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Neglected tropical diseases (known as NTDs) are a group of dis-
ases predominantly affecting the poorest populations of the globe
sometimes called the ‘bottom billion’). The risk of disease is related
o poor housing, poor sanitation and poor health systems as well as
he environmental suitability of tropical areas. The NTDs are not a
ell-defined group, and comprise a variety of pathogens with dif-

erent transmission routes, life cycles and behavioural risk factors,
lthough they are similar in that they are currently relatively hard
o diagnose. The host population factors and relatively poor surveil-
ance data present particular challenges for providing transmission
ynamics models. This collection reflects the current state-of-the-
rt for modelling NTDs, as well as judging on the suitability of
odels to provide quantitative policy advice.
The World Health Organization (WHO) lists 17 diseases as NTDs,

nd in 2012 produced a report posing ambitious targets for the era-
iation, control and elimination of the burden of these diseases as
ublic health problems − often defined as prevalence or incidence
elow particular thresholds (WHO, 2012). Ten of these targets were
xplicitly supported by a number of stakeholders, including uni-
ational and multi-national donors, pharmaceutical companies,
ational and international health bodies and researchers in the Lon-
on Declaration on NTDs (London, 2012). Here we  focus on nine of
hese diseases, excluding Guinea worm, for which modelling was
ot considered necessary to ensure eradication.

At the time of the London Declaration it was realised that there
as a need for epidemiological modelling to inform many of the key

uestions regarding interventions and targets. Most of the NTDs
ave been modelled, but the efforts have been of varying quality,
artly due to limited data and information on key biological factors,
uch as the incubation period or relationship between infection
nd symptoms (reviewed in two issues of Advances in Parasitol-
gy (Basanez and Anderson, 2016; Basanez and Anderson, 2015)).
owever, to support the development of models to address pol-

cy needs, and to provide a mechanism to support and strengthen
TD modelling efforts, the NTD Modelling Consortium was  formed
s an international network of epidemiological modellers selected

y independent scientific review (Hollingsworth et al., 2015). This
onsortium contained at least two modelling groups for each dis-
ase, in order to provide more robust scientific insights, and to
nsure that previously conflicting guidance could be discussed and

ttp://dx.doi.org/10.1016/j.epidem.2017.02.014
755-4365/© 2017 Published by Elsevier B.V. This is an open access article under the CC B
some consensus opinion be given. The individual models have been
published in a special issue of Parasites and Vectors (Hollingsworth
et al., 2015). The purpose of the current collection is to present the
comparisons between the models, resulting in 9 disease-specific
papers. Additionally, there is one paper that provides modelling
insight into the problem of non-adherence to mass treatment. Each
paper presents the combination of models and data, in keeping
with the ethos of Epidemics,  and we  are very grateful to the jour-
nal, and particularly the reviewers, for the rapid turn-around and
processing.

1. Multiple model comparisons: the basis of robust policy
support

Mathematical models of infectious disease have a long history,
and are now coming to fruition in terms of their ability and position
in policy making. Certainly in the UK, and in other administrations,
it would be highly unlikely for decisions about major infectious
disease interventions to be made without evidence of effective-
ness and cost-effectiveness derived from quantitative analysis and
mathematical models, and global strategy to control NTDs should
be no different. But a model is only a model, and there is always
a concern that relying on one model is insufficient − a different
(equally valid) model, might give different evidence. There is a
need to provide robust evidence to decision-makers that is based
on understanding of transmission dynamics, and is not (individ-
ual) model dependent. Consequently, multi-model comparisons
are increasingly regarded as a standard, and the basis of robust pol-
icy support (see for example: Okell et al. (2015); Eaton et al. (2012);
Smith et al. (2012); Johansson et al. (2016)).

Key to the relationship between modelling and policy is the
question of how to handle uncertainty. Uncertainty arises from
multiple sources, but the two  principal sources are parameter
uncertainty (i.e. uncertainty in results due to variability in param-
eters) and structural uncertainty (i.e. uncertainty in evidence
derived from different model structures). Stochastic uncertainty

arising from stochastic models provides further complication.
Whilst the methods for estimating and presenting parameter
uncertainty are well advanced, the same is not true for structural
uncertainty. For example, it is not clear how many models are
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equired. Given a set of competing models, there are various meth-
ds for deciding which is “better” (e.g. Touloupou et al. (2015)),
ut it is not clear whether or how models should be weighted to
ive a combined result. A further complication is the relationship
etween models and data. There is agreement that validation of a
odel derives from its ability to forecast data that are not included

n its fitting, and in this collection all the authors used (with some
xceptions) the same data to fit models, and then forecasted the
ame data to compare and validate the models. But beyond that
here are a wide variety of techniques described. For NTDs in partic-
lar, due to the limited number of high quality datasets, the ability
f a modelling suite to replicate or be validated against one or two,
otentially unrepresentative datasets, does not necessarily validate
he extrapolation of these models to multiple settings.

This collection is comprised of research papers, in which com-
arisons between models are made to expose their differences,
nd to estimate structural uncertainty. But for policy purposes,
ecision-makers prefer less uncertainty, so there is a political pres-
ure to reduce structural uncertainty, and models tend to converge
o the same answers. Whilst this is not a feature of the current
ollection, it is something that should be guarded against.

. Data: sources of information for models

This collection highlights that the NTDs, and consequently the
odelling efforts, vary in terms of data availability. Some authors

ave used routine surveillance data (Blok et al., 2017; Pinsent et al.,
017; Rock et al., 2017; Truscott et al., 2017), whereas others have
sed more detailed data from epidemiological studies (Coffeng
t al., 2017). Either way, the available data is not usually sufficient to
istinguish between different life history assumptions and there-
ore these papers do not seek to define those life history details,
ut rather investigate the impact of their assumptions on policy-
elated forward projections. A general conclusion is that current
urveillance data alone are often not sufficient to provide useful
orward projections for policy planning.

The London Declaration NTDs are generally divided in two
roups, those that are controlled by mass drug administration
MDA), and those that are controlled through intensified dis-
ase management (IDM), i.e. through increased case detection and
reatment (Hollingsworth et al., 2015). This distinction also charac-
erises the data which are collected as part of routine surveillance,
nd this is the way that we characterise the papers to serve as an
ntroduction to the collection.

.1. Cross-sectional prevalence survey data & mass treatment
MDA)

Infections which are controlled by MDA  are generally monitored
y cross-sectional surveys of prevalence in selected sites between
reatment rounds. For many of these diseases surveys are con-
ucted every year, but for blinding trachoma in many sites the data
ollection is much sparser (Pinsent et al., 2017).

For the soil-transmitted helminth (STH) study, the authors fit-
ed to detailed age-specific data from an epidemiological study of
ookworms and roundworms (Ascaris lumbricoides) (Coffeng et al.,
017), whereas for schistosomiasis, surveillance data in children
the age-group being treated) were used (Truscott et al., 2017).
or both comparisons, the short-term dynamics were similar, but
onger-term dynamics were highly dependent on model assump-
ions. For schistosomiasis in particular, there were very different

ssumptions on worm distributions and dynamics in the snail host.
imilarly for STH, the effect of age-dependent transmission rates in
ifferent demographies and egg survival dynamics can currently
nly be investigated through modelling studies as they are noto-
 Epidemics 18 (2017) 1–3

riously difficult to observe directly. However, novel methods of
model-led data collection could help identify key measurements
which could at least rule out some of the potential scenarios.

For onchocerciasis and lymphatic filariasis, there are similar
uncertainties regarding some aspects of the dynamics of worms
within and between hosts as for STH and schistosomiasis, but
the epidemic dynamics are much slower, meaning that drops in
prevalence between treatment rounds are more closely related
to coverage and efficacy of drugs. The longer-term dynamics are,
of course, highly sensitive to underlying model assumptions. In
contrast to schistosomiasis and STH, onchocerciasis and lym-
phatic filariasis models have been fitted to multiple-timepoint
epidemiological data for many years, and therefore have similar
conclusions on the impact of repeat treatment with a known cov-
erage. The lymphatic filariasis multi-model comparison (including
two individual-based models and a deterministic model) high-
lighted the short-term similarities in predictions, but longer-term
uncertainties remain (Smith et al., 2017). The onchocerciasis mod-
ellers analysed long-term datasets, and so were able to investigate
elimination dynamics (Walker et al., 2017). In particular they iden-
tified a key aggregate output of their model assumptions, the
relationship between the annual biting rate and equilibrium preva-
lence, as a key driver of discrepant results on elimination.

The remaining MDA  infection studied here was blinding tra-
choma, caused by an ocular bacterial infection. Some existing
models have been validated against epidemiological data, and so
the challenge for this group was  to use routine surveillance data,
which are extremely infrequent prevalence surveys. The authors
analysed 7 deterministic, mechanistic models and statistical mod-
els forecasting between 7 and 14 years in the future (Pinsent
et al., 2017). By combining these different modelling approaches
they highlighted the strengths and weaknesses of these different
approaches, and the need for combined efforts such as these.

In this part of the collection we  also include a cross-cutting arti-
cle which investigates assumptions regarding how MDA  campaigns
cover the population (Dyson et al., 2017). The authors review differ-
ent modelling frameworks and propose a new mechanism which
captures many of the existing frameworks, showing that only a
small amount of additional surveillance data could help identify
the extent to which the programme is at risk of not reaching its
goals. There is a need for similar studies to consider the elimination
dynamics under different assumptions regarding heterogeneities,
migration and dynamics at different spatial scales.

2.2. Rates of case detection

Mass drug administration is not available for four of the NTDs
considered: leprosy, human African trypanosomiasis (HAT), vis-
ceral leishmaniasis (VL) and Chagas disease. Three of these diseases
are controlled by IDM. For HAT, active surveillance is used to seek
out potential infections, whereas leprosy and VL rely on individuals
presenting themselves for diagnosis: passive surveillance. Because
of active surveillance, the HAT modellers had the most data avail-
able, but this meant that they were more selective in which data
they incorporated in the comparison (Rock et al., 2017). The VL
modellers were confronted with seasonality, and demonstrated
that more data gives a better fit, but perhaps more importantly that
case data alone (especially over a short time period) were insuffi-
ciently informative to enable an accurate assessment of structural
uncertainty (Le Rutte et al., 2017). A key challenge is to decide
which minimal additional data are required. The leprosy mod-
ellers used the widest variety of model structures, from stochastic

individual-based simulations to purely statistical approaches (Blok
et al., 2017). Perhaps surprisingly the models agreed in terms of
broad outcomes, and where they differed in detail, these differ-
ences were explainable. For leprosy at least, the work presented
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ere shows that structural uncertainty is not a barrier for applying
odels to policy.

.3. Serological surveys

Chagas disease is perhaps the most awkward of the NTDs consid-
red here. Human infection is a spill over from animal transmission
ycles and patterns of disease are largely determined by exposure to
ectors (triatomine bugs) which occurs within households. As far as
e are aware, there are no large-scale data which take into account

he small spatial scales required for accurate modelling of transmis-
ion dynamics, such as within- and between-household dynamics.
he Chagas disease modellers instead used a time series of national,
ross-sectional, sero-surveillance data to estimate changes in infec-
ion rates over time, but acknowledged that the models and data
re not at the same scale (Bartsch et al., 2017). Such data are becom-
ng increasingly common in NTD surveillance, but the sampling
trategies need to be designed to provide the right information for
odels.

. Characterising uncertainty

This collection is a unique set of comparisons of determinis-
ic, stochastic, individual-based mechanistic and statistical models.
raditionally, different modelling groups have presented very dif-
erent kinds of uncertainty, for example due to uncertainties in the
ata, parameters, model structure or stochastic variability between
imulations, without necessarily explaining which is which, or jus-
ifying underlying assumptions. In this collection, we have sought
o make clear the drivers of uncertainty in the different models, but
learly this is an area for future improvement.

. Summary

As with any research, the publications are markers of progress
ather than the principal aim. If we were advising others begin-
ing a similar process we would highlight (i) that there is not
urrently a uniformly accepted statistical framework for compar-
ng and combining such diverse models with such diverse datasets,
nd that this is an area ripe for development, and (ii) the qual-
ty of insight gained in these publications are the result of the trust
uilt up between the groups through previous work, allowing them
o ‘expose’ their models to each other’s scrutiny. An important
utcome has been the increased collaboration between different
roups, and the inevitable competition has spurred the improve-
ent of the models generally. We hope that this collection will,

n turn, demonstrate the need for high quality, high volume data.
olicy-makers can only get the level of advice and support that the
ata allow, and no amount of modelling can substitute for accu-
ate observation. The example of onchocerciasis demonstrates that

 cycle of model development and comparison fuelled by good data
an produce a consensus framework on which policy can be sen-
ibly founded, in an area where historically the models have given
ighly discrepant results on key policy outputs such as the number
f years a treatment program would need to be run to achieve the

rogramme goals (Walker et al., 2017; Basanez et al., 2016; Stolk
t al., 2015).

It should be noted that the models presented here are missing
he dimension of health economics. The current policy impetus is
 Epidemics 18 (2017) 1–3 3

to achieve defined goals, so that it is the effectiveness of interven-
tions that are being tested. However, as these goals are achieved, so
the emphasis will move increasingly towards cost-effectiveness, i.e.
how can control/elimination be achieved most efficiently. This will
require a novel set of models, building on those presented here, but
including the complications of health systems, diagnostics, surveil-
lance systems and delivery systems.

In summary, this collection represents the state-of-the-art for
modelling NTD transmission dynamics. Across all nine diseases we
provide projections of the outcomes of current interventions that
go beyond qualitative predictions. The future focus of the NTD Mod-
elling Consortium will be on continued development and use of
these quantitative models to support policy decisions.
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