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ABSTRACT 

 

A library of novel pyridylchalcones were synthesised and screened against Trypanosoma 

brucei rhodesiense. Eight were shown to have good activity with the most potent 8 having 

an IC50 value of 0.29 µM. Cytotoxicity testing with human KB cells showed a good 

selectivity profile for this compound with a selectivity index of 47. Little activity was seen 

when the library was tested against Leishmania donovani. In conclusion, pyridylchalcones 

are promising leads in the development of novel compounds for the treatment of human 

African trypanosomiasis (HAT). 

 

Keywords: Neglected tropical disease; Trypanosoma brucei rhodesiense; Leishmania 

donovani; pyridylchalcone; Claisen-Schmidt. 
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1. Introduction 

 

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic 

disease transmitted by the bite of tsetse flies. It occurs in 36 countries in sub-Saharan 

Africa, where millions of people are at risk of infection [1-3]. HAT is caused by 2 sub-

species of Trypanosoma brucei and exists as a chronic infection with T. b. gambiense or as 

an acute infection with T. b. rhodesiense. Untreated, both forms are usually fatal [1-3]. 

There are two clinical stages in the progression of HAT. The first corresponds to the 

multiplication of the parasites in the blood and lymphatic system.  The second occurs when 

these cross the blood-brain barrier to infect the central nervous system causing 

neurological symptoms to appear. Stage 1 can be treated with pentamidine and suramin 

whereas melarsoprol, eflornithine, and their combinations with nifurtimox are the only 

treatments for stage 2. All of these drugs suffer from serious drawbacks including low 

efficacy, severe toxic side effects and the need for parenteral administration [1-3]. With no 

vaccine available and limited therapeutic alternatives the continuing emergence of drug 

resistance is seen as a major public health problem [4]. An urgent need exists for the 

development of more effective, less toxic and orally available treatments for this neglected 

tropical disease. 

  

Chalcones (1,3-diphenyl-2-propen-1-ones) are a major class of natural products often found 

in edible plants. They have received considerable attention due to their wide range of 

biological actions and have been used as a scaffold in the development of anticancer, 

antioxidant, antiangiogenic, and anti-inflammatory agents [5].  A number of natural and 

synthetic chalcones have been shown to possess anti-parasitic activities including 

licochalcone A 1, a natural prenylated chalcone isolated from liquorice root (Glycyrrhiza 

glabra), and a potent anti-leishmanial agent [6]. However, the therapeutic use of chalcones 

has been limited due to their poor bioavailability and rapid metabolic clearance from 

biological systems [7]. Nevertheless, hybrid molecules incorporating the chalcone moiety 

are emerging as promising leads for targeting Leishmania and Trypanosoma species [8-

11]. For example, the chalcone-benzoxaborole hybrid 2 gave 100% mouse survival rate 

and complete elimination of parasites in a T. b. brucei murine model [9].  
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Pyridylchalcones, such as 3 and 4, have been found to exhibit both antimalarial and anti-

leishmanial activity [6, 11, 12, 13]. However, there are no examples of them being tested 

against Trypanosoma brucei. With the antitrypanosomal activity of chalcone hybrids in mind 

[8-11], we were intrigued to determine whether pyridylchalcones would also be active 

against this target. It was anticipated that pyridyl analogues would exhibit the same low 

toxicity shown by compounds containing the chalcone nucleus but with improved 

bioavailability [14]. The introduction of a pyridine group will reduce the lipophilicity of the 

molecule and increase water solubility, both of which should ease formulation. In addition, 

lowering the lipophilicty of a chalcone and the inclusion of a heterocyclic A-ring has been 

associated with an increase in anti-parasitic activity [15].  

 

We report here the synthesis and in vitro evaluation of a series of novel pyridylchalcones 

against T. b. rhodesiense and L. donovani. Their cytotoxicity against human KB cells was 

also determined to establish their selectivity profile. 

 

2. Chemistry  

 

Attempts to prepare the 3-(3-pyridyl)chalcone 8 using standard Claisen-Schmidt conditions 

with 2 equivalents of aqueous sodium hydroxide in methanol yielded an unexpected result 

[16]. Instead of the desired chalcone, recrystallization from ethanol afforded the diketone 7 

in 25% yield (Scheme 1). This product presumably results from conjugate addition of the 

enolate of 3-bromoacetophenone to the previously formed chalcone. Similar results were 

obtained when using 3-chloroacetophenone and 4-chloroacetophenone. To our knowledge 

this unusual reactivity has not previously been reported for 3-pyridinecarboxaldehyde 5, 
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Fig. 1. Anti-parasitic chalcones 
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although it has been observed with both 2-pyridinecarboxaldehyde and 2-

quinolinecarboxaldehyde when reacted with acetophenone under similar conditions [17]. 

The addition of one equivalent of pyridine to these reactions was found to prevent this 

conjugate addition. This was thought to be due to the pyridine competing with the aldolate 

nitrogen for chelation of the metal ion in the intermediate. Unfortunately, this result was not 

repeated when one equivalent of pyridine was added to our reaction. 

 

Bhagat et al report good yields of chalcone with all three isomers of pyridinecarboxaldehyde 

when reacted with 4-methoxyacetophenone and 10% lithium hydroxide monohydrate in 

ethanol [18]. Using these conditions, we obtained 8 in a disappointing yield of 39%. It was 

clear from TLC that 7 was still being formed during this reaction. This proved difficult to 

remove by recrystallization from ethanol, and column chromatography was required to 

obtain pure 8. In a bid to improve yields and simplify purification we investigated the use of 

potassium hydroxide as a catalyst in 1,4-dioxane. This couple has been found to give good 

yields of quinoline-2-one based chalcones which had proved difficult to prepare using other 

conditions [19]. However, with 1.6 equivalents of potassium hydroxide we again obtained a 

mixture of 8 and 7. Maintaining 1, 4-dioxane as the solvent but changing the base to lithium 

hydroxide monohydarate proved the solution to our problems with 8 being obtained in 80% 

yield after recrystallization from ethanol. TLC showed little or no diketone formation. This 

method proved suitable for the synthesis of a range of pyridylchalcones (Table 1) in high 

yield. 

 

3. Results and discussion 
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Scheme 1. Reagents and conditions: (i) NaOH(aq), MeOH, 0°C then RT (25%). (ii) 
LiOH.H2O, 1,4-dioxane, RT (80%). 
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The activity of our chalcones against T. b. rhodesiense (STIB900) was determined using 

the Alamar blue growth inhibition assay [20]. Their cytotoxicity against human KB cells was 

also obtained in vitro (Table 1) allowing the calculation of a selectivity index (SI) for each 

compound where: SI = IC50 (KB cells)/ IC50 (T. b. r). Of the 17 compounds synthesised, 8 

showed good activity against T. b. rhodesiense (IC50 <0.2 mg/ mL), 8 moderate activity 

(IC50 0.2-3 mg/ mL) and 1 was inactive (IC50 > 3 mg/ mL). The most active compound, with 

an IC50 value of 0.29 µM, was 8 which contained a 3-pyridyl A-ring and a 3-bromophenyl B-  

Table 1. Antitrypanosomal activity and cytotoxicity of synthesized chalcones 

N° Ar (A-ring) Ar' (B-ring) IC50 / µM SIb 

T. b. 
rhodesiense 

STIB900a 

Cytotoxicity  
KB Cells 

7 − − 12.2 181 15 
8 3-Py- 3-Br-Ph- 0.29 13.5 47 
9 Ph- 3-Br-Ph- 0.96  18.4 19 
10 3-Py- Ph- 0.72  7.7 11 
11 3-Py- 3-MeO-Ph- 0.41 2.3 6 
12 3-Py- 4-Br-Ph- 0.34 7.9 23 
13 3-Py- 2-Br-Ph- 37.8 >300 >8 
14 3-Py- 2-MeO-Ph- 1.14 22.7 20 
15 3-Py- 4-MeO-Ph- 0.94 21.7 23 
16 3-Py- 3,4-(MeO)2-Ph- 0.98 22.8 24 
17 4-Py- 3-Br-Ph- 0.65 23.7 36 
18 2-Py- 3-Br-Ph- 0.40 14.7 37 
19 3-Br-Ph- 3-Py- 0.69 43.7 63 
20 3-Py- 3-Cl-Ph- 0.62 12.7 21 
21 3-Py- 3,4-(OCH2O)-Ph- 4.83 59.4 12 
22 3-Py- 3,4-F2-Ph- 0.72 20.7 29 
23 3-Py- 3-HO-Ph- 1.15 21.7 19 
24 3-Py- 3-Py- 1.02 17.0 17 
 Pentamidine  0.011 − − 
 Melarsoprol  0.005 − − 
 Podophyllotoxin  − 0.058 − 

a Values are the mean of two independent experiments in triplicate. 
b Selectivity index (SI) = IC50 KB cells/ IC50 T. b. rhodesiense STIB900. 
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Scheme 2. Reagents and conditions: (i) LiOH.H2O, 1,4-dioxane, RT.  
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ring. This compound also showed good selectivity with an SI of 47. Although it was difficult 

to establish a clear structure activity relationship, certain trends were apparent. The 

presence of a pyridyl A-ring appears to be important for high activity. When this was 

replaced by a phenyl, as in 9, the activity dropped to 0.96 µM. The position of the nitrogen 

in the pyridine ring does not seem to be as crucial with the 2-pyridyl derivative 18 still 

having reasonable activity (IC50 = 0.40 µM). The 4-pyridyl derivative 17 had a lower IC50 

value of 0.65 µM but was still considered active. Modifying the B-ring while keeping a 3-

pyridyl A-ring can have a significant effect on activity. This was particularly apparent in 13 

and 14 which both have substituents at the 2-position in the B-ring. The latter with a 

methoxy group shows only moderate activity with an IC50 value of 1.14 µM, while the former 

with a bromo is our only inactive compound. Moving the bromo group in 8 to the para 

position produced a slight reduction in activity with 12 having an IC50 of 0.34 µM.  A more 

significant change was evident in 20 where the bromo group in 8 was replaced by a chloro 

resulting in a doubling of the IC50 value to 0.62 µM. With a methoxy group at the meta 

position in ring B, 11 showed reasonable activity (IC50 0.41 µM) but had a relatively low SI 

of 6. Moving the methoxy group to the para position significantly reduced activity with 15 

having an IC50 of 0.94 µM. The only other derivatives with an electron releasing group at 

this position, 16 (3,4-dimethoxy) and 21 (3,4-methylenedioxy), both exhibited only moderate 

activity suggesting that electron releasing groups in the B-ring are not conducive to high 

activity. The phenyl derivative 10 and its 3, 4-difluoro analogue 22 were both active with the 

same IC50 value of 0.72 µM.  The phenolic chalcone 23 had moderate activity with an IC50 

value of 1.15 µM. Taken in conjunction with our other results this could suggest that high 

activity is favoured by a hydrophobic group at the 3-position in the B-ring. A 3-pyridyl group 

in the B-ring is not optimum for activity with 19 and 24 giving only moderate IC50 values of 

0.69 and 1.02 µM respectively. The diketone 7 was found to be inactive. 

 

In view of the literature precedent [11, 12] and our above results with T. b. rhodesiense we 

decided to screen our compound library against Leishmania donovani [21]. Using HU3 

intracellular amastigotes at 30 µM only 8, 9, 12 and 20 showed any activity, with 39.7, 13.8, 

11.6 and 2.7% inhibition respectively. At 10 µM no inhibition was observed. Thus, although 

a number of our derivatives showed promise as potential antitrypanosomal agents they 

appear to have little activity against Leishmania. 
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4. Conclusion 

 

Initial attempts to prepare 3-pyridylchalcones using standard Claisen-Schmidt conditions 

with sodium hydroxide were unsuccessful resulting in the formation of a diketone. This 

problem was overcome by the use of lithium hydroxide monohydrate as base in 1, 4-

dioxane. Of the 17 derivatives synthesised eight were shown to have good activity against 

T. b. rhodesiense with the most active 8 having an IC50 value of 0.29 µM. This compound 

showed good selectivity with an SI of 47. Little activity was observed when the library was 

evaluated against L. donovani. In conclusion, pyridylchalcones are promising leads in the 

development of novel compounds for the treatment of HAT. 

 

5. Experimental section 

 

5.1 Synthetic chemistry 

 

5.1.1 General 

 All solvents and chemicals were used as purchased without further purification. The 1H and 
13C-NMR spectra were recorded on a Bruker Avance AV400 NMR spectrometer at 30°C. 

Chemical shifts are reported in δ units (ppm) relative to either TMS or the residual solvent 

signal. IR spectra were recorded as KBr discs on a Perkin-Elmer 298 spectrophotometer. 

HRMS was performed using a Thermo Scientific LTQ Orbitrap XL at the EPSRC UK 

National Mass Spectrometry Facility at Swansea University. Melting points (uncorrected) 

were determined on a Gallenkamp melting point apparatus in open glass capillary tubes. 

TLC was performed on Merck Silica Gel 60F254 coated plates. Plates were visualised under 

UV light (254/366nm) and stained with either 2, 4-dinitrophenylhydrazine, iodine or 

phosphomolybdic acid. Fluka silica gel 60 (30-45µ) was used for flash chromatography. 

Elemental analyses (C, H, N) was carried out by Warwick Analytical Services using a 

CE440 elemental analyser. Results were within ±0.4% of the theoretical values.  

 

5.1.2 1, 5-Di(3-bromophenyl)-3-(3-pyridyl)pentane-1,5-dione (7) 

Sodium hydroxide solution (0.8 mL, 50% w/v, 10.00 mmol) was added to a stirred and 

cooled (ice bath) solution of 3-bromoacetophenone (0.40 mL, 5.00 mmol) in ethanol (2.5 

mL). 3-Pyridinecarboxylate (0.47 mL, 5.00 mmol) was added and stirring continued for 2 h 
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before allowing the reaction to warm to RT. On the formation of a cream precipitate the 

reaction was quenched with water (30 mL) and the solid removed by filtration. After 

washing with water the solid was recrystallized from ethanol affording white crystals (0.305 

g, 25%). mp 152-154oC; 1H NMR (CDCl3): δ 3.32 (2H, dd, J = 6.6, 16.7 Hz), 3.54 (2H, dd, J 

= 6.6, 16.7 Hz), 4.08 (1H, quin, J = 6.6 Hz), 7.15-7.26 (2H, m), 7.36 (2H, t, J = 8.3, Hz), 

7.60-7.70 (2H, m), 7.86 (2H, d, J = 8.3 Hz), 8.07 (2H, s), 8.48 (1H, d, J = 1.2 Hz), 8.59 (1H, 

s); 13C NMR (CDCl3) δ 34.2, 44.2, 123.1, 123.5, 126.6, 130.3, 131.2, 135.4 136.3, 138.3, 

138.9, 148.4, 149.2, 196.4; IR (KBr) /cm-1 1678 (C=O); HRMS found [M+1]+ 485.9686, 

C22H17Br2NO2 requires [M+1]+ 485.9699; Anal. Calcd C22H17Br2NO2: C, 54.24; H, 3.52, N, 

2.88; Found C, 54.08; H, 3.54; N, 2.91. 

 

5.1.3 General method for chalcone synthesis 

Lithium hydroxide monohydrate (0.63 g, 14.95 mmol) was added to a stirred solution of the 

appropriate aldehyde (9.35 mmol) and ketone (9.35 mmol) in 1,4-dioxane (2.5 mL) at RT. 

Upon completion, as indicated by the formation of a precipitate and confirmed by TLC the 

reaction was quenched with water (30 mL). The resulting mixture was extracted with ethyl 

acetate (3x30 mL). The combined organic extracts were washed with brine (50 mL), dried 

(MgSO4) and the solvent removed under vacuum. The crude product was purified by either 

recrystallization from ethanol or flash chromatography on silica gel. 

 

 5.1.4 (E)-1-(3-Bromophenyl)-3-(3-pyridinyl)prop-2-en-1-one (8)  

Recrystallization from ethanol. Pale yellow crystals (80%). mp 126-128oC; 1H NMR (DMSO-

d6): δ 7.51 (1H, dd, J = 7.4, 3.9 Hz), 7.56 (1H, t, J = 7.7 Hz), 7.81 (1H, d, J = 15.8 Hz), 7.87-

7.92 (1H, m), 8.11 (1H, d, J = 15.8 Hz), 8.16-8.19 (1H, m), 8.35-8.42 (2H, m), 8.64 (1H, dd, 

J = 2.1, 7.4 Hz), 9.06 (1H, d, J = 2.8 Hz); 13C NMR (DMSO-d6) δ 122.4, 123.4, 123.9, 127.6, 

130.37, 131.04, 135.31, 135.96,  139.27, 141.4, 150.5, 151.2, 187.7; IR (KBr) /cm-1 1665 

(C=O); HRMS found [M]+ 288.0025, C14H10BrNO requires [M]+ 288.0019; Anal. Calcd 

C14H10BrNO: C, 58.36; H, 3.50, N, 4.86; Found C, 58.26; H, 3.44; N, 4.83. 

 

5.1.5  (E)-1-(3-Bromophenyl)-3-(phenyl)prop-2-en-1-one (9)  

Recrystallization from ethanol. Pale yellow crystals  (67%). mp 82-84oC; 1H NMR (DMSO-

d6): δ 7.44-7.47 (3H, m), 7.53 (1H, t, J = 9.2 Hz), 7.76 (1H, d, J = 15.3 Hz), 7.84-7.90 (3H, 

m), 7.93 (1H, d, J = 15.3 Hz), 8.14 (1H, dd, J = 1.2, 7.5 Hz), 8.30-8.34 (1H, m); 13C NMR 
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(DMSO-d6) δ 121.6, 122.1, 127.6, 128.1, 128.9, 130.5, 130.9, 139.5, 187.8; IR (KBr) /cm-1 

1661 (C=O); HRMS found [M+1]+ 288.0048, C15H11BrO requires [M+1]+ 288.0046; Anal. 

Calcd C15H11BrO: C, 62.74; H, 3.86; Found C, 62.38; H, 3.87. 

 

5.1.6 (E)-1-(Phenyl)-3-(3-pyridinyl)prop-2-en-1-one (10)  

Flash chromatography, 40% ethyl acetate: hexane. Lemon yellow solid (67%). mp 93-95oC; 
1H NMR (CDCl3): δ 7.36 (1H, dd, J = 4.9, 9.9 Hz), 7.49-7.56 (2H, m), 7.58-7.64 (2H, m), 

7.79 (1H, d, J = 14.8 Hz), 7.91-7.97 (1H, m), 8.00-8.07 (2H, m), 8.63 (1H, dd, J = 1.0, 4.9 

Hz), 8.62 (1H, d, J = 1.0 Hz); 13C NMR (CDCl3) δ 123.8, 128.6, 130.7, 132.9, 133.2, 134.6, 

137.7, 140.9, 150.0, 151.1, 189.8; IR (KBr) /cm-1 1660 (C=O); HRMS found [M+1]+ 

210.0913, C14H11NO requires [M+1]+ 210.0913; Anal. Calcd C14H11NO: C, 80.36; H, 5.30, 

N, 6.69; Found C, 80.36; H, 5.26; N, 6.60. 

  

5.1.7 (E)-1-(3-Methoxyphenyl)-3-(3-pyridinyl) prop-2-en-1-one (11)  

Flash chromatography, 50% ethyl acetate: hexane. Light yellow solid (70%). mp 83-84°C; 
1H NMR (CDCl3): δ 3.90 (3H, s), 7.15 (1H, dd, J = 3.7, 8.8 Hz), 7.36 (1H, dd, J = 4.7, 8.8 

Hz), 7.43 (1H, t, J = 8.4 Hz), 7.54-7.63 (3H, m), 7.79 (1H, d, J = 15.8 Hz), 7.93-7.98 (1H, 

m), 8.64 (1H, dd, J = 1.9, 4.7 Hz), 8.87 (1H, d, J = 2.7 Hz). 13C NMR (CDCl3): δ 55.5, 112.9, 

119.6, 120.8, 121.3, 123.8, 129.7, 130.7, 139.1, 140.9, 150.3, 151.1, 160.0, 189.5; IR (KBr) 

/cm-1 1663 (C=O); HRMS found [M+1]+ 240.1019, C15H13NO2 requires [M+1]+ 240.1019; 

Anal. Calcd C15H13NO2: C, 75.30; H, 5.48, N, 5.85; Found C, 75.53; H, 5.42; N, 5.67. 

 

5.1.8 (E)-1-(4-Bromophenyl)-3-(3-pyridinyl)prop-2-en-1-one (12)   

Recrystallization from ethanol. Fine off white crystals  (80%). mp 126-128oC; 1H NMR 

(CDCl3): δ 7.36 (1H, dd, J = 5.3, 9.5 Hz), 7.54 (1H, d, J = 15.9 Hz), 7.65 (2H, d, J = 8.4 Hz), 

7.80 (1H, d, J = 15.8 Hz), 7.89 (2H, d, J = 8.4 Hz), 7.93-7.98 (1H, m), 8.65 (1H, d, J = 3.1 

Hz), 8.86 (1H, s); 13C NMR (CDCl3): δ 123.2, 123.8, 128.3, 130.1, 130.5, 131.8, 134.6, 

141.5, 150.1, 151.3, 188.7; IR (KBr) /cm-1 1663 (C=O); HRMS found [M+1]+ 289.9997, 

C14H10BrNO requires [M+1]+ 289.9998; Anal. Calcd C14H10BrNO: C, 58.36; H, 3.50, N, 4.86; 

Found C, 58.34; H, 3.46; N, 4.81. 

 

5.1.9 (E)-1-(2-Bromophenyl)-3-(3-pyridinyl)prop-2-en-1-one (13)   
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Recrystallization from ethanol. Pale yellow crystals  (37%). mp 248-250oC (decomposed); 
1H NMR (CDCl3): δ 7.38-7.42 (2H, m), 7.52 (1H, d, J = 15.6 Hz), 7.67 (1H, dd, J = 2.2, 5.4 

Hz), 7.79 (1H, d, J = 15.6 Hz), 7.93-8.14 (2H, m), 8.15 (1H, t, J = 7.2 Hz), 8.65 (1H, d, J = 

4.7 Hz), 8.87 (1H, s); 13C NMR (CDCl3): δ 123.1,  127.0, 130.3, 131.6, 134.6, 136.0, 139.5, 

141.8, 150.2, 151.4, 186.1; IR (KBr) /cm-1 1666 (C=O); HRMS found [M+1]+ 289.9999, 

C14H10BrNO requires [M+1]+ 289.9998; Anal. Calcd C14H10BrNO: C, 58.36; H, 3.50, N, 4.86; 

Found C, 58.30; H, 3.42; N, 4.88. 

 

5.1.10 (E)-1-(2-Methoxyphenyl)-3-(3-pyridinyl)prop-2-en-1-one (14)   

Recrystallization from ethanol. Pale yellow crystals  (44%). mp 91-93oC; 1H NMR (DMSO-

d6): δ 3.91 (3H, s), 7.02 (1H, d, J = 8.3 Hz), 7.07 (1H, t, J = 7.5 Hz), 7.35 (1H, dd, J = 4.2, 

7.9 Hz), 7.48-7.54 (1H, m), 7.50 (1H, d, J = 15.8 Hz), 7.64 (1H, d, J = 15.8 Hz), 7.67 (1H, 

dd, J = 1.7, 7.5 Hz), 7.89 (1H, d, J = 7.9 Hz), 8.61 (1H, d, J = 4.2 Hz), 8.82 (1H, s); 13C 

NMR (CDCl3): δ 55.5, 11.4, 120.7, 123.5, 128.7 130.4, 130.6, 133.5, 134.7, 138.9, 149.9, 

150.8, 158.3, 192.1; IR (KBr) /cm-1 1656 (C=O); HRMS Found [M+1]+ 240.1017, C15H13NO2 

requires [M+1]+ 240.1019; Anal. Calcd C15H13NO2: C, 75.30; H, 5.48, N, 5.85; Found C, 

75.14; H, 5.58; N, 5.64. 

   

5.1.11 (E)-1-(4-Methoxyphenyl)-3-(3-pyridinyl)prop-2-en-1-one (15) [12]  

Recrystallization from ethanol. Yellow solid (60%). mp 105-106°C; 1H NMR (CDCl3): δ 3.90 

(3H, s), 7.00 (2H, d, J = 8.8 Hz), 7.35 (1H, dd, J = 4.6, 8.3 Hz), 7.61 (1H, d, J = 16.2 Hz), 

7.78 (1H, d, J = 16.2 Hz), 7.92-7.96 (1H, m), 8.04 (2H, d, J = 8.8 Hz), 8.62 (1H, dd, J = 4.2, 

1.3 Hz), 8.87 (1H, d, J = 2.5 Hz); 13C NMR (CDCl3): δ 55.6, 114.0, 123.8, 130.7, 130.9, 

134.6, 137.4, 140.1, 149.9, 150.9, 163.7, 188.0; IR (KBr) /cm-1 1662 (C=O); HRMS found 

[M+1]+ 240.1017, C15H13NO2 requires [M+1]+ 240.1019; Anal. Calcd C15H13NO2.0.15H2O: 

C, 74.46; H, 5.54, N, 5.79; Found C, 74.41; H, 5.43; N, 5.77. 

 

5.1.12 (E)-1-(3, 4-Dimethoxyphenyl)-3-(3-pyridyl)prop-2-en-l-one (16)  

Flash chromatography, 60-80% ethyl acetate: hexane. Light yellow solid (67%). mp 91-

93°C; 1H NMR (CDCl3): δ 3.99 (6H, s), 6.94 (1H, d, J = 7.5 Hz), 7.36 (1H, dd, J = 5.0, 8.0 

Hz), 7.63 (1H, d, J = 15.9 Hz), 7.64 (1H, d, J = 2.0 Hz), 7.68 (1H, dd, J = 2.0, 7.5 Hz), 7.78 

(1H, d, J = 15.9 Hz), 7.93-7.96 (1H, m), 8.63 (1H, dd, J = 1.5, 5.0 Hz), 8.87 (1H, d, J = 1.5 

Hz); 13C NMR (CDCl3) δ 56.2, 110.0, 110.8, 122.7, 123.7, 124.5, 130.9, 134.6, 140.1, 
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149.40 149.9, 150.9, 153.7, 187.9; IR (KBr) /cm-1 1655 (C=O); HRMS found [M+1]+ 

270.1125, C16H15NO3 requires [M+1]+ 270.1125; Anal. Calcd C16H15NO3: C, 71.36; H, 5.61, 

N, 5.20; Found C, 71.03; H, 5.65; N, 5.14. 

 

5.1.13 (E)-1-(3-Bromophenyl)-3-(4-pyridinyl)prop-2-en-1-one (17)   

Recrystallization from ethanol. Pale yellow crystals  (34%). mp 104-106oC; 1H NMR 

(CDCl3): δ 7.34 (1H, t, J = 7.1 Hz), 7.41 (2H, d, J = 6.1 Hz), 7.53 (1H, d, J = 15.6 Hz), 7.64 

(1H, d, J = 15.6 Hz), 7.66-7.69 (1H, m), 7.87 (1H, dt, J = 1.0, 7.1 Hz), 8.07 (1H, t, J = 1.0 

Hz), 8.63 (2H, d, J = 6.1 Hz); 13C NMR (CDCl3): δ 122.1, 123.2, 125.4, 127.1, 130.4, 131.6, 

136.2, 139.2, 141.8, 142.4, 150.7, 188.4; IR (KBr) /cm-1 1666 (C=O); HRMS found [M+1]+ 

289.9998, C14H10BrNO requires [M+1]+ 289.9998; Anal. Calcd C14H10BrNO: C, 58.36; H, 

3.50, N, 4.86; Found C, 58.20; H, 3.46; N, 4.81. 

 

5.1.14 (E)-1-(3-Bromophenyl)-3-(2-pyridinyl)prop-2-en-1-one (18)   

Recrystallization from ethanol. Pale yellow crystals  (47%). mp 110-112oC; 1H NMR 

(CDCl3): δ 7.40-7.49 (2H, m), 7.55 (1H, t, J = 8.8 Hz), 7.72 (1H, d, J = 16.0 Hz), 7.85-8.00 

(2H, m), 8.10-8.15 (2H, m), 8.20 (1H, s), 8.70 (1H, d, J = 4.5 Hz); 13C NMR (CDCl3): δ 

125.0,  126.9, 127.5, 130.9, 135.7, 137.2, 143.8, 150.1, 152.6, 188.3; IR (KBr) /cm-1 1664 

(C=O); HRMS found [M+1]+ 289.0056, C14H10BrNO requires [M+1]+ 289.0052; Anal. Calcd 

C14H10BrNO: C, 58.36; H, 3.50, N, 4.86; Found C, 58.30; H, 3.45; N, 4.86. 

  

5.1.15 (E)-3-(3-Bromophenyl)-1-(3-pyridinyl)prop-2-en-1-one (19)   

Recrystallization from ethanol. Pale yellow crystals  (40%). mp 114-116oC; 1H NMR 

(CDCl3): δ 7.32-7.44 (2H, m), 7.52 (1H, d, J = 16.5 Hz), 7.72 (1H, d, J = 6.5 Hz), 7.81 (1H, 

d, J = 16.5 Hz), 7.93-7.98 (2H, m), 8.14 (1H, t, J = 1.5Hz), 8.64 (1H, d, J = 2.7 Hz), 8.87 

(1H, s); 13C NMR (CDCl3): δ 123.1,  123.2, 126.6, 130.4, 131.6, 134.6, 136.0, 142.3, 150.2, 

151.4, 188.4; IR (KBr) /cm-1 1658 (C=O); HRMS found [M+1]+ 289.0055, C14H10BrNO 

requires [M+1]+ 289.0052; Anal. Calcd C14H10BrNO: C, 58.36; H, 3.50, N, 4.86; Found C, 

58.30; H, 3.45; N, 4.81. 

 

5.1.16 (E)-1-(3-Chlorophenyl)-3-(3-pyridinyl)prop-2-en-1-one (20)  

Recrystallization from ethanol. Off white crystals  (65%). mp 128-130oC; 1H NMR (CDCl3): δ 

7.37 (1H, dd, J = 5.2, 7.7 Hz), 7.45 (1H, t, J = 6.6 Hz), 7.51-7.60 (2H,  m), 7.80 (1H, d, J = 
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16.0 Hz), 7.89 (1H, d, J = 7.6 Hz), 7.94-8.02 (2H, m), 8.65 (1H, d, J = 5.2 Hz), 8.86 (1H, s); 
13C NMR (CDCl3): δ  123.1, 123.8, 126.6, 128.6, 130.1, 130.4, 133.0, 135.1, 139.3, 141.8, 

150.2, 151.4, 188.4; IR (KBr) /cm-1 1665 (C=O); HRMS found [M+1]+ 244.0524, C14H10NOCl 

requires [M+1]+ 244.0524; Anal. Calcd C14H10NOCl: C, 69.00; H, 4.14, N, 5.75; Found C, 

68.86; H, 4.12; N, 5.66. 

 

5.1.17 (E)-1-(3,4-Methylenedioxyphenyl)-3-(3-pyridinyl)prop-2-en-1-one (21) 

Recrystallization from ethanol. Off white crystals  (55%). mp 138-140oC; 1H NMR (CDCl3): δ 

6.10 (2H, s), 6.92 (1H, d, J = 7.8 Hz), 7.37 (1H, dd, J = 4.3, 7.1 Hz) 7.54 (1H, d, J = 2.1 Hz), 

7.57 (1H, d, J = 14.9 Hz) 7.67 (1H, dd, J = 2.1, 7.8 Hz), 7.78 (1H, d, J = 14.9 Hz), 7.93-7.98 

(1H, m), 8.63 (1H, dd, J = 1.1, 4.3 Hz), 8.86 (1H, d, J = 1.2 Hz); 13C NMR (CDCl3) δ 102.0, 

108.0, 109.4, 123.5, 123.8, 124.9, 130.8, 132.5, 134.6, 140.4, 148.5, 149.9, 151.0, 152.0, 

187.6; IR (KBr) /cm-1 1666 (C=O); HRMS found [M+1]+ 254.0811, C15H11NO3 requires 

[M+1]+ 254.0812; Anal. Calcd C15H11NO3: C, 71.14; H, 4.38, N, 5.53; Found C, 70.91; H, 

4.36; N, 5.48. 

  

5.1.18 (E)-1-(3,4-Difluorophenyl)-3-(3-pyridinyl)prop-2-en-1-one (22)   

Recrystallization from ethanol. Pale green crystals  (47%). mp 120-121oC; 1H NMR (DMSO-

d6): δ 7.50-7.53 (1H, m), 7.63-7.70 (1H, m), 7.78 (1H, d, J = 15.0 Hz), 8.10 (2H, d, J = 15.0 

Hz), 8.24-8.29 (1H, m),  8.37-8.39 (1H, m), 8.64 (1H, dd, J = 1.5, 4.3 Hz), 9.05 (1H, d, J = 

1.2, 4.3 Hz); 13C NMR (DMSO-d6) δ 117.9, 118.1, 123.1, 126.5, 130.3, 134.7, 141.4, 150.5, 

150.9, 186.5; IR (KBr) /cm-1 1661 (C=O); HRMS found [M]+ 246.0724, C14H9NOF2 requires 

[M]+ 246.0725; Anal. Calcd C14H9F2NO: C, 68.57; H, 3.70, N, 5.71; Found C, 68.48; H, 

3.70; N, 5.66. 

 

5.1.19 (E)-1-(3-Hydroxyphenyl)-3-(3-pyridinyl)prop-2-en-1-one (23)   

After quenching with water the mixture was acidified with 1 M HCl before extraction with 

ethyl acetate. Recrystallization from ethanol. Light yellow crystals  (55%). mp 182-184oC; 
1H NMR (DMSO-d6): δ 7.09 (1H, dd, J = 2.1, 8.5 Hz), 7.39 (1H, t, J = 7.7 Hz)), 7.48-7.51 

(2H, m), 7.65 (1H, d, J = 6.8 Hz), 7.75 (1H, d, J = 14.9 Hz), 8.01 (1H, d, J = 14.9 Hz), 8.33 

(1H, d, J = 7.7 Hz)), 8.62 (1H, s), 9.02 (1H, s), 9.85 (1H, brs, OH); 13C NMR (DMSO-d6) δ 

114.7, 119.7, 120.5, 123.9, 124.1, 129.9, 135.1, 138.7, 140.4, 150.3, 157.8, 188.9; IR (KBr) 
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/cm-1 1660 (C=O); HRMS found [M+1]+ 226.0861, C14H11NO2 requires [M+1]+ 226.0863;  

Anal. Calcd C14H11NO2: C, 74.65; H, 4.92, N, 6.22; Found C, 74.51; H, 4.92; N, 6.03. 

 

5.1.20 (E)-1-(3-pyridinyl)-3-(3-pyridinyl)prop-2-en-1-one (24)   

Recrystallization from ethanol. Pale yellow crystals  (41%). mp 148-150oC; 1H NMR 

(DMSO-d6): δ 7.51 (1H, dd, J = 4.8, 9.0 Hz), 7.62 (1H, dd, J = 4.8, 9.0 Hz), 7.83 (1H, d, J = 

13.7 Hz), 8.12 (1H, d, J = 13.7 Hz), 8.38 (1H, d, J = 7.2 Hz), 8.48 (1H, d, J = 7.2 Hz),  8.63 

(1H, d, J = 4.8 Hz), 8.85 (1H, d, J = 4.8 Hz), 9.06 (1H, s), 9.37 (1H, s); 13C NMR (DMSO-d6) 

δ 123.6, 123.9, 130.3, 132.5, 135.3, 141.3, 149.8, 151.3, 153.5, 188.3; IR (KBr) /cm-1 1666 

(C=O); HRMS found [M+1]+ 211.0864, C13H10N2O requires [M+1]+ 211.0866; Anal. Calcd 

C13H10N2O: C, 74.27; H, 4.79, N, 13.33; Found C, 73.90; H, 4.79; N, 13.36. 

 

5.2 Biological assays 

 

5.2.1 Trypanocidal activity 

Trypanosoma brucei rhodesiense STIB 900, a clone of a population isolated in 1982 from a 

patient in Tanzania. Stock drug solutions were prepared in DMSO at 20 mM and further 

diluted to the appropriate concentration using medium. Assays were performed in 96-well 

microtiter plates with each well containing 100 ml of parasite culture (1 x 103 bloodstream 

forms) with serial drug dilutions at 37°C for 72 h in 5% CO2. Each compound was tested in 

triplicate with 30 mg/ml the highest concentration of compound used and a 3-fold serial 

dilution was performed down to a suitable concentration to obtain an IC50 value. Control 

wells were without drug and blanks were medium only. After 72 h of incubation the plates 

were inspected to assure growth in control wells and to determine the minimum inhibitory 

concentration (MIC). Subsequently, 20 µL of Alamar Blue™ was added to each well and the 

plates incubated for another 2-4 h. Plates were read on a Gemini Plate Reader (Molecular 

Devices) using an excitation wave length of 530 nm and an emission wave length of 580 

nm (cut off 550 nm). IC50 values were calculated using Prism © software. Pentamidine and 

melarsoprol were used as positive controls. 

 

5.2.2 Toxicity on KB cells 

KB cells, derived from a human carcinoma of the nasopharynx and typically used in assays 

for antineoplastic agents, were maintained in RPMI 1640 medium (Sigma, UK), 10% heat-
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inactivated foetal calf serum, 37°C, 5% CO2. KB cell monolayers, prepared in 96-well 

plates, were exposed to the test compounds for 72 h. Podophyllotoxin was used as a 

positive control. 20 µL of Alamar Blue™ was added to each well. After a further 2–4 h 

incubation the plates were read (Molecular Devices Gemini™) at EX/EX 530/580, cut-off 

550 nm. The IC50 values were calculated by sigmoidal regression analysis (Prism ©). 

 

Acknowledgements 

 

The Higher Education Funding Council for England (HEIF programme). The EPSRC UK 

National Mass Spectrometry Facility at Swansea University. 

 

References 

 

[1] Barrett, M. P. The rise and fall of sleeping sickness. Lancet, 2006, 367, 1377–1378 

[2] Rodgers, J. Human African trypanosomiasis, chemotherapy and CNS disease. J. 

Neuroimmunol., 2009, 211, 16-22.  

[3] Kennedy, P. G. E. Clinical features, diagnosis, and treatment of human African 

trypanosomiasis (sleeping sickness). Lancet Neurol., 2013, 12, 186-94.  

[4] Baker, N.; de Koning, H. P.; Mäser, P.; Horn, D. Drug resistance in African 

trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol., 2013, 29, 

110-118. 

[5] Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of 

chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777. 

[6] Mahapatra, D. K.; Bharti, S. K.; Asati, V. Chalcone scaffolds as anti-infective agents: 

Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 101, 496-524. 

[7] Padhye S.; Ahmada, A.; Oswal, N.; Dandawate, P.; Rub, R. A.; Deshpande, J.; 

Swamy, K. V.; Sarkara, F. H. Fluorinated 2′-hydroxychalcones as garcinol analogs 

with enhanced antioxidant and anticancer activities. Bioorg. Med. Chem. Lett., 2010, 

20, 5818–5821. 

[8] Roussaki, M.; Hall, B.; Lima, S. C.; da Silva, A. C.; Wilkinson, S.; Detsi, A. Synthesis 

and anti-parasitic activity of a novel quinolinone–chalcone series. Bioorg. Med. Chem.  

Lett., 2013, 23, 6436-6441. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
15 

 

[9] Qiao, Z.; Wang, Q.; Zhang, F.; Wang, Z.; Bowling, T.; Nare, B.; Jacobs, R. T.; Zhang, 

J.; Ding, D.; Liu, Y.; Zhou, H. Chalcone-benzoxaborole hybrid molecules as potent 

antitrypanosomal agents. J. Med. Chem., 2012, 55, 3553-3557. 

[10] Maiwald, F.; Benítez, D.; Charquero, D.; Dar, M. A.; Erdmann, H.; Preu, L.; Koch, O.; 

Hölscher, C.; Loaëc, L.; Meijer, L.; Comini, M. A.; Kunick, C. 9- and 11-substituted 4-

azapaullones are potent and selective inhibitors of African trypanosome. Eur. J. Med. 

Chem., 2014, 83, 274-283. 

[11] Mathew, B.; Sureshb, J.; Anbazghaganc, S.; Paulrajd, J.; Krishnan, G. K.  Heteroaryl 

chalcones: Mini review about their therapeutic voyage. Biomed. Prev. Nutr., 2014, 4, 

451-458. 

[12] Gutteridge, C. E.; Vo, J. V.; Tillett, C. B.; Vigilante, J. A.;  Dettmer, R. J.;  Patterson, S. 

L.;  Werbovetz, K. A.; Capers, J.;  Nichols, D. A.;  Bhattacharjee, A. K.; Gerena, L. 

Antileishmanial and antimalarial chalcones: synthesis, efficacy and cytotoxicity of 

pyridinyl and naphthalenyl analogs.  Med. Chem., 2007, 3, 115-119. 

[13] Geyer, J.  A.; Keenan, S. M.; Woodard, C. L.; Thompson, P. A.; Gerena, L.; Nichols, 

D. A.; Gutteridge, C. E.; Waters, N. C. Selective inhibition of Pfmrk, a Plasmodium 

falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg. Med. Chem. Lett., 

2009, 19, 1982-1985. 

 [14] Lone, I. H.; Khan, K. Z.; Fozdar, B. I. Synthesis, physicochemical properties, 

antimicrobial and antioxidant studies of pyrazoline derivatives bearing a pyridyl moiety. 

Med. Chem. Res., 2013, 23, 363–369. 

[15] Liu, M.; Wilairat, P.; Croft, S. L.; Tand, A. L. C.; Goa, M. L. Structure–activity 

relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem., 2003, 

11, 2729–2738. 

[16] Dhar, D. N. The Chemistry of Chalcones and Related Compounds, 1st ed. John Wiley 

and Sons, 1981. 

[17] Wachter-Jurcsak, N.; Radu, C.; Redin, K. Addressing the unusual reactivity of 2-

pyridinecarboxaldehyde and 2-quinolinecarboxaldehyde in base-catalyzed aldol 

reactions with acetophenone. Tetrahedron Lett. 1998, 39, 3903-3906. 

[18] Bhagat, S.; Sharma, R.; Sawant, D. M.; Sharma, L.; Chakraborti, A. K. LiOH·H2O as a 

novel dual activation catalyst for highly efficient and easy synthesis of 1,3-diaryl-2-

propenones by Claisen–Schmidt condensation under mild conditions. J. Mol. Cat. A: 

Chem., 2006, 244, 20-24. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
16 

 

[19] Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. 

Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. 

Eur. J. Med. Chem., 2012, 57, 29-40.  

[20] O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue 

(resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. 

Biochem., 2000, 267, 5421-5426.  

[21] Neal, R. A.; Croft, S. L. An in-vitro system for determining the activity of compounds 

against the intracellular amastigote form of Leishmania donovani. J. Antimicrob. 

Chemother., 1984, 5, 463-475. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

• Improved Claisen-Schmidt condensation using lithium hydroxide monohydrate 

in 1,4-dioxane. 

• Pyridylchalcones show good activity and selectivity against Trypanosoma 

brucei. 

• Pyridylchalcones show little activity against Leishmania donovani. 

• Promising leads in the development of novel compounds for the treatment of 

sleeping sickness. 


