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Abstract 

Dengue is the world's most important vector-borne viral disease. The dengue mosquito and virus are 

sensitive to climate variability and change. Temperature, humidity and precipitation influence 

mosquito biology, abundance and habitat, and the virus replication speed. In this study, we develop 

a modelling procedure to quantify the added value of including climate information in a dengue 

model for the 76 provinces of Thailand, from 1982–2013. We first developed a seasonal-spatial 

model, to account for dependency structures from one month to the next and between provinces. We 

then tested precipitation and temperature variables at varying time lags, using linear and nonlinear 

functional forms, to determine an optimum combination of time lags to describe dengue relative 

risk. Model parameters were estimated using Integrated Nested Laplace Approximation (INLA). 

This approach provides a novel opportunity to perform model selection in a Bayesian framework, 

while accounting for underlying spatial and temporal dependency structures and linear or nonlinear 

functional forms. We quantified the additional variation explained by interannual climate variations, 

above that provided by the seasonal-spatial model. Overall, an additional 8% of the variance in 

dengue relative risk can be explained by accounting for interannual variations in precipitation and 

temperature in the previous month. The inclusion of nonlinear functions of climate in the model 

framework improved the model for 79% of the provinces. Therefore, climate forecast information 

could significantly contribute to a national dengue early warning system in Thailand. 
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1 Introduction 

Dengue is an emerging vector-borne viral disease, ubiquitous in the tropics and the subtropics, 

particularly in Southeast Asia, the Pacific and the Americas (Guzman et al., 2010). The geographic 

distribution of dengue and its more severe form, dengue haemorrhagic fever, has expanded 

dramatically in the last decades and dengue is now considered to be the world's most important 

arboviral disease (Gubler, 2002; Halstead, 2007). Its recent expansion has been attributed to a 

combination of uncontrolled urbanization, poor living conditions, increased international travel and 

trade (Gubler, 2012), which act as mechanisms for transporting and exchanging dengue vectors and 

viruses between endemic populations.  The principal dengue mosquito vector, Aedes aegypti, and 

virus (DENV) are also sensitive to climate variability and climate change (Hsieh and Chen, 2009), 

as temperature, humidity and precipitation influence mosquito biology, abundance and habitat and 

the virus replication speed, with increased dengue incidence during warmer and wetter seasons 
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(Johansson et al., 2009). Temperature has a significant impact on dengue epidemiology, influencing 

both the population dynamics of Ae. aegypti and the development of the virus within the mosquito 

(the Extrinsic Incubation Period, EIP). Below 13°C, mosquito eggs will usually not hatch and any 

larva will not complete their development (Christophers, 1960). Adult mosquito survival is also 

influenced by temperature and is constrained between lower (4°C) and upper (43°C) temperature 

limits. Many studies on EIP have shown that viral development within the mosquito accelerates 

with increasing temperature (e.g. Tjaden et al., 2013). The consequence of this is that the mosquito 

can become infectious faster, enabling onward transmission of the virus before mosquito mortality; 

an increase of only a few °C can therefore potentially lead to a substantial increase in force of 

infection. The association of rainfall with mosquito bionomics is more complex, particularly 

because of the adaptation of Ae. aegypti to a domesticated niche, where the mosquitoes use man-

made breeding sites, which confounds any increased availability of natural breeding sites created by 

rain (Padmanabha et al., 2010; Scott et al., 2000). Therefore, the association is very dependent on 

the local extent of man-made breeding sites. More general non-linear effects of rainfall on mosquito 

density will also apply, such as larval wash-out and increased adult mortality following heavy rain. 

Finally, rainfall will have an indirect impact via its cooling effect on ambient temperature. For these 

reasons, the associations with rainfall tend to be site-specific with respect to mosquito densities and 

the relationship between mosquito density and dengue incidence itself is weak because of other 

behavioural traits, such as frequent multiple host feeding. 

 

Many studies have found associations between climatic factors and dengue transmission (see (Naish 

et al., 2014; Thai and Anders, 2011) for a review). However, modelling approaches and methods to 

account for climate factors within the model vary considerably, which could lead to differential 

results regarding the relationships and time lags between climatic factors and dengue relative risk. 

Typically, the most significant time lags between temperature/precipitation and dengue are found to 

be around 1–2 months (Arcari et al., 2007; Cheong et al., 2013; Descloux et al., 2012; García et al., 

2011; Gharbi et al., 2011; Gomes et al., 2012; Jeefoo et al., 2010; Lowe et al., 2011; Wu et al., 

2007) , although some studies report lags of around 3-4 months (Bi et al., 2001; Chen et al., 2012; 

Depradine and Lovell, 2004; Yu et al., 2011) . 

 
Among one of the most affected regions, Thailand provides a very detailed and highly exhaustive 

dengue surveillance and mosquito control system, with datasets of reported cases for more than 

three decades. Dengue has been endemic in the country since 1958, with co-circulation of all four 

DENV serotypes. In most of the regions where serotype identification has been performed, two or 
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three serotypes are found at the same time in the same area (Anantapreecha et al., 2004). 

Meanwhile, during epidemic periods the relative prevalence of the serotypes varies (Muttitanon et 

al., 2004). Dengue remains a disease of children and young adults in Thailand, with most cases 

occurring in individuals aged between 5 years and 24 years, who represent one third of the 

population (Limkittikul et al., 2014). The incidence rate appears to be declining from its peak in the 

1970s and 1980s, but remains high at 20 per 1,000 for children <15 years old (Wichmann et al., 

2011). The small temporal decline has been linked to a reduced estimated force of infection and the 

changing demography (reduced birth and death rates) may have contributed to this (Cummings et 

al., 2009). However, there exist no extensive data on seroprevalence and the majority of infections 

are inapparent with no clinical presentation (Grange et al., 2014). 

 

In Thailand, dengue transmission occurs throughout the year, but there exists a marked cyclical 

pattern associated with the seasonal change in climate (Gubler, 1998), as in all Southern Asian 

countries. The seasonal peak in the numbers of cases is between May and September and coincides 

with the southwest monsoon season. The strength of the monsoon season is largely dependent on 

the local land-sea thermal contrast, with preconditioning by the premonsoon air temperatures over 

land playing a key role. The El Niño Southern Oscillation (ENSO)  can modulate Thailand’s rainfall 

regime, with El Niño (La Niña) events corresponding with low (high) rainfall seasons (Chen et al., 

2002; Singhrattna et al., 2005). ENSO has been identified as a potential driver of dengue in 

Thailand, via its impact on local climate conditions (Cazelles et al., 2005).  Campbell et al., (2013) 

demonstrated the complexity of the association between local climatic variables and dengue 

dynamics in Thailand with temperature found to define a viable range for dengue transmission (with 

80% of severe dengue cases occurring when mean temperature was 27–29.5°C) while humidity 

amplifies the potential within that range. 

 

In order to control the spread of dengue and prepare for epidemics, decision support systems are 

required that take into account the multiple factors that contribute to increased dengue risk. Due to 

availability of seasonal climate forecasts that predict the average climate conditions for forthcoming 

months/seasons in both time and space, there is an opportunity to incorporate precursory climate 

information in a dengue decision support system to aid epidemic planning months in advance. In 

this paper we present a flexible spatio-temporal Bayesian modelling approach for dengue in 

Thailand to assess the potential use of climate information in a dengue decision support system. 

Monthly cases of dengue in the 76 provinces of Thailand for the period 1982–2013 are modelled in 

a hierarchical framework, which can allow for non-linearity in climate-dengue associations. In order 
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to quantify unknown or unmeasured dengue risk factors, we use spatio-temporal random effects. 

This helps quantify the extent to which variations in climate are associated with dengue relative risk 

and assess whether climate information could significantly contribute to a dengue early warning 

system. 

 

2 Methods 

 

2.1 Data 

2.1.1 Dengue data 

Dengue is a notifiable disease in Thailand and data from all provinces exist from the beginning of 

the 1980s at the Ministry of Public Health of Thailand in Bangkok. From 2003 to the present, the 

reported data from the national surveillance system (DF, DHF, DSS using the 1997 WHO case 

definition) have been available on both the electronic and the hardcopy of the Weekly Bulletin of 

Epidemiology, Ministry of Public Health of Thailand (http://www.boe.moph.go.th/). Despite the 

unknown degree of under-reporting, this national surveillance system is thought to provide a good 

estimation, albeit underestimated, of the real disease burden in the country (Wichmann et al., 2011). 

 

In this study, we have used aggregated monthly severe cases (DF+DHF+DSS) from published 

sources (Cazelles et al., 2005; Cummings et al., 2004; Nagao and Koelle, 2008) and the Weekly 

Bulletin of Epidemiology (http://www.boe.moph.go.th/), for the period 1982–2013 for 76 provinces 

in Thailand. As these different datasets have common, overlapping time periods, we compared 

reported cases and found that for these common periods, the values are quasi-identical. Details 

about these datasets, and more generally on the dengue cases data available in Thailand, can be 

found elsewhere (Aguiar et al., 2014). 

 

Demography data was obtained from population census from 1980, 1990, 2000 and 2010 (from 

different web pages http://web.nso.go.th/en/census/poph/cen_poph.htm and 

http://www.statoids.com/uth.html). Since 2010, the tables in the Weekly Bulletin of Epidemiology 

give both numbers of cases and estimated census (see Fig. 1). 
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Figure 1: Example data table 

Weekly Epidemiological Surveillance Report Vol. 44 No. 1 : January 11, 2013. Source: 

http://www.boe.moph.go.th/ 
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To compare dengue variations in time and space, dengue standardised morbidity ratios (SMR) (i.e. 

relative risk) were calculated as the ratio of observed to expected cases. Expected cases are 

calculated as the population at risk for dengue (obtained from yearly population estimates) 

multiplied by the overall ratio of dengue for the entire time period. For values of SMR=1, the 

observed cases are equal to what is expected. If SMR=2, the relative risk is doubled. Figure 2 shows 

the distribution of dengue relative risk, averaged over time for the 76 provinces across Thailand and 

averages in space for the period 1982–2013. Large epidemics occurred in the summer months of 

1987, 1990, 1997, 1998, 2001, 2010 and 2013. 

 
Figure 2: Spatial and temporal distribution of dengue relative risk 

(a) Spatial and (b) temporal distribution of dengue relative risk (SMR) for the 76 provinces of 

Thailand, averaged over the period 1982–2013. 
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2.1.2 Meteorological data 

Precipitation and temperature data (minimum and maximum) was obtained from the Climatic 

Research Unit (CRU) TS 3.22 time series datasets, calculated on high-resolution (0.5×0.5 degree) 

grids, based on an archive of monthly mean meteorological variables provided by more than 4000 

weather stations distributed around the world (Harris et al., 2014). These data were extracted for 

704 grid boxes over Thailand and spatially interpolated to the 76 provinces. Figure 3 shows the 

annual mean and dispersion of monthly mean precipitation and mean temperature at the province 

level for the period 1982–2013. Figure 4 shows the monthly distribution of dengue relative risk 

(SMR), mean precipitation and mean temperature across Thailand for the period 1982–2013. 

 

 
Figure 3: Precipitation and temperature summary maps 

Annual monthly mean precipitation (a) mean and (b) dispersion (standard deviation) in mm/day and 

annual monthly mean temperature (a) mean and (b) dispersion (standard deviation) in degrees 

Celsius, for the period 1982–2013, for each province in Thailand. 
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Figure 4: Annual cycle of dengue, precipitation and temperature across Thailand. 

Distribution of (a) dengue relative risk (SMR), (b) average precipitation and (c) mean temperature 

for each calendar month (where 1 is January) across Thailand for the period 1982–2013. 
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2.2 Model formulation 

Generalized linear and additive mixed models (GLMM/GAMM) were formulated to assess the 

importance of climate variables as drivers of spatial variation and interannual variability in dengue 

transmission across Thailand. A negative binomial model was used to account for over-dispersion 

found in the dengue count data (extra-Poisson variation), where 𝑦"#is monthly dengue cases, 𝜇"#is 

mean cases, 𝑒"#is expected cases, and 𝜌"#is the dengue relative risk (Eqn. 1)  (Lowe et al., 2013a; 

Stewart-Ibarra and Lowe, 2013). By including the expected number of cases of dengue as an offset, 

we estimated the relative risk (SMR) of dengue using a combination of spatio-temporal structures 

and linear and nonlinear functions of climate. 

 

𝑦"#~NegBin(𝜇"#,κ)
log𝜇"# = log𝑒"# + log𝜌"#

            Eqn. 1 

 

 

Using monthly climate and dengue data from 1982–2013 (t=1,...,384) for the 76 provinces 

(s=1,...,76) of Thailand, we developed a set of models to understand the contribution of random 

temporal and structural effects and climate covariates to dengue relative risk (log𝜌"#). We started with 

a base model, the 'seasonal' model, that accounted for seasonality (an annual cycle) in dengue 

relative risk, which might be attributed to climate and/or seasonal population movements. This was 

incorporated via a first order autoregressive latent model, where dengue relative risk in one month 

is allowed to depend on the relative risk in the previous month. We then included spatial structure 

using a convolution prior that combined area-specific overdispersion and a neighbourhood 

dependency structure  (see (Besag et al., 1995; Lowe et al., 2013a) for details), which we termed the 

'seasonal-spatial' model. This model accounts for temporal dependency from one month to the next 

and similarities or differences between neighbouring provinces, but no interannual variability.  The 

inclusion of random spatial and temporal structures in the model allowed us to account for unknown 

or unobserved confounding factors that influence the dengue transmission patterns, by introducing 

an extra source of variability into the model in a hierarchical framework.  Model parameters were 

estimated within a Bayesian framework using Integrated Nested Laplace Approximation (INLA, 

www.r-inla.org) (Martins et al., 2013; Rue et al., 2009). INLA is a promising alternative to Markov 

Chain Monte Carlo (MCMC) methods, due to much shorter computational times. This approach 

provides a novel opportunity to perform model selection in a Bayesian framework, while 

accounting for underlying spatial and temporal dependency structures and linear or nonlinear 
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functional forms. Such model selection would be extremely time and computing-intensive using 

MCMC estimation methods (Craig et al., 2007; Lowe et al., 2013b).  Using the INLA framework, it 

was possible to determine optimum combinations of precipitation and temperature time lags, by 

fitting GLMMs and GAMMs, multiple times each, changing one lag at a time. 

 

2.3 Model assessment 

The goodness-of-fit of all models was assessed using the deviance information criterion (DIC) 

(Spiegelhalter et al., 2002)  and an R2
LR statistic for mixed effects models based on a likelihood ratio 

test between the candidate model (e.g. GLMM or GAMM) and an intercept only (null) model  

(Kramer, 2005; Magee, 1990). Smaller values of DIC indicate a better-fitting model, while 0 ≤ R2
LR 

≤ 1, with R2
LR = 1 corresponding to a perfect fit, and R2

LR ≥ 0 for any reasonable model 

specification. While information criteria can help decide which candidate model is best, they do not 

provide information about the amount of variation explained by the model.  R2
LR is useful as a 

measure of goodness-of-fit and provides an intuitive measure of the ability of the model to account 

for the variation in the dependent variable. 

 

The added value of including climate covariates in the model framework was assessed by 

calculating the root mean squared error (RMSE), a measure of the difference between modelled and 

observed values, over the 32 year time period, for each province (Lowe et al., 2013b). Smaller 

values of RMSE indicate a better fitting model. The difference between the RMSE for the model 

excluding climate information, i.e. the seasonal-spatial model and the RMSE for the model 

including climate as (a) linear (GLMM) and (b) nonlinear (GAMM) functions was calculated. 

Provinces with positive values (RMSEnoclimate–RMSEclimate>0) indicate that accounting for climate 

variability improves the estimation of  dengue relative risk in these places, as its inclusion results in 

a smaller difference between the modelled values and the observations, than using the seasonal-

spatial model alone. 

 

3 Results 

 

Table 1 shows model adequacy results for models of increasing complexity. First, we fitted a 

seasonal model, to account for the annual cycle in dengue. This model was found to explain 26% of 

the variation in dengue relative risk. This annual cycle in dengue is closely related to the annual 

cycle in precipitation and temperature (see Fig. 4). We then included location specific 

overdispersion and a neighbourhood dependency structure in the model, to account for unobserved 
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confounding factors such as urbanisation and socio-economic disparities. This explained 32%,  an 

additional 6% of the variance. Using the seasonal-spatial model as a base, we then added different 

combinations of precipitation and mean temperature at time lags ranging from 0–12 months (169 

different GLMMs/GAMMs were fitted). Figure 5 shows contour plots of of  R2
LR for varying 

precipitation and mean temperature time lags when including these variables as (a) linear functions 

(GLMM) and (b) nonlinear functions (GAMM) (note: both maximum and minimum temperature 

were also tested, but mean temperature gave slightly higher R2
LR values). Overall, slightly more 

variance in dengue relative risk was explained by using nonlinear functions of climate. For both the 

linear and nonlinear models, there was a peak in variance at all precipitation lags for temperature, 

lag 1. Given temperature lag 1, two maxima were found at precipitation lag 1 and lag 5. Given 

finding from previous literature and biological process understanding of the relationships between 

climate and dengue, a GLMM and GAMM with both precipitation and temperature lagged by one 

month were selected for further analysis (see Table 1). The linear and nonlinear climate models 

explained 39% and 40%; an additional 7% and 8% respectively, in addition to the variation 

explained by seasonality and spatial structures. 

 

Figure 6a shows the contribution to dengue relative risk for each month (seasonality), with a peak in 

July from the selected GAMM. Similarly, Figure 6b shows the relative risk provided by different 

provinces, based on latent overdispersion and dependencies between neighbouring provinces, with 

an overall greater relative risk in the northwest of the country, along the border with Myanmar. 

Figure 7 shows the nonlinear relationships between precipitation/temperature and dengue relative 

risk from the selected GAMM. There is a general increase in relative risk as both variables increase, 

with increased uncertainty estimates for more extreme precipitation and temperature, which could 

inhibit dengue transmission. Note, that for the GLMM, the posterior median estimate for 

precipitation was 1.029 (95% CI: 1.024, 1.035) and for temperature, 1.428 (95% CI: 1.409, 1.447). 

This can be interpreted as an approximately 3% increase in dengue relative risk for a unit increase 

in precipitation and a 40% increase in dengue relative risk for a unit increase in temperature.   

 

Figure 8 shows the added value of including climate information in addition to the seasonal-spatial 

model terms. When including climate as linear covariates, the modelled dengue relative risk is 

closer to observed values for 57% of the Thai provinces. When climate factors are modelling as 

nonlinear functions, this proportion increases to 79%. The added value of climate information 

overlays the road network and elevation in the country. Climate appears to provide added value in 
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provinces located in highland areas and some provinces located on the border with Malaysia, 

Cambodia, Laos and Myanmar. 

 

Table 1: Goodness-of-fit results 

Models are ranked by the deviance information criterion (DIC) and a likelihood ratio R2
LR statistic. 

Model Relative risk log 

  

DIC R2
LR 

Seasonal 

(autocorrelated annual cycle) 
log ρst = α + ωt'(t) 278963.2 0.26 

Seasonal-spatial 

(...+ spatial structure) 
log ρst= α + ωt'(t) + φs +  υs 276685.9 0.32 

Climate-linear 

(...+ rainfall, lag 1 + temperature, lag 1) 
log ρst= α + ωt'(t) + φs + υs +β1x1st-1 +β2x2st-1 273850.2 0.39 

Climate-nonlinear 

(...+ rainfall, lag 1 + temperature, lag 1) 
log ρst= α + ωt'(t) + φs + υs + f(x1st-1) + f(x2st-1) 273084.4 0.40 

 

 
Figure 5: Optimum time lags for precipitation and temperature in explaining variation in 

dengue relative risk. 

Surface of R2
LR  at varying time lags in precipitation and temperature (0 to 8 months) for 81 models 

including (a) linear climate and (b) nonlinear climate functional forms. The most adequate model is 

taken as the model that gives the greatest  R2
LR , found with mean temperature, lagged by one month 

and mean precipitation, lagged by five months, for both linear (GLMM) and nonlinear (GAMM) 

models (results reported in Table 1). 
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Figure 6: Seasonal and spatial contribution to dengue relative risk 

Dengue relative risk contribution for (a) each month and (b) each province. Values greater (less) 

than one show % increase (decrease). 

 
Figure 7: Effect of mean precipitation and temperature on next months dengue relative risk 

The relative risk of dengue as functions of (a) mean precipitation and (b) mean temperature in the 

previous month. The solid line represents the median relative risk and the dotted lines, the 95% 

credible intervals. The red dashed line marks the point of no change in relative risk. 
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Figure 8: Value added from using climate information to explain dengue relative risk 

variation. 

Difference between RMSE for the model excluding climate information and RMSE for the model 

including climate as (a) linear (GLMM) and (b) nonlinear (GAMM) functions. Provinces with 

positive values (purple) suggest that climate information improves the model in these areas. 

Provinces with negative values (light blue) suggest that climate information does not improve the 

model. 

 

4 Discussion 

 

In this study, the most adequate model of dengue relative risk, driven by climate factors, was 

determined using a novel Bayesian model selection framework and expert knowledge of dengue 

epidemiology. We quantified the additional variation explained by interannual climate variations at 

different time lags, above that provided by seasonal-spatial model. GLMMs and GAMMs with 

precipitation and temperature lagged by 1 month were selected for further investigation. The 

positive relationship between the clinical dengue relative risk and the temperature and precipitation 

the month before is consistent with what is classically known for the positive temperature 

relationship with developmental time of the mosquito and the virus within the mosquito at near 

optimal conditions (Christophers, 1960; Watts et al., 1987). Mosquito eggs will hatch in 2 days 

following submersion in water with warm ambient temperature and then progress through larval 

and pupal development to emerge as adults in as little as 6 days later. Mating and subsequent 

bloodfeeding on infectious hosts could generate infectious mosquitoes within 10 days. Thus, 
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propitious ambient temperatures and sufficient rainfall generating breeding sites can lead to the 

rapid expansion of the infectious mosquito population and the infected human population within a 

month. 

 

We also found a peak in model adequacy with temperature in the previous month, but precipitation 

4-6 months previously. In addition, both the linear and nonlinear relationship between relative risk 

of clinical dengue and precipitation 4-6 months previously was negative. This feature is curious and 

deserves further investigation. One plausible explanation for this is the effect of homotypic or even 

heterotypic short-term immunity, where significant rainfall 4-6 months previously would lead to 

dengue transmission and hence deplenish the susceptible population. Consequently, the relative risk 

of clinical dengue 4-6 months later is reduced because of a reduced susceptible population, despite 

conditions propitious for dengue transmission. This may occur irrespective of the circulating 

serotype as homotypic immunity is believed to be life-long (Sabin, 1952) and heterotypic immunity 

is estimated to last from 3 months to a year (Reich et al., 2013; Sabin, 1952). The latter may not 

prevent infection, but rather reduce clinical disease (Endy et al., 2011; Grange et al., 2014; Sabin, 

1952). Additionally, heavy rains can "wash-out" mosquito breeding sites, resulting in short-term 

population crashes. However, given the urban niche of Ae. aegypti, whilst wash-out may impact 

outdoor artificial/natural breeding sites, the majority of house proximal breeding sites (a 

predilection for Ae. aegypti) would likely remain relatively unaffected. Moreover, the delay of 4-6 

months between the heavy rains and the drop in dengue incidence would require a considerable  

knock-on effect on mosquito densities, given that the life cycle is a matter of weeks. The long term 

effect of wash-out could, however, have longer term effects if there was a subsequent anomalously 

dry period that thus deprived mosquitoes of new breeding sites. But given the domesticated 

breeding habits of this mosquito, this is unlikely. The observed negative relationship could thus be 

the result of a direct negative effect on mosquito densities and an indirect effect on the susceptibility 

of the population to dengue disease. 

 

Overall, a model including seasonal-spatial dependency structures alone accounted for 32% of the 

variance in dengue relative risk. When nonlinear functions of precipitation and temperature in the 

previous month were included, the variance explained increased to 40%. The seasonality in dengue 

is mostly driven by the annual cycle in climatic factors, determined by the southwest monsoon. 

However,  by accounting for interannual variations in precipitation and temperature in the previous 

month, an additional 8% of the variance in dengue relative risk is gained. Several previous studies 



          
Lowe, R. et al. Stoch Environ Res Risk Assess 2016         17 of 23 

that use climate to model dengue fever include an autoregressive time series component based on 

the idea that the current value of the time series can be explained as a function of past values (Hii et 

al., 2012; Tipayamongkholgul et al., 2009). However, these studies do not always quantify the 

contribution of an autoregressive lagged disease term compared to climate covariates to the 

variance explained by such a model. Elevated R2 values are often reported for models that include 

both climate and dengue in the previous time step, despite the fact that a large proportion of the 

variance is likely attributed to the dengue cases itself. It is advisable to test the added value of 

climate, without including these terms in the model, to gauge a more realistic idea of the added 

value provided by climate factors. Further, autoregressive terms with only one week or month lag 

offer little, if any, advance warning of an impending epidemic as the collation of such data may not 

be feasible in advance of the time period for which the forecast is valid. In practice, seasonal 

forecasts of the climate, with lead times up to several months ahead, would be the only feasible 

option to provide timely early warning of dengue epidemics (Lowe et al., 2014). 

 

By comparing observed dengue to modelled dengue, using the seasonal-spatial model and the 

models including climate, we found that the inclusion of nonlinear functions of climate improved 

the model for 79% of the provinces. Provinces with no improvement indicate areas where more 

complex processes might influence dengue risk. Climate is likely to impact rural and urban areas 

differently while socio-economic conditions and vector control disparities will play in role in 

determining dengue risk. Ideally, other interannual signatures, such as serotype circulation and 

human mobility patterns would be included in the model. 

 

5 Conclusion 

 

Once accounting for spatial-temporal confounding factors, non-linear functions of temperature and 

precipitation were found to have a statistically significant positive contribution to the relative risk of 

dengue in the following month. Therefore, forecast climate information, which predicts anomalous 

climate patterns several months in advance, has potential utility in a dengue decision support system 

for Thailand. Taking advantage of climate forecast lead times, public health authorities will be 

better able to put into place community communication campaigns to increase public awareness of 

the ensuing epidemic season and encourage community based environmental hygiene to reduce the 

mosquito breeding sites. Dengue control can in principle be achieved when campaigns focus on 

larval source reduction (Gubler, 1998) and community participation has long been recognised as 

offering good potential as part of an integrated control programme (Townson et al., 2005) . 
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However, maintaining active participation over a long period of time is a challenge and there is 

ample evidence that source reduction methods are often implemented poorly and consequently have 

little impact (Chadee et al., 2005; Hayes et al., 2003).  Therefore, forecasts offer an evidence-base 

for activating community programs over a restricted period of time. 

 

In addition, advanced warning would enable the implementation of a more effective surveillance 

system. Dengue epidemiology has a forest-fire signature with urban spreading of dengue virus via 

human mobility that is followed by local expansion. This suggests that the best way to tackle an 

epidemic is to rapidly target mosquitoes in the area around the dengue cases. Rapid detection of the 

first seasonal dengue cases and focused mosquito eradication should slow down the spread of the 

virus. Current fumigation methodologies are ineffective, in part because the insecticide dissipates 

rapidly with no or little residual action (Reiter, 2014).  However, there are an increasing number of 

novel insecticidal techniques that offer potential for more effective vector control (Devine et al., 

2009; Ritchie and Devine, 2013). An increased state of alert during a limited time period, made 

possible through climate-driven dengue forecasts, and rapid implementation of insecticidal 

methodologies that have residual action offer immense potential to help control dengue epidemics. 

 

The model framework presented here is extremely flexible and could be applied to model spatio-

temporal dengue variation in any geographical setting. This would facilitate between country 

comparisons of the impact of climate on dengue fever and contribute towards a more global 

approach to assessing the impact of climate variability and climate change on dengue risk. 
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