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Abstract

Genotype imputation has the potential to assess human genetic variation at a lower cost than assaying the variants using
laboratory techniques. The performance of imputation for rare variants has not been comprehensively studied. We utilized
8865 human samples with high depth resequencing data for the exons and flanking regions of 202 genes and Genome-
Wide Association Study (GWAS) data to characterize the performance of genotype imputation for rare variants. We
evaluated reference sets ranging from 100 to 3713 subjects for imputing into samples typed for the Affymetrix (500K and
6.0) and Illumina 550K GWAS panels. The proportion of variants that could be well imputed (true r2.0.7) with a reference
panel of 3713 individuals was: 31% (Illumina 550K) or 25% (Affymetrix 500K) with MAF (Minor Allele Frequency) less than or
equal 0.001, 48% or 35% with 0.001,MAF, = 0.005, 54% or 38% with 0.005,MAF, = 0.01, 78% or 57% with
0.01,MAF, = 0.05, and 97% or 86% with MAF.0.05. The performance for common SNPs (MAF.0.05) within exons and
flanking regions is comparable to imputation of more uniformly distributed SNPs. The performance for rare SNPs
(0.01,MAF, = 0.05) was much more dependent on the GWAS panel and the number of reference samples. These results
suggest routine use of genotype imputation for extending the assessment of common variants identified in humans via
targeted exon resequencing into additional samples with GWAS data, but imputation of very rare variants (MAF, = 0.005)
will require reference panels with thousands of subjects.
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Introduction

Imputation and analysis of untyped genetic variants provides a

more comprehensive picture of genetic variation within a genomic

region than analysis of only typed variants [1]. It has been a key

tool contributing to the recent success of Genome-Wide

Association Studies (GWAS). Genotype imputation methods

combine haplotypes found in a study sample with the full

haplotypes available in a more densely genotyped reference set

to fill in missing genotypes. Imputation methods have been

extensively evaluated for imputing the genotypes of HapMap

SNPs into subjects with GWAS data [2]. The establishment of a

resource for imputation is one of the key aims of the 1000

Genomes Project [3]. In addition, studies sequencing specific

genes or the exome in thousands of subjects are available now [4],

at higher depth which enables the calling of individual genotypes

with error rates comparable with other genotyping methods. The

variants identified from high depth sequencing of the exons and

flanking regions of genes have a SNP density distribution quite

different than that available for the HapMap and 1000 Genomes

data where there are relatively few large gaps between variants,

and variants have an average inter-SNP distance of 875 bp [5]

and 200 bp [3], respectively. The variants identified in the coding

regions of genes are concentrated in short regions within a gene

interspersed with longer regions with no variants. Variants

genotyped by next generation sequencing methods yield very rare

heterozygous calls with higher confidence enabling novel variant

identification. High depth sequence data for thousands of samples

has resulted in high quality rare variant calls in minor allele

frequency (MAF) ranges not seen with prior HapMap or 1000

Genomes efforts. These efforts not only focused on sequencing a

smaller number of individuals but also used technologies with

lower confidence in very rare heterozygous calls. As sequencing

studies focusing on sequencing the exomes of genes are in progress,

characterizing the performance of imputation methods for variants

in the exons and flanking regions, especially for variants with MAF

less than or equal to 0.05, will provide a comprehensive picture of

the use of imputation to extend these association studies into
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additional samples with GWAS data. Until now, no other study

has provided a summary of the performance of genotype

imputation for variants with minor allele frequencies less than

0.01.

There are a number of methods providing genotype imputation

including IMPUTE [6], MaCH [7], and BEAGLE [8]. All three

methods have been extended to accommodate multiple GWAS

platforms and reference panels with more than 1000 samples. We

selected BEAGLE for our analyses. A comparison of imputation

performance for minimac, http://genome.sph.umich.edu/wiki/

minimac, (an extention of MaCH software which takes haplotypes

as input) and BEAGLE, using data from chromosome 1, showed

them to be similar. For this chromosome, there were 111 and 152

SNPs with estimated r2 greater than 0.7 using minimac and

BEAGLE, respectively. The median true r2 for these sets of

variants was 0.977 and 0.982 for minimac and BEAGLE,

respectively (Figure S1). The corresponding mean genotype error

rates were 0.011 and 0.0124 and the mean allelic error rates were

0.0055 and 0.0062, for minimac and BEAGLE, respectively.

We recently completed high depth sequencing (median depth of

276) of the exons and flanking regions of 202 genes that are

current or prospective drug targets in over 14000 samples, 12514

of European ancestry (confirmed by principal component analysis ),

including population-based and case collections (described in the

Information S1) for 12 diseases. Analyses of experimental duplicates

and capillary sequencing for a subset of these samples yielded an

overall heterozygote genotype error rate of 0.50%. Of these

sequenced samples, 8865 have GWAS data, including the

Affymetrix 500K (n = 3983), Affymetrix 6.0 (n = 573) and Illumina

550K (n = 4309) GWAS platforms. We used subsets of these

samples in an evaluation where we partitioned sequenced samples

into reference and ‘‘to-be-imputed’’ study sets and compared the

imputed genotypes with genotypes derived from high depth

sequence data from the DeepSeq Variant Set.

Our primary goal was to develop a strategy for genotype-

phenotype analysis utilizing genotype imputation for this dataset.

We characterized the performance of genotype imputation with

reference panels ranging from 100 to 3713 subjects for variants

distributed within the exons and flanking regions of genes. Our

results show that genotype imputation into additional samples with

GWAS data will increase the sample size available for genotype-

phenotype analysis for common and moderately rare variants with

performance depending on the reference panel size for very rare

variants (MAF,0.005).

Results

This evaluation focused on characterizing the performance of

genotype imputation for reference panels of 100 to 3713 subjects

and variants present in the exons and flanking regions of genes. As

the DeepSeq Variant Set had high quality genotype calls derived

from high depth sequence data for 8865 subjects, we were able to

characterize genotype imputation performance for variants with

minor allele frequencies less than 0.01. We first summarize how

well the estimated r2, the ratio of the variance of the imputed

allelic dosage and the variance of the true allelic dosage assuming

Hardy- Weinberg equilibrium [7], correlates with true r2, squared

correlation of the true allelic dosage and the imputed allelic dosage

[7] based on non-integer dosages which incorporate uncertainty in

the imputed genotypes, for all reference and study samples listed in

Table 1.

Figure 1 plots the estimated r2 versus true r2 for the Affymetrix

500K dataset with 3713 reference samples for variants with MAF

no greater or greater than 0.005 which removes almost all variants

with poorly calibrated estimated r2 values. This plot is shown for

Affymetrix 500K data set with 3713 reference samples, but the

results for all other datasets are similar. The Pearson correlation

coefficients relating true and estimated r2 for variants with

MAF#0.005 were 0.787, 0.825, 0.783 for Affymetrix 500K data

set with n = 3713, Affymetrix 6.0 data set with n = 562, and

Illumina 550K data set with n = 3713 reference samples,

respectively. The Pearson correlation coefficients relating true

and estimated r2 for these same reference sets for variants with

0.005,MAF#0.5 were 0.951, 0.971, and 0.983. These results

illustrate that the estimated r2 calculated for imputed markers

reflects the true r2 obtained when genotype data is available

making the reported estimated r2 a valuable metric of imputation

quality for markers with MAF greater than 0.005. Estimated r2 is

likely to under estimate true r2 for extremely rare variants

(MAF#0.005). We also note that this correlation was stronger in

our smaller, more ethnically homogeneous reference sets (n#1200)

as opposed to our largest reference sets (n = 3713).

For common SNPs, the impact of a reference sample with

variants from the exons and flanking regions of genes rather than

more uniformly spaced as would be available in HapMap 3 [2],

can be illustrated by comparing our median true r2 to those

obtained from imputing SNPs for each Illumina 550k SNP

present in the HapMap but not available on the Affymetrix 500K

panel. Figure 2 plots median true r2 for variants with

0.01#MAF#0.5 for 300, 600, and 1200 reference samples in

Europeans [[ along with median true r2 for 300, 600, and 1200

reference samples for the Affymetrix 500K platform calculated

using variants from the DeepSeq Variant Set that were matched

based on MAF to their variants. The median true r2 values for

these datasets are very similar except for variants with

MAF#0.05 illustrating that imputation using reference samples

with variants from the exons and flanking regions of genes is

similar to more uniformly spaced markers. For variants with

MAF#0.05, the median true r2 for the variants identified by

Table 1. Data sets used for characterizing genotype imputation.

Platform
Total number of samples with
sequence data Reference set sizes evaluated Study set size used

Affymetrix 500K 3983 100, 300, 600, 1200, 3713 270

Affymetrix 6.0 573 100, 300 270

Affymetrix 6.0 573 562 11

Illumina 550K 4309 100, 300, 600, 1200, 3713 270

We partitioned the total number of samples with sequence data into reference samples and ‘‘to-be-imputed’’ study samples. We used the reference panel samples to
predict unobserved genotypes in the study sample.
doi:10.1371/journal.pone.0024945.t001
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sequencing is much lower than that for variants that are on the

Illumina 550K panel which were chosen because they are good

proxies for other SNPs [2].

Figure 3 plots the median true r2 calculated for MAF bins versus

MAF in the reference sample for all variants present in the

DeepSeq Variant Set. For variants with 0.05,MAF#0.5, the

number of reference samples and the GWAS platform have a

minimal effect on the median true r2, even when the reference

panel size is 100 (data not shown). For variants with

0.01,MAF#0.05, the number of reference samples begins to

have more of an effect but in this frequency range the GWAS

platform is more influential. In this frequency bin, the median true

r2 values are 0.80, 0.80 and 0.62 for reference sample sets of 600

(562 for Affymetrix 6.0) versus 0.73, 0.72 and 0.48 for reference

sample sets of 300 for the Illumina 550K, Affymetrix 6.0 and

Affymetrix 500K panels, respectively. For variants with

MAF#0.01, both number of reference samples and the GWAS

platform influence the median true r.2 The median true r2 for

variants with 0.005,MAF#0.01 for 300 reference samples ranges

from 0.07 to 0.23 depending on the GWAS platform but for 600

reference samples, it ranges from 0.19 to 0.48. This illustrates the

importance of larger reference samples for imputing variants with

MAF#0.01. For variants with 0.005,MAF#0.01, the median

true r2 values for a reference sample size of 600 are 0.48 for the

Illumina 550K and Affymetrix 6.0 panels versus 0.19 for the

Affymetrix 500K panel. For reference panels with greater than

approximately 600 samples when imputing variants with

0.005,MAF#0.01, utilizing the Affymetrix 500K panel results

in median true r2 values about 0.2 lower than those for the

Illumina 550K panel.

Figure 4 shows the cumulative distribution function of the true r2

for different reference sample sizes for variants with

0.001,MAF#0.005, 0.005,MAF#0.01, and 0.01,MAF#0.05.

For variants with 0.001,MAF#0.005, the proportion of well

imputed SNPs (true r2.0.7) was approximately 48% for the

Illumina 550K data set with n = 3713 reference samples and less

than 35% for the remaining reference sets. Comparing the three

panels in Figure 4 illustrates that reference sample size has more of

an influence than GWAS panel as the MAF of the variant decreases.

Furthermore, the proportion of well imputed variants remains

approximately 54% for the Illumina 550K data set with n = 3713

reference samples even for variants with 0.005,MAF#0.01. For

common SNPs with MAF.0.05, greater than 86% of these SNPs

can be well imputed (true r2.0.7) when using GWAS platforms that

rely on tagging SNPs or the largest reference panel for the

Affymetrix 500K data set with n = 3713 reference samples, data not

shown.

Discussion

We characterized the performance of genotype imputation with

reference panels of 100 to 3713 subjects for variants with spacing

that would be representative of extending our evaluation of

variants identified via exon-targeted sequencing into additional

samples for three GWAS panels. Even with reference sample sets

of 100 subjects, greater than 80% of variants with MAF.0.05 can

be well imputed (estimated r2.0.7). For variants with

0.01,MAF,0.05, the proportion of well imputed variants is

dependent on the number of reference samples and the GWAS

panel but it can be as high as 50–70% for reference panels larger

than 1200. An appreciable number of variants with MAF#0.005,

can be well imputed with reference panels including 3713 subjects

and more comprehensive GWAS panels (i.e. 48% of variants with

0.001#MAF#0.005 for the Illumina 550K platform will be well

imputed with a reference panel of 3713 individuals). We

investigated how missing data in the reference panel (from the

DeepSeq Variant Set) affected the estimated r2 which revealed

Figure 1. True r2 versus the estimated r2. True r2, squared
correlation of the true allele dosage (based on genotypes derived from
DeepSeq Variant Set), is plotted versus the estimated r2, the ratio of the
variance of the imputed allelic dosage and the variance of the true
allelic dosage assuming Hardy- Weinberg equilibrium for each imputed
variant, for the reference set consisting of 3713 samples with Affymetrix
500K GWAS data. Very rare variants, MAF#0.005, (1331 variants) and
more common variants, MAF.0.005, (1776 variants) are shown
separately. These results illustrate that while the estimated r2 calculated
for imputed markers reflects the true r2 obtained when genotype data
is available for common and rare variants, it is likely to under estimate
the true r2 for very rare variants.
doi:10.1371/journal.pone.0024945.g001

Figure 2. Median true r2 for array and exon-derived variants in
MAF bins. The median true r2 for 0.01#MAF#0.5 for 300, 600, and
1200 reference samples, derived from imputing Illumina 550K SNPs not
available on the Affymetrix 500K platform (shown in black), and median
true r2 for 300, 600, and 1200 reference samples for Affymetrix 500K
platform, calculated using DeepSeq Variant Set (shown in red), are
plotted versus minor allele frequency bins. Bins were defined to be
centered on MAFs ranging from [0.01, 0.49] with a total width of 0.02.
The median true r2 values for these datasets are very similar except for
variants with MAF#0.05 illustrating that imputation using reference
samples with variants from the exons and flanking regions of genes is
similar to more uniformly spaced markers.
doi:10.1371/journal.pone.0024945.g002
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that missing rates less than 30% have little impact on the

distribution of estimated r2 values (data not shown).

Our comparisons of imputing markers with uniform spacing

versus imputing markers derived from the DeepSeq Variant Set

showed no discernable differences for markers with MAF.0.05.

These results are informative with respect to what can be expected

for imputation with HapMap3 data where the SNP density is

higher and the number of samples of European ethnicity is now

205 [2]. For moderately rare SNPs (0.01,MAF#0.05), the

median true r2 values are lower, similar to results found in analysis

of HapMap 3 and ENCODE data that showed that array SNPs,

especially those selected on the basis of LD, are much more likely

to be good proxies for each other in comparison with newly

discovered variants. We did not compare these results to

genotyping imputation using the 1000 Genomes dataset as a

reference panel since the current 1000 Genomes dataset is derived

from low depth sequencing data.

This analysis provides one of the first evaluations of imputation

for variants identified in the exons and flanking regions of genes,

especially for variants with MAF less than or equal to 0.05.

Deriving variants from high depth sequence data enabled us to

evaluate imputation performance by comparing imputed SNPs to

variants at very low frequencies which are generally unreliably

genotyped using other assay methods. For moderately rare SNPs,

0.01,MAF#0.05, the GWAS platform was an important factor

for high quality imputation. The Illumina 550K GWAS platform

includes tag SNPs derived from greater than 2 million common

SNPs genotyped in HapMap Phase 2 data [9] which were selected

after sequencing a few individuals so that rare haplotypes are not

well-represented. The Affymetrix 500K platform includes SNPs

selected on the basis of sequence constraints when choosing the

probes and additional tag SNPs were added to form the Affymetrix

6.0 array. Therefore, it is not surprising that imputation

performance is better for GWAS platforms that focused on SNPs

Figure 3. Median true r2 versus MAF bins. The median true r2 for the MAF bins of (0,0.0005], (0.0005, 0.001], (0.001, 0.002], (0.002, 0.005], (0.005,
0.01], (0.01, 0.02], (0.02, 0.05], (0.05, 0.1], (0.1, 0.2], and (0.2, 0.5] are plotted versus MAF in the reference sample for the DeepSeq Variant Set. Reference
set samples sizes of 300, 600, 1200, and 3713 were available for both Affymetrix 500K (shown in red) and Illumina 550K (shown in black) platforms.
Reference set sizes of 300 and 562 were available for the Affymetrix 6.0 platform (shown in blue). Median true r2 values are near to 1.0 for variants
with MAF$0.1. For variants with MAF,0.1, the number of reference samples and the GWAS platform both influence the median true r2.
doi:10.1371/journal.pone.0024945.g003

Figure 4. Cumulative distribution function of true r2. The cumulative distribution function, the proportion of markers with a true r2 greater
than the threshold, is shown for all reference sample sizes and GWAS platforms described in Figure 3. The proportion of well imputed variants
decreases as the variant MAF decreases.
doi:10.1371/journal.pone.0024945.g004
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that are good proxies for nearby SNPs. Analysis of the relationship

between maximum pairwise R2
LD for any SNP within 1 Mb and

true r2, observed for that SNP showed that for common markers,

SNPs that are well tagged by GWAS panels will almost always be

well imputed but being well tagged by a single marker from the

GWAS panel is not a requirement for high imputation quality.

This suggests that higher order linkage disequilibrium provides

information on untyped variants and contributes to the imputation

quality. For rare and very rare SNPs, 0,MAF#0.01, the number

of reference samples becomes more of a factor since observing

multiple copies of a SNP is important for establishing the

haplotype background for observed SNPs. Figure 3 provides the

median true r2 value which summarizes imputation quality but

fails to convey the distribution of true r2 values for each MAF bin.

For almost all reference set sizes and GWAS platforms, the

distribution of true r2 values is negatively skewed for MAFs greater

than 0.01 and positively skewed for MAFs less than 0.01.

Our study provides a description of imputation performance for

multiple GWAS panels using reference panels up to 3713 subjects

with variants derived from high depth sequence data from the

exons and flanking regions of genes. Very rare variants

(MAF,0.005) are unlikely to be imputable without reference

panels with greater than 1200 subjects, while almost all common

SNPs (MAF$0.05) and approximately 40% of rare variants

(0.005,MAF,0.05) for reference panel sizes of 1200 individuals

or more will be imputable. Therefore, genotype imputation into

additional samples with GWAS data will increase the sample size

available for genotype-phenotype analysis for common and

moderately rare variants with performance depending on the

reference panel size for very rare variants (MAF,0.005).

Materials and Methods

Ethics Statement
GSK collected human blood in collaborative research trials with

investigators during 2002–2010 for other studies. Written

informed consent was obtained and recorded via electronic case

report form. The consents allowed for continued or future

evaluation of variants associated with diseases. The work described

in this manuscript represents a re-use of these samples and data

and no new human interventions were conducted. Therefore this

research involves the study of existing samples and data. No

additional IRB approvals were sought for this specific portion of

the work. The names of all ethics committee/institutional review

boards that approved the original protocols for sample collection

include: Committee on Human Research, University of Califor-

nia, San Francisco, Ethics Committee of Basel City and Canton,

Basel University Hospital, Medical Ethics Committee University

Medical Centre, Amsterdam for the Multiple Sclerosis gene MSA

collection; Committee on Ethics in Clinical Research, CHUV,

Lausanne University, Lausanne, Switzerland for the CoLaus

collection; Regional Committee for Medical Research Ethics

(REKIII), Faculty of Medicine, University of Bergen, Norway for

the GenKOLs collection, Ethics Committee Multicentre Trials,

Bulgaria, McGill University Health Center Research Ethics

Board, Montreal, Canada, Office of Research Services Clinical

Research Ethics Board, University of British Columbia, Canada,

Capital Health Research Ethics Board, Halifax, Canada, Ham-

ilton Health Sciences/Faculty of Health Sciences Research Ethics

Board, Hamilton, Ontario, Canada, Providence Health Care

Research Institute, Vancouver, British Columbia, Canada,

Comité d’éthique de la recherche, Québec, Canada, Queens

University Office of Research Services, Kingston, Ontario,

Canada, Multicentric Ethics Committee Fakultni nemocnice v

Motole, Prague, Czech Republic, Den videnskabsetiske komité for

region hovedstaden, METC Zuidwest-Holland, MHHA Kirkels-

Breukers, Delft, The Netherlands, Regional Ethic Committee

West, Haukeland University Hospital, Bergen, Norway, The

National Medical Ethics Committee of the Republic of Slovenia,

Ljubljana, Slovenia, Comité ètic d’investigació clı́nica Illes Balears,

Palma de Mallorca, Spain, Oxfordshire REC C, Bicester, United

Kingdom, MD Human Subjects Committee, Torrance, Califor-

nia, USA, Research/Human Subjects Committee, St Elizabeth’s

Medical Center, Boston, Massachusetts, US, Goodwyn Institution

Review Board, Cincinnati, Ohio, US, Western International

Review Board, Olympia, Washington, US, Baylor College of

Medicine IRB, Houston, Texas, US, Committee for the Protection

of Human Subjects, Dartmouth-Hitchcock Medical Center,

Hanover, New Hampshire, US, National Jewish Medical &

Research Center IRB, Denver, Colorado, US, University of

Nebraska Medical Center IRB, Omaha, Nebraska, US, Yale

University School of Medicine Human Investigation Committee,

New Haven, Connecticut, US, Mayo Foundation IRB, Rochester,

Minnesota, US, Creighton University Medical Center IRB,

Omaha, Nebraska, University of Pittsburgh IRB, Pittsburgh, PA,

US, Brigham & Women’s Hospital IRB, Boston, Massachusetts,

US, John Hopkins School of Medicine, Baltimore, MD, St Francis

Hospital & Medical Center IRB, Hartford, Connecticut, US for

the ECLIPSE Study; MedStar Research Institute Institutional

Review Board, Washington Health Center Research Committee

for the Coronary Artery Disease Medstar study; Bayerische

Landesärztekammer (Bavarian Ethics Committee) for the Unipo-

lar Depression Study; University Research Ethics Committee of

the University of Dundee, The Joint South London and Maudsley

and The Institute of Psychiatry NHS Research Ethics Committee

London, UK, Center for Addiction and Mental Health Research

Ethics Board, Toronto, Canada for the Bipolar Disorder Study;

MREC for Scotland, Edinburgh, Scotland, Health Sciences

Research Ethics Committee, Laval University, Canada, Ethics

Committee of the Medical Faculty of Ludwig Maximilian

University, Munich, Germany for the Schizophrenia study,

University of Western Ontario Research Ethics Board for Health

Sciences Research Involving Human Subjects, Ontario, Canada,

Centre Hospitalier regional de Trois-Rivieres comite d’ethique de

la recherché, Trois-Rivieres, Quebec, Canada, Centre for

Addiction and Mental Health Research Ethics Board, University

of Toronto, Toronto, Canada, University of Western Ontario

Research Ethics Board for Health Sciences Research Involving

Human Subjects, Ontario, Canada, SCO Health Service

Research Ethics Board, Ottawa, Ontario, Canada, University

Health Network Research Ethics Board, Toronto, Canada,

University of British Columbia Clinical Research Ethics Board,

Vancouver, British Columbia, Canada, Douglas Hospital Re-

search Ethics Board, Montreal, Quebec, Canada for the

Alzheimer’s Disease GenADA study; Committee on Human

Research, University of California-San Francisco, California, US,

Royal Adelaide Hospital Research Ethics Committee, University

of Texas Southwestern Medical Center at Dallas Institutional

Review Board, Dallas, Texas, US, Human Research Ethics Board

of the University of Ottawa Heart Institute, Ottawa, Ontario,

Canada, and University of Lausanne, Ethics Committee, Lau-

sanne, Switzerland for the Metabolic Syndrome GEMS study,

Regional Committee for Medical Research Ethics, Sør Health

Region, Oslo Norway for the Epilepsy HiTDIP study; and

Cantonal Ethics committee of the Canton of Zurich, Specialized

Sub-Committee for Psychiatry, Neurology, Neurosurgery, Zurich,

Switzerland for the Epilepsy GenEpa study.
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Analyses were carried out using 8865 subjects for whom we had

genotype data derived from high-depth sequencing data and

commonly used GWAS panels to characterize genotype imputa-

tion for variants found in the exons and flanking regions [10–20].

The high-depth of sequence, including 850 kb sequence data

used in this experiment, were generated by BGI (Shenzhen, China)

by sequencing the exons plus 50 bp of flanking sequence of 202

genes resulting in approximately 8351 kb of coding and 323 kb of

noncoding (untranslated) exons. Candidate variants were identified

for each sample where a genotype was called with a minimum

sequencing depth of four, a minimum consensus quality of 20 with

no other variants within four base pairs. Genotypes were called in all

samples for all variant positions identified by aggregating all

sequenced samples. Consensus genotypes were called at these

position bases for each sample with a minimum depth of seven and

minimum consensus quality of 20. The median sequence depth per

sample was 276. Samples were excluded from the data if 1) their

average sequencing depth was less than 10, 2) sequence-based

genotypes were more than 15% discordant with genome-wide panel

genotypes or 3) the sample was sequenced multiple times and had

lower average sequencing depth. Analysis of 133 sample duplicates

resulted in a discordance rate among heterozygous genotype calls of

0.90% with lower rates in more common variants. An overall

heterozygote genotype error rate was estimated to be 0.50%. These

quality settings resulted in median genotype missingness of 0.0069,

0.011, 0.014, and 0.021 for variants with MAF#0.001,

0.001,MAF#0.005, 0.005,MAF#0.05, MAF.0.05, respectively.

In contrast to other genotyping platforms, subject-level genotype

missing rates were not correlated with genotype accuracy. We

removed variants with a missing rate greater than 30% and singleton

variants since they cannot be phased for imputation. This ‘‘DeepSeq

Variant Set’’ included 9077 variants.

Our sample consisted of 8865 samples with sequence data as

described above and GWAS data for one of the following

platforms: Affymetrix 500K, (n = 3983), Illumina 550K (n = 4309)

and Affymetrix 6.0 (n = 573). Due to the large number of

sequenced samples in our experiment, we partitioned these

sequenced samples into reference sets and ‘‘to-be-imputed’’ study

sets. We used the densely genotyped reference panel to predict

unobserved genotypes in the study sample using genotype

imputation. Then we compared the imputed genotypes to

genotypes in the DeepSeq Variant Set. Table 1 lists the reference

set and study set sizes evaluated. We selected reference set sizes of

100, 300, 600, 1200 and 3713 to enable comparisons with [8;21]

for uniformly spaced variants and between the Affymetrix 500K

and Illumina 550K platforms. The reference set size of 562 (see

Table 1) for the Affymetrix 6.0 platform was the result of

partitioning the sequenced samples into reference (98% of the

overall sample) and study samples (2% of the overall sample)

multiple times holding out study samples, sequentially, so that we

developed a set of imputed genotypes for each sample. For each

variant in the DeepSeq Variant Set, we also calculated pairwise R2

(due to linkage disequilbrium – R2
LD) with all SNPs within 1 Mbp

on each GWAS panel.

Genotype imputation analysis was carried out using BEAGLE

with the default settings. All GWAS SNPs within 1 Mbp of the

sequenced regions were included in the analysis. When genotypes

were missing in the reference panel, they were imputed based on

the available data similarly to missing data in the study sample. We

calculated the true r2 or the squared correlation of the true allele

dosage (based on genotypes derived from DeepSeq Variant Set)

and the imputed allele dosage for each dataset [8]. This measure

quantifies the similarity of the imputed allele dosage with the

dosage based on genotypes. We also calculated the estimated r2

(MACH’s ratio of variances metric), the ratio of the variance of the

imputed allelic dosage and the variance of the true allelic dosage

assuming Hardy- Weinberg equilibrium for each imputed variant

[7]. This is a metric of expected imputation quality.

To compare the imputation quality of BEAGLE and minimac,

we imputed chromosome 1 data using the Affymetrix 500K

reference set of 3713 subjects with 270 study subjects using both

programs. Minimac imputation was run using 10 rounds and 300

states as parameters. Running times were 310 minutes for

BEAGLE and 160 minutes for minimac, respectively. We

compared true r2, estimated r2, mean genotypic error rate (among

the variants), and mean allelic error rate (among variants). The

allelic or genotypic error rate is the proportion of allelic or

genotypic mismatches among all allelic or genotypic comparisons.

Supporting Information

Figure S1 Cumulative distribution functions of the true
r2 for minimac and BEAGLE. The cumulative distribution

function, the proportion of markers with an estimated r2 greater

than the threshold, is shown for reference sample size of 3713 for

chromosome 1 markers for the Affymetrix 500K platform.

Imputation performance is similar for the two analysis methods.

(TIF)

Information S1

(DOC)
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