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1. Procedure used to generate TE, the time to death from cancer

1.1 Simulation under the alternative hypothesis.

To assess the power of the test, TE must be generated from a model where age has a non-

proportional effect. As recommended by Crowther and Lambert (2013), we simulated realistic

data through a full parametric model which can be used in the general algorithm of simulation

described by Crowther and Lambert (2013). TE was thus simulated from the following model

log [λE (t|age ,θ)] = λ0 (t,χ) + β (t) × age (Model 1) where the baseline excess mortality rate

λ0 (t,χ) is a fractional polynomial :

λ0 (t,χ) = FP (t) = β0 +
β1
t+ 1

+ β2 log (t+ 1) + β3t+ β4t
2

and β (t) is a cubic regression spline with 1 knot at one year :

β (t) = β5 + β6t+ β7t
2 + β8t

3 + β9 (t− 1)
3
I(t > 1)

To simulate plausible effects with the three desired levels of non-proportionality, the values of

β0 to β9 were chosen as follows (these choices are summarized in Table 1 in this document -

http ://www.biostatistics.oxfordjournals.org) : i) we selected the 20 most frequent cancer sites

from the common database of French cancer registries, ii) we fitted an excess hazard model on

samples of each of these 20 real datasets (up to 10 years of follow-up), the excess mortality hazard

λE being specified as in Model 1, iii) for each cancer site, we measured the strength of the NPH

effect with a particular measure defined as the area between β (t) and the mean of β (t) over

time, and iv) we defined arbitrarily the “low NPH effect” as the 60th percentile of this measure

(which corresponds to stomach cancer), the “medium NPH effect” as the 80th percentile (colon

cancer), and the “high NPH effect” as the 90th percentile (thyroid cancer). We chose percentiles

over the 50th so that the NPH effect could exist (i.e., simulation under H1). Figure 1 (in this

document) shows the shape of the three NPH effects β (t) according to the time since diagnosis.

Furthermore, the power of the test was deemed dependent on the number of deaths observed
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in the simulated cohort, this number being dependent on the baseline hazard level and on the

NPH level. So, to analyze the specific effect of the NPH levels, we controlled the baseline excess

mortality hazard and fixed its shape and strength using parameters β0 to β4 observed in colon

cancer.

1.2 Simulation under the null hypothesis.

Finally, to assess the size, TE was generated from the following proportional hazard model :

log [λE (t|age,θ)] = β0 + β1

t+1 + β2log (t+ 1) + β3t+ β4t
2 + β5 × age (Model 2) where the values

of β0 to β5 were estimated from colon cancer data (Table 1 in this document).

After determining the parameters of the model, TE was generated using the inverse transform

approach described by Crowther and Lambert (2013) for time-dependent effects : the parametric

form of the model allows obtaining the cumulative distribution which is then numerically inverted.

2. Simulation study to assess the performance of the test of the FF of a

covariate

This simulation study is largely based on the elements already presented in the previous

section. Thus, we present here only the elements that differ from this previous section. We assessed

the size and the power of the new test designed to check the FF of a covariate (called thereafter

“the new FF test”). This assessment was performed in the particular case where hypothesis H0

is “the functional form of the covariate is linear”. The performance of this test was estimated

according to the sample size and the strength of the non-linearity (NLIN) effect (low, medium,

high) under the alternative hypothesis H1. To obtain plausible effects with the three levels of

NLIN strength, we operated as follows (Table 1 in this document) : i) for each of the 20 most

frequent cancer sites, we fit the following model log [λE (t|age,θ)] = λ0 (t,χ) + g (age), λ0 (t,χ)

being a fractional polynomial and g (age) a cubic spline with one knot at the mean age, g (age) =
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β5×age+β6×age2+β7×age3+β8×(age−mean)
3
I (age > mean) ; ii) we measured the strength

of the NLIN effect with a specific measure similar to that of the new PH test but adapted for

linearity ; this corresponds to the area between g (age) and the mean of g (age) over the age

range ; iii) from the percentiles of this measure, we defined arbitrarily a “low”, a “medium”, and

a “high” NLIN effect that correspond, respectively, to colon, cervix, and prostate cancers.
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Figure 1. Shape of the three simulated NPH effects β (t) : circles for low NPH effect, triangles for medium
NPH effect, and crosses for high NPH effect.
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3. Approximation of the limiting distribution of the score process under the

null hypothesis.

Most of this section comes from Lin and Spiekerman (1996). Here, we present the main steps,

starting from the score process, to derive the process that was simulated to approximate the

limiting distribution of the score process.

Let θ0 be the true values of the parameters. A Taylor expansion of U (., t) (the score process

evaluated at time t) in the neighborhood of θ0 gives :

U (θ, t) = U (θ0, t)− nI (θ0, t) (θ − θ0) + op (1) (3.1)

where I (θ, t) is a p× p matrix (p equals to the number of parameters in the model) with the

element Ikj (θ, t) (i.e., the element in the kth row and jth column) equals to :

− 1

n

∂Uk
∂θj

(θ, t)

The matrix I evaluated at (θ0, τ) is related to the Fisher information matrix and is invertible.

Evaluating (3.1) at (θ̂, τ) and remarking that U(θ̂, τ) corresponds to the score of the likelihood

function evaluated at the maximum likelihood estimate (and thus is equal to the zero vector), we

obtain :

nI (θ0, τ)
(
θ̂ − θ0

)
= U (θ0, τ) + op (1)(

θ̂ − θ0

)
=

1

n
I−1 (θ0, τ)U (θ0, τ) + op (1) (3.2)

Then, combining equation (3.1) and (3.2) and evaluating U at θ̂ and time t,

U
(
θ̂, t
)

= U (θ0, t)− I (θ0, t) I
−1 (θ0, τ)U (θ0, τ) + op (1) (3.3)

In equation (3.3), the distribution of the components of the score process Uk (θ0, t) is unknown.

Indeed, the kth component of the score process at θ0 is :

Uk (θ0, t) =
∑
i

[
Zki

∫ t

0

λE (u|Zi,θ0)

λE (u|Zi,θ0) + λP (ai + u, z̃i)
dMi (u)

]
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with

Mi (t) = Ni (t)−
∫ t

0

Yi (u)λE (u|Zi,θ0) du−
∫ t

0

Yi (u)λP (ai + u, z̃i) du

The distribution of Mi is unknown and, similarly to Lin and others (1993) and Lin and Spie-

kerman (1996), we replace Mi by a similar process MiGi, with Gi following a normal distribution.

This process shares characteristics of the process Mi, including mean and variance (Fleming and

Harrington, 1991; Lin and others, 1993).

Thus, Uk (θ0, .) will be approximated by the kth component of D1 (θ, .) defined as follows :

∑
i

[
Zki

∫ t

0

λE (u|Zi,θ)

λE (u|Zi,θ) + λP (ai + u, z̃i)
dNi (u)Gi

]
(3.4)

Here, we focus on the score process. In this context, n−1/2U is a special case of the process

W
(2)
z (see the end of Section 2.2.2 of the article). Finally, combining equations (3.3) and (3.4),

and approximating θ0 by θ̂, the approximation of the distribution of
{
n−1/2Û

}
is performed by

generating a ‘large’ number of realizations of the following process :

n−1/2

(
D1

(
θ̂, t
)
− I

(
θ̂, t
)
I
(
θ̂, τ

)−1

D1

(
θ̂, τ

))
(3.5)

To check PH assumption of the kth covariate, the “observed” test statistic value of the cor-

responding dataset is :

T̂S = sup
∣∣∣n−1/2Uk

(
θ̂, t
)∣∣∣ (3.6)

The p-value is then approximated by the proportion of cases in which the absolute maximum

of the simulated Gaussian Processes (supremum over time t of the absolute value of the kth

component of process (3.5), i.e., replacing Uk in (3.6) with the kth component of (3.5)) is higher

than T̂S .
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