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Introduction

Cryptococcal meningitis (CM) is the leading cause of meningitis in much of sub-Saharan

Africa, where it causes up to 20% of all deaths in human immunodeficiency virus (HIV)-

infected cohorts [1, 2]. It is primarily caused by infection with Cryptococcus neoformans, an

encapsulated yeast found widely in the environment. CM may also be caused by C. gattii, a

related organism with a more limited geographic distribution but with the capacity to cause

disease in nonimmunocompromised hosts [3]. Following inhalation of spores or desiccated

yeast cells, an asymptomatic pulmonary infection occurs in the vast majority of immunocom-

petent hosts, with detectable antibody responses to Cryptococcus protein extract by early child-

hood [4, 5]. The host immune response leads to clearance of infection or to latent infection

with yeast encased within pulmonary granulomata [6, 7]. If the host immune response is

impaired, however, yeasts may survive and disseminate through the body hematogenously,

resulting in a severe meningoencephalitis (Fig 1) [3].

The host immune response is central to the pathogenesis of cryptococcosis. Not only does

an impaired immune response predispose to the condition but variations in the phenotype of

the immune response also appear to influence the outcome. Additionally, efforts to reverse the

severe immune deficiency through the initiation of antiretroviral therapy (ART) may be com-

plicated by aberrant proinflammatory reactions such as the immune reconstitution inflamma-

tory syndrome (IRIS).

What is the normal host immune response to Cryptococcus?

Alveolar macrophages constitute a primary first-line host defense and recognize Cryptococcus
spores via Dectin-1 receptors [5]. Phagocytosis occurs through antibody- and complement-

mediated, opsonin-dependent pathways and non-opsonin-dependent interaction of crypto-

coccus surface epitopes with receptors including mannose, dectin-1, CD14, and Toll-like

receptor 4 [8, 9]. Once internalized, yeast-containing phagosomes fuse with lysosomes, and

intracellular killing may occur under the influence of interferon-γ (IFN-γ) produced by natural

killer cells and CD4 T cells [10]. However, in some circumstances and in the absence of appro-

priate macrophage activation, cryptococci can survive and replicate within the phagolysosome,
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Fig 1. Summary of immune responses to Cryptococcus in immune competent hosts and in HIV-infected individuals.

https://doi.org/10.1371/journal.ppat.1006207.g001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006207 March 23, 2017 2 / 8

https://doi.org/10.1371/journal.ppat.1006207.g001
https://doi.org/10.1371/journal.ppat.1006207


protected through a variety of mechanisms, including expansion of its thick polysaccharide

capsule and laccase-induced melanin synthesis that may neutralize free radicals. Cryptococci

eventually exit the macrophage through cell lysis, actin-dependent direct cell-to-cell transfer,

or non–lytic exocytosis [11–13]. Parasitism of macrophages facilitate replication and may also

facilitate migration of yeast to the central nervous system (CNS) [8, 14].

What are major susceptibility factors for the development of

cryptococcal meningitis in humans?

Cryptococcosis occurs almost exclusively in individuals with impaired cell-mediated immu-

nity. The vast majority of cases worldwide are associated with advanced HIV infection, illus-

trating the vital importance of CD4 T cells in the human host response [15, 16]. Other risk

factors include solid organ transplantation, long-term use of immunosuppressive drugs, diabe-

tes mellitus, rheumatological diseases, advanced liver and renal disease, and hematological

malignancies [17]. In addition, a number of rare genetic conditions have been linked to cryp-

tococcosis in non-HIV-infected patients [18].

Despite presumed frequent environmental exposure, not all individuals with deficient cell-

mediated immunity, as found in late-stage HIV infection, develop disseminated cryptococco-

sis. This suggests there may be additional factors that influence host susceptibility. Phagocytic

Fcγ receptor 3A 158 F/V polymorphisms have recently been found to be a risk factor for cryp-

tococcal disease, with FcγR3A VV homozygosity conferring higher risk, as have the presence

of autoantibodies against granulocyte macrophage colony stimulating factor (GM-CSF) [18–

20]. Additional genetic studies comparing DNA from patients with HIV-associated cryptococ-

cal meningitis with that from population and CD4 cell count-matched individuals without evi-

dence of cryptococcal infection are underway. Among exposed individuals, heterogeneity in

Cryptococcus sequence type, genotype, and phenotype also influence the ability of yeast to dis-

seminate and the clinical outcome [21, 22].

How does the immune phenotype in HIV-associated cryptococcal

meningitis influence outcome?

Proinflammatory and Th1-type immune responses are beneficial among patients with HIV-

associated CM, while a lack of immune response is detrimental. Studies from cohorts of

patients with HIV-associated CM have shown that higher baseline concentrations of IFN-γ,

TNF-α, and IL-6 in the CSF are associated with lower CSF fungal burden, faster fungal clear-

ance on antifungal therapy, and improved survival [23–26]. However, this does not appear to

simply be a correlate of a higher CD4 T cell count. Flow–cytometric analyses have suggested

that the CD4 T cell phenotype, rather than just the number of circulating CD4 cells, is impor-

tant in determining the outcome of CM. Following stimulation with cryptococcal mannopro-

tein, patients with IFN-γ- and/or TNF-α-producing CD4 T cells had corresponding higher

CSF lymphocyte counts and CSF cytokine levels, along with lower CSF fungal burden and

improved two-week survival odds [27].

Further study has shown that the impaired Th1 response observed in nonsurvivors is not

an isolated immune defect but one component of a widespread systemic deactivation of the

immune system characterized by monocyte deactivation (decreased human leukocyte antigen

[HLA]-DR expression and decreased production of TNF-α following stimulation with lipo-

polysaccharide); raised IL-10, IL-6, and CXCL10; and increased circulating neutrophils [28].

This immune signature was an independent predictor of two-week mortality and correlated

with plasma concentrations of the cryptococcal polysaccharide antigen glucuronoxylomannan

(GXM), suggesting that the immune deactivation observed in nonsurvivors may be the result
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of immunomodulatory actions of Cryptococcus. This hypothesis is supported by in vitro studies

demonstrating that GXM impairs monocyte activation and antigen presentation and subse-

quent T cell responses via an IL-10-dependent mechanism [29].

Findings in humans are broadly consistent with animal studies demonstrating protective

effects of Th1 immune responses, characterized by IFN-γ production and classically activated

macrophages, and detrimental effects of Th2-type responses [30, 31]. However, human studies

have not convincingly demonstrated the Th1/Th2 dichotomy found in murine studies. Th2

cytokines (IL-4, IL-13) are less readily detectable in the CSF and are often closely correlated

with Th1 cytokines (IFN-γ). [26, 27] This may simply be due to biological differences between

species. However, it may also reflect the time course of the immune response. Murine studies

typically evaluate the acute immune response following pulmonary inoculation with Crypto-
coccus, whereas human studies represent patients with subacute infection who have a dynamic

and evolving host response.

Does modulation of the immune response improve outcome in

CM?

Two main strategies have been adopted to improve host immune response in HIV-associated

CM. The first is the use of adjunctive immunotherapy alongside antifungal therapy. IFN-γ has

been tested in two phase-2 trials and was found to be safe and associated with a faster rate of

CSF fungal clearance. [32, 33] Subgroup analyses suggested that the greatest benefit was gained

among patients with a lack of cryptococcus-specific IFN-γ/TNF-α T cell responses. [27]. Nei-

ther of these phase-2 trials were sufficiently powered to examine mortality differences; and

larger phase-3 trials to determine the mortality benefits of adjunctive IFN-γ therapy, while

justified, have not yet been conducted. The second strategy is augmentation of the immune

response through earlier initiation of ART. Despite success in the setting of other opportunis-

tic infections [34], this appears not to be beneficial in CM. Two randomized clinical trials have

shown increased mortality with early ART. The first showed increased mortality when ART

was initiated at 72 hours compared to 10 weeks following CM diagnosis in fluconazole-treated

patients [35]. The second, conducted in Uganda and South Africa using amphotericin B-based

antifungal therapy, showed increased mortality with ART initiation at 7–13 days compared

to 5–6 weeks following CM diagnosis [23]. It was hypothesized that the increased mortality

might have been due the development of undiagnosed IRIS.

Immune modulation with adjunctive dexamethasone has also been tested for treatment

of CM in a phase-3 trial [36]. This study was terminated early after dexamethasone use was

associated with slower fungal clearance from the CSF, higher rates of disability, and a trend

toward higher mortality. The immunological mechanisms underlying these findings are not

yet known.

What is cryptococcal immune reconstitution inflammatory

syndrome?

IRIS is defined as “a paradoxical deterioration in clinical status attributable to the recovery of

the immune system” and in HIV typically manifests as inflammatory reactions at the site of

previously treated or previously unrecognized opportunistic infections following the initiation

of ART [37]. Cryptococcal IRIS (C-IRIS) is reported to occur in 10%–20% of individuals with

HIV-associated CM at a median of 4–9 weeks following ART initiation and has been identified

as an independent predictor of mortality [25, 38–40]. The usual presentation is with a recur-

rence of signs and symptoms of meningitis [41]. Immunological studies have reported a CSF

immune response characterized by a CD4 T cell infiltrate, a proinflammatory monocyte
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phenotype, and increased concentrations of proinflammatory cytokines (TNF-α, IFN-γ, gran-

ulocyte colony stimulating factor) [42, 43].

The risk of developing C-IRIS appears to be closely related to the host immune response

during the initial episode of CM. Individuals with a lack of inflammation in their CSF during

the initial episode of CM, characterized by low CSF white cells (<5/μL), low CSF concentra-

tions of proinflammatory cytokines (IFN-γ, TNF-α, IL-6, IL-8), and increased concentrations

of CSF chemokines (CCL2/MCP-1, CCL3/MIP-1α) are at high risk of developing IRIS follow-

ing ART initiation [43, 44]. Pre-ART cryptococcus-induced IFN-γ production from whole

blood is also reduced in those who go on to develop C-IRIS [45]. This paucity of immune

response is associated with a higher CSF fungal burden at baseline, slower fungal clearance on

antifungal therapy, and increased CSF fungal burdens at the end of antifungal therapy [43, 46].

This increased residual cryptococcal antigen load probably drives C-IRIS during CD4 recovery

on ART, with the elevated chemokine levels leading to excessive trafficking of immune cells

into the CSF [43, 44, 46–49].

Although no increase in cases of IRIS was observed in the early ART trials, it is probable

that the excess mortality was immunologically mediated. The increased mortality associated

with early ART was primarily driven by individuals with a CSF white cell count (WCC) <5/γL

at randomization—the same group found to be at the highest risk of developing IRIS [23]. Fur-

ther analysis has shown that early ART was associated with an influx of inflammatory cells

into the CSF, with significantly more patients in the early ART arm developing CSF pleocytosis

(WCC�5/μL) by day 14 (after a median of six days of ART), accompanied by increased CSF

concentrations of soluble CD14 and CD163, suggesting increased macrophage activation in

the CSF [49].

Conclusion

Cryptococcal meningitis has emerged as a leading cause of death in individuals with impaired

CD4 T cell-mediated immunity. Recent human data suggests that an absence of an effective

Th1 response, characterized by IFN-γ and TNF-α production, leads to monocyte deactivation,

excessive CNS chemokine production, and poor clearance of infection with increased risk of

IRIS and death. Immunomodulation with steroid therapy increases the risk of a poor outcome,

whereas augmentation with IFN-γ has demonstrated benefits in faster fungal clearance when

coupled with effective antifungal therapy.
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