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Unbiased Estimation of Odds Ratios: Combining Genomewide
Association Scans with Replication Studies
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Odds ratios or other effect sizes estimated from genome scans are upwardly biased, because only the top-ranking
associations are reported, and moreover only if they reach a defined level of significance. No unbiased estimate exists based
on data selected in this fashion, but replication studies are routinely performed that allow unbiased estimation of the effect
sizes. Estimation based on replication data alone is inefficient in the sense that the initial scan could, in principle, contribute
information on the effect size. We propose an unbiased estimator combining information from both the initial scan and the
replication study, which is more efficient than that based just on the replication. Specifically, we adjust the standard
combined estimate to allow for selection by rank and significance in the initial scan. Our approach explicitly allows for
multiple associations arising from a scan, and is robust to mis-specification of a significance threshold. We require
replication data to be available but argue that, in most applications, estimates of effect sizes are only useful when
associations have been replicated. We illustrate our approach on some recently completed scans and explore its efficiency
by simulation. Genet. Epidemiol. 33:406–418, 2009. r 2009 Wiley-Liss, Inc.

Key words: genomewide scans; winner’s curse; selection bias; UMVUE; WTCCC

Contract grant sponsor: UK MRC; Contract grant numbers: WBS U.1052.00.001.00001.01; WBS U.1052.00.012.00001.01.
�Correspondence to: Jack Bowden, MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, UK. E-mail:
jack.bowden@mrc-bsu.cam.ac.uk
Received 29 July 2008; Revised 27 October 2008; Accepted 14 November 2008
Published online 12 January 2009 in Wiley InterScience (www.interscience.wiley.com).
DOI: 10.1002/gepi.20394

INTRODUCTION

Genomewide scans are becoming increasingly popular
as a tool for estimating the association between large
numbers of genetic variants, usually single-nucleotide
polymorphisms (SNPs), and many common, complex
diseases [Hirschhorn and Daly, 2005]. Although large
effects are not expected for any single SNP, the hope is that
a set of SNPs can be identified as explaining a sizable
proportion of disease risk. Statistical analyses of genome
scans are mainly focused on hypothesis testing, with
estimation of the corresponding effect sizes regarded as a
secondary goal. This is because of the exploratory nature
of a scan: we are looking to identify associated markers
from a set of anonymous SNPs, whereas estimation is
typically required for a known risk factor. Nevertheless,
knowledge of the effect sizes of the SNPs found in a scan
can be useful, for example in designing replication studies
with appropriate sample sizes [Yu et al., 2007]. Applica-
tions such as estimating the proportion of heritability
explained [Easton et al., 2007], performing meta-analyses
[Lohmueller et al., 2003], and constructing risk profiles
[Janssens et al., 2008] are usually concerned with con-
firmed, replicated associations; but if the relevant markers
were initially found in a scan, then it would contain
information that is useful in those situations too. Such
applications are likely to assume greater importance with
time, as methodology improves to ensure multiple true
associations in most genome scans.

It is well known that naı̈ve estimates of odds ratios or
other effect sizes from a genome scan are upwardly
biased. This problem was introduced to the human
genetics literature by Göring et al. [2001] in the context
of linkage analysis, and was further elucidated for
genomewide association scans by Garner [2007]. We want
to distinguish two sources of the upward bias. Significance
bias arises when estimation is performed only for effects
that are statistically significant: the expected value of an
estimator, conditional on it being significant, is then
typically higher than its unconditional expectation, which
for an unbiased estimator is the population value. This is
the same principle that underlies publication bias in
scientific literature [Hedges, 1992; Copas, 1999]. Ranking
bias arises when the quantities estimated depend upon a
rank ordering related to those same quantities. Thus, if
following a genome scan SNPs are ranked by their P-
values, then the expected value of an estimator, condi-
tional it being the most significant, is again greater than its
unconditional expectation. Ranking bias applies not only
to the most significant SNP, but also to the second most
significant, third most and so on, and is present even when
there is no selection by significance. This is similar to the
‘‘winner’s curse’’ effect [Thaler, 1988], in its original sense
that the winner of a common value auction tends to
overpay; the difference here is that SNPs do not have a
common effect size, but the bias will operate to some
extent whenever there is incomplete information on the
effect size. A similar phenomenon also arises in clinical
trials when multiple outcomes have been measured but
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only the most extreme outcome is reported [Hutton and
Williamson, 2000; Williamson et al., 2005].

Although unbiased estimates of SNP effects are avail-
able from replication studies [Göring et al., 2001], it would
be desirable to obtain them from genome scan data since
their sample sizes are typically large and should therefore
contain useful information. Several authors have, there-
fore, proposed to infer bias corrected estimates based
solely on the initial sample data. To address significance
bias Zöllner and Pritchard [2007] proposed to maximize
the likelihood of the genotype data conditional on it
passing a significance threshold. Using a general notation
their approach seeks to maximize

PrðDatajsignificant; yÞ ¼
PrðDatajyÞ

PrðsignificantjyÞ
ð1Þ

over parameters y, here the odds ratio and allele frequency.
They applied this approach to multinomial data from
contingency tables. Ghosh et al. [2008] and Zhong and
Prenctice [2008] applied the same principle to the
summary odds ratio, assumed to be normally distributed
with its variance equal to the sample estimate. Although
this is, in a sense, the correct model for the data, it does not
lead to an unbiased estimate for y, as noted by those
authors, and their results suggest a tendency to over-
correct.

Ranking bias was addressed by Sun and Bull [2005],
who used bootstrapping and cross-validation to correct for
the bias of point estimates for the top-ranking SNP. Their
work is mainly developed for linkage analysis, and would
seem to be very time-consuming for association analysis
on the genomewide scale, although an application to a
candidate-gene screen has been reported [Yu et al., 2007].
Again, this approach resulted in reduction of bias without
achieving unbiased estimation.

In fact, while these methods show that bias corrections
based on heavily selected data can be made, it is known
that there is no unbiased estimate for the top-ranking
effect [Putter and Rubinstein, 1968; Stallard et al., 2008],
suggesting that the search for general unbiased estimators
is futile. Here we take a different approach, by assuming
that a replication study has been performed and then
combining the estimates from both the initial scan and the
replication to obtain an unbiased estimate that is more
efficient than that based only on the replication data. In
particular, our estimator has minimum variance, in a
certain sense, among all unbiased estimators that use the
full complement of data. We account for both significance
bias and ranking bias, and our approach explicitly allows
and adjusts for multiple associations in a scan. Although
we need replication data to be available, we feel that this is
not overly restrictive, because most applications of
estimation will be concerned with validated associations.
Indeed, replication is accepted as a sine qua non of
genome scans [Chanock et al., 2007], so it is debatable
whether we should be much concerned with estimation
from the scan data only. Of course, the design of a
replication study requires some estimate of effect sizes, but
since replication will typically be attempted for several
associations concurrently, a rough indication of the order
of magnitude would suffice and this can be obtained by
existing methods.

Our methodology originates from the adaptive clinical
trial literature, and we will draw some comparisons

between the two fields. In the ‘‘Methods’’ section we
describe our estimation procedure together with measures
of bias and mean square error that are appropriate in this
context. In the section ‘‘Results’’ we apply our approach to
studies in the Wellcome Trust Case Control Consortium
[WTCCC, 2007], leading us to illustrate some important
aspects through simulations. We conclude with a ‘‘Discus-
sion’’.

METHODS

TWO-STAGE UNBIASED ESTIMATION

We assume a design consisting of a genomewide
association scan (stage 1) followed by a replication study
(stage 2) in which only SNPs meeting some selection
criteria in stage 1 are of interest. Let X ¼ fXi; i ¼ 1; . . . ; kg
be the estimated effect sizes for k SNPs in stage 1, assumed
to follow independent Nðmi;s

2
1;iÞ distributions. In the case-

control design Xi will usually be log odds ratios. mi is
unknown but its variance, although estimated in practice,
will be assumed known. Denote the ordered stage 1 effects
as XðiÞ and define mðiÞ ¼ mj when XðiÞ ¼ Xj. Note that we
define mðiÞ as the mean of the ith ranked effect, not the ith
ranked mean, and that therefore mðiÞ is a function of X.
Define s1;ðiÞ similarly. Let Yi be the stage 2 estimate of the
ith ranked effect in stage 1, so Yi � NðmðiÞ;s

2
2;iÞ. The

problem is to estimate mðiÞ subject to selection criteria
including specified values of i and a P-value threshold.

This scenario is similar to the pharmaceutical setting,
particularly in early experimental trials, in which one is
faced with determining the most promising of several
experimental treatments. A well established and cost-
effective strategy is to test all k treatments in a first stage
and to select the best performing treatment with the largest
efficacy score, Xð1Þ, for further investigation [Thall et al.,
1988; Stallard and Todd, 2003; Sampson and Sill, 2005].
When tested in isolation in stage 2, the efficacy score of
this best performing stage 1 treatment, Y1, follows
Nðmð1Þ;s

2
2;1Þ. Since it is the maximum of k normally

distributed random variables E½Xð1Þ� 6¼ mð1Þ [for details on
the exact distribution of Xð1Þ see Sun and Bull, 2005]. The
second-stage data give an unbiased estimate of mð1Þ, but it
is often overlooked on account of its large variance. For
this reason a weighted average of the first- and second-
stage data is sometimes taken, giving an estimator of the
form

m̂ð1Þ ¼
s2

2;1Xð1Þ þ s2
1;ð1ÞY1

s2
1;ð1Þ þ s2

2;1

; ð2Þ

which can be regarded as a maximum likelihood estimator
(MLE). However, m̂ð1Þ is biased because no account is made
for selection at stage 1. For all stage 1 and 2 variances equal
Cohen and Sackrowitz [1989] proposed an unbiased
estimate for mð1Þ of the form

~mð1Þ ¼ m̂ð1Þ �
1ffiffiffi
2
p

fðWÞ
FðWÞ

; ð3Þ

where fð:Þ and Fð:Þ are the pdf and cdf of the standard
normal distribution and W ¼

ffiffiffi
2
p
ðm̂ð1Þ � Xð2ÞÞ. This can be

seen as a correction to the MLE which depends on Xð2Þ, the
second best performing treatment in stage 1. The two-stage
estimation procedure is necessitated by the fact that no
unbiased estimate for mð1Þ exists based only on (finite) stage
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1 data—see Stallard et al. [2008] for a theoretical explana-
tion. This explains why the ‘‘bias corrected’’ estimates of
Zöllner and Pritchard [2007], Ghosh et al. [2008], and
Zhong and Prenctice [2008] are, nevertheless, still biased.
In recent work Bowden and Glimm [2008] generalized this
result to the ith ranked stage 1 effect, and also to allow
unequal variances among all stage 1 and stage 2 estimates.
The estimate for mðiÞ in this case is

~mðiÞ ¼ m̂ðiÞ �
s2

2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðiÞ þ s2
2;i

q ffðWi;iþ1Þ � fðWi;i�1Þg

fFðWi;iþ1Þ � FðWi;i�1Þg
; ð4Þ

where

Ws;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞ þ s2
2;s

q
s2

1;ðsÞ

ðm̂ðsÞ � XðtÞÞ: ð5Þ

The MLE for the ith ranked effect is corrected by taking
into account information from the ði� 1Þth and ðiþ 1Þth
ranked stage 1 effects. In this formula Xð0Þ and Xðkþ1Þ are
defined as 1 and �1, respectively. The full proof of this
result can be found in Bowden and Glimm [2008] but to
motivate subsequent results we provide a summary of the
main steps.

Without loss of generality we assume that the event Q :
X1 � X2 � � � � � Xk has occurred, so that Xi ¼ XðiÞ. Let
Xc

i ¼ X n Xi. The pair Xc
i and Zi ¼ ðs2;i=s1;iÞXi þ

ðs1;i=s2;iÞYi are then sufficient and complete statistics for
m1; . . . ; mk. The joint distribution of Yi and X1; . . . ;Xk given
Q, fðYi;XjQÞ is then transformed into fðX;ZijQÞ and
fðYi;Xc

i ;ZijQÞ. The joint density fðXc
i ;ZijQÞ is obtained

from the integral

Z Xi�1

Xiþ1

fðX;ZijQÞdXi; ð6Þ

which enables the density fðYijX
c
i ;Zi;QÞ to be expressed as

the ratio fðYi;Xc
i ;ZijQÞ=fðXc

i ;ZijQÞ. This is greatly simpli-
fied due to numerous cancellations, in particular the
selection probabilities which are analogous to those that
feature in the denominator of, and cause problems for,
formula (1). Using the Rao-Blackwell theorem formula (4),
which is E½fðYijXc

i ;Zi;QÞ�, is the uniformly minimum
variance unbiased estimator for mðiÞ, conditional on Q (we
call it the UMVCUE). This means that, given the ranking in
stage 1, the estimator is unbiased for the corresponding
effects and has minimum variance among all such
unbiased estimators.

We now propose some modifications to this formula in
order to apply the same estimation procedure to a genome
scan followed by replication. Instead of the magnitude of
the point estimates determining the rank order, it is more
common in the genomewide setting to rank SNPs
according to the statistical significance of their
effects, and to restrict attention to those passing an initial
P-value threshold pcrit. For a one-sided Wald-type test, we
can make this extension by conditioning instead on the
event

Q� :
Xð1Þ
s1;ð1Þ

�
Xð2Þ
s1;ð2Þ

� � � � �
XðkÞ
s1;ðkÞ

� F�1ð1� pcritÞ: ð7Þ

This leads to slight changes in the proof since
conditioning on Q� as opposed to Q changes the limits
of integration for Xi and Yi, with the result that Ws;t

in (4) becomes

Ws;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞ þ s2
2;s

q
s2

1;ðsÞ

m̂ðsÞ �
s1;ðsÞXðtÞ
s1;ðtÞ

� �
: ð8Þ

For (8) to work generally we define Xðkþ1Þ=s1;ðkþ1Þ ¼

F�1ð1� pcritÞ. This expression was noted in Bowden and
Glimm [2008], though they did not allow for a P-value
threshold. If SNPs that confer either an increased or
decreased disease risk are of equal interest, as is usually
the case, then the rank order of significance should be
based on two-sided P-values. This now requires condi-
tioning on the event

Q� :
jXð1Þj

s1;ð1Þ
�
jXð2Þj

s1;ð2Þ
� � � � �

jXðkÞj

s1;ðkÞ
� F�1 1�

pcrit

2

� �
: ð9Þ

In Appendix A we show that the UMVCUE now becomes

~mðiÞ ¼ m̂ðiÞ �
s2

2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðiÞ þs
2
2;i

q

ffðW ð0Þ
i;iþ1Þ�fðW

ð0Þ
i;i�1Þ�fðW

ð1Þ
i;iþ1ÞþfðW

ð1Þ
i;i�1Þg

fFðW ð0Þ
i;iþ1Þ�FðW

ð0Þ
i;i�1Þ�FðW

ð1Þ
i;iþ1ÞþFðW

ð1Þ
i;i�1Þg

;

ð10Þ

where

W
ðpÞ
s;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞ þs
2
2;s

q
s2

1;ðsÞ

m̂ðsÞ �ð�1Þp
s1;ðsÞjXðtÞj

s1;ðtÞ

� �
ð11Þ

and jXðkþ1Þj=s1;ðkþ1Þ ¼F�1ð1�pcrit=2Þ.
We shall work with this last form in the remainder of the

article. Note that this estimator may be easily calculated in
standard software, using only the summary estimates
obtained in the two stages.

ASSESSING POINT ESTIMATOR PERFOR-
MANCE

We have proposed an unbiased estimate ~mðiÞ for the
effect size of a SNP association, conditional on its rank
order and its passing a P-value threshold. Our intention is
to compare the usefulness of this estimate to alternatives
based on two-stage data. To do this we will calculate the
bias and mean squared error of each estimator, to assess
their bias-variance trade-offs. However, a subtle facet of
this estimation problem is that the true effect of the ith
ranked SNP, mðiÞ is not a fixed parameter, but is a random
variable that can take any of the values m1; . . . ; mk. This
means that standard formulas, such as that for the
standard error of the MLE, are inaccurate because they
do not allow for the variability in the effect being
estimated. Furthermore, no exact formula for the UMV-
CUE’s variance is known [Cohen and Sackrowitz, 1989; Sill
and Sampson, 2007]. Therefore, in accordance with Posch
et al. [2005], Sill and Sampson [2007], and Bowden and
Glimm [2008] we choose to evaluate a generic estimator m�ðiÞ
with the quantities

bselðm�ðiÞÞ ¼
Xk

j¼1

E½m�ðiÞ � mjjXðiÞ ¼ Xj�PrðXðiÞ ¼ XjÞ: ð12Þ

MSEselðm�ðiÞÞ ¼
Xk

j¼1

E½ðm�ðiÞ � mjÞ
2
jXðiÞ ¼ Xj�PrðXðiÞ ¼ XjÞ: ð13Þ
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These expressions are the weighted average bias and mean
squared error over the distribution of the random variable
mðiÞ, which takes the value mi with probability PrðXðiÞ ¼ XiÞ

and can be evaluated to a high degree of accuracy by
Monte-Carlo simulation.

This point of view also holds that the usual formula for
the standard error of the stage 2 estimate is inaccurate
when applied to estimating the top-ranking effects in
stage 1. If a fixed SNP is specified in advance, then the
usual standard error does reflect the sampling variation in
stage 2, but if the SNP is regarded as random then the
weighted average (13) is more appropriate. This forces a
distinction between whether a SNP is regarded as
definitively associated after stage 1, in which case the
fixed effect view is reasonable, or whether stage 2 is
regarded as an integral part of the discovery process,
suggesting the random effect view. Both views are
justifiable in real contexts, but our view is that if we will
combine estimates from both stages, then we should allow
for variation across both stages even when basing an
estimate on stage 2 data only. Although this distinction
may seem technical, it will be important for illustrating our
claim that the UMVCUE estimator is more efficient than
that based only on the stage 2 data.

RESULTS

APPLICATION TO WTCCC DATA

In 2007, the Welcome Trust Case Control Consortium
published genome scans of seven common diseases
[WTCCC, 2007]. About 2,000 cases for each disease and a
common set of 3,000 controls were genotyped. While
intended as a proof of concept, the study was perhaps
more successful than expected, as for each disease a
number of associations were successfully replicated. We
illustrate our estimation approach on the results for two
diseases: type-1 diabetes (T1D) [Todd et al., 2007] and
Crohn’s disease (CD) [Parkes et al., 2007]. These two were
chosen because replication was attempted for several
SNPs (10 and 11, respectively) and because both articles
reported summaries of both the WTCCC and the replica-
tion data from which odds ratios and standard errors
could be recovered. The two studies differed in the size of

the replication cohort, which has implications for mean
squared error. Our results are intended to be illustrative
and should not be taken as definitive estimates, as we have
made some assumptions that may not have held in the
original studies.

Todd et al. [2007] report robust associations for 15 SNPs
in the WTCCC data, four of which were previously known
and for which replication was not attempted. One SNP
was identified by a 2-df genotype test, which we excluded
because it is unclear how to allow for selection by the
genotype test when estimating the allelic odds ratio. A
follow-up study of 4,000 cases and 5,000 controls attained
nominal significance for allelic tests of 7 SNPs out of 10
attempted. In Table I we show the estimated odds ratios
from the WTCCC data and replication data, followed by
three estimates that combine the two stages: the ordinary
MLE, the corrected MLE of Zhong and Prenctice [2008]
(called ZP), and our UMVCUE. For the ZP estimator we
used the weighted average of corrected and uncorrected
estimators (their equation 3.4) using the maximum like-
lihood adjusted estimator for a two-stage design with
selection after the first stage only (their equation 2.3). For
the ZP estimator and our UMVCUE we assumed a P-value
threshold of 2:25� 10�5, which is the P-value for the Wald
test of the least significant SNP taken forward. This was
certainly not the selection criterion used in the original
study, but it suffices for our illustration.

The stage 1 estimate is consistently higher than the stage
2 estimate and the UMVCUE, reflecting the upward bias.
The MLE is similar to the combined odds ratios reported
by Todd et al. [2007], and also shows an upward bias. The
ZP estimate is consistently less than the MLE but greater
than the UMVCUE, suggesting an incomplete bias correc-
tion. Since simulations based on only one significant SNP
indicated a tendency to overcorrection [Zöllner and
Pritchard, 2007; Ghosh et al., 2008], the upward bias here
is likely due to uncorrected ranking bias. The UMVCUE is
in good agreement with the stage 2 estimate, but can be
higher or lower after taking the stage 1 results into
account.

Parkes et al. [2007] report successful replication of 12
SNPs in a follow-up cohort of 1,182 cases and 2,024
controls. Of these, the significance of one (rs6887695) in the
WTCCC scan was severely attenuated after data cleaning

TABLE I. The odds ratios (95% CIs) of 10 SNPs reported by Todd et al. [2007] in an initial scan (stage 1) and replication
study (stage 2)

Chr SNP Stage 1 OR Stage 2 OR GZW MLE ZP UMVCUE

12q24 rs17696736 1.37 (1.27, 1.48) 1.16 (1.09, 1.24) 1.37 1.23 1.23 1.19
12q13 rs2292239 1.30 (1.2, 1.41) 1.28 (1.20, 1.37) 1.29 1.29 1.29 1.27
16p13 rs12708716 1.30 (1.19, 1.42) 1.20 (1.13, 1.29) 1.27 1.24 1.23 1.21
18p11 rs2542151 1.33 (1.2, 1.48) 1.29 (1.20, 1.38) 1.27 1.30 1.30 1.29
4q27 rs17388568 1.27 (1.15, 1.40) 1.08 (1.01, 1.16) 1.20 1.14 1.10 1.08
5q14 rs7722135 1.27 (1.15, 1.40) 1.09 (1.01, 1.17) 1.11 1.15 1.10 1.08
2q11 rs9653442 1.21 (1.11, 1.31) 1.07 (1.00, 1.15) 1.08 1.10 1.06 1.05
2q13 rs6546909 1.31 (1.16, 1.47) 1.02 (0.95, 1.10) 1.09 1.12 1.04 1.02
10p11 rs2666236 1.21 (1.11, 1.31) 1.05 (0.98, 1.13) 1.05 1.11 1.08 1.07
1q32 rs12061474 1.33 (1.18, 1.54) 1.00 (0.93, 1.08) 1.08 1.10 1.04 1.00

Columns 1–4: Odds ratios are shown in the direction of increased risk. SNPs are ranked in order of stage 1 statistical significance. Columns
5–8: The one-stage correction of Ghosh et al. [2008] (GZW), the two-stage MLE, two-stage corrected MLE of Zhong and Prenctice [2008]
(ZP), and our UMVCUE for the ith ranked stage 1 SNP’s true odds ratio. MLE, maximum likelihood estimator; SNP, single-nucleotide
polymorphism.
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(P ¼ 0:01) so we exclude this from our illustration.
In Table II we show the same five estimators of the
odds ratios. The P-value threshold was now taken at
4:9� 10�5. The general pattern is the same in that
the MLE and ZP show bias, whereas the UMVCUE is
similar to the stage 2 estimate. In two cases, rs4958847
and rs10801047, the stage 2 estimates are actually higher
than stage 1, which reflects sampling variation. The
UMVCUE allows for this whereas for rs10801047 ZP
has adjusted the MLE back toward the stage 1 estimate.
Also the UMVCUE for the 2nd ranking SNP rs9292777 is
higher than both the stage 1 and stage 2 estimates. This
reflects a negative correction to the MLE, occurring
because the stage 1 estimate shows less bias than expected
given its ranking.

For comparison we also report the bias reduced
estimates proposed by Ghosh et al. [2008], based only
on the stage 1 data (specifically their ‘‘compromise
estimator’’ m3). Of course, if two-stage data are available
it would make sense to use the full set of data, but it
might be that one stage is sufficient for accurate estima-
tion. The estimates in Tables I and II suggest that the
bias correction is less complete than for the two-stage
estimators, and the top-ranking SNPs remain severely
biased owing to the correction for significance only.
The estimates are fairly sensitive to the choice of P-value
threshold, leading to differences between our results
and those of Ghosh et al. [2008]. For example, for
rs2542151 in T1D our estimated odds ratio was 1.27
using a P-value threshold of 2.25�10�5, whereas
Ghosh et al. [2008] obtained 1.09 using a P-value threshold
of 5� 10�7.

STOCHASTIC NATURE OF THE UMVCUE AND
THE CONDITIONAL MLE

To gain some insight into the nature of these estimators,
we show in Figure 1 the difference between the un-
adjusted combined log-odds ratios and the two bias
adjusted estimators. The ZP estimator, which adjusts the
estimates for passing a significance threshold pcrit at
stage 1, makes no correction for the two most significant
stage 1 SNPs found by Todd et al. [2007] or Parkes et al.

[2007]. This is because these SNPs have P-values so far
away from pcrit that selection is judged to have no biasing
effect. Conversely, the largest correction is made
to the SNPs that are least significant, and therefore closer
to pcrit. On the other hand, the adjustments made
by our UMVCUE are not only uniformly greater but
also take the rank into account, leading to a less
obvious relationship between the rank and the degree of
adjustment.

Figure 2 plots the difference between the stage 2
estimates and our UMVCUE. We see that the bias
corrected UMVCUE is distributed around the unbiased
stage 2 estimate. The correlation between the UMVCUE
and the stage 2 estimated log-odds ratios is 0.99 and 0.98
for the T1D and CD data, respectively, and the two
estimates are very close, differing by less than 0.05. It
might seem that the UMVCUE adds little value to the
simple stage 2 estimate, but that conclusion would be
misleading. In the T1D data, stage 2 is rather larger than
stage 1, with the result that the unadjusted MLE is already
quite close to the stage 2 estimate, so that the bias
adjustment brings the estimate closer still to stage 2. In
the CD data, however, the ZP estimate is generally close to
the unadjusted MLE, suggesting that the significance bias
is not severe, but there is a strong discrepancy with the
UMVCUE for the top- and bottom-ranking SNPs. Here, the
ranking in stage 2 is so discrepant from that in stage 1 that
the conditioning on rank used by the UMVCUE results in
much stronger weight being placed on stage 2. So for
example, the information on rs17234657 provided by stage
2 suggests that its top ranking in stage 1 is very unlikely,
and thus that the stage 1 estimate is severely biased. The
closeness of the UMVCUE to the stage 2 estimate in this
case is therefore due to the rank adjustment of the
UMVCUE and not to any loss of information from stage
1. Below we will show that the relative information in the
two stages determines the efficiency of the UMVCUE
compared to the stage 2 estimator, and that our estimator
can include substantial information from stage 1. In these
data, however, the closeness of the UMVCUE to the stage 2
estimates suggests that the stage 1 estimates are them-
selves close to their expected values after allowing for
selection bias.

TABLE II. The odds ratios (95% CIs) of 11 SNPs estimated from allele frequencies reported by Parkes et al. [2007] in an
initial scan (stage 1) and replication study (stage 2)

Chr SNP Stage 1 OR Stage 2 OR GZW MLE ZP UMVCUE

5p13 rs17234657 1.55 (1.38, 1.74) 1.16 (1.05, 1.29) 1.55 1.39 1.39 1.16
5p13 rs9292777 1.38 (1.26, 1.51) 1.34 (1.21, 1.49) 1.38 1.37 1.37 1.39
10q24 rs10883365 1.27 (1.17, 1.38) 1.18 (1.02, 1.37) 1.26 1.24 1.24 1.16
18p11 rs2542151 1.35 (1.21, 1.50) 1.15 (1.00, 1.32) 1.32 1.27 1.25 1.15
5q33 rs13361189 1.51 (1.30, 1.76) 1.38 (1.20, 1.59) 1.46 1.46 1.45 1.40
3p21 rs9858542 1.26 (1.15, 1.38) 1.17 (1.02, 1.34) 1.21 1.22 1.21 1.17
5q33 rs4958847 1.35 (1.20, 1.53) 1.36 (1.19, 1.56) 1.26 1.36 1.35 1.35
5q23 rs10077785 1.29 (1.16, 1.43) 1.19 (1.04, 1.36) 1.20 1.25 1.22 1.19
1q24 rs12035082 1.22 (1.12, 1.33) 1.14 (0.99, 1.31) 1.15 1.19 1.17 1.15
21q22 rs2836754 1.22 (1.12, 1.33) 1.15 (1.01, 1.32) 1.11 1.19 1.16 1.16
1q31 rs10801047 1.38 (1.18, 1.61) 1.47 (1.29, 1.68) 1.09 1.42 1.39 1.44

Columns 1–4: SNPs are ranked in order of stage 1 statistical significance. Columns 5–8: The one-stage correction of Ghosh et al. [2008]
(GZW), the two-stage MLE, corrected MLE of Zhong and Prenctice [2008], and our UMVCUE for the ith ranked stage 1 SNP’s true odds
ratio. MLE, maximum likelihood estimator; SNP, single-nucleotide polymorphism.
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BIAS AND MSE

To evaluate the bias and MSE of the proposed
estimators, as defined in (12) and (13), we need to
repeatedly simulate multiple effects from a genome scan.
We took two approaches to doing this using the T1D and
CD results as a model. In the first simulation (method A)
we conditioned on detecting a fixed set of SNPs, so we
consider genome scans that detect these and only these
SNPs. This just involves sampling the log odds ratios from
their normal distributions, truncated to allow for the P-
value threshold. For each disease, we took the UMVCUE
estimates and stage 2 allele frequencies from Tables I and II
as fixed, and the same sample sizes as used in the original
studies [Todd et al., 2007; Parkes et al., 2007]. Details of the
sampling procedure are given in Appendix B. Here and
subsequently our simulations use 10,000 replicates.

We considered four estimators based on two-stage data:
the unadjusted MLE, the corrected MLE of Zhong and
Prenctice [2008] (ZP), our UMVCUE, and the estimate
from stage 2 only. Figure 3 confirms that the MLE and ZP
are biased, whereas the UMVCUE and stage 2 estimators
are unbiased. Figure 3 also shows that the MSE of the
UMVCUE is always less than that of the stage 2 estimator;
the improvement is greater for the CD results, in which the
stage 2 sample size was smaller than for the T1D study.
The error of the UMVCUE can be either greater or less than
that of the MLE; it seems to be more dependent on the
sample size in stage 2, with greater error when stage 2 is
small.

Notice that there is actually a downward bias in the
MLE for the 2nd-ranked SNP in CD. This is because the
power for the two highest ranking SNPs is so much higher
than that of the others that these two SNPs are always the
two highest ranking, but their power is roughly equal. The
SNPs then form two subsets for which ranking bias
operates within each subset but not between. This shows
that any adjustment to estimates of multiple effects must
take all the effects into account, as our UMVCUE does.

In the second simulation (method B) we allow for a
genomewide set of SNPs and conditioned only on the
number of SNPs detected. This was identified as a difficult
computational problem [Ghosh et al., 2008], but if we
assume that the standard errors of the stage 1 and 2
estimates are fixed and known, this reduces to a sampling
problem with weights given by the marginal power of
each SNP. We supposed the reported SNPs were repre-
sentative of the true disease model, and assumed constant
power of 1=3 to detect each reported SNP. We assumed an
additional 300,000 independent null SNPs with minor
allele frequency distributed uniformly on ð0:05; 0:5Þ. We
then repeatedly sampled 10 or 11 (for the two disease
models, respectively) SNPs passing the P-value threshold.
Details of this procedure are also given in Appendix B.

Figure 4 shows a similar pattern to Figure 3, except that
the downward bias for the 2nd-ranked SNP in CD is now a
reduced upward bias, and the MSE of the MLE is now
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greater than for both the stage 2 and UMVCUE estimators.
Apparently this is due to the inclusion of many null SNPs,
for which the error in the naı̈ve estimate is greater
when such an SNP stochastically meets selection criteria
in stage 1.

The ZP estimator performs well in terms of MSE, having
in most cases the minimum of the four methods. Its bias is
reduced compared to the unadjusted MLE, but not always
by much, particularly for the top-ranking SNPs. The
UMVCUE is unbiased as predicted, but its MSE tends to

be higher than that of ZP, and sometimes of the unadjusted
MLE too. This represents a bias-variance trade-off, but we
know that the UMVCUE has minimum variance among
unbiased estimators that condition on the stage 1 ranking.
We consider this further in the section ‘‘Discussion’’.

BOOTSTRAP CONFIDENCE INTERVAL

We noted earlier that an analytic confidence interval is
not known for the UMVCUE: the Rao-Blackwell theorem
ensures but does not quantify the minimum variance
property. However, since the UMVCUE is unbiased we can
regard the MSE as a variance from which confidence
intervals can be derived. If we simulate as above from the
estimated effect sizes, then the variance gives a parametric
bootstrap Wald-type interval subject to the assumptions
and conditioning used in the simulation. Our first
simulation approach has weaker assumptions about effect
size and allele frequency, but stronger conditioning, while
our second has stronger assumptions but weaker
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TABLE III. Estimated effects of the lowest-ranking
SNPs for various assumed P-value thresholds

5� 10�5 10�4 10�3 0.01 0.05

T1D: ~mð10Þ 1.00144 1.00545 1.0226 1.0442 1.0620
CD: ~mð11Þ 1.438 1.449 1.480 1.491 1.492

SNP, single-nucleotide polymorphism.
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conditioning. An alternative simulation approach is to
assume that all SNPs have equal frequency and therefore
the same standard error [Bowden and Glimm, 2008],
which we expect to give a worst case for MSE and
therefore a conservative confidence interval, but one with
weaker assumptions. Having estimated the MSE, a 95%
confidence interval is estimated by mðiÞ 	 1:96

ffiffiffiffiffi
M
p

SEðiÞ. This
assumes normality of the UMVCUE, which has been
observed without proof [Bowden and Glimm, 2008]; but
alternatively a quantile-based interval could easily be
obtained from the bootstrap replicates to relax this
assumption.

REPLICATION SAMPLE SIZE

We have seen that the gain in efficiency of our
UMVCUE over the stage 2 estimate depends on the
sample size in stage 2, more precisely the relative size of
stage 2 compared to stage 1. As stage 2 gets larger, our
approach gives smaller gains in efficiency, although it is
always more efficient. In a sense our examples from

WTCCC were not ideal, because that study was designed
as a proof of concept with a smaller sample size than
might normally be attained, and the participating groups
had access to a larger number of samples that became the
de facto replication data even if they were not originally
intended as such. While this may yet become a common
model, we also considered a design with 20,000 cases and
controls in stage 1 and 2,000 of each in stage 2, a possible
scenario for future studies as genotyping costs decrease
and samples are shared among consortia, such as for meta-
analysis. Using simulation method A, conditioning on
detecting a fixed set of SNPs, Figure 5 shows that there is a
more substantial gain in efficiency from our approach,
particularly for the top-ranking SNPs.

The relative sizes of stages 1 and 2 also affect the value
of the UMVCUE ~mðiÞ, most importantly through the role of
the standard errors s1;ðiÞ and s2;i but also through s1;ði�1Þ

and s1;ðiþ1Þ. Figure 6 illustrates this point for estimates of
the top-ranking stage 1 SNP, rs17696736, in the T1D data
[Todd et al., 2007]. Recall that there is a substantial
difference between the stage 1 and 2 estimates for this

0.
00

0.
01

0.
02

0.
03

SNP rank

bi
as

1 2 3 4 5 6 7 8 9 10

MLE
ZP
UMVCUE
Stage 2

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

SNP rank

M
S

E

1 2 3 4 5 6 7 8 9 10

MLE
ZP
UMVCUE
Stage 2

0.
00

0.
01

0.
02

0.
03

SNP rank

bi
as

1 2 3 4 5 6 7 8 9 10 11

MLE
ZP
UMVCUE
Stage 2

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

SNP rank

M
S

E

1 2 3 4 5 6 7 8 9 10 11

MLE
ZP
UMVCUE
Stage 2

Fig. 4. Top: Bias and MSE for T1D data. Bottom: bias and MSE for CD data. Numbers calculated using method B. TID, type-1 diabetes;
CD, Crohn’s disease.

413Unbiased Estimation of Odds Ratios

Genet. Epidemiol.



SNP, but the UMVCUE is very close to the stage 2 estimate.
In the original study, the ratio of the stage 2 estimate’s
standard error over the stage 1 standard error, s2;1=s1;ð1Þ,
was approximately 0.75. In a simulation study we replaced
the actual value of s2;1 by s�2;1, and varied this in the range
(0:1s1;ð1Þ; 10s1;ð1Þ) to demonstrate how the MLE and
UMVCUE estimates change. At each value of s�2;1 the
variance of the UMVCUE and MLE were evaluated by
simulation as before. When the stage 2 replication study is
large relative to stage 1, it dominates the value of both
estimators. When the opposite is true they both tend
toward to the stage 1 estimate, but the variance of the
UMVCUE increases in magnitude. This reflects the fact the
UMVCUE remains unbiased: even if it is close to the MLE,
the confidence interval covers values of mð1Þ close to the
stage 2 estimate. By the same token, if the true value of mð1Þ
is close to the stage 2 estimate, the larger variance of the
UMVCUE allows it to attain values close to the MLE
without incurring bias. Note that if mð1Þ is indeed close to
the stage 2 estimate, then unbiasedness implies that the
UMVCUE will sometimes be less than the true value, so

will not be close to the MLE for every sample. Although
the UMVCUE and MLE can become arbitrarily close as
stage 1 gets larger, this will not be true for every sample
drawn at a fixed and finite stage 1 size.

P-VALUE THRESHOLD

Because our adjustment to the ordinary MLE depends
only on the two flanking stage 1 estimates, any P-value
threshold affects only ~mðkÞ, the estimate for the least
significant SNP taken forward from stage 1. In fact,
adjusting for the values of the flanking estimates auto-
matically ensures adjustment for selection by significance
and rank. A reassuring consequence is that all but one of
our estimates are robust to mis-specification of the P-value
threshold.

In Table III we show the estimated effect of the lowest-
ranking SNPs from the T1D and CD data, for a series of
assumed P-value thresholds. It is clear that the estimate is
fairly robust to this threshold so long as it is not grossly
mis-specified.
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Fig. 5. Top: Bias and MSE for T1D data. Bottom: bias and MSE for CD data. Numbers calculated using simulation method A, but with
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DISCUSSION

Correcting for selection bias in genome scans is
problematical because no unbiased estimator exists for
the scan data alone. We have proposed a two-stage
estimator that is unbiased while including the data from
a genome scan, and moreover accounts for selection bias
by both significance and rank. Our approach explicitly
allows for multiple associations arising in a scan, which is
important because of the different degrees of ranking bias
induced, and also the possibility, as we have seen, of
negative bias in some circumstances. We have shown that
this estimator gives improved precision compared to
estimation based only on replication data, with the greatest
improvements when the replication sample size is smaller
than the initial scan.

We argue that in many of the applications for which
estimation is needed, associations should already have
been replicated so that the two-stage design will usually be
available. For example, it seems premature to estimate the
total attributable risk for the detected loci until those loci
have been confirmed. Of course, we are not advocating
collection of a second sample only for unbiased estimation,
and estimation from the scan data alone will sometimes be
necessary, such as in setting the sample size for a
replication. One-stage bias-reduced estimators have been
proposed [Ghosh et al., 2008], which undoubtedly have
utility when their mean square error is small. Our
intention here is to explore what can best be done when
two-stage data are available. All approaches, including
ours, become much more accurate than those based only
on the first-stage data. Indeed, we found that the bias and
mean squared error of the method of Ghosh et al. [2008]
for the simulation studies in the section ‘‘Results’’ were in
general considerably larger than the two-stage methods
(data not shown).

Nevertheless, if only initial scan data are available, we
note that our approach can be incorporated into a single-

stage analysis. Sun and Bull [2005] proposed a bootstrap
estimate of the ranking bias by randomly splitting the
sample into discovery and validation subsets [see also Yu
et al., 2007]. The difference between estimates in the two
subsets gives an estimate of the bias, but we can also use
the difference between the discovery estimate and our
combined estimate from the two subsets. Our approach
can therefore in theory be combined with that of Sun and
Bull [2005] to obtain a more accurate bootstrap correction
in a single-stage design. This appears to be an interesting
topic for further work.

Our focus in this article has been on unbiased point
estimation of SNP effects. However, in the section
‘‘Replication Sample Size’’ we saw that while the two-
stage UMVCUE for a top-ranking stage 1 SNP tended
toward the biased stage 1 estimate as the stage 2 precision
was set close to zero, its bootstrapped confidence interval
width increased to keep the estimate nominally unbiased.
This suggests the possibility that when only heavily
selected stage 1 data are available, by postulating an
unbiased estimate with a large variance (in the manner of a
vague prior), the resulting UMVCUE confidence interval
could also be used for hypothesis testing, to help
distinguish null effects from true effects of small magni-
tude. It would be interesting to assess the performance of
this ad hoc proposal relative to other more established
multiple testing strategies.

We considered a two-stage design consisting of a
genome scan and a replication study, but two-stage
genome scans can also be performed [Satagopan et al.,
2004]. We did not consider this design because selection is
likely to occur after the second stage as well as the first.
That is, not all the markers selected from the first stage are
expected to be true positives, and only the markers that
remain significant after the second stage are deemed to be
of further interest. In contrast, unsuccessful replications
are still reported following a single-stage scan [Todd et al.,
2007] and such markers may remain targets for replication
in the future. Our methods originate from the clinical trials
literature [Stallard and Todd, 2003; Bowden and Glimm,
2008] in which competing treatments are compared at
interim stage and the most promising ones then taken
forward. This design is similar to the genome scan
situation although the end motives are sometimes differ-
ent. For example, in such a clinical trial it is important to
select the ‘‘correct’’ treatments at interim, that is we want
the top-ranking treatments at interim to be those with the
truly strongest effects, so that resources are then directed
to the right targets. In genomewide association scans it is
more important to detect a large number of true effects,
accepting that power is incomplete and that some effects
of similar strength will not be detected. Again, in a clinical
trial the total sample size is a limiting aspect, giving a
trade-off between selecting the right treatments (with a
large stage 1) and accurately estimating their effects (with
a large stage 2). To date this has not been a critical issue in
genome scans as the primary aim is to ensure a sufficiently
large stage 1 to detect many true effects, and replication
has generally not been an integrated element in the design.
This may change with time, leading to trade-offs similar to
those in two-stage scans [Satagopan et al., 2004], but in
which the false-positive rate in stage 1 is controlled more
strictly.

Our estimator has the minimum variance among
unbiased estimators that condition on the ordering in

Fig. 6. Point estimates and bootstrap confidence intervals for

the MLE and UMVCUE for rs17696736, varying the stage 2
standard error relative to stage 1. The point estimates and

bootstrap confidence intervals are calculated using method A.
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stage 1, but this holds only marginally for each estimate
and not jointly. That is, each of ~mð1Þ; ~mð2Þ; ~mð3Þ; . . ., can be
regarded as having minimum variance when considered
singly, but when considering the vector of effects m there
may be multivariate estimators with smaller variance. This
is because we consider only the two flanking estimates for
each effect, whereas there is information in the other
estimates that could potentially be taken into account.
A jointly minimum variance estimator conditioning on the
same ordering remains an open problem.

We give a formula based on ranking by P-values from a
Wald test, but the current test of choice is the Cochran-
Armitage test of trend, which is the score test from a
logistic regression model [Sasieni, 1997]. The Wald test
gives a closed form expression in terms of estimated odds
ratios and standard errors, and in large samples the score
and Wald tests are very close. Nevertheless our approach
can be applied to a ranking based on any function of
suitable summary statistics, including score tests and also
Bayes factors [WTCCC, 2007]. Let T be a statistic on which
SNPs are ranked, and suppose it can be computed from
an estimate of the odds ratio X and some nuisance
parameters y. Write T ¼ TðX; yÞ and let T�1ðx; yÞ be the
solution of TðX; yÞ ¼ x. Then equation (11) becomes

W
ðpÞ
s;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞ þ s2
2;s

q
s2

1;ðsÞ

ðm̂ðsÞ � ð�1ÞpT�1ðTðXðtÞ; yðtÞÞ; yðsÞÞÞ:

ð14Þ

We applied this approach to Pearson w2 tests from the 2� 2
allelic contingency tables inferred from the reported
summaries [Todd et al., 2007; Parkes et al., 2007]. Here
the nuisance parameters y were the allele frequency,
sample size, and case/control ratio. The results were
almost identical to those obtained from the Wald tests
(data not shown).

Our results show that while our estimator is unbiased, it
can have greater mean square error than the two
alternatives we considered for this design: the unadjusted
standard combined estimate, and the significance-cor-
rected estimator of Zhong and Prenctice [2008]. Although
those competitors are biased, the magnitude of the bias is
often small, and perhaps acceptable in view of their
smaller MSE. This bias-variance trade-off is a common
problem in choosing an estimator, but we think that
unbiased ness is an important goal in genomewide
association studies for two main reasons. Firstly, the
sample sizes are so large that the MSE is small in absolute
terms for the UMVCUE also, and when the expected error
is small it is tempting to take the estimate at face value.
Secondly, as the effect sizes in genome scans are small, the
bias in estimation will influence decisions on whether
associations are worth following up: essentially, the bias
will influence the false discovery rate, and it seems
worthwhile to reduce this possibility.

We have assumed that all effect estimates are indepen-
dent. This is approximately true for the studied examples
since replication was attempted for one SNP in each
genomic region, with two exceptions (5p13 and 5q33 in
CD) in which the replicated SNPs were in weak linkage
disequilibrium (LD). However, each SNP was selected for
being the most significant in its local region, so that some
ranking bias is present in the stage 1 estimates that is not
accounted for by our approach. We do not expect this to be

a serious problem since the ranking bias decreases as LD
increases, so that when our failure to account for LD is
most acute, the resulting bias is minimal. Nevertheless, a
precise unbiased estimator that takes into account known
or estimated LD structure is an open problem for further
work.

Finally we note that our approach extends trivially to a
meta-analysis of several studies following an initial scan,
by treating the combined estimate from the replication
studies as our stage 2 and then combining it with the initial
scan to obtain an overall unbiased estimate. R code to
implement the method proposed in this article is available
from the authors on request.
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APPENDIX A
RANKING BY TWO-SIDED P-VALUE

AND THRESHOLD

For i ¼ 2; . . . ; k� 1 we note that

jXij

s1;i
�
jXiþ1j

s1;iþ1

implies

Xi 2 �1;�
s1;ijXiþ1j
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� �
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Also, the fact that

jXij
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s1;i�1

implies
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:

Putting these two bounds together, and also noting that

s1;ijXi�1j
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:

ðA1Þ

For i ¼ 1 we replace s1;ijXi�1j=s1;i�1 with 1 and for i ¼ k
we replace s1;ijXiþ1j=s1;iþ1 with s1;iF�1ð1� pcrit=2Þ.

Modifying the proof to take into account the new
thresholds for Xi we must evaluate the integral

Z �s1;ijXiþ1j
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�
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s1;i�1
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Z s1;ijXi�1j
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to derive fðXc
i ;ZijQ�Þ. Calculating E½fðYijXc

i ;Zi;Q�Þ� in-
volves a similar two-component integral, and leaves the
expression in equation (10).
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APPENDIX B
SIMULATION OF SIGNIFICANT

EFFECT SIZES

We first simulate from a fixed effect size, conditional on
significance of a two-sided Wald test at Popcrit. Let
q ¼ F�1ð1� pcrit=2Þ. The left- and right-sided power to
detect effect size m with variance s2 is respectively

pL ¼ F
�qs� m

s

� �
¼ F �q�

m
s

� �
: ðB1Þ

pR ¼ 1� F
qs� m

s

� �
¼ 1� F q�

m
s

� �
: ðB2Þ

With probability pL=ðpL þ pRÞ we sample from the left tail
of the distribution of m according to

mþ sF�1ðULÞ; ðB3Þ

where UL is a Uniformð0; pL) deviate, and with probability
pR=ðpL þ pRÞ we sample from the right tail according to

mþ sF�1ð1�URÞ; ðB4Þ

where UR is a Uniform(0; pR) deviate. This is sufficient to
simulate sample estimates conditional on detecting a fixed
set of SNPs. To allow for a genomewide scan and condition
only on the number of SNPs detected, we define effect
sizes and standard errors for all SNPs in the scan and
sample without replacement using the total power pL þ pR

as the weight (we used the sample ( ) function in R). The
sampled effects are then input as fixed effects into the
above scheme.
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