analysis was performed on paired samples using Wilcoxon 

signed-rank test, *p<0.05, **p<0.01. 

4.4.3.7  The impact of vaccine-induced antibodies on NK cell 

responses 

In order to investigate the role of vaccine-induced influenza-specific antibodies in NK 

cell responses, the amount of IgG specific for the trivalent vaccine and its three 

component strains were estimated in plasma. Overall, we observed a significant 

enhancement of trivalent influenza virus (TIV)-specific antibodies post-vaccination 

(Figure 4.25A). However differences were observed in the patterns of antibody 

responses between age groups with 60-75 year old subjects having limited 

enhancement of antibody responses to TIV and H3N2 virus whilst showing induction 

of anti-influenza B and anti-H1N1 IgG antibodies (Figure 4.25 D,H,L,P). In contrast, 

antibody responses to TIV and influenza B were significantly enhanced in children 

and young adults after vaccination (Figures 4.25 B,C,F,J,G). However, H1N1 IgG 

antibodies were only weakly induced in the children, while anti-H3N2 antibodies were 

not induced in the young adults (Figure 4.25 N,K, respectively). 
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Figure 4.25: IgG antibody levels 

(expressed as Arbitrary ELISA 

Units (AEU)/mL) before and up 

to 24 weeks post TIV 

vaccination. Plasma IgG 

antibodies were measured by 

ELISA to whole TIV antigen (A-

D), or to individual component 

antigens (E-P) in the entire cohort 

(A,E,I,M) or separately in each 

age group 

(B.C.D.F.G.H.J.K.L.N.O.P). Dots 

indicate median values, with 25th 

and 75th percentile range.  

(*p<0.05, ***p<0.001; 

****p<0.0001, linear trend 

analysis using repeated measure 

ANOVA).  

Figure 4. IgG antibody levels 

(expressed as Arbitrary ELISA Units 

(AEU)/mL) before and up to 6 months 

post TIV vaccination. 
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Figure 4.26: NK cell CD107a responses to TIV antigens when cultured in autologous 

plasma collected at baseline or at 4 weeks post vaccination. 

NK cells collected at baseline (A) or 4 weeks after vaccination (B) were cultured in vitro with 

medium alone or with TIV antigen in the presence of autologous plasma collected at baseline 

or at 4 weeks after vaccination and analysed for CD107a expression. Population gated from 

CD56+ cells. Each dot represents the proportion of all NK cells expressing CD107a for one 

individual. The red bar indicates the median. Wilcoxon signed-rank test, *p<0.05, **p<0.01, 

****p<0.0001. 

Compared to medium alone, TIV antigen induced significant NK cell CD107a 

expression whether the cells were cultured in baseline plasma or post vaccination 

plasma (Figure 4.26); responses were similar for NK cells collected at baseline or at 4 

weeks post vaccination. These data suggest that even baseline plasma samples 

contained sufficient antibody to TIV to allow ADCC-like activation of NK cells to take 

place. Because the availability of cells from the young children was limited, these 

experiments were performed mainly on samples from young adults and the oldest 

age group and it is important to bear in mind that the antibodies to TIV and H3N2 

were not significantly enhanced by vaccination in the oldest age group (Figure 4.25).  

As we had a variable range of antibody responses post vaccination, we decided to 

split the analysis of NK cell CD107a frequencies based on the baseline antibody titre 
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to compare people with low IgG antibody titre to those who already had high IgG 

antibody at baseline. 

Looking at the responses of NK cells taken at baseline and 4 weeks after vaccination, 

we observed a trend towards individuals with low baseline titres to have an increased 

CD107a response to antigen in plasma taken after vaccination, whereas those with 

higher titres tended to have reduced responses, although none of these effects were 

significant (Figure 4.27). These effects are however consistent with previous 

observations in European subjects where high levels of anti-influenza antibody are 

induced by vaccination which tend to suppress NK cell degranulation responses 

(Goodier et al, 2016). Similarly, there were no significant difference in CD25 and IFN-

 responses between people with low IgG and high IgG at baseline both for pre-and 

post-vaccination NK cells (Figure 4.28, 4.29). 
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Figure 4.27: CD107a responses to TIV and autologous plasma stratified by baseline 

anti-TIV. 

The frequency of NK cells collected either at baseline (A) or 4 weeks post vaccination (B) 

expressing CD107a after in vitro culture with medium alone (M) or with TIV antigens (TIV) in 

the presence of autologous plasma collected at baseline (0) or 4 weeks after vaccination (4).  

Data are stratified by the titre of anti-TIV IgG at baseline (Low = below and High = above the 

median value for the cohort, respectively). Data are shown for 38 subjects; each dot 

representing the frequency of CD107a+ NK cells from a single individual, the red bar 

represents median frequency. Statistical analysis was performed on paired samples using 

Mann-Whitney U test. 
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Figure 4.28: CD25 responses to TIV and autologous plasma stratified by baseline anti-

TIV. 

The frequency of NK cells collected either at baseline (A) or 4 weeks post vaccination (B) 

expressing CD25 after in vitro culture with medium alone (M) or with TIV antigens (TIV) in the 

presence of autologous plasma collected at baseline (0) or 4 weeks after vaccination (4).  

Data are stratified by the titre of anti-TIV IgG at baseline (Low = below and High = above the 

median value for the cohort, respectively). Data are shown for 38 subjects; each dot 

representing the frequency of CD25+ NK cells from a single individual, the red bar represents 

median frequency. Statistical analysis was performed on paired samples using Mann-Whitney 

U test. 
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Figure 4.29:  IFN-γ responses to TIV and autologous plasma stratified by baseline anti-

TIV titre. 

The frequency of NK cells collected either at baseline (A) or 4 weeks post vaccination (B) 

expressing IFN-γ after in vitro culture with medium alone (M) or with TIV antigens (TIV) in the 

presence of autologous plasma collected at baseline (0) or 4 weeks after vaccination (4).  

Data are stratified by the titre of anti-TIV IgG at baseline (Low = below and High = above the 

median value for the cohort, respectively). Data are shown for 38 subjects; each dot 

representing the frequency of IFN-γ + NK cells from a single individual, the red bar represents 

median frequency. Statistical analysis was performed on paired samples using Mann-Whitney 

U test. 

4.4.3.8  Antibody dependence of NK cell response to influenza virus 

antigen 

In order to confirm the role of IgG antibodies in antigen-driven NK cell CD107a 

responses at 4 weeks, we used H3N2 antigen to compare responses in complete 

serum and IgG depleted serum (Figure 4.30). To minimise variations due to 

differences in antibody titre, a single pool of AB serum was used for all assays. 

Although we did not have sufficient cells remaining from enough individuals to 

achieve statistical significance in these experiments, overall CD107a NK cells 
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responses decreased when the cells are cultured in IgG depleted AB serum 

compared to complete serum.  

 

Figure 4.30: Effect of IgG depletion on NK cell CD107a responses to H3N2 antigen. 

NK cells collected at 4 weeks after vaccination were PBMC cultured with or without H3N2 

antigen in complete AB serum (10%) or IgG-depleted AB (DEP AB) serum (10%) and 

analysed for CD107a expression. Each dot represents data for one donor; the red bar 

represents median frequency, data from 4 subjects. 

4.4.3.9  Influenza booster vaccination did not enhance NK cell 

responses in children 

As none of the subjects studied here had been vaccinated previously and our 

antibody data indicated variable exposure to natural infection we took advantage of 

the required booster vaccination administered to the children in our cohort to test 

whether this would promote stronger NK cell responses. The booster vaccine was 

administered 36 weeks (9 months) after the primary vaccination and the samples 

were collected two weeks after boosting (i.e. 38 weeks after the primary vaccination). 

There was no significant enhancement of CD107a, CD25 or IFN- responses among 

the NK cells (Figure 4.31 A,B,C) two weeks post booster vaccination. Consistent with 

previous data that a single vaccination enhanced NK cell IFN- responsiveness to 

HCC cytokines (Figure 4.19C), enhancement of the IFN-γ response to HCC was 

maintained for at least 36 weeks after vaccination and was further enhanced by 

booster vaccination in some, but not in all children (Figure 4.32).  
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Figure 4.31: No significant enhancement of NK cell response after booster vaccination in children. 

NK cell CD107a, CD25 and IFN- responses to TIV with or without LCC pre- and post booster vaccination in children (2-6 years), gated from CD56+. The cells 

were cultured in (M) Medium alone, TIV alone, (LCC) low concentration of cytokine [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml] alone or with TIV vaccine antigen (LCC+ 

TIV). Data are shown for 21 subjects; each dot representing the frequency of CD107a+, CD25+ or IFN-NK cells from a single individual, the red bar indicates 

the median frequency. Statistical analysis was performed on paired samples using Wilcoxon signed-rank test, *p<0.05. 
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Figure 4.32: Booster vaccination enhances NK cell responsiveness to accessory cell 

cytokines in some children. 

NK cell IFN- responses to HCC in children at baseline (Week 0) compared to 4, 12, 24, 36 

and 38 weeks post TIV vaccination. Booster vaccination was given at 36 weeks, cell 

populations were gated from CD56+ NK cells. PBMC were cultured in high concentrations of 

cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 21 subjects, each dot 

represents the frequency of IFN- NK cells in a single individual before and after vaccination, 

the red bar indicates the median frequency. Statistical analysis was performed on paired 

samples using Wilcoxon signed-rank test, *p<0.05. 

4.4.4 No significant induction of CD4 IL-2 post vaccination 

CD4+ T helper cell production of IL-2 is an essential component in the potentiation of 

NK cells in vaccination (Horowitz et al., 2010, White et al., 2014). We hypothesised 

that CD4 T IL-2 will enhance NK cell responses in our cohort after vaccination. 

Therefore, we examined the production of IL-2 from CD4 T cell pre and post influenza 

vaccination.  To our surprise we did not observe IL-2 production both in the presence 

of TIV antigens compared to cells cultured in medium alone, except 12 weeks after 

vaccination in TIV antigen restimulated cultures (Figure 4.33D). This observation 
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could partly justify why we did not see potentiation of NK cell responses after 

vaccination in our cohort.  

 

 

Figure 4.33: No significant change in CD4 T cell IL-2 secretion post vaccination. 

CD4 IL-2 responses (D) at baseline (Week 0) compared to 4, 12, and 24, post TIV 

vaccination. (A-C) Gating strategy for the analysis of CD4 IL-2 function. PBMC were cultured 

in medium (M) alone and the presence of TIV antigens (2.5 µg/ml) and PMA/iono for 5 hours. 

Data are shown from 64 subjects, each dot represents the frequency of IL-2+ CD4+ T cell in a 

single individual before and after vaccination, the red bar indicates the median frequency. 

Statistical analysis was performed on paired samples using Wilcoxon signed-rank test, 

*p<0.05. 
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4.4 DISCUSSION 

Vaccination is aimed at priming naïve antigen specific T and B cells to expand and 

differentiate into memory effector cells essential for the clearance of microbial 

pathogens. Vaccine-induced memory cells should direct innate effector cell activation 

on subsequent exposure to infectious agents to provide protective immunological 

responses. NK cells have the potential to be activated by pathogen-specific antibody 

cross-linking of FcRIII (CD16) and by IL-2 derived from CD4+ T cells after 

vaccination. The latter mechanism has been demonstrated using rabies, malaria, 

hepatitis B virus, and BCG vaccines (Evans et al., 2011, Horowitz et al., 2010, 

Horowitz et al., 2012).  Memory CD4+ T-cell derived IL-2 is important in influenza 

vaccination, as it has previously been shown that NK cell IFN- production was 

elevated in a T cell-dependent manner following influenza infection (He et al., 2004, 

Long et al., 2008).  

In this study, I observed negligible enhancement of NK cell responses up to 24 weeks 

post influenza vaccination. This impaired responsiveness could partially be attributed 

to the high prevalence of HCMV infection in this population. In a parallel study done in 

the UK using the same vaccines and protocol, NK cell IFN- IL-2 dependent 

responses and antibody-dependent responses to influenza virus were significantly 

potentiated up to 4 weeks post-vaccination. However, consistent with the data 

presented here, this response was significantly higher in HCMV sero-negative 

subjects compared to HCMV sero-positive subjects, highlighting the importance of 

HCMV infection in NK cell effector function (Goodier et al., 2016). It is likely that the 

HCMV sero-positive status of our study cohort could partially explain why we see this 

low level of responsiveness to influenza vaccination. It is well known that HCMV 

drives NK cells to become CD57+NKG2C+ mature cells; this phenotype is known to 

have limited ability to respond to cytokine-mediated activation, which would reduce 

their ability to respond to T cell IL-2 (White et al., 2014). Another reason why we 

observed negligible NK cell responses post vaccine could be that there was no 

significant induction of CD4 T cell IL-2 secretion post-vaccination. Meaning that, there 

is no antigen-driven IL-2 available to enhance NK cell responses in vitro.   

Using exogenous high concentrations of cytokines, however, we saw a potentiation of 

NK cell IFN- production post vaccination. This effect is consistent with the data from 

a UK cohort, where a similar enhancement of cytokine responses was observed after 

vaccination, importantly only in HCMV sero-positive individuals (Goodier et al, 2016). 
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Furthermore, enhancement of cytokine-induced IFN- production occurred 

predominantly within the CD56bright and CD56dimCD57- NK cells consistent with a 

dominant effect on less differentiated NK cells. 

Nielsen et al (2015) have previously shown that HCMV sero-positive individuals have 

impaired NK cell responses to pertussis and H1N1 influenza vaccine antigens. They 

also showed that CD56dimCD57+ NK cells did not respond to IL-2 induction and 

released lower amounts of IFN- (Nielsen et al., 2015, White et al., 2014). This is 

consistent with what we have observed in our study, as CD56dimCD57+ NK cells 

produced negligible amount of IFN- before and post vaccination when stimulated 

with exogenous cytokines. However, it should be noted that the acquisition of CD57 

and NKG2C and low levels of IL-18Rα expression on HCMV positive NK cells does 

not fully explain the impaired responses seen in HCMV infected people (White et al., 

2014, Nielsen et al., 2015). Enhancement of CD56dimNKG2C+CD57- NK cell after 

vaccination to exogenous cytokines, suggests that these cells are similar to the less 

differentiated NK cells which have been generated in vitro by cytokines pre-activation 

and have been described as cytokine-induced ‘memory-like’ NK cells (Cooper et al., 

2009, Berrien-Elliott et al., 2015). These cells might also be comparable to those 

described by Goodier et al., showing that CD56dimCD57- NK cells expressed more   

Ki67+ and CD71+ receptors and were more sensitive to cytokine responses (Goodier 

et al., 2016). However, that study was performed in European donors with limited 

expansions of NKG2C+ NK cells and was therefore not unable to detect immature 

CD57-NKG2C+ NK cells (Goodier et al 2016). In addition, the booster vaccine that 

was given to the children showed that a secondary influenza booster vaccine was still 

not sufficient to induce NK cell responses in vitro, although there was potentiation of 

NK responsiveness to exogenous cytokines in most donors.  

 

The secondary aim of the study was to examine age-related differences between the 

children and the older adults. Our in vitro and ex vivo results show that there is a 

significant variation in the number of NK cells, naïve CD4+ and CD8+ T cells and B 

cells between the different study age groups. Although NK cell proportions were 

higher in the older adult group, the proportions of naïve CD4+ and CD8+ T cells and 

B cells were considerably lower than in the children. This has implications in terms of 

developing an effective vaccination response to prevent influenza infections across 

different age groups. The availability of these cells is important in order to develop an 
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effective adaptive immune response. The diminished number of naïve CD4+ T cells in 

the older adults might have had a great impact on the ability to generate IL-2 

producing influenza-specific CD4+ T cells and therefore on the potency of NK cell 

activation through vaccination. It has been shown that pre-existing memory CD4+ T 

cells were more important in providing protection in influenza vaccinated individuals 

than CD8+ T cells (Wilkinson et al., 2012).  

Specifically, we have shown that the proportion and absolute numbers of total CD56+ 

and CD56dim NK cells increased, whilst the number of CD56bright NK cells 

diminished with increasing age. Furthermore, CD57 has previously been shown to be 

a marker of terminal T cell and NK cell differentiation; CD56dimCD57+ NK cells 

exhibit a more mature status than CD56dimCD57- NK cells and are enriched for cells 

expressing high levels of the C-type lectin-like receptor NKG2C on their surface (Poli 

et al., 2009, De Colvenaer et al., 2011, Lopez-Verges et al., 2011). CD56dimCD57+ 

cells also have a greater potential to be activated via direct receptor activation than 

indirect cytokine-mediated activation and these cells were shown to have reduced 

amount of IL-12Rβ2 mRNA than CD57- NK cells and have poor proliferative capacity 

(Lopez-Verges et al., 2010). In addition to changes in memory T cell subsets, these 

differences in functional NK cell subsets could have significant impact on the ability of 

different age-defined groups to respond to vaccine antigens. 

In this study, no significant NK cell activation was observed ex vivo at 4 weeks post 

vaccination relative to baseline samples. This indicates that any systemic NK cell 

activation resulting from vaccination may be transient. Previous studies done by Long 

and colleagues (Long et al., 2008) have demonstrated that there was no significant 

change in NK cell and T cell proportions post vaccination (up to 8 weeks), 

nonetheless, there was an elevated production of IFN- by NK cells and T cells in 7 

out of 8 vaccinated subjects in vitro. NK cells were the main source of IFN- in that 

study, 9 out of 10 subjects previously receiving an influenza vaccine prior to re-

vaccination (Long et al., 2008). Another study in subjects immune to influenza A, 

showed that CD56bright NK cells were the main source of IFN-production compared 

to CD56dim NK cells. Blocking of IL-2 or depletion of T cells inhibited NK responses 

and addition of recombinant IL-2 reinstated the response (He et al., 2004).  

The mechanism of expansion of NKG2C+ NK cells is not yet fully understood. This 

type of cell can be observed in our youngest age group (2-6 years), implying that 

there are likely modulatory effects of HCMV in the NK cell repertoire in children 
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(Noyola et al., 2012). Serological testing for HCMV in our study population indicates 

97.1% seroprevalence. HCMV is known to drive NK cell maturation acquiring 

NKG2C+ and CD57+ receptors, cells bearing this receptor combination being defined 

as terminally differentiated NK cells in HCMV sero-positive individuals. A high 

frequency of NKG2C+ NK cells is also observed in HIV, Hantavirus, Chikungunya, 

HBV, and HCV infections, however in all cases, these were associated with 

concomitant HCMV infection (Beziat et al., 2012, Petitdemange et al., 2011, 

Bjorkstrom et al., 2011).  

In conclusion, there is significant variation in NK cell, T cell and B cell numbers 

between old and young subjects. Furthermore, there is a significant alteration of 

phenotypic characteristics of NK cell subsets with increasing age, partially associated 

with HCMV infection, which might have impacted the efficiency of vaccine-driven NK 

cell effector function post primary and secondary influenza vaccination. CD4 T cell IL-

2 secretion was not normally induced or enhanced after vaccination, however, 

significant induction of influenza-specific antibodies was observed. Nevertheless, 

increased NK cell responsiveness to cytokines was observed post vaccination, which 

was mainly driven by CD56bright and NKG2C+CD57- NK cells.  
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5 CHAPTER 5: 

DIPHTHERIA, TETANUS, PERTUSSIS,  

& INACTIVATED POLIOVIRUS  

BOOSTER VACCINATION STUDY  
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5.1 DECLARATION  

 

Bakary Sanneh of the Infant Immunology Platform did the measurements of 

Diphtheria, Tetanus Toxoid and Pertussis antibody immunoassays. In addition, the 

Poliomyelitis 1 & 3 viruses neutralizing assays were done by Elishia Roberts, 

Scientific Officer at the Infant Immunology Platform, MRC Unit The Gambia, Vaccine 

& Immunity Theme, Fajara.  
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5.2 INTRODUCTION 

Vaccination can potentiate NK cell responses through antigen-specific memory CD4 

T cells, via immune-complexes and by intrinsic changes to NK cells induced by innate 

cytokines (Horowitz et al., 2010, Horowitz et al., 2012, Goodier et al., 2016). Chapter 

4 demonstrated that seasonal influenza virus vaccination resulted in enhancement of 

the NK cell response to cytokines, despite having no significant impact on the in vitro 

response to vaccine or virus antigens. In that project none of the individuals studied 

were previously vaccinated against influenza and children, despite receiving a 

booster vaccination after 9 months, did not demonstrate vaccine induced 

enhancement of in vitro NK cell responses to antigen. With this observation in mind, I 

wanted to investigate the effect of administration of a more potent secondary 

vaccination. Therefore, I used booster vaccination with diphtheria toxin, tetanus 

toxoid, acellular pertussis and inactivated poliomyelitis conjugated vaccine (DTPiP), 

diseases against which all study subjects had been vaccinated in infancy, to see if 

this booster vaccination will potentiate NK cell responses. 

One possibility for the absence of significant antigen-driven NK cell responses is that 

absence of previous vaccination and limited natural exposure to influenza could result 

in insufficient antigen-specific CD4+ T cells to support these responses, as shown in 

Chapter 4. The individual components of the DTPiP vaccine are known to induce 

protective antibodies and several studies have demonstrated that these components, 

or vaccines related to DTP, enhance the frequencies of antigen-specific CD4+ T cells 

producing IL-2 in vaccinated subjects (Sharma and Pichichero, 2012). 

Severe diphtheria is caused only when the aerobic gram-positive bacillus 

Corynebacterium diphtheria are infected by a bacteriophage leading to the generation 

of toxins which inhibit cellular protein synthesis and lead to tissue damage (Centers 

for Disease Control and Prevention, 2016). Diphtheria/acellular pertussis/ tetanus 

toxoid (DPT) vaccination can induce IL-2 producing CD4+ T cells in adults (Sharma 

and Pichichero, 2012). 

Tetanus is caused by an exotoxin called tetanospasmin, which is produced by 

Clostridium tetani bacterium. Despite the existence of very effective vaccines, tetanus 

still kills about 50 000 newborns and infants every year, mainly due to low coverage 

of immunization and poor medical health care facilities, specifically, in developing 

countries (Stock, 2015). Li Causi et al showed that tetanus booster vaccination 

induced memory CD4 T helper cell function and had bystander effects on central 
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memory T cells (Li Causi et al., 2015). IL-2 production by CD4+ T cells induced by 

tetanus vaccine can help NK cell responses promoting Th1 protective immunity 

(Garcia-Knight et al., 2015). Tetanus toxoid (TT)-specific CD4+ T cell IL-2 production 

was also induced after vaccination with the Meningococcal, C- and Y-Tetanus Toxoid 

(TT) conjugate vaccination. These data indicate that tetanus vaccination can promote 

potent CD4+ T cell production to help strengthen Th1 mediated immunity  (Fuery et 

al., 2015).  

 

The bacterium Bordetella pertussis is generally known to be an extracellular 

pathogen but it is now emerging that it can avoid immune recognition by infecting 

respiratory epithelial cells. It evades destruction by remaining in non-acidic lysosome-

associated membrane-protein-1-negative vesicles (Lamberti et al., 2013). Th1 

immunity is considered to be essential in the clearance of B. pertussis (Warfel and 

Merkel, 2013, Ryan et al., 1997). This protective mechanism is proven by the fact that 

the whole cell pertussis vaccine induces Th1 responses while acellular pertussis 

vaccine induces less-protective Th2 and Th17 responses, partially explaining the 

recent pertussis outbreaks (Higgs et al., 2012). Children who received whole 

pertussis vaccines were better protected than those who received the acellular 

pertussis vaccine (Klein et al., 2013). It has previously been shown that NK cells help 

B. pertussis clearance via IL-12 mediated production of IFN-, which potentiates 

macrophages and stimulates Th1 immune responses (Byrne et al., 2004). Protective 

immunity after pertussis vaccination is  not lifelong (suggested to last between 4-12 

years in children) highlighting the need for booster vaccination after this period 

(Wendelboe et al., 2005). 

Poliovirus is an enterovirus belonging to the Picornaviridae family and causes 

paralytic diseases. Although there has been a significant reduction of polio globally, 

there are still a small number of countries where this disease is still endemic, with 

occasional outbreaks in other countries that are considered ‘polio free’. There are 

three types of poliomyelitis virus: type 1, 2 and 3. Type 2 is considered to be 

eradicated, type 3 is on the verge of eradication and type 1 is the one mainly in 

circulation (Bandyopadhyay et al., 2015, Racaniello, 2006). It has long been shown in 

mice that polio-specific CD4+ Th1 clones can confer protection of immunized mice 

and that the protection mechanism was dependent on both T and B cell contributions 
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(Mahon et al., 1995). It is also known that oral polio vaccine in combination with 

adjuvant can induce IL-2 and IFN- production (Dietrich et al., 2014). 

Thus, there is sufficient evidence to indicate that these DTPiP vaccine antigens have 

the potential to induce CD4+ T helper cell IL-2 production and other supporting 

factors (e.g. antibodies), which could promote NK cell effector function after 

vaccination. We, therefore, investigated the impact of booster vaccination with 

Diptheria, Tetanus and Pertussis and Polio (Repevax) in adults with a record of prior 

vaccination. Thirty males between the ages of 20-35 years were recruited from 

Sukuta, The Gambia. Baseline blood samples were collected before giving a single 

dose of Repevax (which contains diphtheria toxoid, tetanus toxoid, acellular pertussis 

and inactivated poliomyelitis virus types 1, 2 & 3). Subsequently, a follow-up sample 

was collected 4 weeks post booster vaccination. 

This DTPiP vaccine was used to investigate the effect of a single booster vaccination 

of the four different antigens on lymphocyte-dependent effector NK cell responses. 

Specifically, we examined the following objectives:  

1. To investigate the levels of antibodies against Diphtheria toxin (DT), 

Tetanus (TT), Pertussis, and Poliomyelitis at baseline and 4 weeks post 

vaccination. 

2. To assess, the peripheral blood NK cell responses to DT, TT, Pertussis and 

Polio in-vitro before and after booster vaccination in individuals who had 

initially been vaccinated during infancy.  
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5.3 METHODS & MATERIALS 

Approval of this study was obtained from The London School of Hygiene & Tropical 

Medicine Ethics Committee, The MRC Unit The Gambia Scientific Coordinating 

Committee and The Gambia Government/ MRC Joint Ethics Committee and The 

Gambia Medicines Board (SCC application number: 1372v2, title: ‘Does booster 

vaccination enhance IL-2 driven NK cell responses). This study was conducted in 

Sukuta, Kombo North district, West Coast region. We recruited 30 adult males 

between the age of 20-35 years, who had previously been vaccinated with DTP and 

oral polio vaccine when they were children and had not received a booster since 

childhood.  

A single dose of Diphtheria toxoid, Tetanus toxoid, acellular component Pertussis and 

inactivated Poliomyelitis Virus Type 1, 2 & 3 (DTPiP) – trademark Repevax (Sanofi 

Pasteur MSD)- was given intramuscularly to all 30 subjects after collecting 30ml of 

baseline peripheral blood. Then, four weeks later another 30ml of peripheral blood 

was collected. All cells were separated and frozen as described in Chapter 2. PBMC 

were collected from 30 subjects at baseline, however, 4 weeks post booster 

vaccination we had 28 subjects. Data for 18 of these subjects will be presented in this 

chapter, as the remaining samples were saved for the in vitro autologous plasma 

assay because of limited number of available paired cells.  

5.3.1 PBMC separation 

PBMC were recovered from cryopreservation as described in Chapter 2 and were 

allowed to rest for 3-4 hours. NK cells were cultured in vitro, overnight for 18 hours at 

37⁰C, 5% CO2, with 10% Human AB serum (Sigma-Aldrich®, Saint Louis, USA) with 

or without vaccine antigens: DTPiP vaccine at 0.5 IU/ml; single diphtheria toxin 

(1µg/ml) [NIBSC 69/017]; single tetanus toxoid (7.5 µg/ml) [NIBSC 02/232]; single 

pertussis toxin (1:400 000 dilution, B. pertussis [NIBSC vaccine strain 88/522] and 

single inactivated poliomyelitis (5 IU/ml) [NIBSC 12/104] vaccine antigens with or 

without low concentrations of rIL-12/18 (rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml) or high 

concentrations of rIL-12/18 (rIL-12: 5 ng/ml & rIL18: 50ng/ml). 

The functional characteristics of the NK cells were assessed using CD107a as a 

degranulation marker, CD25 as an activation marker and IFN- as a marker of 

cytokine production potential. The rationale and gating strategy for these markers are 

discussed in Chapter 2. The following fluorochromes were used to investigate the NK 
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cells: CD107a-FITC; NKG2C-PE, CD25-PerCP-Cy5.5, CD56-PE-Cy7, CD57-e450, 

CD3-V500, IFN--APC-e780. Anti-CD107a was added to the cultures at the start of 

the culture period. Brefeldin A (GolgiPlug, BD Biosciences, Oxford, U.K.) 1/1000 final 

concentration and Monensin (GolgiStop, BD Biosciences, Oxford, U.K.) 1/500 final 

concentration were added at 15 hours to allow accumulation of intracellular IFN-. 

PBMC were acquired using LSRIII® Fortessa flow cytometer on FacsDiva® software. 

All FACS data analyses were performed using FlowJo® (TreeStar), the gating 

strategy is described in Chapter 2. 

5.3.2 DTaP4 Multiplex Immunoassay antibody assay 

The DTaP4 multiplex immunoassay (Bio-Rad laboratories, Inc, USA) was used to 

examine the antibody levels pre- and post-vaccination. This technique simultaneously 

detects plasma specific IgG antibody levels to diphtheria toxin, tetanus toxoid, and 

Bordetella pertussis.  

Briefly, 100 µl of 1X PBS (Phosphate Buffered Saline 0,01 M; pH 7.2) was added to 

pre-wet the wells of the filter plate. Serial dilution of the pertussis standard and the 

diphtheria-tetanus standard and QC sera were prepared in serum dilution buffer (1X 

PBS Phosphate Buffered Saline 0,01 M; pH 7.2). Then, the subject samples were 

diluted at 1/200 and 1/4,000 dilution in serum dilution buffer. Additionally, the bead 

solution was set up at 4,000 beads/region/25 μl in serum dilution buffer. A vacuum 

was applied to the filter plate at 5 mmHg for 2-5 seconds using a vacuum manifold. 

The plate was blotted to remove the leftover solution. The multiplex bead solution 

containing diphtheria toxin, tetanus toxoid, and Bordetella pertussis conjugated to 

carboxylated microspheres (Bio-Rad laboratories, Inc, USA) was diluted in bead 

activation buffer (1xPBS, 2.5 mg/ml 1-ethul-3-(-3dimethylaminopropyl)-carbodiimide 

hydrochloride (EDC) and 2.5 mg/ml N-hydroxy-sulphosuccinimide (Sulfo-NHS)) 

mixed and then 25 μl was added to each well. Subsequently, 25 μl of blank (serum 

dilution buffer), standard dilution series, QC sera and samples were added to the 

plate according to the plate layout. The plate was covered with aluminium foil, shaken 

for 30 seconds at 1100 rpm (revolutions per minute) on a shaker and was incubated 

for 30 minutes at room temperature, shaking at 600 rpm. At that time, the plate was 

washed three times with 100 μl of wash buffer (Phosphate Buffered Saline 0,01 M; 

pH 7.2). 

R-phycoerythrin conjugated goat anti-human IgG (γ chain specific) (Jackson 

ImmunoResearch laboratories, Inc, USA) detection antibody was added to the 
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respective wells, covered with aluminium foil, vortexed for 30 seconds at 1100 rpm 

and incubated for 30 minutes at room temperature, shaken at 600 rpm. Then, the 

plates were washed three times as mentioned above, and subsequently, read using 

Bio-Plex 200 system and the Bio-Plex Manager Software 4.1 was used for data 

analysis. 

5.3.3 Polio 1 & 3 virus neutralization assay 

The following polio virus strains were used: Poliomyelitis 1 virus:  X2245 diluted to 

1:1,000,000 and Poliomyelitis 3 virus:  X2246 diluted to 1:150,000, in 2% Fetal Calf 

Serum (FCS; Invitrogen, USA) in Dulbecco's Modified Eagle's Medium (DMEM). 

Briefly, 25 µl of the subjects’ plasma or the reference serum 498 (HW) were diluted at 

1:4 in sterile 1X PBS medium and complement was inactivated by incubation at 56oC 

for 30 minutes. Then, 50 µl of medium was added to each well of a flat-bottom plate. 

At that point, standard reference serum, positive control (containing 50 µl of medium 

and 50 µl of virus), and negative control (containing 100 µl of medium only), and 

diluted subject samples were further serially diluted 8 times to a final dilution of 

1:1024, and added to the plate; all samples were run in duplicate. Then 50 µl of 

diluted virus was added to each well except the negative control wells. Subsequently, 

the plate was incubated at 37ºC, 5% CO2 for an hour.  

During this incubation period, the Human Epithelial type 2 (HEp2) Cincinatti cells 

were stripped and washed and re-suspended in 2% FCS in Dulbecco's Modified 

Eagle's Medium (DMEM) at a concentration of 2 x 105/ml. Following the hour 

incubation, 100 µl of cell suspension was added to each well and then incubated at 

37oC, 5% CO2. After 4 days, the cytopathic effect (CPE) was read as positive [+] or 

negative [-] in each well. Negative was defined as well having less than 50% cell 

death by using a microscope. The neutralizing antibody titre was defined as the 

highest sample dilution where there was no cytopathic effect. 

5.3.4 Statistical analysis 

Non-parametric Wilcoxon matched paired tests were performed to analyse paired 

sample data within the study groups and Kruskal-Wallis tests were used for unpaired 

comparisons between different subsets. GraphPad Prism (GraphPad Software 6) was 

used to prepare the diagrams and for statistical analysis. Significant difference 

between subsets was defined as having a p value of *p<0.05, ** p<0.01, *** p<0.001, 

**** p<0.0001. 



NK CELL & DTPiP BOOSTER VACCINATION CHAPTER 5 

201 | P a g e  

 

5.4 RESULTS 

In order to examine how NK cell effector function is influenced by secondary 

vaccination, it was important to understand the potential role of immune complexes. 

Thus, levels of IgG vaccine-specific antibodies were determined pre (Week 0) and 

post (4 weeks) booster vaccination. In contrast to the influenza vaccination study 

(Chapter 4) where, typically, annual exposure to influenza viruses will boost antibody 

titres, diphtheria, pertussis, polio, and tetanus are only rarely encountered in the 

community nowadays and individuals who had received a booster vaccination after 

childhood were excluded. We expected, therefore, that subjects would have very low 

levels of antibodies at baseline but that these might be boosted by revaccination, 

enabling us to investigate the role of IgG in vaccine-induced NK cell responses. 

5.4.1 DTPiP vaccine-specific antibody assays 

5.4.1.1  Potent induction of IgG antibodies to diphtheria, tetanus, 

and pertussis toxins post vaccination 

Protective antibody levels for anti-diphtheria and anti-tetanus toxoid are defined as 

>0.01IU/ml and for anti-pertussis toxin as >16 EU/ml (Hammarlund et al., 2016, Kwon 

et al., 2012).  

Prior to booster vaccination (week 0), the median IgG antibody level against 

diphtheria toxin was 0.030 IU/ml but this increased to 1.323 IU/ml 4 weeks post 

vaccination (Figure 5.1). Considering a protective level of greater than 0.01 IU/ml, 

7/28 (25%) people had non-protective levels of diphtheria antibody at baseline, whilst 

all had protective levels post vaccination. Additionally, 26/28 (93%) subjects had 

protective anti-tetanus antibody levels prior to booster vaccination and all had 

protective levels after boosting with median titres increasing from 1.8 IU/ml at 

baseline to 7.5 IU/ml after vaccination (Figure 5.2). Prior to booster vaccination, 19/28 

(68%) subjects had below protective levels of anti-pertussis toxin antibody with one 

individual failing to reach protective levels after boosting (Figure 5.3); at baseline, the 

median titre was 7.9 EU/ml and this increased to 112.2 EU/ml post vaccination.  
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Figure 5.1: Concentration of serum IgG antibodies to diphtheria toxin before and after 

booster vaccination. 

DTaP4 multiplex immunoassay was used to determine the level of plasma diphtheria toxin IgG 

antibodies before (Week 0) and 4 weeks post vaccination. Samples were tested from 28 

subjects. Each dot represents data from one individual before and after booster. The dotted 

line indicates the protective level of diphtheria toxin antibodies. Statistical analysis was 

performed on paired samples using Wilcoxon signed-rank test, ****p<0.0001.  
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Figure 5.2: Concentration of serum IgG antibodies to tetanus toxoid before and after 

booster vaccination. 

DTaP4 multiplex immunoassay was used to determine the level of plasma tetanus toxoid IgG 

antibodies before (Week 0) and 4 weeks post vaccination. Samples were tested from 28 

subjects. Each dot represents data from one individual before and after booster. The dotted 

line indicates the protective level of tetanus toxoid antibodies. Statistical analysis was 

performed on paired samples using Wilcoxon signed-rank test, ****p<0.0001.  
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Figure 5.3: Concentration of serum IgG antibodies to pertussis toxin before and after 

booster vaccination. 

DTaP4 multiplex immunoassay was used to determine the level of plasma pertussis toxin IgG 

antibodies before (Week 0) and 4 weeks post vaccination. Samples were tested from 28 

subjects. Each dot represents data from one individual before and after booster. The dotted 

line indicates the protective level of pertussis toxin antibodies. Statistical analysis was 

performed on paired samples using Wilcoxon signed-rank test, ****p<0.0001.  

 

5.4.1.2  Poliomyelitis 1 & 3 virus neutralization assay 

Viral neutralization is a key antibody defence mechanism against viral infection. 

Neutralizing antibodies can function in different pathways such as causing 

aggregation of viral particles preventing them from infecting cells, or by blocking viral 

attachment through steric interference, capsid stabilization and structural changes. 

They can also block endocytosis or block viral un-coating via capsid stabilization and 

viral fusion interference (Klasse, 2014, Greenspan, 2001, Dimmock, 1993, Klasse 
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The assay for poliomyelitis virus specific IgG used in this study relies on inhibition of 

virus induced cytopathic effects (prevention of lysis of HEp 2 cells). The cut-off value 

for protective polio antibody is greater than 1:8 dilution (Diedrich et al., 2002, Arya 

and Agarwal, 2007). As shown in Figure 5.4, both Polio 1 & 3 antibodies significantly 

induced antibodies post booster, however, one person in the Polio 1 assay had a 

lower titre after the booster, this could have been a technical error. 
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Figure 5.4: Titres of neutralizing antibodies to plasma poliomyelitis 1 and 3 virus before 

and after booster vaccination. 

Plasma samples were cultured for 4 days with Human Epithelial type 2 (HEp2) Cincinatti cells 

in 2% FCS in Dulbecco's Modified Eagle's Medium (DMEM) at a concentration of 2x 105/ml in 

the presence of live Polio 1 or Polio 3 viruses. Cytopathic effects (CPE) was determined as 

negative [-] result, where there was less than 50% cell death per well, as read using a 

microscope. The level of neutralizing antibody titre was defined as the highest sample dilution 

where there was no cytopathic effect. Data are shown from 28 subjects; each dot represents 

the neutralising titre for a single individual before and after vaccination. The dotted line 

indicates protective polio neutralizing antibody titre. Statistical analysis was performed on 

paired samples using Wilcoxon signed-rank test, ****p<0.0001. 
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5.4.3 Booster vaccination does not enhance NK cell responses to 

individual vaccine component antigens 

NK cell CD107a and CD25 expression and IFN- production in response to vaccine 

components - Diptheria Toxin (DT), Tetanus Toxoid (TT), whole cell B. pertussis (PT) 

and inactivated poliomyelitis virus (P) - were determined before and after vaccination. 

Stimulations were performed with antigen alone or in the presence of low 

concentrations of cytokines (rIL-12 12.5ng/ml + rIL-18 10ng/ml) to compensate for 

any loss of antigen presenting cell populations among cryopreserved PBMC and the 

lack of PAMPs in subunit antigens. 

All of the single antigens alone, except poliomyelitis antigen, induced NK cell 

CD107a+ expression both at baseline and 4 weeks post booster vaccination (Figure 

5.5). Degranulation (CD107a) in the presence of low concentrations of cytokine alone 

(LCC) was not significantly different from that in medium alone. However, in 

combination with the vaccines antigens, the frequency of CD107a+ NK cells was 

significantly increased in both baseline and 4 weeks NK cells. These data indicate 

that NK cells can respond to these four pathogens, at least in the presence of human 

serum that likely contains specific IgG antibodies. In the presence of a standard 

human AB serum, booster vaccination did not, however, result in enhancement of 

CD107a responses except in poliomyelitis antigen plus cytokine stimulated cultures 

(p < 0.05) (Figure 5.5).  
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Figure 5.5: No significant difference in CD56+CD107a expression pre and post 

vaccination. 

Frequencies of CD107a+ NK cells expression baseline (Week 0) compared to 4 weeks NK 

cells post vaccination, gated from CD56+ cells. These cells were cultured in (M) Medium 

alone, (LCC) low cytokine concentration [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml], (V) DTPiP 

vaccine antigen, (DT) diphtheria toxin, (TT) tetanus toxoid, (PT) pertussis toxin, (P) inactivated 

poliomyelitis vaccine antigens. Data are shown for 18 subjects, each dot representing the 

frequency of CD107a+ cells from a single individual. Statistical analysis was performed on 

paired samples using Wilcoxon signed-rank test, *p<0.05. All comparisons between 0 and 4 

weeks were non-significant, except where indicated (*). Responses to antigen were 

significantly higher than responses to medium alone, and responses to LCC plus antigen were 

significantly higher than responses to LCC alone: Week 0 and Week 4, antigen only: medium 

vs: DTPiP, p<0.02; DT, p<0.01; TT, p<0.02; PT, p<0.006; Polio, not significant]. Week 0 and 

Week 4, antigen plus LCC: LCC vs LCC plus DTPiP p<0.02; plus DT p<0.001; plus TT 

p<0.0002; plus PT p<0.002; plus polio p<0.0003. 

 

The expression of CD25 was also assessed within total NK cells before and after 

vaccination (Figure 5.6). No significant induction of CD25 was observed on NK cells 

after stimulation with vaccine antigen alone. LCC alone significantly enhanced CD25 

expression (**p<0.002) on NK cells both in the absence or presence of antigens. 

0

5

1 0

2 0

C
D

1
0

7
a

 (
%

 o
f 

N
K

 c
e

ll
s

)

W e e k s

M       V     D T     T T    P T      P L C C    V     D T    T T    P T      P

0  4 0  4 0  4 0  4 0  4 0  4 0  4 0  4 0  4 0  4 0  4 0  4

+  L C CA n tig en  o n ly

*



NK CELL & DTPiP BOOSTER VACCINATION CHAPTER 5 

208 | P a g e  

 

Nevertheless, the frequencies of CD25+ NK cells did not differ between cultures 

treated with LCC alone compared to antigen plus LCC, except for LCC plus PT 

(*p<0.02) at baseline only. Moreover, CD25 was not activated post vaccination as 

there were no significant differences between baseline and 4 weeks NK cell CD25 

expression. 

 
Figure 5.6: CD25 expression on NK cells after in vitro restimulation with vaccine 

antigens, pre- and post- booster vaccination. 

CD25 expression in NK cells taken at baseline compared to 4 weeks post vaccination, gated 

from CD56+ cells. PBMC were cultured in (M) Medium alone, (LCC) low cytokine 

concentration [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml], (V) DTPiP vaccine antigen, (DT) 

diphtheria toxin, (TT) tetanus toxoid, (PT) pertussis toxin, (P) inactivated poliomyelitis vaccine 

antigens. Data are shown for 18 subjects, each dot representing CD25 expression on NK cells 

from a single individual before and after vaccination. Statistical analysis was performed on 

paired samples using Wilcoxon signed-rank test, **p<0.01. 
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when LCC was used in combination with DT antigens in samples taken after booster 

vaccination where a higher frequency of IFN-+ NK cells was observed compared to 

LCC alone (*p<0.04). 

 
Figure 5.7: IFN- expression by NK cells after in vitro restimulation with vaccine 

antigens, pre- and post- booster vaccination. 

IFN- expression in total NK cells measured at baseline (Week 0) compared to 4 weeks NK 

cell post vaccination, gated from CD56+ cells. Cells were cultured in (M) Medium alone, (LCC) 

low cytokine concentration [rIL-12: 12.5 pg/ml & rIL18: 10 ng/ml], (V) DTPiP vaccine antigen, 

(DT) diphtheria toxin, (TT) tetanus toxin, (PT) pertussis toxin, (P) inactivated poliomyelitis 

vaccine antigens. PBMC were cultured in 10% human AB serum for 18 hours under standard 

culture conditions. Data are shown from 18 subjects, each dot representing the frequency of 

IFN-+ NK cells for one donor before and after vaccination. Statistical analysis was performed 

on paired samples using Wilcoxon signed-rank test, *p<0.05. 
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5.4.3.1  Enhancement of NK cell responses to high concentrations 

of cytokines 

NK cell responsiveness to high concentrations of rIL-12 (5ng/ml) and rIL-18 (50ng/ml) 

(in the absence of vaccine antigen) has been shown to be enhanced after influenza 

vaccination both in Gambians (Chapter 4 of this thesis) and in a UK vaccination 

cohort (Goodier et al, 2016).  High concentrations of cytokines (HCC) were therefore 

used to test if this effect was specific to influenza vaccination or whether similar 

effects could also be observed after booster vaccination with DTPiP.   

There was a significant increase in the frequency of CD56bright NK cells post-

vaccination among unstimulated PBMC and a corresponding, reciprocal decrease in 

the proportion of CD56dim NK cells (Figure 5.8C).  
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Figure 5.8: Frequencies of CD56bright and CD56dim NK cells pre- and post – booster 

vaccination. 

(C) CD56bright and CD56dim NK cell frequency at baseline (Week 0) and 4 weeks post 

vaccination, gated from CD56+ cells. PBMC were cultured in medium alone, without 

stimulation.  Figure (A, B) shows representative dot plot of cells cultured in medium alone from 

subject number 23 visit 1 cells, age 22 years. Data are shown from 18 subjects, each 

individual dot representing the frequency of CD56bright and CD56dim NK cells subsets before 

and after vaccination for one subject. Statistical analysis was performed on paired samples 

using Wilcoxon signed-rank test, ***p<0.001. 
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No change in the frequencies of CD107a+ or CD25+ NK cells in response to HCC 

was observed between baseline and 4 weeks post-vaccination (Figure 5.9 A,B). 

Strikingly, and similar to the effect observed after influenza vaccination, a significant 

potentiation of NK cell IFN- production in response to HCC occurred 4 weeks post 

booster vaccination (**p<0.0021) compared to baseline NK cells (Figure 5.10C). 

These data support a model where different vaccines could potentiate NK cell 

responses to exogenous cytokines through common mechanisms. 

 

 
Figure 5.9: NK cell CD107a and CD25 expression in response to high concentrations of 

cytokine, before and after vaccination. 

NK cell CD107a and CD25 expression at baseline (Week 0) and 4 weeks post vaccination, 

gated from CD56+ cells. PBMC were cultured in high concentrations of cytokines alone (IL-12 

5ng/ml + IL-18 50ng/ml). Data are shown from 18 subjects, each individual dot representing 

the frequency of CD107a+ or CD25+ NK cells from one subject before and after vaccination. 

Statistical analysis was performed on paired samples using Wilcoxon signed-rank test.  
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Figure 5.10: NK cell IFN- production in response to high concentrations of cytokine, 

before and after vaccination.  

(C) NK cell IFN- expression from baseline (Week 0) NK cells and 4 weeks post vaccination. 

PBMC were cultured in high concentrations of cytokines alone (IL-12 5ng/ml + IL-18 50ng/ml). 

Figure (A, B) shows a representative dot plot of cells cultured in high concentrations of 

cytokines from subject number 23 visit 1 cells, age 22 years. Data are shown from 18 

subjects, each dot represents the frequency of IFN-+ NK cells in a single individual before 

and after vaccination. Statistical analysis was performed on paired samples using Wilcoxon 

signed-rank test, **p<0.01.  
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5.4.3.2  Proportions of CD56- and CD57-defined NK cell subsets 

after vaccination 

Our studies indicate that NK cells from Gambian subjects are highly differentiated 

with greater skewing towards a CD56dimCD57+ phenotype compared to UK cohorts 

(Chapter 3). Furthermore, influenza vaccination in UK subjects was recently 

demonstrated by our group to promote changes in the proportions of CD56 and 

CD57-defined NK cell subsets (Chapter 3 and Goodier et al, 2016). Influenza 

vaccination resulted in enrichment of CD56dimCD57- NK cells, detected ex vivo and 

these changes were restricted to HCMV+ individuals (Goodier et al, 2016). As all the 

individuals in our study cohort are likely to have been exposed to HCMV, we 

analysed whether DTPiP vaccination had an impact on the distribution of NK cell 

subsets according to differentiation status.  

As already shown in Figure 5.8, it can clearly be seen in Figure 5.11B that the 

frequency of CD56bright (CD56bri) NK cells within unstimulated PBMC significantly 

increases post booster vaccination. However, changes in the proportion of either 

CD57dimCD57-(CD57-) NK cells or CD56dimCD57+ NK cells were not statistically 

significant indicating that the increase in the proportion of CD56bright cells is not at 

the expense of any particular subset of CD56dim cells. These data suggest that 

DTPiP vaccination may promote the expansion of immature CD56bright NK cells, 

which could influence overall NK cell function especially in response to exogenous 

cytokines. 



NK CELL & DTPiP BOOSTER VACCINATION CHAPTER 5 

215 | P a g e  

 

 
Figure 5.11: Proportions of CD56 and CD57-defined NK cells pre- and post-booster 

vaccination. 

PBMC were gated as NK cells (CD56+CD3-) (A) and analysed as CD56bright, 

CD56dimCD57- and CD56dimCD57+ NK cells (B). Dots represent data derived from PBMC 

cultured with medium alone without any stimulation. Figure (A) shows a representative dot plot 

of cells cultured in medium alone from subject number 23 visit 1 cells, age 22 years. Data are 

shown for 18 subjects, each dot representing frequencies of NK cell subsets in a single 

individual before and after vaccination. Statistical analysis was performed on paired samples 

using Wilcoxon signed-rank test, ***p<0.001. 
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Previous studies in this thesis and elsewhere have shown that vaccination causes a 

shift in the subset distribution of NK cells, as shown in this chapter for CD56bright NK 

cells (Figure 5.8C and 5.11B). There may be, however, additional intrinsic effects on 

the function of individual NK cell subsets (Chapter 4 and Goodier et al, 2016). IFN- 

responses to HCC were therefore analysed to test whether booster vaccination 

enhanced the ability of particular CD56/CD57-defined NK cell subsets to respond to 

cytokines. As previously described (Chapter 4 and elsewhere) CD56bright NK cells, 

being the least mature cell subset contained the highest frequencies of IFN- 

producing cells in response to HCC, whilst CD56dimCD57+ NK cells had the lowest 

(Figure 5.12). However, analysis of IFN- production within CD56bright and CD57-

defined CD56dim NK cell subsets revealed a significant enhancement of IFN- 

production within both CD56dimCD57- and CD56dimCD57+ NK cells (*p<0.027 and 

*p<0.049, respectively) post-vaccination (Figure 5.12). A strong trend was also 

observed towards enhancement of IFN- production within CD56bright NK cells after 

vaccination but this did not reach statistical significance (Figure 5.12).  These data 

suggest that DTPiP booster vaccination not only expands the cytokine-producing 

CD56bright population but also enhances cytokine responsiveness in CD56dim NK 

cells which are more differentiated and which have intrinsically less IFN- production 

capacity than CD56bright NK cells. 
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Figure 5.12: IFN- production in response to HCC pre- and post-booster vaccination in 

CD56 and CD57-defined NK cell subsets. 

Frequencies of IFN- producing cells within CD56 and CD57-defined NK cell subsets before 

and after vaccination, gated from CD56+ cells. NK cells were cultured in high concentration of 

cytokines alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 18 subjects, each 

individual dot representing the frequency of IFN-+ cells within NK cell subset for each 

individual before and after vaccination. Statistical analysis was performed on paired samples 

using Wilcoxon signed-rank test, *p<0.05. 

 

5.5 ENHANCEMENT OF IFN- PRODUCTION IN 

NKG2C+CD57- NK CELLS AFTER VACCINATION 

Potential changes in the frequencies and/or role of NKG2C+CD57+ NK cells, known 

to be expanded in HCMV+ individuals (Lopez-Verges et al., 2011, Schlums et al., 

2015), and CD57-NKG2C+ NK cells were then investigated before and after booster 

vaccination. Based on NKG2C and CD57 expression, CD56dim NK cells were 

separately categorised into NKG2C-CD57-, NKG2C+CD57-, NKG2C-CD57+, and 

NKG2C+CD57+ NK cells subsets (Figure 5.13B). There was no significant change in 

the frequencies of any of these subsets after vaccination (Figure 5.13C).  
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Figure 5.13: Frequencies of NKG2C- and CD57-defined CD56dim NK cell subsets do not 

change post vaccination. 

Proportion of NKG2C and CD57-defined NK subsets pre and post vaccination. NK cells were 

gated within PBMC after culture in high concentration of cytokine alone (rIL-12 5ng/ml + rIL-18 

50ng/ml). Figure (A) shows a representative dot plot of cell cultured in high concentrations of 

cytokines from subject number 23 visit 1 cells, age 22 years. Data are shown from 18 

subjects, each dot represents a single data point of frequency of CD56dim before and after 

vaccination. Statistical analysis was performed on paired samples using Wilcoxon signed-rank 

test. 
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Finally, in order to establish whether differentiation status impacted on the ability of 

CD56dim NK cells to produce IFN- in response to HCC before and after vaccination, 

the frequencies of IFN- producing cells were estimated within NKG2C and CD57-

defined subsets of CD56dim cells. Interestingly although NKG2C-CD57- cells 

contained the highest frequencies of IFN- producing NK cells in response to HCC 

before vaccination with NKG2C+CD57+ cells the lowest, less mature NKG2C+CD57- 

cells contained high frequencies of IFN- producing cells post vaccination (Figure 

5.14). Furthermore, although a trend towards increased frequencies post-vaccination 

of IFN- producing NK cells after HCC stimulation was observed within all subsets, 

this was only significant within the NKG2C+CD57- NK subset (Figure 5.14, 

**p<0.002). Indicating that these might be the ones driving the potentiation of NK cell 

responsiveness to cytokines post vaccination. 

 
Figure 5.14: HCC-induced IFN- production by different subsets of CD56dim NK cells 

pre- and post-booster vaccination. 

Frequencies of NKG2C and CD57-defined NK cell subsets expressing IFN- before and after 

vaccination. NK cells were gated after culture of PBMC in high concentrations of cytokines 

alone (rIL-12 5ng/ml + rIL-18 50ng/ml). Data are shown from 18 subjects, each dot 

representing single individual proportion of CD56dim IFN- before and after vaccination. 

Statistical analysis was performed on paired samples using Wilcoxon signed-rank test, 

**p<0.01. 
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5.6 DISCUSSION 

In this study, we provide evidence that booster vaccination of adults against 

diphtheria toxin, tetanus toxin, pertussis and polio (DTPiP) after primary vaccination 

in childhood did not potentiate NK cell responses against vaccine antigens in 

Gambians donors. However, the booster vaccination significantly enhanced NK cell 

IFN- responsiveness to exogenous cytokines. These results confirm the pattern we 

saw in Chapter 4 using an influenza vaccine model, where enhancement of IFN- 

producing NK cell frequencies was also only seen after culture with high 

concentrations of cytokines (Chapter 4). This evidence thus supports a model where 

different vaccines could potentiate NK cell cytokine responses through common 

mechanisms, although further work will be required to identify the factors involved. 

Nielsen et al have shown that HCMV-infected individuals display significantly reduced 

vaccine antigen-induced NK cell responses (IFN-, CD25 and CD107a) regardless of 

their differentiation status, sex and anti-HCMV IgG titre, when compared to HCMV- 

individuals (Nielsen et al., 2015). It is hypothesised that this decreased capacity could 

be attributed to the redistribution of the functional NK cell repertoire and differentiation 

status driven partially by HCMV infection. HCMV infection induces NK cell maturation 

towards NKG2C+CD57+ NK cell phenotype, which is known to have reduced 

responsiveness to cytokines (and reduced IL-12Rβ2 and IL-18Rα receptors) (White 

et al., 2014), resembling the NK cell phenotype of the elderly (Nielsen et al., 2015).  

IFN- production in response to exogenous cytokines diminishes with the acquisition 

of CD57 (White et al., 2014). It has previously been shown that HCMV-infected 

individuals have higher frequencies of CD56dimCD57+ and CD56dimNKG2C+CD57+ 

NK cells than HCMV-negative individuals and that CD57+ NK cells produced less 

IFN- in response to stimuli (Nielsen et al., 2015, Goodier et al., 2016, Guma et al., 

2006a, Guma et al., 2006b, Lopez-Verges et al., 2010). As there was a significant 

disparity in IFN-production between HCMV-positive and negative donors across all 

CD57 and NKG2C defined subsets, the overall variation in the frequencies of different 

subsets could not fully account for the defect in vaccine responsiveness (Nielsen et 

al., 2015, White et al., 2014). Thus, HCMV infection seems to affect NK cell 

responsiveness in multiple ways, of which distorting NK cell subset distribution is just 

one. 
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Comparing the two Gambians studies (Chapters 4 and 5), we consistently failed to 

see vaccine antigen driven NK cell responses post vaccination, although both studies 

revealed induction of IFN- responses to exogenous cytokines. This is in stark 

contrast to studies in European (UK) donors (Goodier et al., 2016), wherein influenza 

vaccination induced a potent vaccine antigen-driven NK cell responses up to 4 weeks 

post-vaccination. However, all of these studies – in UK donors and in the Gambia - 

show potent induction of IFN- within CD56bright and CD56dimCD57- NK cells in 

response to HCC (Goodier et al., 2016). The IFN- was mainly produced by 

CD56dimNKG2C+CD57- NK cells. Also, both my studies and those in UK revealed 

an increase in the proportions of CD56bright NK cells, suggesting that vaccination 

may induce NK cell proliferation or repopulation of the blood from tissues or bone 

marrow by less differentiated NK cells. 

Goodier et al found that in HCMV-infected European donors, the ratio of CD57- to 

CD57+ NK cells was augmented 2 weeks post vaccination. These authors  proposed 

that, in HCMV-positive donors, inferior IFN-α release and lower proportions of CD25 

expressing NK cells could be a limiting factor for NK cell responsiveness to CD4 T 

cell IL-2  (Goodier et al., 2016). I have also observed limited IFN-α secretion by 

PBMC from Gambian donors after stimulation with influenza H3N2 antigen 

(unpublished, Darboe, A.). 

Comparing CD56 and NKG2C receptors only, the NKG2C- NK cell subset produced 

more IFN-than NKG2C+ NK cells. When the association between NKG2C and 

CD57 receptors was assessed in combination, although NKG2C- and CD57-defined 

NK cell proportions did not change, IFN- production potential was mainly enhanced 

among NKG2C+CD57- NK cells post vaccination, however, CD107a, CD25 activation 

did not change post immunization. This data contrasts to some extent with previous 

studies which reported that NKG2C+CD57+ NK cells acquired epigenetic 

modifications within the IFN- locus, through demethylation of the activation-induced 

proximal upstream conserved non-coding sequence-1 (CNS1) (Luetke-Eversloh et 

al., 2014b). Interestingly, these cells also had similar demethylation pattern to 

memory-like NK cells stimulated with IL-12, IL-18 and IL-15. It may be that NK cell 

receptor mediated events, which are not necessarily provided by vaccination, play a 

stronger role modifying the function of highly mature NK cells. CNS1 demethylation 

potentiated IFN- transcriptional activity was observed following NKG2C and 2B4 

receptor cross-linking (Luetke-Eversloh et al., 2014b). Additionally, it was also 
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demonstrated that mature NK cells (CD56dim) express superior IFN- competence to 

CD56bright NK cells after stimulation through activating receptors (NKp30, NKp46, 

CD2, NKG2D, CD16 and by K562). CD56dim NK cells express higher IFNG mRNA, 

T-bet (TBX21) mRNA, than CD56bright NK cells and within the CD56dim subsets, 

CD62L+CD57-KIR- cells express less mRNA than CD62L-CD57+KIR+ NK cells 

(Luetke-Eversloh et al., 2014a). In summary, my data show intrinsic potentiation of 

IFN- production potential of NK cells post booster immunization. This observation is 

not limited to one type of vaccination and is not antigen dependent.  

Cytokine- or receptor-mediated signals induced by vaccines could affect different NK 

cell subsets. To test this hypothesis, future experiments could include pre-activation 

of NK cells of HCMV infected individuals with vaccine or cytokines in vitro followed by 

examination for enhancement of cytokine or receptor-mediated IFN- production after 

long-term in vitro culture.  The effects of cytokines and of cross-linking NKG2C or 

other receptors could also be compared before and after vaccination in HCMV 

infected subjects. The hypothesis is that CD56dimNKG2C+CD57- NK cells could be 

more potently activated in culture after exposure to vaccine-induced cytokines, as 

these demethylate the IFNG locus, giving access to activating transcription factors 

required for IFN- secretion.  In contrast, after vaccine-induced pre-activation, more 

mature NKG2C+CD57+ cells may be better restimulated by receptor cross-linking.  

Although HCMV antibody levels were not tested in this study, we already know 

through our different studies that we have a very high prevalence of HCMV infection 

in The Gambia, as seen in Chapters 3 and 4. HCMV infection is known to influence 

NK cell repertoires with accumulation of mature NKG2C+ NK cells which have been 

reported in several studies to have superior antibody dependent function (Schlums et 

al., 2015, Tesi et al., 2016, Lee et al., 2015). This phenotype of NK cells is highly 

prevalent in our study population indicating that the majority of subjects in this study 

are indeed HCMV sero-positive.  

There was potent induction of diphtheria, tetanus, pertussis toxins and poliomyelitis 

specific IgG antibodies post vaccination. One of the limitations of the current study is 

that I did not have time to run autologous plasma assays to look at the effect of 

antibody responses post vaccination, specifically, looking at the role of CD16 in the 

NK cell assay. This will be done in the coming months when the samples are 

received from The Gambia. The clear difference between the baseline and the 4 

weeks post vaccination IgG antibody titres for the four individual DTPiP vaccine 
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components will enable clear analysis of antibody-dependent NK cell activation in this 

system.  

A further limitation of this DTPiP study is that we did not perform NKG2C genotyping 

in these subjects, which may have permitted comparison of responses between 

NKG2C+/+ and NKG2C+/- individuals in this small cohort. However, few subjects 

completely lacked NKG2C expression by flow cytometry.  

In conclusion, no enhancement of vaccine antigen-driven NK cell responses was 

observed after secondary vaccination with DTPiP vaccine (Repevax). However, and 

consistent with studies on influenza vaccination in both Gambian and UK cohorts, we 

clearly saw a significant increase in NK cell IFN- production post vaccination in 

response to exogenous cytokines. This enhancement was mainly observed within 

NKG2C+CD57- NK cells but the effect was not exclusive to this subset. Future 

studies could potentially inform us of possible pathways to induce NK cell effector 

function in vaccination, especially, in HCMV-infected individuals. The role of 

CD56dimNKG2C+CD57- NK cells could be investigated by assessing demethylation 

patterns at the IFN- locus pre- and post-vaccination. This NK cell subset, with 

intermediate differentiation status, might hold the key to potentiating NK cells effector 

functions in responses to vaccination in HCMV-infected people. 
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6.1 HCMV INFECTION 

A high prevalence of HCMV infection was observed in all of our Gambian study 

cohorts. HCMV infection and reactivation is largely asymptomatic in healthy people 

and can remain latent for life in an individual. However, HCMV infection is known to 

be associated with poor growth, development, and morbidity in children (Gompels et 

al., 2012). HCMV seroprevalence in Western countries varies from 36-77% and in 

sub-Saharan Africa it ranges from 98-100%. The rate of HCMV congenital infection in 

The Gambia is about 5.4% (van der Sande et al., 2007), 2.9% in South Africa and 

3.8% in Zambia (Adland et al., 2015).  Almost universal sero-positivity is reached by 

the age of 3 years in The Gambia, as we have seen in Chapter 3. This is probably 

due to high rates of breastfeeding (Dop, 2002), over-crowded houses (Alao et al., 

2009), and co-infection with other herpes viruses (Schaftenaar et al., 2014).   

6.2 NKG2C GENOTYPE 

A high frequency of the NKG2C gene deletion was observed in our Gambian cohorts 

compared to other countries, which has since been confirmed by studies performed in 

distinct regions of The Gambia and neighbouring West African countries (Goodier et 

al, 2014, Goncalves et al, 2016, Chapter 3). The selective pressure that drives the 

high prevalence of this gene deletion is still unknown. However, I observed no 

alteration of the distribution of the gene deletion across the life course (Chapter 3) 

supporting the idea that the NKG2C receptor is a redundant receptor whose function 

can be substituted by other NK cell activating receptors and is therefore not critical for 

survival. Specifically, the significant difference in allele frequency of NKG2C gene 

deletion between West Africa (33.2%) and East Africa (20.9%) (Goncalves et al., 

2016), raises further questions, because, the level of exposure to HCMV infection 

between these two regions, is similar. This suggests that there may be other HCMV 

independent drivers of this gene deletion. The origin and mechanism of selection of 

this gene deletion in different populations are also unknown. It is hypothesised that 

being heterozygous might provide selective advantage in a particular environment 

and thus the deletion might be under balancing selection (Goncalves et al., 2016). 

Many immune receptors are maintained through balancing selection, this includes 

receptors like MHC molecules and KIR haplotypes (Parham and Moffett, 2013, 

Karlsson et al., 2014). 
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Of note, in our initial study (Chapter 3), young children with this gene deletion had 

high anti-HCMV antibody titres, possibly signifying inferior control of HCMV infection 

or frequent HCMV reactivation in these children. However, this effect is not seen in 

those over 10 years of age, suggesting that the NKG2C receptor is not crucial in 

lifelong control of HCMV infection and that other receptors like self HLA-specific KIR 

might compensate for the lack of NKG2C (Beziat et al., 2013, Beziat et al., 2012, 

Goncalves et al., 2016). It would be interesting in our future studies to investigate the 

role of these other NK cell receptors in the control of HCMV infection in NKG2C 

negative individuals as well as how this affects NK cell differentiation and function. 

For example, CD2 co-stimulation, in people with the NKG2C gene deletion, was 

shown to be essential for the provision of ‘signal 2’ in ADCC-mediated NK activation 

(Liu et al., 2016).  

Consistent with another study showing reduced NK cell differentiation (Muntasell et 

al., 2013a, Muntasell et al., 2013b), NKG2C gene deletion in our study was correlated 

to the acquisition of CD57. Importantly NKG2C heterozygous subjects had lower 

frequencies of NKG2C+ NK cells compared with homozygous NKG2C gene subjects 

suggesting that a single copy of NKG2C helps to balance the control of HCMV 

infection with the rate of NK cell differentiation. The presence of CD94+ NK cells was 

associated with NKG2C copy numbers suggesting that NKG2C+ cells proliferate 

additionally to the normal process and clonally expand instead of transforming from 

NKG2A+ NK cells (Chapter 3).  

6.3 NK CELL DIFFERENTIATION 

In Chapter 3, I showed   that the proportion of CD57- NK cell subsets decreased and 

CD57+ NK cells increased with age. Gambians have a highly differentiated NK cell 

repertoire compared to Europeans. HCMV sero-negative European adults express 

about 25%-50% NKG2C+CD57+ NK cells whilst HCMV sero-positive Europeans 

have about 30-70% of these cells. In The Gambia, the frequency of these cells is 

significantly higher even in the very young reaching about 80% by the age of 9 years. 

Age-matched Gambian and UK donors show marked variability in NK cell phenotype 

and function, even after comparing HCMV sero-positive Gambian and UK donors. 

This variation can possibly be explained by the early acquisition of HCMV infection in 

Gambians and these individuals might have higher prevalence of other chronic 

infections, which may contribute to this effect (Bjorkstrom et al., 2011, Lopez-Verges 

et al., 2011, Petitdemange et al., 2011).  
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6.4 NATURAL KILLER CELL RESPONSES AFTER 

VACCINATION 

In contrast to Europeans receiving primary trivalent influenza vaccination, we did not 

observe enhancement of CD107a, CD25, or IFN- in vitro to vaccine antigen after 

vaccination in Gambians (Chapter 4). In UK donors, IFN- secretion was enhanced 

up to 4 weeks post vaccination (Goodier et al., 2016). Other studies in North 

Americans have shown enhancement of CD56brightCD25+NK cells post influenza 

vaccination and alteration of plasma cytokine concentrations in acute influenza 

infection (Jost et al., 2011). Additionally, it has been previously demonstrated that 

influenza vaccination can activate NK cells via NKp46 (Dou et al., 2015). These 

results indicate that influenza vaccination typically enhances NK cells responses to 

vaccine antigens in European and North American populations, whereas this effect 

was not observed in our African study population. 

Indeed, the lack of enhancement of antigen-stimulated NK cell responses after 

influenza vaccination does not appear to be specific to this vaccine as secondary 

DTPiP booster vaccination also did not enhance NK cell responses in Gambians in 

vitro (Chapter 5). A possible explanation for these negligible responses is that HCMV 

infected donors have highly differentiated NK cells, expressing NKG2C+ and CD57+ 

receptors, which have reduced capacity to up-regulate both IL-12Rβ2 and IL-18Rα 

receptors, essential in the induction of IFN-, CD25, and CD69 (White et al., 2014). In 

turn, reduced induction of CD25 could impair T cell dependent NK cell responses. 

Although, these mature NK cells highly express CD16, the principal antibody Fc 

receptor on NK cell surface, we still did not see potent NK cell responses in the 

presence of post vaccination plasma (Chapter 4). It is possible our experimental 

setup preferentially promotes cytokine-mediated NK activation instead of receptor-

mediated activation. Nevertheless, this is unlikely because it has previously been 

shown by Goodier et al (Goodier et al., 2016) and Nielsen et al (Nielsen et al., 2015) 

that depletion of antibodies from post-vaccination plasma significantly reduced 

influenza antigen-driven NK cell responses. This dependence was also confirmed 

here in a limited number of Gambian individuals. Direct stimulation of NK cell 

activating receptors can, however, lead to potent IFN- secretion in highly 

differentiated NK cells, due to the demethylation of IFN- locus in these cells (Luetke-

Eversloh et al., 2014b, Luetke-Eversloh et al., 2014a). The main difference between 

my observations in this study and other studies that described differentiated NK cells, 
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is that the activation conditions in those experiments were mainly receptor-mediated 

activation, whereas vaccine antigen-driven pathways of NK cell activation appear to 

be mainly cytokine dependent (Goodier et al., 2016, White et al., 2014, Nielsen et al., 

2015).  Another point is that the highly differentiated NK cells in those studies were 

identified as cells that not only highly express CD57 and NKG2C but also have 

increased demethylation of the IFNG locus (Luetke-Eversloh et al., 2014b). We 

cannot therefore assume that vaccination caused demethylation at this locus in the 

cells in our study. Future analysis would try to delineate my observations in terms of 

‘adaptive’ NK cell characteristics in addition to NKG2C and CD57, including, for 

example, reduced expression of specific signalling molecules including FcR and 

transcription factor PLZF (Schlums et al., 2015, Tesi et al., 2016). 

Human adaptive NK cells have been defined as NKG2ChiCD57+, lacking NKG2A 

receptors. These cells are known to lack FcεRI, SYK and EAT-2 signalling 

molecules, and have low expression of PLZF transcription factor. PLZF has been 

shown to be vital in the control of NK cell cytokine receptor expression, including IL-

12 and IL-18 receptors (Cerwenka and Lanier, 2016, Schlums et al., 2015). In relation 

to function, it is clear that cytokines play a significant role in the generation of 

‘adaptive’ NK cells, especially IL-12 but not IL-15, IL-18 or IFN-α (Rolle et al., 2014). It 

is thought that these mature ‘adaptive’ NK cells differentiate from NKG2Chi FcR+ to 

NKG2Chi FcR- cells, these NKG2Chi cells produce TNF-α independent of FcR 

expression (Muntasell and Pupuleku, 2016).  

In contrast, cytokine-induced ‘memory-like’ NK cells can be generated through brief 

pre-activation in vitro with combinations of cytokines in the absence of receptor cross-

linking, including IL-12+IL-15, IL-12+IL18 and CD16+IL-12 (Romee et al., 2012). 

‘Memory-like’ NK cells do not express KIR receptors and are CD57-, however, they 

express CD94, NKG2C, NKG2A, NKp46 and CD69 markers and these cells secrete a 

lot of IFN-. Currently, the mechanism of this activation is unknown but the levels of 

IFN- mRNA did not change in pre-activated cells compared to control cells. This 

suggests that the control of IFN- in these cells is not at the transcript level, and this 

might be at post transcription or translation levels (Romee et al., 2012).  

Cytokine-induced ‘memory-like’ NK cells make large amounts of IFN after re-

stimulation with cytokines or a target cell line (Romee et al., 2012, Ni et al., 2012). At 

the transcription level, these cytokine-induced ‘memory-like’ NK cells are similar to 

HCMV-driven NKG2C+ NK cells, as they both have stable demethylation of the IFNG 
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locus conserved non-coding sequence 1 (CNS1). These lines of evidence show, 

however, that ‘memory’ NK cells can be generated in the absence of antigens 

(Cerwenka and Lanier, 2016, Luetke-Eversloh et al., 2014b). However, maintenance 

of both adaptive type and cytokine-driven ‘memory-like’ NK cells has been shown in 

different systems to be dependent on T cell derived IL-2, for which antigen–

dependence is necessary. 

6.5 ENHANCED NK CELL RESPONSIVENESS TO 

CYTOKINES IN HCMV INFECTED INDIVIDUALS 

AFTER VACCINATION 

In Gambians, vaccination enhanced NK cell IFN- responsiveness to exogenous 

cytokines. This was observed using both the trivalent influenza vaccine and the 

DTPiP vaccine. Vaccination augmented the frequency of CD56bright cells and post-

vaccination enhancement of IFN- was driven by CD56dimNKG2C+CD57- NK cells 

and to a lesser extent, CD56dimNKG2C-CD57- cells. NKG2C+CD57- NK cells are 

likely to be less differentiated than CD57+ cells and respond better to cytokine-driven 

responses, with higher expression of IL-12 and IL-18 receptors than differentiated 

NKG2C+CD57+ NK cells. These cells probably also express more Ki67 and CD71 

post vaccination as shown by Goodier et al. (Goodier et al., 2016). This 

CD56dimNKG2C+CD57- NK cell subset was present at a similar frequency to 

CD56bright cells in our study subset and could therefore make a significant 

contribution to overall NK cell IFN- production. Importantly, as NKG2C+ NK cells are 

found in a lower proportion of European donors and are present at lower frequencies 

in these individuals (Chapter 3), the vaccine studies described in our Gambian 

cohorts with high frequencies of these cells are the first where it has been possible to 

analyse NK cell vaccine responses in less well differentiated 

CD56dimNKG2C+CD57- cells. These CD56dimNKG2C+CD57- cells may be 

functionally related to the cytokine-induced ‘memory-like’ NK cells described above 

and represent a potential target for understanding of the development of NK cell 

memory in vivo. Because, they are less mature CD56dim NK cells, which lack CD57, 

it would be interesting to investigate the patterns of activating and inhibitory receptors 

expressed on these NKG2C+ NK cells. For example, does this population coincide 

with transitory populations of NKG2A+NKG2C+ NK cells which are normally rare in 

European and American subjects? And are NKG2C+CD57- cells transitory cells 

between cytokine-induced ‘memory-like’ NK cells and fully differentiated ‘adaptive’ NK 
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cells which express high levels of NKG2C and CD57 but which have alternative 

signalling requirements? 

Maintenance of both ‘adaptive’ type and cytokine-driven ‘memory-like’ NK cells has 

been shown in different systems to be dependent on T cell derived IL-2, for which 

antigen–dependence is necessary (Kamimura and Lanier, 2015). Importantly, in 

contrast to our observations, human cytokine-induced ‘memory-like’ NK cells have 

enhanced CD25 expression, which made them more sensitive to low concentrations 

of IL-2 (Leong et al., 2014); we did not observe CD25 upregulation post vaccination in 

our donors. However, degranulation function was neither enhanced nor accelerated 

in cytokine-induced ‘memory-like’ NK cells (Cooper et al., 2009), consistent with our 

results for CD107a expression after cytokine stimulation of post-vaccination NK cells. 

We observed in Chapter 3 that the mean fluorescence intensity (MFI) of NKG2C 

receptor in individuals homozygous for the NKG2C gene was higher than the MFI of 

heterozygous subjects. It is possible that NK cells from heterozygous donors might 

respond better to cytokines than homozygous donors as their NK cells may be less 

well-differentiated and may be enriched for NKG2C+CD57- cells.  

Taken together, these data show that NK cells in Gambians are highly differentiated 

and have impaired cytokine-mediated responses to vaccine antigens. However, 

vaccination did induce enhanced intrinsic NK cell responsiveness to exogenous 

cytokines and this was mainly driven by NKG2C+CD57- NK cells. These less well-

differentiated cells may retain some capacity to control HCMV infection, but at the 

same time represent a possible target for generation of ‘memory-like’ NK cells in vivo 

post vaccination. 

6.6 T CELL HELP FOR NK CELL RESPONSES 

In the age cross-sectional studies shown in Chapters 3 and 4, proportions of naive T 

cells decreased while central memory and effector T cells increased with age, as 

expected and consistent with other studies (Koch et al., 2008, Czesnikiewicz-Guzik et 

al., 2008). However, terminally differentiated effector memory T cell frequencies were 

already high in children under 2 years of age and did not vary significantly after this 

age. This might imply very intense exposure of infants to microbial antigens early in 

life. There was also a significant variation of lymphoid and myeloid subsets between 

the different age groups, raising the possibility that the different mechanisms of 

activation of NK cells, particularly by myeloid cell subsets, could vary across different 
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age groups. In addition to the advanced differentiation status of the NK cells in the 

cohorts tested, a lack of significant induction of TIV specific T cell responses at 

baseline and after vaccination (with the exception of week 12) could account for 

negligible NK cell IFN- responses to influenza antigens. This weak T cell response 

likely reflects less frequent seasonal exposure to influenza in The Gambia as 

supported by your own antibody data (in the case of H1N1) and also by surveillance 

data from other West African regions (World Health Organization, 2012). 

In Gambian children, HCMV infection has been shown to drive CD8+ T cell 

differentiation without affecting immune responses to other antigens. These children 

had a higher proportion of differentiated CD8 T cells, mainly driven by the loss of 

CCR7, CD27, and CD28 receptors with the acquisition of CD57. This subset of CD8 

T cells was maintained up to at least 2 years after HCMV infection. However, there 

was no significant increase in CD4 T cell differentiation within this time frame and the 

cellular responses to measles vaccine were not affected (Miles et al., 2008b, Miles et 

al., 2008c).   

Miles et al also showed that children between the ages of 4-5 years did not have 

different magnitude of CD4+ T cell responses compared to adults, though CD4+ T 

cell co-expression of IFN- and CD40L was higher than co-expression of IFN- and 

IL-2, implying a potential switch to costimulatory interactions with CD40+ cells, 

including B cells and myeloid cells. Most responding CD4+ T cells were 

CD27+CD28+ to HCMV antigens; however, IFN- was mainly produced by the CD27- 

CD4+ T cells. Generally, it was found that CD4+ T cells of Gambian children 

produced a weak response to HCMV antigens which was mainly driven by 

bifunctional responses of IFN- and CD40L then followed by IFN-γ and IL-2 (Miles et 

al., 2008a).  

6.7 ANTIBODY RESPONSE TO VACCINATION AND 

ANTIBODY-MEDIATED NK CELL RESPONSES 

Annual influenza season in Gambia and Senegal is from October to December 

(World Health Organization, 2012). In my study, vaccination induced increased 

antibody production to most of the influenza strains present in the vaccine. However, 

the antibody data indicated that children (2-6 years) had not been exposed to H1N1 

strain but also made low responses after a single dose of TIV (Chapter 4). 

Conversely, the adults also had low level of H1N1 antibodies at baseline most of 
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these were significantly enhanced post vaccination. This observation suggests a low 

level of natural exposure to H1N1 influenza in this population but older individuals 

may have had memory B or T cells that lead to a more potent antibody response after 

a single dose of vaccine. The oldest age group (60-75 years) could not induce potent 

TIV and H3N2 influenza antibodies post vaccination.  

Highly differentiated NK cells in HCMV-infected subjects have increased potential for 

activation through their high levels of CD16 receptors. This would facilitate ADCC, 

especially when the antibody can recognise different strains of influenza, although, 

there was no induction of NK cell potentiation using 4 weeks autologous plasma 

(Chapter 4). NKG2ChiCD57+ NK cells express high levels of CD16, these cells have 

the ability to be activated through immune-complexes (Luetke-Eversloh et al., 2014b, 

Luetke-Eversloh et al., 2014a). This is relevant to our Gambian studies where highly 

differentiated NKG2C+CD57+ NK cells are abundant and likely to include adaptively 

expanded NK cells, even in children. It may be that these adaptively expanded cells 

show optimal levels of antibody-mediated degranulation even in baseline samples 

due to the availability of sufficient IgG antibodies in baseline plasma. The DTPiP 

study, however, provides an opportunity to test this further (discussed below), as 

these individuals are mainly negative for antibodies against vaccine antigens in 

baseline samples.  

In addition to CD16 cross-linking, adaptive expansions of NK cells have improved 

responses mediated by other receptors. Because in our system we are using soluble 

antigens to stimulate NK cells, it could be that other signals which are needed to co-

stimulate optimal antibody-CD16 dependent responses of highly differentiated NK 

cells are missing, (for example CD2 (Liu et al., 2016) or ligands for NCR (Draghi et 

al., 2007)). These signals would normally be provided in infected cells. To fully 

investigate this possibility, future studies will need to compare the responses of 

‘adaptive’ NK cells to antigen-antibody complexes using infected target cells or by 

providing co-stimulation of other receptors by cross-linking them with antibodies. 

6.8 IMPLICATIONS OF THIS RESEARCH  

In order to properly stimulate NK cells after vaccination, we need to better understand 

how these cells can be activated to induce effector responses and at the same time 

control it to avoid immune pathology. NK cell activation by vaccines requires 

balancing the signals of the innate and adaptive immune responses that are triggered 
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in primary infections, innate cytokines such as IL-12, IL15, IL-18, IFN-α, IFN-β, 

contact-dependent signals and, in secondary infection, via T cell mediated cytokines 

like IL-2, IL-21 or IFN-. The basic mechanism of NK cell activation involves early 

inflammatory IL-15 and IL-18 production by antigen presenting cells (macrophages, 

monocytes and dendritic cells) acting on the resting NK cell receptors IL-15R and IL-

18Rα, which induces CD25. Up-regulation of CD25 increases the sensitivity of NK 

cells to IL-2 (via high affinity IL2Rαβγ), which can be important in the induction of IL-

12Rβ2 receptors thereby increasing sensitivity to both IL-12 and IL-2 leading to 

secretion of IFN- (Nielsen et al., 2013, Nielsen et al., 2016, Goodier et al., 2016). 

Cytokine-induced ‘memory-like’ NK cells have been shown to be less differentiated 

without expression of CD57 molecule and KIR receptor. As observed in this thesis, 

these CD56dimNKG2C+CD57- NK cells may prove to be potential targets for 

vaccine-induced responses, because they might share some similarities with these 

cytokine-induced ‘memory-like’ NK cells. 

Furthermore, in the understanding of NK cell activation, IL-2 and IL-15 receptors 

share the common signalling receptor chains CD132 (common  chain) and CD122 (β 

subunit) that induce STAT5 signalling. Resting NK cells are more responsive to IL-15 

than IL-2 in initial activation, however, up-regulation of CD25 on activated NK cells 

increases the responsiveness of IL-2 rather than IL-15 (Nielsen et al., 2016). This 

homeostatic regulation of NK cell activation ensures responsiveness to IL15 in an 

innate immune response and IL-2 in an adaptive immune response. IL-2 can 

decrease IL-15 receptor transcripts (Pillet et al., 2011). Thus, it would be important to 

understand the mechanism of NK activation both in HCMV infected and uninfected 

individuals in relation to the cells and cytokines mentioned above.  

 

6.9 FUTURE WORK  

6.9.1 HCMV antibody and NKG2C genotype 

Chapter 3 of this thesis, demonstrated that children below 10 years with homozygous 

NKG2C gene deletion had a higher titres of HCMV specific-antibodies compared to 

NKG2C heterozygous and NKG2C+ homozygous children. This observation possibly 

indicates an impaired ability to properly control HCMV infection early in life in children 
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completely lacking the NKG2C gene  or could suggest more frequent reactivation of 

the infection in these people.  

In the coming months, I would like to investigate the following objectives within the 

larger cohort of individuals who have been genotyped for NKG2C and are described 

in Chapter 3. 

1. To investigate the correlation of HCMV antibody titre with NKG2C genotype 

and how this is influenced by age in these 1485 individuals. 

2. To pilot the possibility of detecting viral HCMV in plasma or urine  of children 

in West Kiang, so that this can be related to NKG2C genotype and anti-HCMV 

IgG plasma antibody titre and directly test whether children lacking NKG2C 

excrete virus more often than those with NKG2C. 

 

6.9.2 NK cell DTPiP assay 

In the near future, cryo-preserved PBMC and plasma samples from the NK cell 

DTPiP vaccination study will be sent to London where the role of CD16 and immune 

complex- mediated NK cell activation will be tested by comparing antigen responses 

of cells cultured in autologous plasma taken before and after vaccination. It is known 

that highly differentiated NK cells express higher levels of CD16, and therefore 

understanding how cross-linking of this receptor affects the responses of 

NKG2C+CD57- and NKG2C+CD57+ NK cells will be important for our understanding 

of vaccine responses. 

I will therefore investigate the following: 

1. Determine CD4+ T cell IL-2 secretion to vaccine antigens after booster DTPiP 

vaccination. 

2. Examine the role of vaccine-induced antibodies in NK cell activation and how 

this relates to NK cell differentiation. 

3. Where feasible, investigate the demethylation patterns of NKG2C+ and 

CD57+ NK cell subsets pre and post vaccination. 
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6.9.3 Influence of HCMV infection on immune repertoire  

As discussed in Chapter 3, 4, and 5, I have partially shown that HCMV infection can 

significantly influence lasting phenotypic and functional immune responses, especially 

affecting responses of natural killer cells important in early innate immunity and of T 

cells essential for adaptive immunity. These immunological outcomes have serious 

implications concerning human health and disease, particularly in the developing 

countries where HCMV infection is very common. As innate and adaptive immune 

cells are biased towards a specific cellular phenotype and functional capacity, this 

could considerably influence the efficacy and effectiveness of the immune response 

to a specific pathway. Consequently, virulent viral and bacterial pathogens and other 

microbes can exploit this HCMV-induced immune defect to evade immune 

recognition and killing. Thus, understanding in detail how HCMV infection can shape 

the immune system will instruct us on means of considering the extent of this 

infection in different groups of individuals so that we can prevent and develop safer 

and better vaccines. In addition, such knowledge could possibly lead to the use of 

anti-viral drugs or HCMV vaccines to manipulate HCMV infection and in turn influence 

immune differentiation if this is found to be important. 

With this in mind, we plan in future to investigate in detail the natural history of human 

cytomegalovirus infection and its impact on immune phenotype and function in 

children. The overall aim of this research project would be to understand how HCMV 

modulates the human immune repertoire, immune function and how this influences 

human health outcomes. In spite of universal HCMV infection in The Gambia, 

considerable heterogeneity in T cell and NK cells exists in different age groups. This 

observation might imply that other unidentified factors apart from HCMV infection 

might be influencing immune cell phenotype differentiation and maturation, thereby, 

affecting health outcome measures. We plan to specifically look at understanding 

what determines the time of HCMV infection, latency and reactivation, and viral load. 

We will also investigate the factors that drive HCMV driven immune differentiation. 

Finally, we will examine how the timing and nature of HCMV infection influence 

immune phenotype and function and health outcomes. The overall goal would be to 

define the time, level, reactivation, viral genotype, genetic complexity of HCMV 

infections in relation to host age, NKG2C genotype, NK cell and T cell immune 

differentiation and effector function, nutritional status and clinical history.  
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Thus, knowing the different strains of HCMV that circulate within our study cohort will 

inform us about the spread of the virus and its transmission. This information will help 

answer the long awaited question of how HCMV infection is transmitted in children 

and thus what interventions might be required to reduce early infection. At the same 

time, we will also understand its impact on the immune system, especially, on T cell 

and NK cells. 

In the future, because of the high prevalence of this infection, it would be informative 

to perform a clinical survey to assess whether congenital HCMV disease represents a 

significant burden on the Gambian population. If so, it would be ideal to consider 

performing a HCMV vaccination study if a safe, immunogenic and reliable candidate 

vaccine can be available in the coming years. Live attenuated CMV vaccines have, 

however, only given a modest protection to date (Schleiss and Heineman, 2005). 

A phase II vaccine trial of recombinant gB subunit of HCMV with MF59 adjuvant had 

only 50% efficacy in vaccinated women. However, in this study, there was a reported 

case of congenital HCMV (cHCMV), which might raise concerns about the 

effectiveness of using this type of vaccine, although the placebo group had 3 cases of 

cHCMV (Pass et al., 2009). In another phase II trial the same recombinant gB subunit 

vaccine was shown to decrease viraemia after kidney transplantation and enhance 

antibody levels (Dasari et al., 2013). Furthermore, there is currently a phase I study 

investigating the effects of giving a HCMV DNA vaccination to both sero-positive and 

sero-negative healthy donors. The intention is to give the vaccine to determine if the 

donors would mount an effective immune response to both HCMV gB and pp65 

antigens (Astellas Pharma Global Development Inc., 2016). In addition, two other 

studies are under way both looking at vaccination in stem cell transplantation patients 

using CMVpp65-A*0201 peptide vaccine and multi-peptide cytomegalovirus (CMV)-

modified vaccinia Ankara (MVA) vaccine (National Cancer Institute, 2016, National 

Cancer Institute & Diavax Biosciences, 2016). 

Before an effective vaccine can be developed, it will be important to understand the 

immune correlates that provide protection of HCMV infection in both the infected and 

uninfected individuals. This can be done through vaccination of either uninfected 

mothers or newborns, who are at high risk of infection. Congenital HCMV occurs in 1-

2 % of sero-positive women, which is about one third of all congenital infections. This 

increases to 40% incidence of congenital infection in sero-negative women who 

experience primary HCMV infection during pregnancy, suggesting that prior exposure 
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to HCMV may provide some form of protection against congenital HCMV infection. 

Also congenitally infected infants born to mothers with primary HCMV infection during 

pregnancy are more likely to experience clinical sequelae at birth and to develop 

more severe neurological defects than those born to mothers infected prior to 

pregnancy. Furthermore, CMV-specific CD4+ T cells and antibodies against HCMV 

gH/gL/UL123, UL130, and UL131 glycoproteins essential for viral entry have been 

correlated with maternal protection in pregnancy (Schleiss and Heineman, 2005, 

Bialas and Permar, 2016). However, because of ethical and safety concerns of these 

clinical vaccine trials, animal models (e.g. rhesus monkeys) would provide the most 

appropriate tools to comprehend the mechanism of CMV infection.  

6.10 IMPACT OF RESEARCH ON THE GAMBIA 

POPULATION 

Although HCMV infection is asymptomatic in immune competent individuals, it is a 

significant contributor of pathology in immunosuppressed and immunocompromised 

people. This raises the question of how HCMV infection impacts the Gambian 

population and how this influences immune responses and co-infection with other 

bacterial and viral pathogens.  This might mean that children in The Gambia born at 

high risk of acquiring HCMV either at birth or as they grow, could stand at a 

disadvantage compared to children that are not infected with this virus. It also means 

that the high prevalence of this infection might be affecting people in different ways 

that have not as yet been measured or studied. For example, looking at how early 

HCMV infection affects children’s cognition, hearing, growth and development would 

be an interesting and relevant area to investigate.  If HCMV is found to have a 

significant impact on human health in The Gambia it would highlight the need to 

inform Gambian women of the existence of this viral transmission, how this could 

affect their pregnancies, and how they could protect their children from this viral 

transmission after birth and throughout life. 
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