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Abstract

Introduction: In the context of the ongoing, unprecedented Zika virus outbreak in the Americas, the World
Health Organization has expressed its support for developing and up-scaling three novel approaches to
controlling the Aedes aegypti mosquito: the Sterile Insect Technique (SIT), the Release of Insects carrying
Dominant Lethal genes (RIDL) and the release of Wolbachia-infected mosquitoes. Whereas the former two
approaches are temporary insect population suppression strategies, Wolbachia infection is a self-sustaining,
invasive strategy that uses inherited endosymbiotic bacteria to render natural mosquito populations
arbovirus resistant.

Methods: A mathematical model is parameterised with new, Brazilian field data informing the mating
competitiveness of mass-reared, released insects; and simulations compare and contrast projections of
vector control achieved with the alternative approaches.

Results: Important disadvantages of Wolbachia and SIT are identified: both strategies result in mosquitoes
ovipositing non-viable eggs and, by alleviating intense larval competition, can cause an overall increase in
survival to the adult stage. However, it is demonstrated that strategically combining the suppression methods


http://currents.plos.org/outbreaks/article/aedes-aegypti-control-through-modernized-integrated-vector-management/
http://currents.plos.org/outbreaks/article_category/research-article/
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fcurrents.plos.org%2Foutbreaks%2Farticle%2Faedes-aegypti-control-through-modernized-integrated-vector-management%2F&ref_src=twsrc%5Etfw&text=Aedes%20aegypti%20Control%20Through%20Modernized%2C%E2%80%A6&tw_p=tweetbutton&url=http%3A%2F%2Fcurrents.plos.org%2Foutbreaks%2Farticle%2Faedes-aegypti-control-through-modernized-integrated-vector-management%2F
http://currents.plos.org/outbreaks/author/laith/
http://currents.plos.org/outbreaks/author/sebastian-funklshtm-ac-uk/
http://currents.plos.org/outbreaks/author/anton-camacholshtm-ac-uk/
http://currents.plos.org/outbreaks/author/oliver-bradylshtm-ac-uk/
http://currents.plos.org/outbreaks/author/john-edmundslshtm-ac-uk/

with Wolbachia can generate a sustained control while mitigating the risks of inadvertent exacerbation of the
wild mosquito population.

Discussion: This initial analysis demonstrates potential for good synergy when combining novel mosquito
approaches in a modernized, integrated vector control programme.
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Introduction

Autochthonous American transmission of Zika virus was first identified in May 2015 following its isolation
from febrile individuals from the Brazilian states of Bahia and Rio Grande do Norte. In the subsequent 15
months, confirmed cases of ZIKV had been declared by health authorities of over 50 countries and territories
in the region and estimates of the number of suspected cases for 2015 alone exceed 1 million.?

ZIKV is transmitted through the bite of several mosquito species, but Aedes aegypti (the primary dengue and
chikungunya vector) is believed responsible for the current surge. Although the virus was discovered to
infect humans in 1952, it was not until recent months, in the wake of an outbreak of unprecedented size,
that a possible link between infection during pregnancy and subsequent neurological disorders (including
microcephaly) in newborns was first made.? On February 1st 2016, this association led the World Health
Organization to declare the American Zika virus outbreak a public health emergency of international concern
(PHEIC).

Epidemiological understanding of ZIKV is limited. Prior to a 2007 outbreak on Yap Island* and a 2013-14
outbreak in French Polynesia,® the virus was believed to be zoonotic, chiefly infecting monkeys and only
yielding the occasional spillover into small numbers of humans. Consequently, few empirical studies exist to
inform many basic epidemiological metrics such as the incubation periods in mosquitoes and humans; the
rate of symptomatic infection; the duration of infectivity of mammalian hosts or the development of immunity
to infection. A huge, concerted effort among the international research community following the WHO
declaration means that the coming months and years can be expected to steadily populate these important
knowledge gaps. Corresponding improvements in case management and prophylaxis can also be
anticipated. Until then, however, vector control is the only available strategy to mitigate further outbreaks and
contain the spread of disease.®

Due to its primary role in the spread of major arboviral public health threats including dengue, chikungunya
and yellow fever, the vector A. aegypti has been the target of numerous novel vector control technologies
generated in recent decades. These include methods that either suppress mosquito popuations or render
mosquitoes refractory to arboviral infection.” The Sterile Insect Technique (SIT) is a genetics-based method
that has been successfully used to suppress agricultural pest insects since the 1950s.2 It involves the
release of radiation-sterilised male insects into wild populations where they seek out and mate with the
females, giving rise to offspring which are not viable. A limitation of this method that has so far hampered its
implementation in mosquito control is the considerable reduction in mating competitiveness incurred in these
insects through exposure to radiation.®

The Release of Insects carrying a Dominant Lethal gene (RIDL) is a strategy related to SIT but with a
dominant lethal transgene inserted into the mosquito replacing the need for radiation exposure.’® An
important distinction between a trangenic lethal gene and radiation sterilisation is the ability within the former
approach to control the timing of lethal gene activation. Whereas SIT offspring perish at the insect’s egg
stage, RIDL can be programmed to take effect at any life stage. A line of RIDL A. aegypti mosquitoes that
express the lethal gene at the pupal stage was recently described.'! Surviving beyond the egg stage to die



as pupae may be advantageous because RIDL larvae will survive to compete with wild larvae for food,
providing a secondary mode of control that operates through enhancing resource limitation. A small-scale
field trial of RIDL in the Brazilian state of Bahia was recently conducted and reported to have a considerable
level of success in suppressing wild A. aegypti populations.'?

The third approach to vector control that is considered in the current study is the release of Wolbachia-
infected male mosquitoes. Wolbachia are endosymbiotic bacteria that have recently been demonstrated to
render A. aegypti mosquitoes resistant to infection with dengue’® and chikungunya;'* and there is some
early indication that Wolbachia-infected A. aegypti are also refractory to Zika virus.'®Wolbachia infection
produces a phenotype termed cytoplamic incompatability whereby infected female insects have viable
offspring but uninfected females do not have viable offspring when they mate with infected males. This
results in a selective advantage from infection that facilitates the spread of Wolbachia into wild insect
populations. The first field trial was conducted in northern Queensland, Australia, where repeated releases
of Wolbachia infected male A. aegypti resulted in the successful establishment of the endosymbiont in the
local wild mosquito populations.’®

The two suppression methods, SIT and RIDL, along with the arbovirus refractory-method employing
Wolbachia, have all been endorsed by the WHO to be used for vector control in the current Zika PHEIC."”
Here, a mathematical model is presented that i) assesses the relative efficacies projected for these novel
vector control methods, ii) identifies any anticipated shortcomings of the different approaches, and finally, iii)
strategises their combined implementation as part of a modernized, integrated vector management
programme.

Methods
Aedes aegypti population dynamics

In the absence of control measures, mosquito population dynamics are governed by a time-delay differential
equation model that is adapted from Dye.'® The model explicitly tracks the number of adult females (F) but
also accounts for density dependent survival of the larval mosquito stages:
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Equation 1



P determines the per capita reproduction rate corrected for density independent mortality prior to adult
emergence; E is the daily egg production rate per female and d denotes the adult mortality rate.'®1920 The
time-delay component accounts for the generational time (1) of A. aegypti in the wild (hence, Fy; equates to
the adult female mosquito population T days ago). a and 3 respectively govern the carrying capacity of
mosquito larvae and the intensity of density dependence. Properties of this form of density dependence are
fully explored by Bellows;?" but in short, higher B tends towards ‘scramble-type competition’ whereby some
of the shared resource will be consumed by all larvae before its limitation imposes additional (density
dependent) mortality. Recent field studies exploring A. aegypti larval survival provide good evidence to
support the fact that this species exhibits strong over-compensatory (scramble type) density dependence.??
Baseline model parameterisation used estimates from the range described by Dye (1984): = 0.571, P =
0.692, d = 0.12 and 1 = 27 (see supporting material for further details). However, allowing for +20% random
variability (uniform distribution) in these input parameters, parameter sets were generated that
encompassed under-compensatory as well as over-compensatory population dynamics (see Supplementary
Figure 1).

Incorporating control in the mathematical model

Both the suppression methods and Wolbachia operate through released insects mating with wild insects and
an important constraint on the efficacy of these approaches is the reduced mating competitiveness of insects
reared in the lab versus wild insects. Taking into account the fitness cost associated with lab rearing and
denoting the resulting reduction in male competitiveness with ¢ (between 0 and 1), the reduction in
reproductive potential of a population under control is
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where wild males (M) compete with introduced sterilised males (M®) and Wolbachia-infected males (MW:"),
as well as Wolbachia-infected males that emerge following wild mating events (MY). In the above equation,
we assume that the reduced competitiveness associated with lab-reared insects is negligible in their
offspring with wildtypes (in other words M"Y is not multiplied by c).

The recent field trial of RIDL releases in Bahia, Brazil yielded a dataset that included estimates of the density
of wild mosquitoes, the density of released males as well as the proportion of RIDL larvae collected in
ovitraps that were regularly checked.'? Mating competitiveness of lab-reared mosquitoes was tracked over
the course of the suppression programme. We explore the relationship between wild female mosquito
density and the mating competitiveness of reared male insects using this unique data set.

Because larvae do not hatch from eggs resulting from females mating with radiation sterilised males, this
control measures also impacts the intensity of density dependent competition at the mosquito’s larval stage.
The proportion of offspring (not infected with Wolbachia) that survive to compete at the larval stage is
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where A operates as a switch to distinguish between radiation- and genetically-sterilised males: A =0
denotes SIT where offspring do not survive to larvae and therefore do not contribute to density dependent
competition, and A = 1 denotes RIDL where RIDL offspring do survive the larval stage.

The resulting population dynamics of female mosquitoes not infected with Wolbachia is then
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Equation 4



Similarly, the dynamics of Wolbachia-infected female mosquitoes is
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where the reduction in reproductive potential of the Wolbachia-infected population is
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and the proportion of Wolbachia-infected offspring that survive to compete at the larval stage is
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W, v, ¢’, ¢"all equal 1 in the absence of control and the original equation is regained.

To be clear, both the SIT and Wolbachia simultaneously reduce reproductive potential of wild populations but
also increase survival rates at the larval stage through reduced competitive pressure for resources.
However, because RIDL offspring survive the larval stage (perishing at the pupal stage), they do not reduce
competitive pressure and larval stage survival rates are not increased.

Simulated field releases of SIT, RIDL and Wolbachia-infected mosquitoes

The three strategies are simulated across a range of mass rearing facility production levels and their
efficacies in controlling wild A. aegypti populations presented. Field trials of Wolbachia have involved weekly
releases (allowing for between-release replenishment of mass rearing facility insect stock) for 6-8 weeks;'®
and RIDL trials have involved slightly more frequent releases (2-3 per week) that have spanned 6 months or
more.'2 For fair comparison, the same release schedule (here, weekly for 3 months) was assumed in
simulations for all strategies across a wide range of release ratios (defined as the number of released
mosquitoes relative to the wild population pre-control). First, we tested all control methods in isolation for a
direct comparison of their efficacies. Then, we simulated integrated control whereby a suppression method
(either SIT or RIDL) was used and followed by Wolbachia release (smaller populations have previously been
shown to enhance Wolbachia spread).?3

Results

The mating competitiveness of released males relative to wild males appears to be dependent on wild
female mosquito density (Supplementary Figure 2). Allowing for this newly identified density dependence,
simulated Wolbachia invasion occurred quicker for higher release ratios (the ratio of released mosquito
numbers relative to wild mosquitoes pre-control) but with diminishing returns: a release ratio of 30 took 150
days for Wolbachia to be present in >90% of the population; a release ratio of 100 took 125 days and a ratio
of 300 took 120 days (Figure 1; qualitatively identical results were obtained from stochastic simulations
allowing for input parameter uncertainty — see Supplementary Figure 3). Importantly, the wild (arbovirus
susceptible) mosquitoes exhibited temporary increases beyond pre-control levels during the period before
Wolbachia could successfully invade (Figure 1; see also Supplementary Figure 3). There is a trade-off
between the reduced reproductive potential of wild females and the reduced larval competition pressure
following uninfected females breeding with infected males, whereby the former effect is temporarily
dominated by the latter. This exacerbation lasted up to 6 weeks and was substantial — at its peak the wild
adult female population was doubled.
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Fig. 1: Comparative efficacies of three novel methods for A. aegypti control The comparative efficacies in A.
aegypti control of releasing Wolbachia-infected mosquitoes (wMel strain), the Sterile Insect Technique (SIT) and
the Release of Insects carrying a Dominant Lethal gene (RIDL). Changes in the potentially infectious (i.e., not
infected with Wolbachia) female mosquito population during and after control are shown. The thick grey bands
correspond with 13 weekly simulated releases. Projections from the underlying deterministic model with fixed
baseline parameterisation are displayed here; projections incorporating parameter uncertainty (+20%) give
qualitatively identical results and are shown in the supporting material.
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Simulations of SIT exhibited a similar but more pronounced exacerbation, lasting up to 140 days with a four-
fold higher peak in the wild adult female population relative to no control. However, a release ratio of 300
was sufficient to negate this temporary, undesirable effect (stochastic simulations incorporating uncertainty in
model input parameters showed that even for this release ratio, increases in the female vector populations
occurred but these increases were both small and short-lived, see Supplementary Figure 3). After 120 days
of the initial sterile male release, the wild female population was suppressed by >80%. A similar control
efficacy was generated when simulating RIDL at a release ratio of 100 (i.e. one-third the release required for
equivalent control by SIT). Three months of RIDL release at a ratio of 300 suppressed the wild adult female
population for over 9 months (280 days), with greatest control efficacy of >95% also at 120 days following
the initial release. By 160 days after final release of either SIT or RIDL males, the wild population was
completely replenished.

Combining the suppression strategies with Wolbachia releases was simulated to determine whether the
undesirable effect of temporarily exacerbating the wild mosquito population could be dampened or
eliminated. Again, for transparent comparison with the standalone strategies, the total number of releases
were kept constant (13 weekly releases). Different scenarios of combining SIT with Wolbachia demonstrated
both potential synergistic and antagonistic effects (Figure 2). Antagonism only arose from attempts to
complement Wolbachia with SIT release ratios shown to be insufficient to suppress the wild population as a
standalone approach. This poor pairing either delayed Wolbachia invasion (when a suppression strategy
was switched to a Wolbachia strategy at week 3, 6 or 9 in a 13-week release schedule), or, at its worst,
blocked Wolbachia invasion when strategy switching occurred late in the release schedule (week 12; see
Supplementary Figure 4 for similar findings from the stochastic model). However, releasing Wolbachia after
an initial suppression strategy with higher release ratios of SIT males (of 300) produced the highly desirable
outcome of successful invasion of Wolbachia-infected without the temporary exacerbation in the wild adult
female population. In the stochastic model, small and very short-lived exacerbations resulted but these
represented considerable reductions when compared with the effects of Wolbachia alone (see
Supplementary Figure 4). A synergistic result was also achieved by complementing Wolbachia with RIDL
(Figure 2).



° RR:100 | [ SIT RR: 300
5 wMel
L&) YYY
o
=
e
2 \
©
© e
5 A
= RR: 100 RIDL RR: 300
=1 +
=5 wMel
o YT
S
o
o
[
- |
o '.
o \
£ \
D _

300 4000 100 200 300 400
Time (days)

Fig. 2: Following up A. aegypti suppression with Wolbachia releases Following up A. aegypti suppression
methods with wMel releases. Four different release schedules are shown in each sub-plot whereby the four arrows
correspond with switching from a suppression method (either SIT or RIDL) to Wolbachia release at week number
3, 6, 9 or 12 (darkening shades of arrow) of a 13-week simulated release programme (thick grey band). The
different release schedules project differing control efficacies whereby the colour of lines corresponds to the
arrows depicting the release schedule (e.g. the darkest line corresponds with a switch from suppression with either
RIDL or SIT to Wolbachia during the 12th week of a 13-week control programme). Results are shown for two
release ratio scenarios — top right of sub-plots. Projections from the underlying deterministic model with fixed
baseline parameterisation are displayed here; projections incorporating parameter uncertainty (£20%) give
qualitatively identical results and are shown in the supporting material.
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The optimal timing was sought for switching from the suppression strategies to Wolbachia release. Extensive
simulations were conducted to identify release schedules that evaded transient exacerbation in the wild adult
female population (Figure 3). When high release ratios were achievable (>225), inadvertent increases in wild
populations were not seen when using SIT-Wolbachia across all release schedules. An equivalently safe
control was achievable using RIDL-Wolbachia at lower release ratios (>115); and avoiding wild population
exacerbation became more assured (requiring lower release ratios) with later switching from suppression to
Wolbachia. The trade-off with switching strategies later in the release schedule is that it might delay
Wolbachia invasion: at a release ratio of 250, a switch at the mid-point (week 7) compared to week 2, delays
Wolbachia invasion by 30 and 20 days for SIT and RIDL, respectively. However, at lower release ratios (25-
140 for SIT and 15-30 for RIDL), the timing of the strategy switch can make the difference between success
and failure in Wolbachia invasion.
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Discussion

In the wake of the largest Zika virus outbreak in history, there have been calls for a paradigm shift towards a
more modern strategy for controlling vectors.®24 Several novel A. aegypti control methods, namely SIT,
RIDL and the release of Wolbachia-infected mosquitoes, have recently been endorsed by the WHO for use
in the containment of the ongoing Zika virus outbreak.'” The current study sought to provide an initial,
comparative assessment of these tools as well as to strategize their use as part of a modernized, integrated
vector management programme.

In simulating a release schedule designed to emulate those of recent Wolbachia'® and RIDL'? field trials, the
novel tools demonstrated important pitfalls and opportunities in controlling A. aegypti populations. The
invasive nature of Wolbachia means that, provided a sufficient number of Wolbachia-carrying mosquitoes
are released, production of an arbovirus-resistant mosquito population is sustained — and this has been
shown by previous assessments, both theoretical’® and empirical.?® However, due to the intense and over-
compensatory density dependence in the mosquito’s larval stages, 822 the initially small reduction is more
than offset by the alleviated pre-adult competition. This means that a temporary increase in the wild
mosquito population may result. This undesirable effect is mirrored by simulations of SIT which also results
in eggs that do not hatch and thereby alleviates competition pressure at the larval stages. However, using
sufficiently high release ratios that were still within the range achieved by recent field trials of sterilised
males, this exacerbation could be avoided (or, at least, significantly attenuated) in an SIT programme.

Provided sufficiently high numbers of mosquitoes were released and the timing of switching strategies was
appropriate, the suppression capabilities of SIT and RIDL proved useful in negating the undesirable,
temporary increase in wild A. aegypti populations following Wolbachia release. To the best of our knowledge,
this represents the first theoretical evidence to support combining these strategies.

The current analysis has important limitations. A simple underlying model was selected to present as
transparent a comparison as possible between the three control methods. Simple models are most useful
during early stages of strategy development; the current study is not intended for the development of
specific operational tactics and should not be interpreted as such. Work in progress includes a
comprehensive sensitivity analysis to identify if and when qualitative shifts occur in strategic
recommendations with seasonally fluctuating mosquito populations; and, a more detailed representation of
the strategies which will include additional fithess costs associated with either radiation exposure, transgene
insertion or Wolbachia infection as well as incomplete sterility and imperfect Wolbachia heritability.'!-13.25.26
Additionally, major modelling advances have been made in recent years including a Bayesian hierarchical
model for estimating spatial mosquito density;?’ and detailed life history models of A. aegypti that include
temperature-dependent development rates,?829:30 as well as mosquito movement and spatially explicit larval
habitats.3" These should be capitalised upon to accelerate corresponding developments in the current
context. Finally, potential synergisms should be sought between these modern methods to vector control
and more traditional methods including larval site destruction and chemical insecticides. Beyond this, an
epidemiological component should be incorporated to ascertain the impacts of these methods on disease
transmission dynamics — the relationship between vector density and disease transmission intensity is not
clear-cut and requires further research.

Despite best efforts, the global distribution of A. aegypti is rapidly expanding along with the numbers of
countries reporting arboviral infections.32:33 [f this trend is to be halted or reversed, a new framework will be
needed to inform optimal control strategy that reduces dependence on mosquito management practices that
are known to have dwindling efficacy, and that takes advantage of the increasing number of novel methods
becoming available.
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Supplemental Fig. 1: Stability regions for an Aedes aegypti population. Quasi-cyclic behaviour (unstable
dynamics) occurs when BxIn(P/ d)>1 where 8 is a measure of severity of the density-dependent response; P is the
maximum per capita daily egg production rate corrected for density-independent egg to adult survival, and d is the
per capita daily adult death rate (hence P/d is equivalent to the per capita, density independent, daily growth rate).
The range of parameter values encompassed by the black box are taken from Dye (1984). The red box denotes
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the parameter space explored through simulation by allowing 8, P and d to all vary by +20%.
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Supplementary Fig. 2: Mating competitiveness of lab-reared male mosquitoes. Mating competitiveness of
lab-reared male mosquitoes is dependent on the density of wild females. Re-analysis of field data reported by
Carvalho et al. (2015).
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Supplementary Fig. 3: Comparative efficacies of three novel methods for A. aegypti control (stochastic
model). Aedes aegypti control with standalone novel technologies (stochastic model). The comparative efficacies
in A. aegypti control of releasing Wolbachia-infected mosquitoes (wMel strain), the Sterile Insect Technique (SIT)
and the Release of Insects carrying a Dominant Lethal gene (RIDL). Changes in the potentially infectious (i.e., not
infected with Wolbachia) female mosquito population during and after control are shown. 100 projections
incorporating parameter uncertainty (random variation of £20% following a uniform distribution for parameters 8, P,
d and T) give qualitatively identical results to the underlying deterministic model with fixed baseline
parameterisation displayed in the main text. The exception being rare events of successful Wolbachia invasion at
the low release ratio of 10 (top left sub-plot).
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Supplementary Fig. 4: Following up A. aegypti suppression with Wolbachia releases (stochastic model).
Aedes aegypti control with integrated novel technologies (stochastic model). Following up A. aegypti suppression
methods with wMel releases. Four different release schedules are shown in the sub-plots switching from a
suppression method (either SIT or RIDL) to Wolbachia release at week number 3, 6, 9 or 12 of a 13-week
simulated release programme. Results are shown for two release ratios (‘RR’ of 100 and 300) — top right of sub-
plots. 100 projections incorporating parameter uncertainty (random variation of £20% following a uniform
distribution for parameters B, P, d and 7) give qualitatively identical results to the underlying deterministic model
with fixed baseline parameterisation displayed in the main text. The exception being relative rare events of
successful Wolbachia invasion even at the lower release ratio of 100 when following SIT (bottom left sub-plot).
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