: Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of greatest influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models (e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted: while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection. Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models can better assist in strategizing disease control.<br/>