Infant adiposity following a randomised controlled trial of a
 behavioural intervention in obese pregnancy.

- 3
- 4 Nashita Patel MBBS¹, Keith M. Godfrey PhD², Dharmintra
- 5 Pasupathy PhD¹, Julia Levin MSc³, Angela C Flynn MSc^{1,4},
- 6 Louise Hayes PhD⁵, Annette L Briley PhD¹, , Ruth Bell MD⁵,
- 7 Debbie A Lawlor PhD⁶, Eugene Oteng-Ntim PhD⁷, Scott M.
- 8 Nelson PhD⁸, Stephen C. Robson MD⁹, Naveed Sattar PhD¹⁰,
- 9 Claire Singh MSc⁷, Jane Wardle PhD^{*11}, Sara White MSc¹, Paul
- 10 T Seed CStat¹, Lucilla Poston PhD¹, On behalf of the UPBEAT
- 11 Consortium.
- 12

13 Affiliations.

- 14 1. Division of Women's Health, Women's Health
- 15 Academic Centre, Faculty of Life Sciences and
- 16 Medicine, King's College London, St Thomas' Hospital,
- 17 London, UK.
- 18 2. MRC Lifecourse Epidemiology Unit and NIHR
- 19 Southampton Biomedical Research Centre, University
- 20 of Southampton and University Hospital Southampton
- 21 NHS Foundation Trust, Southampton, UK.

22	3.	London School of Hygiene and Tropical Medicine,
23		London, UK.
24	4.	Division of Diabetes and Nutritional Sciences, King's
25		College London, London, UK.
26	5.	Institute of Health and Society, Newcastle University,
27		Newcastle upon Tyne, UK.
28	6.	MRC Integrative Epidemiology Unit at the University of
29		Bristol & School of Social and Community Medicine,
30		Bristol, England, UK
31	7.	Guys and St Thomas' NHS Foundation Trust, London,
32		UK.
33	8.	School of Medicine, University of Glasgow, Glasgow,
34		UK.
35	9.	Institute of Cellular Medicine Uterine Cell Signalling
36		Group Newcastle University, Newcastle, UK.
37	10.	Institute of Cardiovascular and Medical Sciences,
38		University of Glasgow, Glasgow, UK.
39	11.	Health Behaviour Research Centre, Institute of
40		Epidemiology and Health, University College London,
41		London, UK.
42		*Deceased

Corresponding author.

- 3
- 44 Dr Nashita Patel; Division of Women's Health, Women's
- 45 Health Academic Centre, Faculty of Life Sciences and
- 46 Medicine, King's College London, St Thomas' Hospital, London,
- 47 UK; Email: Nashita.r.patel@kcl.ac.uk; Telephone: 020 7188
- 48 3641

49 Runningtitle.

50 Infant adiposity after RCT in obese pregnancy.

51 Funding source.

- 52 This work was supported by the European Union's 7th
- 53 Framework Programme (FP7/2007–2013), project
- 54 EarlyNutrition under grant agreement no. 289346 and the
- 55 National Institute for Health Research (NIHR) (UK) Programme
- 56 Grants for Applied Research Programme (RP-0407-10452). The
- 57 views expressed in this paper are those of the authors and not
- 58 necessarily those of the National Health Service, the NIHR or
- 59 the Department of Health or any other listed funders. Support
- 60 was also provided from the Biomedical Research Centre at
- 61 Guy's and St.Thomas' NHS Foundation Trust and King's College
- 62 London, the Chief Scientist Office Scotland, Guy's and St
- 63 Thomas' Charity and Tommy's Charity (Registered charity no.
- 64 1060508). The funders had no role in study design, data
- 65 collection, data analysis, data interpretation or writing of the
- 66 final report. The corresponding author had access to all the

67	data in the study and had final responsibility for the decision
68	to submit for publication. Professor Godfrey is supported by
69	the National Institute for Health Research through the NIHR
70	Southampton Biomedical Research Centre. Professor Lawlor's
71	contribution to this paper is supported by a grant from the
72	European Research Council (ObesityDevelop; grant number
73	669545) the MRC Integrative Epidemiology Unit
74	(MC_UU_1201/5) and Professor Lawlor and Professor Poston
75	are National Institute of Health Research Senior Investigators.
76	Mr Seed is funded by Tommy's Charity and by CLAHRC South
77	London (NIHR).
78	Clinical Trial Registry Name and Registration Number
79	The UPBEAT trial is registered with Current Controlled Trials,
80	ISRCTN89971375.

81 Abbreviations

- 82 BISQ- Brief Infant Sleep Questionnaire; BMI- Body Mass Index;
- 83 CDM- Covariate-dependent Missing ; FFQ- Food Frequency
- 84 Questionnaire; GDM- Gestational Diabetes; GI- Glycaemic
- 85 Index; GL- Glycaemic Load; GWG- Gestational Weight Gain;
- 86 IPAQ- International Physical Activity Questionnaire; MET-
- 87 Metabolic Equivalent of Energy Expenditure; MAR- Missing at
- 88 Random; MNAR- Missing not at Random; UPBEAT-UK
- 89 Pregnancies Better Eating and Activity Trial.

90 **Contributors' Statement Page**

- Dr Nashita Patel, Mr Paul Seed, Dr Dharmintra Pasupathy and 91 92 Professor Lucilla Poston conceptualized and designed the study, drafted and carried out the initial analyses, critically 93 94 reviewed the manuscript, and approved the final manuscript 95 as submitted. 96 Dr Louise Hayes, Ms Julia Levin, Dr Sara White and Ms Angela 97 Flynn carried out the initial dietary and physical activity 98 analyses. All these authors critically reviewed and approved
- 99 the final manuscript as submitted.
- 100 Dr Annette Briley, Dr Eugene Oteng-Ntim, Professor Stephen
- 101 Robson, Professor Scott M Nelson, Ms Claire Singh designed
- 102 the data collection instruments, and coordinated and
- 103 supervised data collection, critically reviewed the manuscript
- and approved the final manuscript as submitted.
- 105 Professors Ruth Bell, Keith Godfrey, Debbie Lawlor, Naveed
- 106 Sattar and Jane Wardle designed the data collection
- 107 instruments, critically reviewed the manuscript and approved
- 108 the final manuscript as submitted.

109 Abstract

110 **Objective.**

111	Randomised controlled trials are required to address causality
112	in the reported associations between maternal influences and
113	offspring adiposity. The aim of this study was to determine
114	whether an antenatal lifestyle intervention in obese pregnant
115	women associated with improved maternal diet and reduced
116	gestational weight gain leads to a reduction in infant adiposity
117	and sustained improvements in maternal lifestyle behaviours
118	at 6 months postpartum.
119	Subjects and Methods.
120	We conducted a planned postnatal follow up of a randomised
121	controlled trial (UPBEAT) of a complex behavioural
122	intervention targeting maternal diet (glycemic load and
123	saturated fat intake) and physical activity in 1555 obese
124	pregnant women. The main outcome measure was infant
125	adiposity, assessed by subscapular and triceps skinfold
126	thicknesses. Maternal diet and physical activity, indices of the
127	familial lifestyle environment, were assessed by questionnaire.
128	Results.
129	698 (45.9%) infants (342 intervention, 356 standard antenatal

130 care) were followed up at mean age 5.92 months. There was

131	no difference in triceps skinfold thickness z-scores between
132	the intervention vs. standard care arms (difference -0.14 SD,
133	95% CI -0.38 to 0.10, p=0.246), but subscapular skinfold
134	thickness z-score was 0.26 SD (-0.49 to -0.02; p=0.03) lower in
135	the intervention arm. Maternal dietary glycemic load (-35.34; -
136	48.0 to -22.67; p<0.001) and saturated fat intake (-1.93%
137	energy; -2.64 to -1.22; p<0.001) were reduced in the
138	intervention arm at 6 months postpartum. Causal mediation
139	analysis suggested that lower infant subscapular skinfold
140	thickness was mediated by changes in antenatal maternal diet
141	and gestational weight gain rather than postnatal diet.
142	
143	Conclusion.
144	This study provides evidence from follow-up of a randomised
145	controlled trial that a maternal behavioural intervention in
146	obese pregnant women has the potential to reduce infant
147	adiposity and to produce a sustained improvement in
148	maternal diet at 6 months postpartum.

150 Introduction

151	The high prevalence of childhood obesity is a major health
152	concern, with 27.3% of children estimated to be overweight or
153	obese in the USA ¹ . A combination of antenatal and postnatal
154	exposures including environmental factors have been
155	implicated in the development of childhood obesity ^{2,3} , which
156	has been shown to track into adulthood ¹ . Observational
157	studies suggest that manipulation of maternal metabolism
158	through diet and/or physical activity in the antenatal period
159	has the potential to reduce childhood obesity ^{2,4} and this has
160	been unequivocally achieved in pregnant obese experimental
161	animals and their offspring ⁵ . These observations have led to a
162	consensus that obesity is in part 'programmed' in-utero, in
163	keeping with the 'developmental programming' hypothesis ⁵ .
164	Recent analyses using Mendelian randomisation methods have
165	provided evidence for a causal relationship between maternal
166	pregnancy body mass index (BMI) and glucose with birth
167	weight ⁶ , but any lasting causal effect on later infant adiposity
168	is unknown. Well-designed randomized controlled trials in
169	pregnant women and their offspring are required to infer
170	causality through minimising selection bias and confounding ^{5,7} .

172	We undertook an RCT, the UK Pregnancies Better Eating and
173	Activity Trial (UPBEAT) of a dietary and physical activity
174	intervention in 1555 obese pregnant women ⁸ . Women were
175	randomised to standard antenatal care or standard antenatal
176	care with an intense behavioural intervention that focussed on
177	improving insulin sensitivity through reducing dietary glycemic
178	load and saturated fat intake ⁸ . Although the intervention did
179	not reduce gestational diabetes (GDM) or large for gestational
180	age delivery, the primary outcomes, there were significant
181	improvements in maternal antenatal diet (maternal glycaemic
182	load/day at 28 weeks' gestation, mean difference -21, SD -26
183	to -16, p=<0.0001), a reduction in maternal anthropometric
184	measures of body fat assessed by sum of skinfold thicknesses
185	(-3.2mm, -5.6 to -0.8, p=0.008) , lower total gestational weight
186	gain (GWG) (-0.55kg, -1.08 to -0.02, p=0.041), and a modest
187	improvement in physical activity at 28 weeks' gestation (295
188	min/week, 108 to 485, p=0.0015) ⁸ , all of which have been
189	implicated in childhood obesity.

To examine the hypothesis that the lifestyle intervention
might reduce the influence of maternal obesity on offspring
adiposity, our principal aim was to assess whether the UPBEAT
intervention was associated with a reduction in measures of

195	childhood adiposity at 6 months of age, a pre-defined
196	hypothesis within the trial protocol ⁹ . We also examined
197	whether the pregnancy intervention had lasting effects on
198	maternal diet and physical activity, and on known postnatal
199	determinants of infant adiposity, including breastfeeding.

200 Patients and Methods

201 Study design and setting

- 202 Between July 2010 and May 2015, we conducted a planned
- follow up at 6 months postpartum of mothers and their
- 204 offspring who had participated in the UPBEAT RCT in eight
- 205 inner-city NHS Trust Hospitals in the UK. The study design and
- 206 protocol⁹ were approved by the NHS Research Ethics
- 207 Committee (UK Integrated Research Application System;
- 208 reference 09/H0802/5).
- 209

210 Participants and consent

211	1555 women were recruited to the UPBEAT trial (\geq 16 years of
212	age; pre-pregnancy BMI ≥30 kg/m²). Exclusion criteria included
213	pre-existing disease and multiple pregnancy ⁹ . Following
214	informed consent for themselves and follow up of their infants
215	at 6 months postpartum, the participants were randomised to
216	the intervention or standard antenatal care at 15^{+0} - 18^{+6} weeks'
217	gestation. For the purposes of this follow up study, women
218	(but not their children), were excluded if pregnant at 6 months
219	postpartum. If a participant had withdrawn from the trial but
220	was willing to take part (n=2), written consent was obtained at
221	the 6 month visit. Infants were excluded if aged <4 months or

- 12
- 222 **>**8 months of age at this visit. Comparison of demographic
- 223 details at trial entry was made between women who declined
- to participate and those who took part.
- 225
- 226 Outcomes
- 227 Infant anthropometry
- 228 The principal outcome of interest was infant adiposity
- assessed by measurement of infant skinfold thicknesses
- 230 (triceps and subscapular, measured in triplicate by trained
- 231 research staff using infant skinfold callipers). Subsidiary infant
- 232 outcomes of infant adiposity included sum of skinfold
- thickness (calculated by addition), estimated total body fat
- 234 (calculated by applying validated equations specific for infant
- sex¹⁰), weight (using a calibrated scale⁹), abdominal and upper
- 236 mid-arm circumferences. For these measures, when reference
- 237 World Health Organization population data were available, z-
- 238 scores were calculated¹¹, including adjustment for infant age,
- sex and length. These standards are applicable to infant
- 240 growth regardless of ethnicity, socioeconomic status and
- 241 mode of feeding¹¹. Z-scores were calculated for infant
- subscapular, triceps skinfold thickness, weight, BMI and arm
- 243 circumference but not for sum of skinfold thicknesses.
- 244 Occipitofrontal circumference, and crown-rump length and

- crown-heel length obtained with a calibrated infantometer,
- were also measured.
- 247
- 248 Duration of breastfeeding, weaning history, measures of
- 249 appetite, infant sleeping patterns, physical activity, healthcare
- 250 resource use and childcare⁹ were pre-specified outcomes.
- 251 These were evaluated using the Infant Feeding and Growth
- 252 Questionnaire¹², the Child Eating and Behaviour
- 253 Questionnaire¹³, the BISQ (Brief Infant Sleep Questionnaire)¹⁴,
- the Infant Behaviour Questionnaire (for child physical
- activity)¹⁵ and questionnaires ascertaining infant health,
- 256 medical resource use and early care and education,
- 257 respectively.
- 258

259 <u>Maternal dietary and physical activity analysis</u>

Maternal diet at 6 months postpartum was assessed using the
same semi-quantitative food frequency questionnaire (FFQ)
and analysed as previously reported for the mothers during
their pregnancy⁸. Data was analysed only in questionnaires
which were fully completed for both maternal diet and
physical activity. Those with incomplete/missing dietary data
were excluded (65.8%). There was no missing physical activity

267	data. The main outcomes of interest were maternal dietary
268	glycaemic load, saturated fat intake and energy intake. Other
269	outcomes included glycaemic index (GI), glycaemic load (GL),
270	protein and fibre intake. Physical Activity was assessed, as it
271	had been in pregnancy, using the International Physical
272	Activity Questionnaire (IPAQ) and summarised as metabolic
273	equivalents (METs) of energy expenditure ¹⁶ .
274	
275	Statistical analyses
276	A complete-case analysis was undertaken for all participating
277	mothers and infants. Treatment effects for continuous
278	outcomes were expressed as differences in means obtained
279	from multivariable linear regression, and binary endpoints as
280	risk ratios with 95% confidence intervals (95%CI) obtained
281	using binomial regression. For both we adjusted for
282	minimisation variables (maternal BMI at trial enrolment, parity
283	and ethnicity) and infant sex and age at follow up. We
284	evaluated the number of intervention contact sessions during
285	pregnancy on measures of infant adiposity.
286	Although loss to follow-up was similar in both of the trial arms,
287	we assessed the possibility that loss to follow-up resulted in
288	selection bias using three complementary methods (further
289	details in Supplementary Text 1). All sets of analyses were pre-

290	planned sensitivity analyses. First, we used Little's chi-squared
291	covariate-dependent missing (CDM) test to explore evidence
292	of data being missing not at random (MNAR), i.e. examining
293	the possibility that in those who were lost to follow-up the
294	effect of the intervention on outcomes differed from those
295	who did attend the follow-up ¹⁷ . This was done for both
296	offspring and maternal outcomes. Second, for the primary
297	offspring outcomes only (subscapular and triceps skinfold
298	thicknesses), we generated several simulation datasets, over a
299	range of scenarios regarding missing data in both arms of the
300	study that were informed by predictors of loss to follow-up
301	(maternal BMI, parity and ethnicity) ¹⁸ . The scenarios selected
302	aimed to cover a range of plausible situations that could result
303	in bias under the assumption of data being missing at random
304	(MAR). Thirdly, for the primary infant outcomes we used
305	multivariate imputation chained equations to impute missing
306	data for infant adiposity. Data were imputed to create 50
307	datasets using 10 burn-in iterations for live-born infants using
308	the following in the multivariate equations: maternal trial
309	entry BMI, age, ethnicity, parity, early pregnancy smoking
310	status, randomisation allocation, measures of maternal
311	anthropometry including GWG, maternal diet and physical
312	activity at 27-28 ⁺⁶ , 34 ⁺⁰ -36 ⁺⁰ weeks' and 6 months postpartum
313	(glycaemic load, glycaemic index, saturated fat, carbohydrate,

314	protein, energy intake), gestation at delivery, infant sex, age at
315	follow up, mode and duration of early feeding, sleep, child
316	health and infant inpatient admissions. The multivariate
317	imputations assume MAR and can also increase statistical
318	power and so allow us to explore whether loss to follow-up
319	might have resulted in type-2 statistical errors. Full details of
320	all of these sensitivity analyses are provided in Supplementary
321	Text 1. Analyses were performed using Stata version 14.0.

322 Results

323 Participants

324	Of the 1555 participants randomised to UPBEAT at 15^{+0} - 18^{+6}
325	week's gestation between July 2010 and May 2015 and with a
326	live born infant, 1522 were approached at this time. Of these
327	1522, 720 (47.3%) infants and 707 (46.5%)mothers took part in
328	this study. Thirteen mothers were excluded as they were
329	pregnant at time of study, and 22 infants were excluded
330	because the follow up appointment was held ≤ 4 months or ≥ 8
331	months postpartum (Figure 1). In comparsion to those who did
332	not take part, mothers who attended the 6month visit were on
333	average 1.3 years older, more likely to be Caucasian,
334	nulliparous, to have had GDM in the index pregnancy(28.2%
335	vs. 23.3%; p=0.041), and were less likely to be current smokers
336	(Supplementary Table 1a, Supplementary Text 1). There were
337	no differences in maternal early pregnancy BMI and sum of
338	skinfold thicknesses between women who participated in the
339	6 month follow-up visit compared to those who did not.
340	Women in the intervention arm demonstrated reduced GWG
341	as previously reported ⁸ . The infants who attended the 6
342	month appointmenthad a longer gestational age at delivery
343	(by 2 days), were 67g heavier, and more likely to have been

- 344 breastfed at birth than those that did not attend
- 345 (Supplementary Table 1b).
- 346
- 347 There was no difference between mean maternal BMI
- 348 between the intervention and standard care groups at trial
- entry (36.17 vs. 36.31 kg/m², respectively) or at 6 months
- 350 postpartum (36.26 vs. 36.45 kg/m², respectively). The
- incidence of maternal smoking at 15⁺⁰-18⁺⁶ weeks' gestation
- 352 was higher in the standard antenatal care arm in comparison
- to the intervention arm (5.6% vs. 2.0%)(Table 1). There were
- 354 no differences in all other demographic and clinical variables
- 355 between the two study arms (Table 1).
- 356

357 Infant anthropometry

- 358 Three hundred and fifty six infants in the standard antenatal
- 359 care arm and 342 infants in the intervention arm (mean age
- 360 5.82 months) had anthropometric measurements at age 6
- 361 months. There was no statistical difference in triceps skinfold
- 362 thickness in the intervention vs. the standard care arm
- 363 (difference -0.14 SD, 95% CI -0.38 to 0.10), p=0.246), but
- 364 subscapular skinfold thickness z-score was -0.26 SD (-0.49 to -
- 365 0.02; p=0.031) lower in the intervention arm (Table 2). Infants

366	in the intervention arm had a 5% lower subscapular skinfold
367	thickness (-0.38mm; -0.70 to -0.06; p=0.021), compared to
368	infants in the standard antenatal care arm (Table 2). The infant
369	sum of skinfold thickness was 0.63mm lower in the
370	intervention arm, but did not reach statistical significance
371	(p=0.058) in comparsion to the standard antenatal care arm
372	(Table 2). There were no differences in BMI z-score and
373	abdominal circumference (Table 2) or in other anthropometric
374	measures between the two arms(Supplementary Table 2).
375	Maternal smoking status at trial entry did not influence the
376	difference in subscapular skinfold thickness between the two
377	arms (Supplementary Table 3). Undertaking sensitivity
378	analyses for deviation from the missing at random assumption,
379	significant differences in infant subscapular skinfold thickness
380	(mm) were found within a range of -0.35 to -0.38mm
381	dependent on the assumption of missinginess taken
382	(Supplementary Text 1 and Supplementary Table 4). Similar
383	results to the complete-case analysis were also observed for
384	infant triceps skinfold thickness (Supplementary Table 5).
385	
386	There was no difference in infant feeding between the two
387	trial arms, nor appetite and satiety responsiveness and infant
388	childcare. Infants were exclusively breastfed, on average for

389	82.7 (SD 65.3) days and total number of hours spent sleeping
390	were similar between arms (Supplementary Table 7). There
391	was an increase in infant inpatient nights in the intervention
392	arm, attributable to 1 infant requiring long-term hospital
393	admission due a ventricular septal defect repair
394	(Supplementary Table 7). We observed no differences in infant
395	use of medications (Supplementary Table 6) or in cause of
396	hospital inpatient admissions, exect for gastrointestinal
397	related disorders, which were lower in the intervention arm
398	(Supplementary Table 8). There was no association between
399	the number of antenatal contact sessions with the health
400	trainer and measures of infant anthronometry (Supplementary
400	trainer and measures of mane antihopometry (supplementary
400	Table 9).
400 401 402	Table 9). No interactions were observed between randomisation
400 401 402 403	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there
400 401 402 403 404	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/
400 401 402 403 404 405	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ ≥3mths) with the intervention; triceps skin fold thickness was
400 401 402 403 404 405 406	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ ≥3mths) with the intervention; triceps skin fold thickness was lower in infants of mothers in the intervention arm who
400 401 402 403 404 405 406 407	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ ≥3mths) with the intervention; triceps skin fold thickness was lower in infants of mothers in the intervention arm who breastfed ≥3 months vs those in the standard care arm -
400 401 402 403 404 405 406 407 408	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ \geq 3mths) with the intervention; triceps skin fold thickness was lower in infants of mothers in the intervention arm who breastfed \geq 3 months vs those in the standard care arm - 0.90mm (-1.59 to -0.21); p=0.011; Wald interaction test;
400 401 402 403 404 405 406 407 408 409	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ \geq 3mths) with the intervention; triceps skin fold thickness was lower in infants of mothers in the intervention arm who breastfed \geq 3 months vs those in the standard care arm - 0.90mm (-1.59 to -0.21); p=0.011; Wald interaction test; p=0.016) (Figure 3). Similar patterns of differences of effect by
400 401 402 403 404 405 406 407 408 409 410	Table 9). No interactions were observed between randomisation allocation and infant sex (Supplementary Table 10), but there was a significant interaction of breast feeding (< 3mths/ \geq 3mths) with the intervention; triceps skin fold thickness was lower in infants of mothers in the intervention arm who breastfed \geq 3 months vs those in the standard care arm - 0.90mm (-1.59 to -0.21); p=0.011; Wald interaction test; p=0.016) (Figure 3). Similar patterns of differences of effect by breastfeeding for sum of skinfold thicknesses, estimated total

- 21
- 412 significance (p-values for interactions all ≥ 0.05)
- 413 (Supplementary Table 11).
- 414
- 415 Maternal diet and physical activity
- 416 In those women who provided complete dietary data GI, GL,
- 417 saturated fat and total energy intake were reduced in the
- 418 mothers in the intervention arm in comparison to standard
- 419 care, as well as a significant reduction in total fat and protein
- 420 intakes (Figure 2 & Table 3). When the under-reporters
- 421 (calorie intake) were included in sensitivity analyses, there
- 422 were no differences in the effect size estimates of dietary
- 423 variables. Furthermore we found no difference in maternal
- 424 characteristics (including maternal age, BMI and
- 425 socioeconomic deprivation status) between those under-
- 426 reporting and those not under-reporting calorie intake. There
- 427 was no effect of the intervention on maternal physical activity
- 428 (Table 3).
- 429
- Causal analysis suggested direct effects of the intervention
 associated reduction in maternal early GWG (between 15-18⁺⁶
 and 27-28⁺⁶ weeks' gestation) (p=0.015), late GWG (between
 27-28⁺⁶ and 34-36 weeks' gestation) (p=0.009), total GWG

434	(p=0.014) and maternal dietary saturated fat intake at $27-28^{+6}$
435	week's gestation (p=0.016) in relation to infant subscapular
436	skinfold thickness at age 6 months (Supplementary Figure 1).
437	In contrast, there was no suggested effect of postnatal
438	maternal diet on the observed differences in infant
439	subscapular skinfold measurements (Supplementary Figure 2).
440	As there was no effect of the intervention on maternal
441	physical activity, there was no rationale for exploring a causal
442	mediating impact of maternal physical activity on offspring
443	adiposity.

Discussion

446	This study has addressed the effect of a pregnancy lifestyle
447	behavioural intervention in obese women on offspring
448	adiposity and maternal diet and physical activity at 6 months
449	postpartum. We have found, to our knowledge for the first
450	time, that a dietary and physical activity intervention in
451	pregnant women with obesity was associated with a reduction
452	in a measure of offspring adiposity, and that changes in
453	maternal diet during pregnancy persisted into the postnatal
454	period. Further analyses suggested that the effect of the
455	intervention on offspring adiposity was independently
456	mediated by the observed reduction in maternal gestational
457	weight gain, dietary fat and energy intake in pregnancy and
458	therefore an expectation that lifestyle interventions have the
459	potential to reduce offspring adiposity. Subscapular skinfold
460	thickness, in comparison to the other anthropometric
461	measurements assessed, is recognised as an accurate index of
462	central adiposity, with a generally lower measurement error
463	than triceps skinfold thickness ^{19,20} . In children and adults,
464	subscapular skinfold thickness has been related to impaired
465	glucose metabolism, and in adolescents to increased serum
466	cholesterol concentration ^{21, 22} . It is plausible, therefore that
467	the maternal dietary and weight changes resulting from the

468	intervention may influence infant body composition towards a
469	healthier metabolic profile ²²⁻²⁴ .

471	Although the magnitude of difference in this measure of
472	adiposity (subscapular skinfold thickness) between
473	intervention and controls arms was modest (5%), it reflected a
474	0.26 reduction in z-score, which incorporated adjustment for
475	infant sex, age and length to allow comparisons to a reference
476	population. Indications from mother-child cohorts, including
477	the USA Project Viva study, suggest that even modest
478	differences in body composition at age 6 months may be
479	amplified as the child grows older, and that this may be
480	apparent as early as 3 years ²⁵ . The Bogalusa Heart Study
481	observed that greater offspring childhood subscapular skinfold
482	thickness related to parental type 2 diabetes was associated
483	with a subsequent adverse metabolic profile in early
484	adulthood ²² . Any persistent influence of the intervention on
485	childhood obesity will only be revealed as the children grow
486	up, but an abundance of evidence suggests that increased
487	adiposity tracks from infancy, through childhood to
488	adulthood ¹ .

490	We are aware of only two relevant similar studies. The first,
491	the Lifestyle in Pregnancy study (LIP) ²⁶ , assessed body
492	composition in older infants (2.8 years) of obese
493	mothers(n=157) who had been randomised to an antenatal
494	lifestyle intervention with the primary aim of reducing
495	gestational weight gain. No change in infant total fat mass, as
496	assessed by DEXA scan, was observed ²⁷ . However, it was not
497	reported whether this intervention modified specific
498	components of maternal antenatal diet or body composition,
499	although a reduction in median gestational weight gain was
500	observed. Secondly, a recent RCT of a low glycaemic diet, but
501	in women of heterogenous BMI, despite a difference in
502	reduction of thigh circumference found no difference in infant
503	body composition at 6 months of age between intervention
504	and control arms ^{28, 29} . The difference between these studies
505	and UPBEAT may relate to the greater intensity of the UPBEAT
506	intervention, involving 8 contact sessions with health trainers,
507	at weekly intervals ⁸ .
508	

509 There remains a paucity of data regarding the long-term

510 efficacy of lifestyle interventions in obese pregnant women⁵.

511 Our study has shown that dietary advice focussing on

reduction of maternal insulin resistance, as a component of a

513	complex intervention, can have a prolonged effect which may
514	have potential to improve long term health as well as familial
515	nutritional environment ^{12, 30, 31} . We did not, however, find any
516	differences between groups in maternal BMI or measures of
517	adiposity at 6 months postpartum. A sustained effect of any
518	maternal dietary intervention on maternal dietary intake
519	postpartum has to our knowledge not been reported
520	previously. In contrast, in the LIMIT trial, follow up of 50.5% of
521	participants, reported no difference in maternal dietary
522	composition at 4 months postpartum ³² , also by self-report.
523	The lower magnitude of intervention effects on maternal
524	dietary variables compared with UPBEAT may explain these
525	differences.
526	
527	Using the method of causal mediation analysis, we found
528	evidence that the lower dietary saturated fat and energy

- 529 intake at 28 weeks' gestation induced by the UPBEAT
- 530 intervention, rather than the change in glycemic load, was
- associated with the reduction in infant subscapular skinfold
- thickness at 6 months of age. The reduction in gestational
- 533 weight gain irrespective of timing and total gestational weight
- 534 gainwere also directly associated with the observed
- 535 difference. These observations would concur with several

536	reports describing associations between maternal gestational
537	weight gain or diet and offspring adiposity ^{4, 33, 34} . Antenatal
538	interventions shown to improve maternal diet and
539	subsequently reduce GWG may therefore be pragmatic and
540	effective measures to reduce early infant adiposity.
541	
542	The observation that exclusive breastfeeding for more than 3
543	months may interact with the maternal intervention to reduce
544	offspring triceps skinfold thickness provides some evidence
545	that breast feeding may compound the benefits of the
546	maternal intervention, although caution should be exercised in
547	over-interpretation as the study was not powered to test
548	interactions such as these. The role of other intrauterine
549	exposures remains to be elucidated; whilst we previously
550	reported no differences in fasting lipids, c-peptide and insulin
551	at 28 weeks' gestation between randomisation arms ⁸ , ongoing

biochemical and metabolomic analyses in maternal and cord

blood may provide insight into mechanistic pathways.

554

A limitation of our study was the follow up of only 47.3% of those infants eligible from the original RCT⁸, but this was similar to the rate of follow up of recently published RCTs in pregnant women^{27, 28, 35}. Due to the stringent inclusion of only

559	complete dietary questionnaires, maternal dietary data was
560	calculated only for 34.2% of the mothers. The dietary data was
561	by self report but compared favourably to a more rigorous
562	method (triple pass 24hr recall) as assessed in the pilot trial ³⁶ .
563	Strengths of the study include the prospective collection of in-
564	depth data addressing familial and individual determinants of
565	infant adiposity, and of maternal in-utero exposures. The
566	richness of data in the UPBEAT study can be considered both a
567	strength and limitation. Whilst providing comprehensive
568	information relevant to developmental origins of early infant
569	obesity, and assessment of mediation effects, limits are
570	imposed on interpretation of secondary analyses in the
571	context of multiple testing.
572	
573	In conclusion, this study provides evidence of the potential for
574	targeted intervention in obese women to improve health for

575 the mother and her offspring. Pregnancy, as demonstrated in 576 this study, appears to be a pragmatic 'teachable' moment for initiating long-term healthier dietary behaviours in the mother 577 578 and reducing a physiologically relevant measure of adiposity in the offspring. 579

580

581 Acknowledgements

- 582 We are particularly grateful to the women and children who
- 583 participated in UPBEAT. We would like to acknowledge Jennie
- 584 Louise PhD (Senior Statistician at the University of Adelaide)
- 585 for her statistical advice, and all the UPBEAT staff.

- 587 Conflict of interests
- 588 All authors have no financial relationships relevant to this
- 589 article to disclose.

590

- 591 Supplementary information is available at the International
- 592 Journal of Obesity's website.
- 593
- 594

596 References

597 598 599	1.	Cunningham SA, Kramer MR, Narayan KMV. Incidence Of Childhood Obesity In The United States. <i>New England</i> <i>Journal of Medicine</i> 2014; 370: 403-411.
600 601 602 603	2.	Nelson SM, Matthews P, Poston L. Maternal Metabolism And Obesity: Modifiable Determinants Of Pregnancy Outcome. <i>Hum Reprod Update</i> 2010; 16: 255-75.
604 605 606 607 608	3.	Young BE, Johnson SL, Krebs NF. Biological Determinants Linking Infant Weight Gain And Child Obesity: Current Knowledge And Future Directions. <i>Advances in Nutrition: An</i> <i>International Review Journal</i> 2012; 3: 675-686.
609 610 611 612 613 614 615	4.	Okubo H, Crozier SR, Harvey NC, Godfrey KM, Inskip HM, Cooper C <i>et al.</i> Maternal Dietary Glycemic Index And Glycemic Load In Early Pregnancy Are Associated With Offspring Adiposity In Childhood: The Southampton Women's Survey. <i>American Journal of Clinical Nutrition</i> 2014; 100: 676-83.
616 617 618 619	5.	Patel N, Pasupathy D, Poston L. Determining The Consequences Of Maternal Obesity For Offspring Health. <i>Experimental Physiology</i> 2015; 100: 1421-1428.
620 621 622 623 624	6.	Tyrrell J, Richmond RC, Palmer TM, Feenstra B, Rangarajan J, Metrustry S <i>et al.</i> Genetic Evidence For Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. <i>JAMA</i> 2016; 315: 1129-40.
625 626 627 628	7.	Richmond RC, Al-Amin A, Smith GD, Relton CL. Approaches For Drawing Causal Inferences From Epidemiological Birth Cohorts: A Review. <i>Early Hum Dev</i> 2014; 90: 769-80.
629 630 631 632 633 634	8.	Poston L, Bell R, Croker H, Flynn AC, Godfrey KM, Goff L <i>et al.</i> Effect Of A Behavioural Intervention In Obese Pregnant Women (The UPBEAT Study): A Multicentre, Randomised Controlled Trial. <i>The Lancet Diabetes & Endocrinology</i> 2015; 3: 767-777.
635 636 637 638 639	9.	Briley AL, Barr S, Badger S, Bell R, Croker H, Godfrey KM <i>et al.</i> A Complex Intervention To Improve Pregnancy Outcome In Obese Women; The UPBEAT Randomised Controlled Trial. <i>BMC Pregnancy Childbirth</i> 2014; 14: 74-83.

640 641 642 643 644	10.	Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD <i>et al.</i> Skinfold Equations For Estimation Of Body Fatness In Children And Youth. <i>Human biology</i> 1988; 60: 709-23.
645 646 647 648	11.	WHO, de Onis M. Reliability Of Anthropometric Measurements In The WHO Multicentre Growth Reference Study. <i>Acta Pædiatrica</i> 2006; 95: 38-46.
649 650 651 652 653	12.	Robinson S, Marriott L, Poole J, Crozier S, Borland S, Lawrence W <i>et al.</i> Dietary Patterns In Infancy: The Importance Of Maternal And Family Influences On Feeding Practice. <i>The British Journal Of Nutrition</i> 2007; 98: 1029-37.
654 655 656 657 658	13.	Llewellyn CH, van Jaarsveld CH, Johnson L, Carnell S, Wardle J. Development And Factor Structure Of The Baby Eating Behaviour Questionnaire In The Gemini Birth Cohort. <i>Appetite</i> 2011; 57: 388-96.
659 660 661 662	14.	Sadeh A. A Brief Screening Questionnaire For Infant Sleep Problems: Validation And Findings For An Internet Sample. <i>Pediatrics</i> 2004; 113: 570-7.
663 664 665 666	15.	Gartstein MA, Rothbart MK. Studying Infant Temperament Via The Revised Infant Behavior Questionnaire. <i>Infant</i> <i>Behavior and Development</i> 2003; 26: 64-86.
667 668 669 670 671 672 673	16.	IPAQ. Guidelines For Data Processing And Analysis Of The International Physical Activity Questionnaire (IPAQ)- Short And Long Forms International Physical Activity Questionnaire 2005; https://sites.google.com/site/theipaq/scoring-protocol accessed online on 15.11.2015.
674 675 676 677	17.	Little RJ. Modeling The Drop-Out Mechanism In Repeated- Measures Studies. <i>Journal Of The American Statistical</i> Association 1995; 90: 1112-1121.
678 679 680 681	18.	White IR, Horton NJ, Carpenter J, Pocock SJ. Strategy For Intention To Treat Analysis In Randomised Trials With Missing Outcome Data. <i>BMJ</i> 2011; 342: 40-53.
682 683 684 685	19.	Mensink M, Feskens EJ, Kruijshoop M, de Bruin TW, Saris WH, Blaak EE. Subscapular Skinfold Thickness Distinguishes Between Transient And Persistent Impaired Glucose

686 687 688		Tolerance: Study On Lifestyle-Intervention and Impaired Glucose Tolerance Maastricht (SLIM). <i>Diabetic Medicine</i> 2003; 20: 552-7.
689 690 691 692 693	20.	Peiris AN, Hennes MI, Evans DJ, Wilson CR, Lee MB, Kissebah AH. Relationship Of Anthropometric Measurements Of Body Fat Distribution To Metabolic Profile In Premenopausal Women. <i>Acta Med Scand</i> 1988; 723: 179-88.
694 695 696 697 698	21.	Santos S, Gaillard R, Oliveira A, Barros H, Hofman A, Franco OH <i>et al.</i> Subcutaneous Fat Mass In Infancy And Cardiovascular Risk Factors At School-Age: The Generation R Study. <i>Obesity</i> 2016; 24: 424-9.
699 700 701 702 703 704	22.	Srinivasan SR, Frontini MG, Berenson GS. Longitudinal Changes In Risk Variables Of Insulin Resistance Syndrome From Childhood To Young Adulthood In Offspring Of Parents With Type 2 Diabetes: The Bogalusa Heart Study. <i>Metabolism</i> 2003; 52: 443-50.
705 706 707 708 709 710	23.	Kizirian NV, Kong Y, Muirhead R, Brodie S, Garnett SP, Petocz P <i>et al.</i> Effects Of A Low–Glycemic Index Diet During Pregnancy On Offspring Growth, Body Composition, And Vascular Health: A Pilot Randomized Controlled Trial. <i>The</i> <i>American Journal Of Clinical Nutrition</i> 2016; 103 :1073-82.
711 712 713 714 715 716	24.	Renault KM, Carlsen EM, Nørgaard K, Nilas L, Pryds O, Secher NJ <i>et al.</i> Intake Of Carbohydrates During Pregnancy In Obese Women Is Associated With Fat Mass In The Newborn Offspring. <i>The American Journal Of Clinical</i> <i>Nutrition</i> 2015; 102: 1475-1481.
717 718 719 720 721	25.	Taveras EM, Rifas-Shiman SL, Belfort MB, Kleinman KP, Oken E, Gillman MW. Weight Status In The First 6 Months Of Life And Obesity At 3 Years Of Age. <i>Pediatrics</i> 2009; 123 : 1177-1183.
722 723 724 725 726	26.	Vinter CA, Jensen DM, Ovesen P, Beck-Nielsen H, Jorgensen JS. The LiP (Lifestyle in Pregnancy) Study: A Randomized Controlled Trial Of Lifestyle Intervention In 360 Obese Pregnant Women. <i>Diabetes Care</i> 2011; 34: 2502-7.
727 728 729 730 731	27.	Tanvig M, Vinter CA, Jorgensen JS, Wehberg S, Ovesen PG, Lamont RF <i>et al.</i> Anthropometrics And Body Composition By Dual Energy X-ray In Children Of Obese Women: A Follow- Up of a randomized controlled trial (the Lifestyle in

732 733		Pregnancy And Offspring [LiPO] study). <i>PLoS One</i> 2014; 9: 1-13.
734 735 736 737 738 739	28.	Horan MK, McGowan CA, Gibney ER, Byrne J, Donnelly JM, McAuliffe FM. Maternal Nutrition And Glycaemic Index During Pregnancy Impacts On Offspring Adiposity At 6 Months Of Age-Analysis From The ROLO Randomised Controlled Trial. <i>Nutrients</i> 2016; 8: 1-13.
740 741 742 743 744	29.	Donnelly JM, Walsh JM, Byrne J, Molloy EJ, McAuliffe FM. Impact Of Maternal Diet On Neonatal Anthropometry: A Randomized Controlled Trial. <i>Pediatric Obesity</i> 2015; 10 : 52- 56.
745 746 747 748 749 750	30.	Ranjit N, Wilkinson AV, Lytle LM, Evans AE, Saxton D, Hoelscher DM. Socioeconomic Inequalities In Children's Diet: The Role Of The Home Food Environment. International Journal Of Behavioral Nutrition and Physical Activity 2015; 12: 1-15.
751 752 753 754 755	31.	Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect Of Infant Feeding On The Risk Of Obesity Across The Life Course: A Quantitative Review Of Published Evidence. <i>Pediatrics</i> 2005; 115: 1367-77.
756 757 758 759 760 761	32.	Dodd JM, Cramp C, Sui Z, Yelland LN, Deussen AR, Grivell RM <i>et al.</i> The Effects Of Antenatal Dietary And Lifestyle Advice For Women Who Are Overweight Or Obese On Maternal Diet And Physical Activity: The LIMIT Randomised Trial. <i>BMC</i> <i>Medicine</i> 2014; 12: 163-172.
762 763 764 765 766 767 768	33.	Walter JR, Perng W, Kleinman KP, Rifas-Shiman SL, Rich- Edwards JW, Oken E. Associations Of Trimester-Specific Gestational Weight Gain With Maternal Adiposity And Systolic Blood Pressure At 3 And 7 Years Postpartum. <i>American Journal Of Obstetrics And Gynecology</i> 2015; 212 : 499.:1-12.
769 770 771 772 773	34.	Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW. Gestational Weight Gain And Child Adiposity At Age 3 years. <i>American Journal Of Obstetrics And Gynecology</i> 2007; 196 :1-12
774 775 776 777	35.	Landon MB, Rice MM, Varner MW, Casey BM, Reddy UM, Wapner RJ <i>et al.</i> Mild Gestational Diabetes Mellitus And Long-Term Child Health. <i>Diabetes Care</i> 2015; 38: 445-52.

36.	Poston L, Briley AL, Barr S, Bell R, Croker H, Coxon K et al.
	Developing a Complex Intervention for Diet and Activity
	Behaviour Change in Obese Pregnant Women (the UPBEAT
	trial); Assessment of Behavioural Change And Process
	Evaluation In A Pilot Randomised Controlled Trial. BMC
	Pregnancy Childbirth 2013; 13: 148-164.
	36.

788 Figure Legends

- 789 Figure 1.Consort diagram of participants enrolled in the UPBEAT
- 790 trial at 6 months postpartum
- 791 Figure 2. Maternal Glycaemic load (a), Saturated fat (b) and Energy
- 792 intake (c) at 6 months postpartum by randomisation allocation.
- 793 Abbreviations: %E- Percentage energy; kcal/day- kilocalorie per day.
- 794 Arithmetic mean with standard error plotted at each gestation (weeks),
- showing nutritional consumption per day.
- 796
- 797 Figure 3. Relationship between duration of exclusive breast
- 798 feeding and anthropometry measured at 6 months postpartum in
- 799 **698 infants from the UPBEAT trial.**
- 800 Effect estimates/ mean differences plotted with 95% confidence intervals.
- 801 For triceps skinfold thickness (n=627), sum of skinfold thickness (n=547),
- total body fat (n=547) and upper mid-arm circumference (n=676).
- 803 *Significant Wald test for interaction p<0.05
- 804
- 805

806