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The mediation formula for the identification of natural (in)direct e↵ects has facilitated
mediation analyses that better respect the nature of the data, with greater consideration
of the need for confounding control. The default assumptions on which it relies are
strong, however. In particular, they are known to be violated when confounders of the
mediator-outcome association are a↵ected by the exposure. This complicates extensions
of counterfactual-based mediation analysis to settings that involve repeatedly measured
mediators, or multiple correlated mediators.
VanderWeele, Vansteelandt and Robins1 introduced so-called interventional (in)direct

e↵ects. These can be identified under much weaker conditions than natural (in)direct
e↵ects, but have the drawback of not adding up to the total e↵ect. In this article, we adapt
their proposal in order to achieve an exact decomposition of the total e↵ect, and extend
it to the multiple mediator setting. Interestingly, the proposed e↵ects capture the path-
specific e↵ects of an exposure on an outcome that are mediated by distinct mediators, even
when – as often – the structural dependence between the multiple mediators is unknown;
for instance, when the direction of the causal e↵ects between the mediators is unknown,
or there may be unmeasured common causes of the mediators.

1 Introduction

The introduction of counterfactual-based distribution-free definitions of direct and indi-
rect e↵ect in epidemiology2,3 – so-called natural (in)direct e↵ects – has spurred a major
revival of mediation analysis4–6. It has led to a renewed and improved understanding of
the ignorability assumptions required to identify (in)direct e↵ects. It has moreover en-
abled the development of a formal framework for mediation analysis that is applicable to
nonlinear models. These developments have facilitated applications of mediation analysis
that better respect the nature of the data and reflect greater consideration of the need for
confounding control. Notwithstanding this, mediation analysis based on natural (in)direct
e↵ects has been the subject of recent critiques. The usefulness of natural (in)direct e↵ects
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has been called into question because they are not directly informative about real-life
interventions7,8. Concerns have moreover been raised about the impossibility to con-
duct experiments in which the identification assumptions for natural (in)direct e↵ects are
guaranteed to be satisfied7,9,10. Remaining concerns arise from the di�culty or impossi-
bility to identify these e↵ects in realistic settings that involve multiple and/or repeatedly
measured mediators11–13, and settings that involve exposure-induced confounding of the
mediator-outcome association1,14,15. These concerns all originate from the fact that nat-
ural (in)direct e↵ects are defined in terms of so-called cross-world counterfactuals7 that
are unobservable, even from experimental data; they call for alternative e↵ect measures
that are less remote from the observed data.
In this article, we revisit and refine so-called interventional (in)direct e↵ects, previously

introduced by VanderWeele, Vansteelandt and Robins1. These are not defined in terms
of cross-world counterfactuals. They can therefore be identified under weaker conditions,
but have the drawback of not always adding up to the total e↵ect. We will adapt this
proposal to overcome this, and next extend it to the case of multiple mediators. Inter-
estingly, our proposal decomposes the total e↵ect into di↵erent path-specific e↵ects via
the di↵erent mediators, even when – as often – the structural dependence between the
multiple mediators (for instance, the direction of the causal e↵ect, or the possible presence
of unmeasured common causes) is unknown. It thus opens avenues towards a flexible and
realistic mediation analysis with multiple mediators.

2 Single mediator models

2.1 E↵ect measures

Let A,M and Y denote the exposure, mediator and outcome. Let C represent baseline
covariates not a↵ected by the exposure. We let Ya and Ma denote respectively the values
of the outcome and mediator that would have been observed had the exposure A been set
to level a; let Yam denote the value of the outcome that would have been observed had
A been set to level a, and M to m. Throughout, we make the consistency assumption16

that Ya = Y and Ma = Y when A = a, and that Yam = Y when A = a and M = m.
Suppose a and a⇤ are two values of the exposure we wish to compare, e.g. a = 1 and

a⇤ = 0. The corresponding average controlled direct e↵ect, fixing the mediator to level
m, is then defined by E(Yam � Ya⇤m). It captures the e↵ect of exposure A on outcome Y ,
intervening to fixM tom2,4; it may be di↵erent for di↵erent levels ofm. The natural direct
e↵ect, E(YaMa⇤ �Ya⇤Ma⇤ ), di↵ers from the controlled direct e↵ect in that the intermediate
M is set to the level Ma⇤ , the level that it would have naturally been under some reference
condition a⇤ for the exposure2,4. By subtracting it from the total e↵ect, E(Ya � Ya⇤), one
obtains the average natural indirect e↵ect, E(YaMa � YaMa⇤ ); this compares the e↵ect of
the mediator at levels Ma and Ma⇤ on the outcome when exposure is set to A = a. Finally,
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we define the interventional direct e↵ect as

E
⇣
YaGa⇤|C � Ya⇤Ga⇤|C

⌘
= E

"
X

m

{E (Yam|C)� E (Ya⇤m|C)}P (Ma⇤ = m|C)

#
.

It di↵ers from the controlled direct e↵ect in that the intermediate is set for each subject
to a random draw from the conditional distribution of Ma⇤ , given the observed covariates
C for that subject (a related definition1 uses P (M = m|a⇤, C) in lieu of P (Ma⇤ = m|C)).
It may thus be viewed as the controlled direct e↵ect of comparing exposure levels a versus
a⇤ under a stochastic intervention, Ga⇤|C , which controls the mediator for each subject at
some value randomly drawn from the distribution of Ma⇤ , given the observed covariates
C. We will moreover call

E
⇣
YaGa|C � YaGa⇤|C

⌘
= E

"
X

m

E (Yam|C) {P (Ma = m|C)� P (Ma⇤ = m|C)}
#

the interventional indirect e↵ect. For this e↵ect to be non-zero, the exposure would have to
change the mediator, which in turn would have to change the outcome, thus confirming
that it captures a notion of mediation. For instance, VanderWeele et al.17 investigate
pack-years of smoking as a mediator of the e↵ect of genetic variants on lung cancer. The
interventional indirect e↵ect expresses the change in lung cancer risk that would be seen
if the distribution of pack-years of smoking were shifted from what it would be if all
subjects carried two risk alleles to what it would otherwise be. Arguably, this e↵ect is
more relevant than the corresponding natural indirect e↵ect, as it is informative about the
e↵ect of particular interventions on smoking. One could alternatively define interventional
(in)direct e↵ects with respect to a mediator distribution other than P (Ma = m|c). This
can be of interest when interventions on the exposure are not conceivable. For instance,
changing P (Ma = m|c) to P (M = m|a, c) would change the interpretation to the average
change in lung cancer risk that would be seen if the distribution of pack-years of smoking
were shifted from what it is in subjects with two risk alleles to what it is in the remaining
subjects1. In the remainder of the article, we choose not to do this because unmeasured
confounding may render P (M = m|a, c) dependent on a, even when the exposure has no
e↵ect on the mediator.

2.2 Assumptions

Controlled direct e↵ects can be identified when:

(i) the e↵ect of exposure A on outcome Y is unconfounded conditional on C (i.e., Yam

?? A|C, where X ?? Y |Z denotes that X is independent of Y conditional on Z);

(ii) the e↵ect of mediator M on outcome Y is unconfounded conditional on A, C and
possibly some additional covariate vector L that may be a↵ected by A (i.e., Yam ??
M |{A = a, C, L}).
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Average interventional (in)direct e↵ects are identified if, in addition to these assumptions,

(iii) the e↵ect of exposure A on mediator M is unconfounded conditional on C (i.e.,
Ma ?? A|C).

Randomisation of the exposure (possibly conditional on C) ensures the validity of this
additional assumption as well as assumption (i). Under (i)-(iii), the interventional direct
and indirect e↵ect can be identified as1

X

c

X

l

X

m

{E (Y |a, l,m, c)P (l|a, c)� E (Y |a⇤, l,m, c)P (l|a⇤, c)}P (m|a⇤, c)P (c)(1)

X

c

X

l

X

m

E (Y |a, l,m, c)P (l|a, c) {P (m|a, c)� P (m|a⇤, c)}P (c). (2)

These expressions reveal a major weakness that we will attempt to overcome: the sum
of the e↵ects (1) and (2), which is sometimes called the ‘overall e↵ect’1, may di↵er from
the total e↵ect. One exception is when assumptions (i) and (iii) hold, and in addition,
assumption (ii) holds with L empty. In that case, the direct and indirect interventional
e↵ects sum to the total e↵ect E(Ya � Ya⇤), even when there are interactions and non-
linearities.
Natural direct and indirect e↵ects always sum to the total e↵ect. However, their iden-

tification requires much stronger assumptions. It requires that assumptions (i) and (iii)
hold, that assumption (ii) holds with L empty (thus excluding the possible presence of
exposure-induced confounders), and in addition that a technical cross-world independence
assumption3 holds, which places an independence restriction on the joint distribution of
the variables Yam and Ma⇤ :

(iv) Yam ?? Ma⇤ |C.

Under these assumptions, these e↵ects reduce to expressions (1) and (2) obtained for
average direct and indirect interventional e↵ects, but with L empty. It thus follows that
in single mediator models without post-treatment confounding, natural (in)direct e↵ects
obtained under assumption (iv) can also be interpreted as interventional (in)direct e↵ects
(even when that assumption is violated).

2.3 Natural versus interventional (in)direct e↵ects

Average interventional direct e↵ects encode the exposure e↵ect that would be realised
while controlling the mediator distribution to be fixed. This is realised by setting the
mediator for each subject to a random draw from the distribution of the mediator at
exposure level a⇤, given covariate values c. Natural direct e↵ects adopt a similar notion,
but fixing the mediator at the counterfactual mediator value (corresponding to exposure
level a⇤) itself. This may yield a direct e↵ect of a di↵erent magnitude, in part because
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the counterfactual level of the mediator may depend on much more than the considered
covariates c. Both measures would thus be relatively close if the covariate set c were so
rich as to leave little variation in Ma⇤ for a given c (beyond the variation due to causes
unrelated to Yam), but not necessarily otherwise. While the natural direct e↵ect may thus
more closely capture the notion of mechanism, this need not lead us to prioritise them.
First, natural direct e↵ects employ cross-world counterfactuals like YaMa⇤ about which
information cannot be obtained even from experimental data. The data analyst who
reports natural direct e↵ects is thus obligated to make strong untestable assumptions like
(iv) (and/or to conduct a sensitivity analysis18), under which these e↵ects reduce to the
interventional direct e↵ect (1) (with L empty). Second, the relevance of natural (in)direct
e↵ects has been questioned on the basis that they do not connect to the e↵ect of particular
policies8.
In contrast to natural (in)direct e↵ects, interventional (in)direct e↵ects are policy-

relevant19: they are relevant about a policy that involves fixing the mediator distribution,
or shifting it to the extent that it is a↵ected by the exposure. They continue to be mean-
ingful, even when assumptions (i) and (iii) fail or when the exposure is not manipulable
(e.g. when the exposure is race20), so long as assumption (ii) is satisfied. For instance,
when L is empty, then the interventional direct e↵ect (1) reduces to

X

c

X

m

{E(Ym|a, c)� E(Ym|a⇤, c)}P (m|a⇤, c)P (c),

since E(Y |a,m, c) = E(Ym|a, c) under assumption (ii). This can be interpreted as the
average outcome di↵erence that would remain between exposure groups A = a and A = a⇤

if the mediator distribution in the former group were shifted to equal that in the latter
group20. Similar comments are relevant for indirect e↵ects.

3 Multiple mediator models

3.1 Review

For pedagogic purposes, we consider a setting with two mediators M1 and M2, and de-
fer more general results to the eAppendix. VanderWeele and Vansteelandt (2013) de-
fine the natural direct e↵ect of A on Y , not mediated by either or both mediators, as
E(YaM1a⇤M2a⇤ � Ya⇤M1a⇤M2a⇤ ). The remaining indirect e↵ect via both mediators is then
E(YaM1aM2a � YaM1a⇤M2a⇤ ). These e↵ects can be identified as

X

c

X

m1

X

m2

{E(Y |a,m1,m2, c)� E(Y |a⇤,m1,m2, c)}P (m1,m2|a⇤, c)P (c) (3)

and X

c

X

m1

X

m2

E(Y |a,m1,m2, c) {P (m1,m2|a, c)� P (m1,m2|a⇤, c)}P (c), (4)

5



when

(i’) the e↵ect of exposure A on outcome Y is unconfounded conditional on C (i.e.,
Yam1m2 ?? A|C);

(ii’) the e↵ect of both mediators M1 and M2 on outcome Y is unconfounded conditional
on A and C (i.e., Yam1m2 ?? (M1,M2)|{A = a, C});

(iii’) the e↵ect of exposure A on both mediators is unconfounded conditional on C (i.e.,
(M1a,M2a) ?? A|C);

(iv’) the cross-world assumption holds that Yam1m2 ?? (M1a⇤ ,M2a⇤)|C.

Unfortunately, these e↵ects provide no insight into the distinct pathways that may exist
between exposure and outcome.
When the mediators are sequential (i.e., M1 may a↵ect M2 but not vice versa), further

progress1,12 can sometimes be made by supplementing the previous analysis with a single
mediator analysis with respect to M1. In particular, if assumptions (i)-(iv) hold with M1

in lieu of M , one can additionally identify the natural direct e↵ect E(YaM1a⇤ � Ya⇤M1a⇤ ).
This can be decomposed as

E(YaM1a⇤ � YaM1a⇤M2a⇤ ) + E(YaM1a⇤M2a⇤ � Ya⇤M1a⇤M2a⇤ ),

where the first component represents the e↵ect mediated by M2 but not M1, and the
second component can be identified as detailed in the previous paragraph. Such sequential
analysis thus enables one to infer the direct e↵ect that is not mediated by either M1 or
M2 or both, i.e. E(YaM1a⇤M2a⇤ � Ya⇤M1a⇤M2a⇤ ), the e↵ect that is mediated by M1, i.e.
E(YaM1a � YaM1a⇤ ) (including any e↵ect mediated by both M1 and M2), and the e↵ect
that is mediated by M2 but not M1, i.e. E(YaM1a⇤ �YaM1a⇤M2a⇤ ). However, one important
limitation is that the causal structure between M1 and M2 (i.e. whether M1 a↵ects M2,
or vice versa) is often not known when di↵erent mediators are assessed at the same time.
Moreover, even when assumptions (i’)-(iv’) hold, assumptions (i)-(iv) (with M1 in lieu of
M) will often not be satisfied12. For instance, when both mediators share an unmeasured
common cause, as in the causal diagram of Figure 1, then M2 confounds the association
between M1 and Y , thereby inducing a violation of assumption (ii). In that case, the
e↵ect mediated via M1 is not identified because the data carry no information about the
e↵ect of M1 on M2. Regression adjustment for M2 provides no remedy because M2 is an
exposure-induced confounder so that adjusting for it would violate assumption (iv). This
problem is important because the mediators are strongly related in many applications;
for instance M1 and M2 may represent realisations of a repeatedly measured mediator, or
be manifestations of an underlying latent process.
In view of these limitations, we will next propose novel definitions of interventional

(in)direct e↵ects for the multiple mediator setting, which do not have the disadvantage
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that they do not sum to the total e↵ect. The proposed formalism will decompose the
total e↵ect of exposure on outcome into various path-specific e↵ects. It can be used even
when the causal structure between the mediators is unknown or when various mediators
share unmeasured common causes.

3.2 Proposal

We define the interventional direct e↵ect of exposure on outcome other than via the given
mediators as

E

"
X

m1

X

m2

{E (Yam1m2 |c)� E (Ya⇤m1m2 |c)}P (M1a⇤ = m1,M2a⇤ = m2|c)
#
. (5)

This expresses the exposure e↵ect when fixing the joint distribution of both mediators
(by controlling the mediators for each subject at a random draw from their counterfactual
joint distribution with the exposure set at a⇤, given covariates C). This corresponds to
the e↵ect A ! Y in the causal diagrams of Figures 1, 2 and 3.
We define the interventional indirect e↵ect of exposure on outcome via M1 as

E

"
X

m1

X

m2

E (Yam1m2 |c) {P (M1a = m1|c)� P (M1a⇤ = m1|c)}P (M2a⇤ = m2|c)
#
. (6)

This expresses the e↵ect of shifting the distribution of mediator M1 from the counter-
factual distribution (given covariates) at exposure level a⇤ to that at level a, while fixing
the exposure at a and the mediator M2 to a random subject-specific draw from the coun-
terfactual distribution (given covariates) at level a⇤ for all subjects. The latter is chosen
independently of M1, so as to avoid assumptions on the joint distribution of the counter-
factuals M1a and M2a⇤ corresponding to di↵erent exposure levels.
The e↵ect (6) corresponds to the e↵ect A ! M1 ! Y in the causal diagrams of Figures

1 and 2, and to the combination of the e↵ects A ! M1 ! Y and A ! M2 ! M1 ! Y
in Figure 3. The latter can be seen upon noting that the di↵erence P (M1a = m1|c) �
P (M1a⇤ = m1|c) encodes the combination of the e↵ects A ! M1 and A ! M2 ! M1.
The interventional indirect e↵ect of exposure on outcome via M1 thus captures all of the
exposure e↵ect that is mediated by M1, but not by causal descendants of M1 in the graph.
Interestingly, this interpretation holds regardless of the underlying causal structure.
We define the interventional indirect e↵ect of exposure on outcome via M2 similarly as

E

"
X

m1

X

m2

E (Yam1m2 |c) {P (M2a = m2|c)� P (M2a⇤ = m2|c)}P (M1a = m1|c)
#
. (7)

This corresponds to the e↵ect A ! M2 ! Y in the causal diagrams of Figures 1 and
3, and to the combination of the e↵ects A ! M2 ! Y and A ! M1 ! M2 ! Y in
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Figure 2. It thus captures all of the exposure e↵ect that is mediated by M2, but not by
causal descendants of M2 in the graph; again, this interpretation holds regardless of the
underlying causal structure.
The di↵erence between the total e↵ect and these 3 e↵ects equals

E

"
X

m1

X

m2

E (Yam1m2 |c) {P (M1a = m1,M2a = m2|c)� P (M1a = m1|c)P (M2a = m2|c)

�P (M1a⇤ = m1,M2a⇤ = m2|c) + P (M1a⇤ = m1|c)P (M2a⇤ = m2|c)}] . (8)

This captures the indirect e↵ect resulting from the e↵ect of exposure on the dependence
between the counterfactuals M1a and M2a, given C. This e↵ect would be zero when both
mediators are conditionally independent21, given exposure and covariates, but also under
much weaker conditions. Under linear models, for instance, this e↵ect can only be non-
zero when both mediators interact in their e↵ect on the outcome and, moreover, one of
the mediators interacts with the exposure in its e↵ect on the other mediator. Because of
this, we would often expect (8) to be much closer to zero than the other components (6)
and (7) of the indirect e↵ect, though not always (see Section 4).
In some cases, the e↵ect (8) may be of primary scientific interest. For instance, consider

the mediating roles of cancer stage at diagnosis and treatment in the e↵ect of SES on 1-
year survival in breast cancer patients. Suppose that the treatment decision process takes
cancer stage into account in a manner that may be di↵erent for women with high versus
low SES. The resulting e↵ect of SES on 1-year survival that is mediated by this possibly
di↵erential decision process is encoded in (8).
Regardless of whether the component (8) is of scientific interest, it is important to

consider it when expressing how much of the exposure e↵ect is explained by specific
pathways. For instance, in utero tobacco smoke exposure M1 is known to have an e↵ect
on asthma and wheeze only in children with the GSTM1-null genotype M2

22. If an
intervention to reduce smoking during pregnancy were only e↵ective in mothers of infants
without the GSTM1-null genotype, then the intervention would have no indirect e↵ect
via smoking. Yet, the indirect e↵ect (6) would be non-zero because it would consider
the characteristics M1 and M2 independently. Only by acknowledging that part of the
indirect e↵ect via M1 is also expressed by the term (8) may valid conclusions be drawn.

3.3 Estimation

Under assumptions (i’), (ii’) and (iii’), the e↵ects (5), (6), (7) and (8) can be identified
upon substituting E (Yam1m2 |c) by E (Y |a,m1,m2, c) and P (Mja = mj|c) for j = 1, 2 by
P (Mj = mj|a, c) in the above expressions. Suppose for instance that the outcome obeys
model

E(Y |a,m1,m2, c) = ✓0 + ✓1a+ ✓2m1 + ✓3m2 + ✓4m1m2 + ✓5am1 + ✓6am2 + ✓7c
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and that the mediators (M1,M2), conditional on A and C, have means

E(Mj|a, c) = �0j + �1ja+ �2jc,

with residual variances �2
j , j = 1, 2, and covariance �12. Then the interventional direct

e↵ect (5) is given by

E [{✓1 + ✓5(�01 + �11a
⇤ + �21C) + ✓6(�02 + �12a

⇤ + �22C)} (a� a⇤)]

= {✓1 + ✓5(�01 + �11a
⇤ + �21E(C)) + ✓6(�02 + �12a

⇤ + �22E(C))} (a� a⇤).

It equals ✓1(a � a⇤) in the absence of exposure-mediator interactions. Upon fitting the
appropriate regression models to the observed data, thus obtaining estimates of the above
parameters, these estimates can be plugged in to the expression above to obtain an es-
timate of the interventional direct e↵ect. The interventional indirect e↵ect (6) via M1

equals
{✓2 + ✓4 (�02 + �12a

⇤ + �22E(C)) + ✓5a} �11(a� a⇤),

which is ✓2�11(a� a⇤) in the absence of exposure-mediator and mediator-mediator inter-
actions. The interventional indirect e↵ect (7) via M2 is

{✓3 + ✓4 (�01 + �11a+ �21E(C)) + ✓6a} �12(a� a⇤).

Finally, the indirect e↵ect (8) resulting from the e↵ect of exposure on the mediators’
dependence is ✓4�12 � ✓4�12 = 0. The total e↵ect can thus be decomposed into the direct
e↵ect and the two indirect e↵ects defined above. If instead, A and M1 interacted in their
e↵ect on M2 in the sense that

E(M2|m1, a, c) = �02 + �12a+ �22c+ �32m1 + �42am1,

then (8) would evaluate to �2
1✓4�42(a� a⇤).

This regression approach has the drawback that it requires a new derivation each time
a di↵erent outcome or mediator model is considered. This can be remedied via a Monte-
Carlo approach, which involves sampling counterfactual values of the mediators from their
respective distributions. For instance, to evaluate the first component

E

"
X

m1

X

m2

E (Yam1m2 |c)P (M1a = m1|c)P (M2a⇤ = m2|c)
#
,

of (6), one may take a random draw M2a⇤,i for each subject i from the (fitted) distribution
P (M2|a⇤, ci). Next, one takes a random draw M1a,i for each subject i from the (fitted)
distribution P (M1|a, ci). Finally, one may predict the outcome as the expected outcome
under a suitable model with exposure set to a, M1 set to M1a,i, M2 set to M2a⇤,i, and
covariate Ci. The average of these fitted values across subjects then estimates the above
component. Its performance can be improved by repeating the random sampling many
times and averaging the results across the di↵erent Monte-Carlo runs. In practice, we
recommend the bootstrap for inference.
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4 A health disparity analysis

We illustrate our proposal using data for all 29,580 women diagnosed with malignant,
invasive breast cancer from 2000 to 2006 in the Northern and Yorkshire Cancer Registry
Information Service (NYCRIS) – a population-based cancer registry covering 12% of the
English population – who have information on cancer stage at diagnosis recorded. Our aim
is to investigate possible explanations for the disparity in breast cancer survival between
women of higher and lower SES; 95.9% (64.7%) of women with higher SES survive to one
(five) year(s) after diagnosis, compared with 93.2% (54.1%) in the lower SES group. One
possible explanation is that women with lower SES are less likely to attend screening and
as a result, are more likely to be diagnosed when the disease is already more advanced.
A di↵erence in treatment choice is another possible explanation.
Our analyses are included mainly for illustration and some caution is warranted, as

they involve several simplifications . In particular, we consider a binary SES exposure
(A) which is whether or not the woman resides (at diagnosis) in an a✏uent area. The
mediator M1 comprises age at diagnosis and cancer stage at diagnosis, classified as early
(TNM stage 1/2) or advanced (TNM stage 3/4). The mediator M2 is a treatment variable
that classifies women either as having ‘major surgery’ or ‘minor or no surgery’. The
outcome (Y ) is one-year survival from the date of diagnosis. Calendar year at diagnosis
and region are considered as baseline confounders (C).
All analyses assume that the causal diagram of Figure 4 holds, and are based on 6 million

Monte-Carlo draws in total (to ensure that the results were free of Monte-Carlo error to
the number of decimal places given), with the distribution of the two confounders equal
to their empirical distribution. Standard errors are obtained using the nonparametric
bootstrap, with 1,000 bootstrap samples. Stata code is given in eAppendix D.

4.1 Sequential mediation analysis

Details on the sequential mediation analysis of Section 3.1 are given in the eAppendix.
The results in Table 1 suggest that, of the 2.8% (95% CI 2.3%–3.4%) total di↵erence in
survival probability, about half of this (1.4%, 95%CI 1.1%–1.6%) is mediated by some
combination of age and stage at diagnosis and treatment. Assuming that there are no
unmeasured common causes of age/stage at diagnosis and treatment (i.e. no U in Figure
4), we can further decompose this indirect e↵ect into an e↵ect through age/stage (some of
which may also act through treatment) (1.0%, 95% CI 0.8%–1.2%) and an e↵ect through
treatment alone (0.3%, 95% CI 0.2%–0.5%), thus indicating that only a small proportion
of the e↵ect is through the treatment variable alone.
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4.2 Multiple mediator analysis based on interventional e↵ects

Without relying on any cross-world assumptions nor any assumptions about the causal
structure of the mediators, thus allowing U in Figure 4, the results in Table 2 (obtained as
detailed in the eAppendix) suggest that, of the 2.8% (95% CI 2.3%–3.4%) total di↵erence
in survival probability, about a quarter of this (0.7%, 95%CI 0.5%–0.9%) is mediated
by the dependence of treatment on stage and age at diagnosis, i.e. (8). Recall that we
expected this e↵ect to be small, except when there are particular interactions present, as
is the case here (see eTable 2). Among women of a lower SES, there is a strong negative
association between stage and treatment, meaning that those diagnosed at an advanced
stage are less likely to receive major surgery. One possible interpretation would be that
doctors and/or patients decide that treatment is not likely to be beneficial for patients with
advanced disease, or that surgical treatment is substantially delayed for these patients due
to tumor-reducing treatments such as chemotherapy being prioritised first. We see from
eTable 2 that this negative association is much less pronounced for women of higher SES.
Therefore, we would interpret this estimated 0.7% as the increase in survival that would
be expected if the treatment decision, as a function of stage and age at diagnosis (and
baseline confounders), would be made for poorer women as it is currently made for higher
SES women. There is little evidence of further mediation through the treatment variable
(estimated e↵ect 0.02%, 95% CI: –0.05, 0.08%), and evidence of an e↵ect through age
and stage at diagnosis (estimated e↵ect 0.7%, 95%CI 0.5%–0.8%). This would suggest
that an additional 0.7% reduction in one-year mortality for lower SES women could be
achieved if the distribution of age and stage at diagnosis (given year of diagnosis and
region) were changed from that seen in lower SES women to that of higher SES women,
a change that could perhaps be a↵ected by encouraging better uptake of screening and
other health-seeking behaviour among lower SES women.

5 Conclusions

Most mediation analyses involve multiple mediators, either because of scientific interest in
multiple pathways, or because certain confounders are mediators at the same time. When
the mediators are independent21 or can be causally ordered12, but share no (unmeasured)
common causes, then distinct pathways via those mediators can be identified. We have
shown that progress can be made even in the likely event that mediators share unmea-
sured common causes, or when the direction of causality is unknown. This is possible by
redirecting the focus on less ambitious interventional (in)direct e↵ects. In this article, we
have focused on e↵ects defined on the additive scale. We refer to eAppendix A for similar
result for e↵ects on other (e.g. multiplicative) scales.
The proposed e↵ect decomposition is relatively easy to perform via a (Monte-Carlo

based) regression approach. It delivers e↵ects mediated via each of the mediators sepa-
rately, but also via the mediators’ dependence.
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E↵ect Interpretation Estimate Bootstrap 95% CI

SE lower upper

E(Y1 � Y0) Total causal e↵ect 0.028 0.0028 0.023 0.034

E(Y1M10M20 � Y0M10M20) Direct e↵ect not through {M1,M2} 0.013 0.0028 0.008 0.018

E(Y1M11M21 � Y1M10M20) Indirect e↵ect through {M1,M2} 0.014 0.0014 0.011 0.016

E(Y1M10 � Y0M10) Direct e↵ect not through M1 0.017 0.0028 0.011 0.022

E(Y1M11 � Y1M10) Indirect e↵ect through M1 0.010 0.0011 0.008 0.012

E(Y1M10 � Y1M10M20) Indirect e↵ect through M2 only 0.003 0.0008 0.002 0.005

Table 1: Results of sequential mediation analysis

E↵ect Estimate Bootstrap 95% CI

SE lower upper

Total causal e↵ect 0.028 0.0028 0.023 0.034

Interventional direct e↵ect not through {M1,M2} (5) 0.013 0.0027 0.008 0.018

Interventional indirect e↵ect through M1 (6) 0.007 0.0008 0.005 0.008

Interventional indirect e↵ect through M2 (7) 0.0002 0.0003 –0.0005 0.0008

Interventional indirect e↵ect through the dependence of M2 on M1 (8) 0.007 0.0009 0.005 0.009

Table 2: Results of multiple mediator analysis based on interventional e↵ects

A

M1

M2

YU

Figure 1: Causal diagram 1: M1 and M2 share an unmeasured common cause.

A

M1

M2

Y

Figure 2: Causal diagram 2: M1 a↵ects M2.
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A

M1

M2

Y

Figure 3: Causal diagram 3: M2 a↵ects M1.

Region

Year at diagnosis

SES U

V

W

{Stage, age (at diagnosis)}

Treatment

1-yr survival

Figure 4: Causal diagram 4: data example.
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eAppendix A: Other scales

All results in the article extend immediately to other scales. Let Y be a dichotomous
outcome coded 0 or 1. Then the e↵ect (5) can be written as
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on the odds ratio scale. The e↵ect (6) can be written as
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on the odds ratio scale. The e↵ect (7) can likewise be computed. Finally, the e↵ect (8)
can be written as
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on the odds ratio scale. Each of the components of these e↵ects can be calculated using
the Monte-Carlo approach proposed in the main text of the article.

eAppendix B: More than two mediators

With more than two mediators M1, ...,Mt, the e↵ect of exposure on outcome can be
decomposed into many di↵erent path-specific e↵ects. We choose not to infer all of these
e↵ects for the following two reasons. First, the scientific interest typically lies in knowing
the e↵ects that are mediated through each of the mediators, but rarely lies in all path-
specific e↵ects ways. Second, strong untestable assumptions are required to be able to
infer all path-specific e↵ects, such as assumptions about the direction of the causal e↵ects
between the various mediators, and about the absence of unmeasured common causes of
all mediators. In this Appendix, we will therefore concentrate on the following pathways.
We define the average interventional direct e↵ect of exposure on outcome that is not via
any of the mediators as:

E

"
X
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...
X

mt

{E (Yam1...mt |c)� E (Ya⇤m1...mt |c)}P (M1a⇤ = m1, ...,Mta⇤ = mt|c)
#
.

This expresses the e↵ect of exposure on outcome when fixing the joint distribution of all
mediators. It corresponds to the e↵ect A ! Y in the causal diagram of Figure 1 below.
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For each mediator Ms, s = 1, ..., t, we further define the average interventional indirect
e↵ect via Ms (but not its descendants) as

E

"
X

m1

...
X

mt

E (Yam1...mt |c) {P (Msa = ms|c)� P (Msa⇤ = ms|c)}

⇥P (M1a = m1, ...,Ms�1,a = ms�1|c)P (Ms+1,a⇤ = ms+1, ...,Mta⇤ = mt|c)] . (1)

For s = 1, this corresponds to the e↵ect A ! M1 ! Y in the causal diagram of Figure
1 below; for s = 2, this captures the combined e↵ect along the pathways A ! M2 ! Y
and A ! M1 ! M2 ! Y ; for s = 3, it captures the combined e↵ect along the pathways
A ! M3 ! Y , A ! M2 ! M3 ! Y , A ! M1 ! M3 ! Y and A ! M1 ! M2 !
M3 ! Y . Finally, it is easily seen that the di↵erence between the total e↵ect and the sum
of the average interventional direct e↵ect and the average interventional indirect e↵ect
via each of the mediators, captures an indirect e↵ect of the exposure on the dependence
between the mediators. Further work is needed to understand if the latter e↵ect can be
further decomposed into e↵ects mediated via the dependence between specific subsets of
mediators.

eAppendix C: More details on the data analysis

Data

In this Section, we give more detailed information on the NYCRIS data. Our analyses are
based on all 29,580 women diagnosed with malignant, invasive breast cancer from 2000 to
2006 (inclusive) in NYCRIS who have information on cancer stage at diagnosis recorded;
a further 2,589 women are excluded since this information is missing. For simplicity,
we consider a binary SES exposure (A) which is whether or not the woman resides (at
diagnosis) in an area (Lower Super Output Area) classified as belonging to the two most
a✏uent quintiles of the national income distribution as defined by the income domain
of the Indices of Multiple Deprivation (IMD) 2001. Since we have no direct information
on screening, our first mediator (M1) is a vector comprising age at diagnosis and cancer
stage at diagnosis, classified as early (TNM stage 1 or 2) or advanced (TNM stage 3 or
4), considered jointly. Age and stage at diagnosis are strongly associated, likely due to
the influence of screening and (latent) age at onset. Information on surgical treatment,
obtained from a routinely collected national hospital dataset (Hospital Episode Statistics
or HES), allows us to classify women either as having ‘major surgery’ (axillary dissection
or other axillary nodal procedures, breast conserving surgery, mastectomy, and plastic
surgery) or ‘minor or no surgery’ (other surgical procedures and none). This is our
second mediator, M2. The considered outcome (Y ) is one-year survival from the date of
diagnosis.

3



Calendar year at diagnosis and region (Yorkshire and The Humber, North East or
North West) are considered as baseline confounders (C). As regards the causal structure
of the mediators, we know that M1 precedes M2 and yet we can’t rule out that they share
unmeasured common causes, thus a combination of Figure 1 and Figure 3 of the main
paper might apply. A possible causal diagram for the NYCRIS data is shown in Figure 4
of the main paper.

Sequential mediation analysis

We begin by performing the sequential mediation analysis described at the beginning
of Section 3.1. First we note that with C = {Region, Year at diagnosis} in lieu of C,
assumptions (i’)-(iii’) hold if Figure 4 represents the underlying causal diagram (with M1

in lieu of M1). If we additionally assume (iv’), then we can identify the natural direct
e↵ect not mediated through either M1 or M2 or both using (3) and the corresponding
natural indirect e↵ect through either M1 or M2 using (4). To estimate (3) and (4) using
the Monte-Carlo approach of Section 3.3, we need to fit a series of associational models:

Model 1: We fit a logistic regression model to one-year survival (Y ) conditional on SES (A),
Stage and Age at diagnosis (M1), Treatment (M2), and Region and Year of diagnosis
(C) with all interactions between A, M1 and M2 included.

Model 2: We also fit a logistic regression model to Treatment (M2) conditional on SES (A),
Stage and Age at diagnosis (M1), and Region and Year of diagnosis (C) with all
interactions between A and M1 included.

Model 3: We also fit a logistic regression model to Stage at diagnosis (one component of M1)
conditional on SES (A), Age at diagnosis (the other component of M1), and Region
and Year of diagnosis (C) with the interaction between SES and Age at diagnosis
included.

Model 4: Finally, we fit a linear regression model to Age at diagnosis conditional on SES and
Region and Year of diagnosis.

Note that this particular mediation analysis (with M1 and M2 considered as joint me-
diators) does not require any assumptions about the causal structure of the mediators;
however, our associational models need to allow for correlation between them, and this is
why we include Age in the model for Stage and Age and Stage in the model for Treatment.
Also note that due to the very large sample size, there is little benefit in terms of precision
(and a potential danger in terms of bias) in trying to find more parsimonious associational
models than the above. Finally note that when using these results in the Monte-Carlo
simulations to estimate (3), we will use not only the fitted value of the conditional expec-
tation of age at diagnosis given SES and the confounders, but also the assumption that
the errors from this model follow a normal distribution.
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Tables 1–4 below give the full results of the individual regression models fitted to
M1, M2 and Y . We use these results as described in Section 3.3 to estimate (3) and
(4). Under assumptions (i)–(iv) with M1 in lieu of M , we can additionally perform a
mediation analysis with M1 as the only mediator. Note that this involves assuming that
U in Figure 4 does not exist. For this mediation analysis, models 3 and 4 above are used
again, together with:

Model 1’: A logistic regression model for one-year survival (Y ) conditional on SES (A), Stage
and Age at diagnosis (M1), and Region and Year of diagnosis (C) with all interac-
tions between A and M1 included.

Models 1 and 1’ are likely incompatible. We do not consider this to be of grave additional
concern in practice, over and above the already substantial concern over parametric model
misspecification in general.
We then use a Monte-Carlo approach to estimate the right-hand side of (1) in the main

text with L empty and M1 in lieu of M , which, under assumptions (i)–(iv) is the natural
direct e↵ect not through M1. By subtracting from this the estimate of the natural direct
e↵ect not through either or both of the mediators, we obtain our sequential mediation
analysis estimate of the natural indirect e↵ect through M2 alone.

Multiple mediator analysis based on interventional e↵ects

We now perform the multiple mediator analysis described in Section 3.2, again using
Monte-Carlo simulation as described at the end of Section 3.3. Details are given in the
eAppendix. We make assumptions (i’)–(iii’). In addition to models 1–4 above, we also
now use:

Model 2’: A logistic regression model for treatment (M2) conditional on SES (A) and Region
and Year of diagnosis (C).

The reason for specifying this model – which may be incompatible with model 2 – is
that (6)–(8) all involve the distribution of M2a given C, which can be substituted by the
distribution of M2 given A and C under assumption (iii). Displays (5), on the other hand,
involves model 2, and (8) involves both. The results are given in Table 2.

Limitations

Our analyses are included mainly for illustration, to show how the proposed method can
be applied in a realistic setting, and to show that even the most complicated e↵ect, namely
the mediated dependence (8), can have a meaningful interpretation when considered in
an applied context. In order to focus on these interpretational issues, we made several
simplifications that could be relaxed in future analyses of these data to gain a deeper
and more reliable understanding of the reasons underlying socio-economic discrepancies in
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breast cancer survival. Dichotomising both mediators has likely led to diluting the indirect
e↵ects and inflating the direct e↵ect. In addition, dichotomising SES, the exposure, may
have led to missing some more subtle e↵ects across the income distribution. Focussing
only on one-year survival may also mean that a di↵erent picture relating to longer term
survival has been missed. In future work, we plan to relax all these simplifications in
a more comprehensive substantive analysis, which will also involve sensitivity analyses
to assess the impact of dropping women with unobserved stage at diagnosis. Another
important limitation is the likely presence of unmeasured confounding, particularly of
M1 and Y by the latent age at disease onset, and of M2 and Y by comorbidities, not
available to us in the NYCRIS data. Sensitivity analyses to detect the plausible impact
of such unmeasured confounding, as well as the robustness to the choice of a normality
assumption for the errors from the model for age at diagnosis should also be explored.

eAppendix D: Stata code for the data analysis
gen xm1a=x*m1a

gen xm1b=x*m1b

gen xm2=x*m2

gen m1ab=m1a*m1b

gen m1am2=m1a*m2

gen m1bm2=m1b*m2

gen xm1ab=x*m1a*m1b

gen xm1am2=x*m1a*m2

gen xm1bm2=x*m1b*m2

gen m1abm2=m1a*m1b*m2

gen xm1abm2=x*m1a*m1b*m2

logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

logit m1b x m1a xm1a i.c1 i.c2

reg m1a x i.c1 i.c2

cap program drop seqMC

cap program define seqMC, rclass

cap drop m1a_0-tce

qui set obs 6000000

qui replace c1=c1[_n-29580] if c1==.

qui replace c2=c2[_n-29580] if c2==.

qui reg m1a x i.c1 i.c2

qui gen m1a_0 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)+_b[2002.c2]*(c2==2002)

+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004) +_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)

+e(rmse)*rnormal()

qui gen m1a_1 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)+_b[2002.c2]*(c2==2002)

+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004) +_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[x]

+e(rmse)*rnormal()

qui logit m1b x m1a xm1a i.c1 i.c2

qui gen m1b_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)

+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0)))

qui gen m1b_1 = runiform()<1/(1+exp(-(_b[_cons] +_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)

+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1)))
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qui logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

qui gen m2_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m1ab]*m1a_0*m1b_0)))

qui gen m2_1 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1)))

qui gen m2_01 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_1+_b[m1b]*m1b_1+_b[m1ab]*m1a_1*m1b_1)))

qui gen m2_10 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0+(_b[m1ab]

+_b[xm1ab])*m1a_0*m1b_0)))

qui logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

*M1 and M2 as joint mediators

qui gen y_00 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m2]*m2_0+_b[m1ab]*m1a_0*m1b_0

+_b[m1am2]*m1a_0*m2_0+_b[m1bm2]*m1b_0*m2_0+_b[m1abm2]*m1a_0*m1b_0*m2_0)))

qui gen y_10 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0+(_b[m2]

+_b[xm2])*m2_0+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_0+

(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0)))

qui gen y_01 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_1+_b[m1b]*m1b_1+_b[m2]*m2_1+_b[m1ab]*m1a_1*m1b_1

+_b[m1am2]*m1a_1*m2_1+_b[m1bm2]*m1b_1*m2_1+_b[m1abm2]*m1a_1*m1b_1*m2_1)))

qui gen y_11 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003) +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1+(_b[m2]

+_b[xm2])*m2_1+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1+

(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1)))

*M1 as the only mediator

qui gen y_10_b = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_10+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_10

+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_10+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_10)))

qui gen NDE_M1M2=y_10-y_00

qui gen NIE_M1M2=y_11-y_10

qui gen NDE_M1=y_10_b-y_00

qui gen NIE_M1=y_11-y_10_b

qui gen NIE_M2alone=y_10_b-y_10

qui logit y x i.c1 i.c2

qui gen y1=1/(1+exp(-(_b[_cons]+_b[x]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen y0=1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)

+_b[2005.c2]*(c2==2005)+_b[2006.c2]*(c2==2006))))

qui gen tce=y1-y0

qui summ tce

return scalar tce=r(mean)
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qui summ NDE_M1M2

return scalar NDE_M1M2=r(mean)

qui summ NIE_M1M2

return scalar NIE_M1M2=r(mean)

qui summ NDE_M1

return scalar NDE_M1=r(mean)

qui summ NIE_M1

return scalar NIE_M1=r(mean)

qui summ NIE_M2alone

return scalar NIE_M2alone=r(mean)

end

cap program drop MMintMC

cap program define MMintMC, rclass

cap drop m1a_0-tce

qui set obs 6000000

qui replace c1=c1[_n-29580] if c1==.

qui replace c2=c2[_n-29580] if c2==.

qui reg m1a x i.c1 i.c2

qui gen m1a_0 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+e(rmse)*rnormal()

qui gen m1a_1 = _b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]

+e(rmse)*rnormal()

qui logit m1b x m1a xm1a i.c1 i.c2

qui gen m1b_0 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0)))

qui gen m1b_1 = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1)))

qui logit m2 x m1a m1b xm1a xm1b m1ab xm1ab i.c1 i.c2

qui gen m2_0_cond = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m1ab]*m1a_0*m1b_0)))

qui gen m2_1_cond = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1)))

qui logit m2 x i.c1 i.c2

qui gen m2_0_marg = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen m2_1_marg = runiform()<1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x])))

qui logit y x m1a m1b m2 xm1a xm1b xm2 m1ab m1am2 m1bm2 xm1ab xm1am2 xm1bm2 m1abm2 xm1abm2 i.c1 i.c2

qui gen y_000_7 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[m1a]*m1a_0+_b[m1b]*m1b_0+_b[m2]*m2_0_cond

+_b[m1ab]*m1a_0*m1b_0+_b[m1am2]*m1a_0*m2_0_cond+_b[m1bm2]*m1b_0*m2_0_cond

+_b[m1abm2]*m1a_0*m1b_0*m2_0_cond)))

qui gen y_100_7 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)
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+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_0_cond+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0+(_b[m1am2]

+_b[xm1am2])*m1a_0*m2_0_cond+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0_cond+

(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0_cond)))

qui gen y_110_8 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)/// +_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_0_marg+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_0_marg+(_b[m1bm2]

+_b[xm1bm2])*m1b_1*m2_0_marg+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_0_marg)))

qui gen y_100_8 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_0_marg+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0

+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_0_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_0_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_0_marg)))

qui gen y_101_9 = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)_b[x]+(_b[m1a]+_b[xm1a])*m1a_0+(_b[m1b]+_b[xm1b])*m1b_0

+(_b[m2]+_b[xm2])*m2_1_marg+(_b[m1ab]+_b[xm1ab])*m1a_0*m1b_0

+(_b[m1am2]+_b[xm1am2])*m1a_0*m2_1_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_0*m2_1_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_0*m1b_0*m2_1_marg)))

qui gen y_111_10cond = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_1_cond+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1_cond+(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1_cond

+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1_cond)))

qui gen y_111_10marg = 1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006)+_b[x]+(_b[m1a]+_b[xm1a])*m1a_1+(_b[m1b]+_b[xm1b])*m1b_1

+(_b[m2]+_b[xm2])*m2_1_marg+(_b[m1ab]+_b[xm1ab])*m1a_1*m1b_1

+(_b[m1am2]+_b[xm1am2])*m1a_1*m2_1_marg+(_b[m1bm2]+_b[xm1bm2])*m1b_1*m2_1_marg

+(_b[m1abm2]+_b[xm1abm2])*m1a_1*m1b_1*m2_1_marg)))

*display 7

qui gen d7=y_100_7-y_000_7

*display 8

qui gen d8=y_110_8-y_100_8

*display 9

qui gen d9=y_101_9-y_100_8

*display 10

qui gen d10=y_111_10cond-y_111_10marg-y_100_7+y_100_8

qui logit y x i.c1 i.c2

qui gen y1=1/(1+exp(-(_b[_cons]+_b[x]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen y0=1/(1+exp(-(_b[_cons]+_b[2.c1]*(c1==2)+_b[3.c1]*(c1==3)+_b[2001.c2]*(c2==2001)

+_b[2002.c2]*(c2==2002)+_b[2003.c2]*(c2==2003)+_b[2004.c2]*(c2==2004)+_b[2005.c2]*(c2==2005)

+_b[2006.c2]*(c2==2006))))

qui gen tce=y1-y0

qui summ tce

return scalar tce=r(mean)
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qui summ d7

return scalar d7=r(mean)

qui summ d8

return scalar d8=r(mean)

qui summ d9

return scalar d9=r(mean)

qui summ d10

return scalar d10=r(mean)

end

bootstrap r(tce) r(d7) r(d8) r(d9) r(d10), reps(1000): MMintMC

bootstrap r(tce) r(NDE_M1M2) r(NIE_M1M2) r(NDE_M1) r(NIE_M1) r(NIE_M2alone), reps(1000): seqMC
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Estimate SE 95% CI

lower upper

Baseline odds

⇤
23.74 3.51 17.77 31.72

Conditional odds ratios

SES

higher 1.871 0.411 1.216 2.877

Age at diagnosis (yrs)

⇤⇤
0.931 0.005 0.920 0.942

Stage

advanced 0.060 0.009 0.045 0.079

Treatment

major 2.975 0.443 2.222 3.984

SES⇥Agediag 0.988 0.010 0.968 1.009

SES⇥Stage 0.657 0.164 0.402 1.073

SES⇥Treat 0.954 0.257 0.563 1.617

Agediag⇥Stage 1.056 0.008 1.041 1.071

Agediag⇥Treat 1.008 0.009 0.992 1.025

Stage⇥Treat 2.140 0.409 1.472 3.111

SES⇥Agediag⇥Stage 1.003 0.013 0.978 1.028

SES⇥Agediag⇥Treat 1.002 0.016 0.971 1.033

SES⇥Stage⇥Treat 1.090 0.376 0.555 2.142

Agediag⇥Stage⇥Treat 0.978 0.011 0.956 1.001

SES⇥Agediag⇥Stage⇥Treat 1.012 0.022 0.970 1.056

Region

North-West 0.774 0.115 0.579 1.035

Yorks 0.991 0.059 0.881 1.114

Year of diagnosis

2001 0.830 0.088 0.674 1.022

2002 0.942 0.102 0.762 1.165

2003 1.019 0.109 0.827 1.256

2004 0.954 0.103 0.772 1.180

2005 1.006 0.108 0.815 1.243

2006 1.092 0.120 0.879 1.355

Table 1: Results of logistic regression of one-year survival (Y ) on SES (A), Stage and
Age at diagnosis (M1), Treatment (M2), and Region and Year of diagnosis (C) with all
interactions between A, M1 and M2. One-yr survival is coded 1 for survival and 0 for
death.
⇤ estimated odds of survival for women diagnosed in the North East region in 2000, with
low SES, age at diagnosis 62 years, early stage and minor or no surgery
⇤⇤ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI

lower upper

Baseline odds

⇤
4.796 0.226 4.373 5.261

Conditional odds ratios

SES

higher 0.725 0.026 0.677 0.777

Age at diagnosis (yrs)

⇤⇤
0.937 0.002 0.934 0.941

Stage

advanced 0.186 0.009 0.169 0.205

SES⇥Agediag 1.033 0.003 1.027 1.038

SES⇥Stage 1.799 0.152 1.525 2.123

Agediag⇥Stage 1.014 0.004 1.007 1.021

SES⇥Agediag⇥Stage 0.974 0.006 0.962 0.985

Region

North-West 1.806 0.155 1.526 2.138

Yorks 0.795 0.025 0.747 0.846

Year of diagnosis

2001 1.089 0.061 0.976 1.214

2002 1.119 0.062 1.003 1.249

2003 1.248 0.069 1.120 1.390

2004 1.429 0.081 1.280 1.596

2005 1.411 0.079 1.265 1.575

2006 1.442 0.082 1.291 1.611

Table 2: Results of logistic regression of Treatment (M2) on SES (A), Stage and Age at
diagnosis (M1), and Region and Year of diagnosis (C) with all interactions between A
and M1. Treatment is coded 1 for major surgery and 0 for minor or no surgery.
⇤ estimated odds of major surgery for women diagnosed in the North East region in 2000,
with low SES, age at diagnosis 62 years and early stage.
⇤⇤ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI
lower upper

Baseline odds⇤ 0.164 0.009 0.148 0.182

Conditional odds ratios
SES
higher 0.757 0.029 0.702 0.816

Age at diagnosis (yrs)⇤⇤ 1.020 0.002 1.017 1.023

SES⇥Agediag 1.002 0.003 0.996 1.007

Region
North-West 0.655 0.066 0.538 0.797
Yorks 1.059 0.040 0.985 1.140

Year of diagnosis
2001 0.917 0.062 0.804 1.047
2002 0.950 0.064 0.833 1.083
2003 0.951 0.062 0.837 1.082
2004 0.845 0.057 0.741 0.965
2005 0.872 0.058 0.765 0.994
2006 0.909 0.061 0.798 1.036

Table 3: Results of logistic regression of Stage at diagnosis (one component of M1) on SES
(A), Age at diagnosis (the other component of M1), and Region and Year of diagnosis (C)
including the interaction between SES and age at diagnosis. Stage at diagnosis is coded
1 for advanced and 0 for early.
⇤ estimated odds of being diagnosed at an advanced stage for women diagnosed in the
North East region in 2000, with low SES and aged 62 years at diagnosis.
⇤⇤ centred at the mean age at diagnosis (61.8 years)
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Estimate SE 95% CI
lower upper

Baseline mean (intercept)⇤ 61.36 0.247 60.88 61.85

Mean di↵erences / slopes
SES
higher –1.53 0.168 –1.86 –1.20

Region
North-West –0.488 0.383 –1.24 0.262
Yorks 0.442 0.170 0.109 0.775

Year of diagnosis
2001 0.616 0.309 0.011 1.22
2002 0.620 0.309 0.014 1.22
2003 1.36 0.303 0.765 1.95
2004 0.737 0.303 0.142 1.33
2005 1.13 0.302 0.542 1.73
2006 0.958 0.305 0.360 1.56

Residual standard deviation
13.87

Table 4: Results of linear regression of Age at diagnosis (one component of M1, in years)
on SES (A) and Region and Year of diagnosis (C).
⇤ estimated mean age at diagnosis for women diagnosed in the North East region in 2000,
with low SES.
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Figure 1: Causal diagram 5: multiple mediators.
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