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Abstract

Background: After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms
of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to
investigate if known malaria risk factors remain relevant after many years of interventions.

Methods: We adopted a structured additive logistic regression model that allowed for spatial correlation, to more
realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and
environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial
correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully
Bayesian resulting in an under five malaria risk map for Malawi.

Results: Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the
household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased.
Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong
association with disease risk.

Conclusions: The structured additive regression model offered a flexible extension to standard regression models by
enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and
heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed
that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and
community level and that risk factors are still relevant many years after extensive implementation of RBM activities.
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Introduction

Malaria imposes the biggest health burden in Malawi and is one

of the leading causes of morbidity and mortality in children under

five years of age and pregnant women [1]. It is mainly caused by

Plasmodium falciparum accounting for 98% of all malaria cases [2].

About 6 million clinical malaria cases are reported every year and

the disease is responsible for about 40% of all hospitalizations of

children under the age of five [3]. The disease is endemic to

Malawi although there are variations in prevalence across the

country [4]. Higher altitude areas with lower temperatures such as

Nyika Plateau have lower malaria prevalence than low lying areas

with higher temperatures [5]. Transmission takes place through-

out the year but peaks during the rainy season from November to

April [1].

Malaria transmission is driven by several factors including

climatic, geographic, and socio-economic variables [6]. An

optimum combination of temperature, humidity and rainfall is

required to provide the best conditions for the breeding and

development of malaria vectors. Temperature is known to

influence the rate of development of the life cycle of the

mosquitoes and also the development of malaria parasite. Low

temperatures below 160{190C have the effect of limiting the

transmission of Plasmodium falciparum. On the other hand, at higher

temperatures above 330{390C parasite development ceases [7].

Temperature further dictates the latitudinal and altitudinal ranges

of the vector [8]. Nsanje and Chikwawa districts in the Shire River

valley for example possess the right combination of environmental

and climatic conditions to increase malaria transmission [1].

Variations in malaria risk are also found across the socio-

economic spectrum. On the global scale, malaria greatly affects

the least developed nations in tropical and sub-tropical regions.

Poverty and malaria have been shown to be intimately related

[9,10], with the poorest sub-Saharan countries the worst affected

in Africa. Children from rural and less privileged families are more
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vulnerable to malaria and have a higher risk of developing severe

malaria than children from urban areas.

Malawi has been implementing the Roll Back Malaria (RBM)

activities such as information, education and communication (IEC)

for many years to combat the disease. Insecticide treated nets

(ITNs) and now long lasting insecticide nets (LLINs) are the most

common interventions in Malawi. Indoor residual spraying (IRS)

is another strategy for vector control. ITNs have the potential to

reduce malaria transmission when used in control interventions. In

Bangladesh, LLIN use was successful in reducing malaria episodes

by half and deaths in children by one fifth [11]. On the other

hand, distribution of LLINs failed to achieve a reduction in

malaria transmission in Zambia and Botswana [12,13]. Even

though the Malawi government and its development partners

freely distribute ITNs during periodic mass campaigns, as of 2012

only 55% of households in Malawi owned at least one ITN and

56% of children under five years of age slept under an ITN the

previous night [14]. Spatial disparities exist in the geographical

coverage of ITNs [15]. Data from nationwide surveys such as the

Malawi Demographic Health Survey have consistently shown

variations in proportion of children under the age of five sleeping

under a mosquito net.

Malaria prevalence greatly varies across the country as a result

of variations in these risk factors. Efforts to spatially analyze

malaria prevalence and risk have been made in Malawi [4,5]. Lack

of geo-referenced data that is required for spatial analyses of

malaria data has to some extent led to the relatively limited efforts

in this area. However recent malaria surveys that have been

carried out in Malawi have extensive coverage and collect

geographical coordinates to permit the investigation of spatial

variability in disease risk. Risk mapping of the disease is crucial in

an economically constrained country like Malawi as it enables

efficient allocation of scarce resources.

Attempts to map malaria prevalence in Malawi have been made

over the years. A risk map generated from point reference data

from different sites across the country has been produced [4].

Malaria mapping has also been done at the regional level in

northern Malawi using a spatial model applied to hospital case

data [5]. More recently, a spatio-temporal statistical model, which

maps health facility malaria cases at the district level from 2004–

2011 was developed incorporating socio-economic and climatic

factors [6]. In order to evaluate the impact of scale up of malaria

interventions, the transmission intensity of malaria was mapped for

the 10 year period between 2000 and 2010 using a spatio-temporal

model [16]. This effort resulted in the production of risk maps at

different time points over the decade. However, the model did not

consider risk factors or predictors for the disease.

In this study, we investigate if climatic, socio-economic,

topographical and environmental risk factors for malaria have

remained relevant after many years of implementing interventions

such as ITN, IRS and IEC. To achieve this objective, we

developed a structured additive regression model, implemented in

a Bayesian framework using Markov Chain Monte Carlo

(MCMC), to analyze the 2010 Malawi Malaria Indicator Survey

(MMIS) data.

Materials and Methods

Study area
Malawi is a small country in Southern Africa bordered by

Zambia, Mozambique and Tanzania. The country experiences

rainfall mainly between November and April and malaria

transmission peaks shortly after this period. The first MMIS was

done in 2010 and will be conducted every two years to provide

data on malaria prevalence in line with the National Malaria

Control Programme (NMCP) strategic plan. Malawi is imple-

menting malaria control interventions under the RBM partnership

such as ITNs/LLINs and IRS which are supported by Global

Fund, the President’s Malaria Initiative and several other

organizations. The NMCP coordinates the intervention and

control activities in Malawi.

Data sources
The malaria data used for the analysis were obtained from the

2010 MMIS which was the first country wide malaria prevalence

survey to be conducted in Malawi. The survey took place during

March-April 2010, at the end of the rainy season in Malawi. A

total of 3,500 households were selected for data collection. Sample

size determination used initial assumptions from the Malaria Alert

Centre household survey of 2007 [2]. A two stage cluster sampling

was used to select the households. The first stage selected 140

enumeration areas (EAs) of which 96 were from rural areas and 44

from urban centres. The EAs were selected proportionately to the

regional population. At the second stage, 25 households per EA

were selected. Data were collected from all but three districts

namely Mwanza, Neno and Likoma.

In the selected households, children were tested for malaria

using rapid diagnostic tests (RDT) to determine prevalence.

Women were asked questions with regards to their knowledge of

the disease using a face-to-face questionnaire. Variables collected

were age of the child, ITN use, altitude, wealth and sex of the

child. The wealth index for each household was computed using

data on the household’s ownership of selected assets and sanitation

facilities (such as televisions, bicycles, type of drinking water source

and type of toilet facility). All households were then placed into five

wealth quintiles with 1 being the poorest and 5 the richest. ITN

usage was determined by asking parents about ownership and

usage of the net the night before the survey. The location (rural or

urban) of the households and their region within the country were

recorded. Latitude and longitude for each household were also

collected by GPS. The MMIS datasets can be obtained upon

request from MEASURE DHS [17].

Figure 1. Observed malaria risk in children under five. Observed
malaria risk in children under five years at the 140 EAs across Malawi.
doi:10.1371/journal.pone.0101116.g001
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Climate data for each EA were obtained from the Department

of Meteorological Services and Climate Change in Malawi [18],

collected through the network of over 20 weather stations across

the country. Mean climatic variables for rainfall (mm/day) and

minimum temperature (0C) averaged over the three months

preceding the survey (January-March) were calculated and used in

the analysis.

Model formulation
Suppose yi is the malaria status of a child i such that a positive

malaria test is recorded as 1, or 0 otherwise. Then, binary response

data is generated, which follows a Bernoulli distribution

yi*Bernoulli(pi), ð1Þ

where pi is the probability of a positive test. With an appropriate

link function, the risk of malaria disease can be associated with

explanatory variables using a generalized linear model (GLM)

framework. GLMs are a flexible alternative to ordinary linear

regression, that allow for non-normal response variables [19].

The GLM can be specified with linear predictor gi~ a,

where gi~ log pi

1{pi

� �
is the logit link function and

~(wi1, � � � ,wip)’ is a matrix of explanatory variables. An

ordinary logistic regression is then specified as follows:

gi~ log
pi

1{pi

� �
~a0z ai, ð2Þ

where a0 is the intercept, w
0
i is a vector of covariates and ai is a

vector of regression coefficients.

A limitation to standard GLMs is that they assume independent

(or at least uncorrelated) observations. However, this assumption is

not always met as sometimes observations exhibit spatial and/or

temporal dependence. This needs to be incorporated in models in

order to provide a more accurate estimation and prediction of the

response variable. The linear predictor, by taking into account the

spatial autocorrelation, can be expanded as follows

gi~a0z aiz
Xq

k~1

fk(xik)zwizni, ð3Þ

Table 1. Under five malaria prevalence by district.

District No. examined No. positive Observed risk Data points{

Chitipa 42 1 0.02 3

Karonga 66 6 0.09 4

Nkhata Bay 29 3 0.10 1

Rumphi 32 3 0.09 2

Mzimba 129 14 0.11 11

Kasungu 121 78 0.64 6

Nkhotakota 36 15 0.42 3

Ntchisi 22 17 0.77 1

Dowa 59 31 0.53 4

Salima 67 30 0.45 5

Likoma NA NA NA NA

Lilongwe 370 159 0.43 24

Mchinji 68 35 0.51 3

Dedza 90 41 0.46 7

Ntcheu 41 19 0.46 3

Mangochi 132 74 0.56 8

Machinga 64 29 0.45 5

Zomba 117 43 0.37 8

Chiradzulu 33 16 0.48 2

Blantyre 208 53 0.25 18

Thyolo 86 34 0.40 5

Mulanje 95 59 0.62 5

Phalombe 68 35 0.51 3

Chikwawa 55 19 0.35 4

Nsanje 31 5 0.16 2

Balaka 33 15 0.45 3

Mwanza NA NA NA NA

Neno NA NA NA NA

{Data points are EAs.
doi:10.1371/journal.pone.0101116.t001
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where a0 is the intercept, ai is the parameter corresponding to the

categorical fixed variables ~(wi1, � � � ,wip)’ (e.g. wealth index,

age category, location, bed net use) and f is an appropriate

smoothing function of continuous covariates, xik (rainfall, mini-

mum temperature, altitude). Spatially unstructured random

effects, wi, capture the unobserved spatial heterogeneity and

overdispersion at each location such as immunity to malaria while

spatially structured random effects, ni, allow for spatial autocor-

relation and clustering, for example variation in access to

interventions such as ITNs among the communities.

Equation 3 gives rise to a class of models known as structured

additive regression (STAR) models. Generalized additive models

(GAM) [20], generalized additive mixed models (GAMMs) [21]

and geoadditive models [22] are special cases of the STAR

models. All of these models make use of smooth functions to model

covariate effects on the response variable. These models are

increasingly being applied to model health impacts and outcomes

such as spatial variation of HIV infections and effects of climate on

malaria across Africa [23–29].

Prior assumptions. The implementation of the model

follows a Bayesian approach. In Bayesian analysis, all the

regression coefficients and the smooth functions fj are considered

as random variables and are assigned prior distributions. Without

any prior knowledge, the coefficients a of the continuous

covariates are assigned diffuse priors, i.e.

p(ai)!const: ð4Þ

The unknown smooth functions fj(xj) are assigned Bayesian

penalized splines priors [30]. The functions are assumed to be

approximated by a polynomial of degree l which is defined over

a set of equally spaced knots of the form xmin~f0v

f1v � � �vfm{1vfm~xmax: The spline is expressed as a linear

combination of B-spline basis functions. This approach is similar

to fitting second order random walk priors of the form

bk~2bk{1{bk{2zuk with Gaussian errors, uk, assigned to the

smooth terms. The spatial random terms are also fitted as splines,

particularly as a two-dimensional tensor product. The unknown bj

are assigned priors of the general form

p(bj Dt
2
j )!

1

(t2
j )rank(Kj=2)

exp {
1

2t2
j

b
0
j Kjbj

 !
, ð5Þ

where Kj is the penalty matrix and tj is the variance parameter

that controls the tradeoff between flexibility and smoothness. The

t2
j is assigned non-informative dispersed inverse Gamma priors

p(t2
j )*IG(aj ,bj) [31] where

t2
j !

1

tj

� �ajz1
exp

{bj

tj

� �
: ð6Þ

To capture the spatial effects we assumed stationary Gaussian

process with zero mean and variance
P

ij ~s2corr(dij ,r), where

s2 is the sill, and corr(dij ,r) is the spatial correlation. The spatial

correlation is considered a function of distance, dij , between the

spatial locations si and sj , under isotropic assumptions. Usually the

exponential correlation function is assumed such that

corr(dij ,r)~ exp ({dij ,r): The parameter r measures how fast

the correlation decays as the distance between the locations

increases [32]. Bayesian inference was done using MCMC

simulation based on the posterior distribution p(b1, . . . ,bp,

t2
1, . . . ,t2

p,aDy)!L(y,b1, . . . ,bp,a) Pp
j~1 p(bj Dt2

j )p(t2
j ):

Model implementation. In order to assess factors that are

associated with the probability of an under five child testing

positive for malaria, different models were fitted as follows:

J : gi~a0z ai

K : gi~a0z ai zf1(rainfall )zf2(altitude)zf3(min temp)

zf4( latitude)

L : gi~a0z zwizni

M : gi~a0z zf1(rainfall )zf2(altitude)zf3(min temp)

zf4( latitude)zwizni:

In the fixed effects model, J, categorical and continuous variables

were fitted linearly in the usual GLM framework. In these models,

a0 is the intercept and ai is the vector of coefficients of the

Table 2. Association between malaria risk and selected
categorical variables.

Malaria

Variable Yes (%) No (%) p-value

Age group (yrs) ,0.001

0–1 68(25.4) 200(74.6)

1–2 150(36.2) 264(63.8)

2–3 186(44.5) 232(55.5)

3–4 164(46.5) 189(53.5)

4–5 149(45.0) 182(55.0)

ITN 0.002

Yes 586(39.0) 916(61)

No 275(46.5) 316(53.5)

Sex 0.649

Male 435(41.6) 610(58.4)

Female 426(40.6) 622(59.4)

Location v0.001

Urban 91(16.4) 464(83.6)

Rural 770(50.1) 768(49.9)

Region v0.001

South 382(41.43) 540(58.57)

Centre 425(48.63) 449(51.37)

North 54 (18.12) 244(81.88)

Wealth index v0.001

Poorest 297(59.0) 206(41.0)

Poorer 161(56.3) 125(43.7)

Medium 125(43.7) 224(53.0)

Richer 124(31.4) 271(68.6)

Richest 80(16.5) 406(83.5)

doi:10.1371/journal.pone.0101116.t002
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categorical variables, : The second model, K , includes smooth

functions of the q continuous covariates
Pq

k~1 fk(xik), such as

rainfall and altitude, to assess the importance of possible non-

linear associations. In model L, random effects of location were

included, together with all other covariates, fitted as fixed effects.

Lastly, model M included categorical variables fitted as fixed

effects, continuous covariates fitted as smooth functions to account

for non-linearity, and spatial random effects.

Bivariate tests were carried out in order to determine which

variables to include in the models. Initial descriptive analysis was

done using cross tabulations and assessed using the Chi-square test

to investigate the relationship between the outcome of the malaria

test and several categorical variables at the 95% confidence level

(CI).

In running the MCMC algorithm, 10 000 iterations were made

with a burn in of 1000 and a thinning parameter of 50. To ensure

that the choice of the priors in the Bayesian analysis did not

influence the results, a sensitivity analysis was performed by

running the chosen model several times, changing the prior

parameters at each run and then comparing the observed changes

in the estimates. The default gamma prior with hyper-parameters

equal to (a = 0.001,b = 0.001) was changed and the model was run

3 times with the new priors (a = 0.00001,b = 0.00001),

(a = 0.0005,b = 0.0005) and (a = 1,b = 0.005). The Deviance Infor-

mation Criterion (DIC) [33] was used to compare the fitted models

J, K, L and M (the smaller the DIC, the better the model).

Convergence was assessed through trace plots. Analyses were

performed using the free software BayesX [34] in a full Bayesian

approach using MCMC. The R statistical software [35] and

BayesX package [36] in R were also used to analyze and visualize

results.

Results

The DIC values for the four models based on one set of priors

were compared. Model J had DIC of 2193.23, model K had DIC

of 2025.85. The DIC values for models L and M were 1927.35

and 1894.35 respectively. Model M, combining categorical

variables, smooth functions of continuous variables and the spatial

random effects explained childhood malaria risk better than the

other models. Therefore, this model was selected for further

analysis since it had the lowest DIC. Model M was then subjected

Figure 2. Variation in probability of malaria in children aged less than 5 years with potential risk factors. Variation in probability of
malaria in children aged less than 5 years with (a) age (b) wealth index (c) altitude (d) latitude. The vertical bars are 95% CI.
doi:10.1371/journal.pone.0101116.g002
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to changes in prior hyper-parameters. The model was found not to

be sensitive to the changes, indicating that it was an appropriate

model to use.

Observed malaria risk in Malawi
Figure 1 shows malaria prevalence per sampled EA across

Malawi. It clearly shows that the central and southern regions

registered higher malaria risk than the northern region during the

survey period. Ntchisi district in the central region registered the

highest malaria risk. Table 1 provides a summary of the number of

children examined, those testing positive and the calculated

malaria risk against data points/EAs per district.

Bivariate association between malaria prevalence and

risk factors. Table 2 shows the association between malaria

risk and selected categorical variables. At the 5% level, a

statistically significant association between age of a child, wealth

status of a household and malaria status was found (pv0:001):
Use of ITN, and place of residence, whether rural or urban and

region (north, centre or south) were also significantly associated

with malaria status (pv0:001): However, gender of a child did not

show a statistically significant association with malaria risk

(p~0:649):
Figure 2 shows how the risk of malaria varied with changes in

different variables. In Figure 2a, the risk of malaria as indicated by

the probability of a positive malaria test generally increased as the

age approached five with children less than one year of age having

the lowest risk of 32%: The risk then rose sharply to 44% by the

time the child reached two years. Beyond this age, the risk

remained relatively constant. Fig 2b shows how the risk of malaria

dropped as the wealth of a household improved. Children from

the poorest households (quintile 1) were at the highest risk (59%)

compared to 18:5% for children from the richest households

(quintile 5). It can also be seen from Figure 2c that there was some

non linear relationship between malaria risk and altitude. The

highest risk was observed at about 600 m above sea level and then

dropped with increasing altitude reaching 20% at 1500 m. Lastly,

it was observed that the disease risk dropped when moving from

north to south of the country (Figure 2d). The lowest risk of 10%
was recorded in the North at around 100S latitude and the highest

probabilities were observed in the central region of Malawi

indicated by the mid lying altitudes around 140S. In this area, the

risk goes up to 48%:
Effect of categorical variables on malaria risk. Odds

ratios from the best fitting model showing the relationship between

the categorical variables and the risk of the disease are shown in

Table 3. Children aged between 1–2 years had 2 times higher odds

of testing positive than those less than 1 year old (adjusted

OR = 2.32, CI: 1.53, 3.51). Age groups 3–4 and 4–5 years both

had 5 times higher odds of having the disease (adjusted OR = 5.20,

CI: 3.37, 8.02 and adjusted OR = 4.64, CI: 2.99, 7.21, respec-

tively).

Children from rural areas had 4 times higher odds of

contracting malaria than their urban counterparts (adjusted

OR = 4.13, CI: 2.31, 7.38). The odds of malaria infection steadily

dropped as wealth increased. Children from medium income

households were found to have 34% lower odds of malaria

Table 3. Parameter estimates and 95% credible intervals for the categorical variables of the chosen model.

Parameter estimates

Explanatory Variable Odds Ratio (OR) 2.5% Quantile 97.5% Quantile

Intercept 0.17 0.08 0.35

Age group (yrs)

0–1 1.00

1–2 2.32 1.53 3.51

2–3 3.60 2.37 5.45

3–4 5.20 3.37 8.02

4–5 4.64 2.99 7.21

ITN

Yes 0.57 0.43 0.76

No 1.00

Location

Rural 4.13 2.31 7.38

Urban 1.00

Region

South 1.00

Centre 1.48 0.90 2.42

North 0.15 0.07 0.32

Wealth index

Poorest 1.00

Poorer 1.10 0.76 1.60

Medium 0.66 0.45 0.96

Richer 0.42 0.28 0.64

Richest 0.22 0.14 0.37

doi:10.1371/journal.pone.0101116.t003
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compared to those from the poorest households (adjusted

OR = 0.66, CI: 0.45, 0.96). The odds further dropped as the

children in the richest households had 78% lower odds of

parasitaemia (adjusted OR = 0.22, CI: 0.14, 0.37). Children from

the central region had 48% greater odds of testing positive for

malaria (adjusted OR = 1.48,CI: 0.90, 2.42) than those from the

south. The use of bed nets as an intervention yielded positive

results as children sleeping under an ITN had 43% lower odds of

contracting malaria (adjusted OR = 0.57, CI: 0.43, 0.76) com-

pared to those not sleeping under ITN.

Effect of continuous covariates on malaria risk. The

possible nonlinear effects of the continuous covariates after

accounting for other variables are presented in Figure 3 together

with 80% and 95% credible intervals. Figure 3a shows a steady

drop in malaria risk with increasing altitude. The lowest risk is

observed at altitudes above 1500 m above sea level. On the other

hand, latitude in Figure 3b does not show an association with the

risk as indicated by the CI in the figure. Figure 3c shows that from

average minimum temperatures of 160C to 180C, risk remains

relatively constant. Malaria risk then increased slightly as

temperature approached 210C. Despite these changes in risk,

minimum temperature overall was not significantly associated with

malaria. Similarly rainfall was not significantly associated with the

disease risk as shown in Figure 3d. Malaria risk was lower for

average monthly rainfall below 150 mm but increased slightly

from 260 mm.

Malaria risk map. Using climatic and environmental

variables only, we generated a malaria risk map for Malawi

(Figure 4a). The risk map shows that, in general, the central region

had the highest risk followed by the southern region. In the

northern region, the risk was lower due to the cooler climate in this

part of the country, as a result of the mountainous terrain. The

southern part of Malawi showed lower than expected risk which

could be due to undersampling. The districts of Mwanza and

Figure 3. Non linear effect of different continuous covariates on malaria risk (a) altitude (b) latitude (c) minimum temperature (d)
rainfall. Plots based on model estimates from the multivariate spatial model with splines (model M). The inner and outer dotted lines are the 80%
and 95% CI respectively. The solid middle line is the posterior mean.
doi:10.1371/journal.pone.0101116.g003
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Neno were not sampled and coupled with the low sampling density

in Nsanje, this area was not well represented. Figure 4b shows a

map of standard errors, indicating that the highest errors are found

in the north, compared to the rest of the country. Standard errors

were greatest in areas with the lowest sampling density.

Discussion

We analyzed the data from the first nationwide malaria survey

in Malawi to estimate the changes in risk factors of the disease in

children aged under five in the face of ongoing interventions. The

MMIS provided data on the malaria status, intervention activities,

socio-economic status of households and some geographical

variables such as location.

The analysis showed that the risk of malaria increases as the

child approaches the age of five. The lower risk for children aged

between 0–1 years could be explained by the presence of maternal

immunity in the infant during the first six months. The 2012

MMIS also showed a similar trend of increasing malaria

prevalence with age. For instance RDT results showed a

prevalence of 35:9% in children 6–8 months of age steadily

increasing to 50% among the 4–5 year age group [14]. During the

first 6 months of life, the protective effect of maternal immunity

helps prevent malaria attacks [37]. This observed increase in

prevalence may be due to some behavioral characteristics at the

household level. During the early part of their lives, children tend

to be well taken care of and thus protected from many diseases

including malaria. However, this changes when they grow older.

In Nigeria, a study found that sleeping under an ITN was

associated with the age of a child such that children aged less than

1 year were two times more likely to sleep under an ITN than 4

year olds [38].

Similar country wide malaria surveys in Angola and Zambia

have shown a significant association between sleeping under ITN

and reduction in malaria prevalence among children [39,40].

However, even though ITNs are freely distributed in Malawi, it

has been shown that inequalities to access remain with the poorest

missing out on the ITNs [41]. This could be one of the

contributing factors to high malaria prevalence among the poorest

households. A study in Afghanistan found that families from the

richest wealth quintiles were 4.5 times more likely to purchase

ITNs than families from the two lower quintiles [42].

The risk map produced showed lowest risk in the northern part

of Malawi compared to the other regions. This region constitutes

vast mountainous areas, such as the Nyika Plateau with a cooler

climate that may discourage vector reproduction and activity. The

central region is covered by large portions of inland plain land in

Kasungu and Lilongwe and low lying areas along the lake that

may offer better conditions for vectors. Very low altitude areas less

than 500 m showed lower risk, which could be due to very high

temperatures not suitable for vector development and malaria

transmission. Temperatures above 340C generally have a negative

impact on the survival of parasites. The model also showed lack of

significant association between malaria and the climatic variables

of rainfall and minimum temperature. A similar lack of association

Figure 4. Risk map of malaria in children less than 5 years. (a) Predictive risk map of malaria in children less than 5 years (b) Standard errors
associated with the risk map. Green (brown) colours represent lower (higher) standard errors.
doi:10.1371/journal.pone.0101116.g004
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between climatic and environmental variables including rainfall

with malaria was observed in Zambia [40].

Adaptation of standard GLMs to allow modelling of possible

nonlinear relationships between continuous covariates and the

response, in addition to taking into consideration the inherent

spatial correlation in the data, leads to more accurate estimates of

the risk factors of malaria. Models fitted without taking into

account the spatial structure were found to be less adequate when

compared with spatial models. Environmental, topographical and

climatic variables are usually associated with malaria in the

malaria endemic zones, including Malawi, and accounting for

these variables in the model leads to more accurate parameter

estimates.

One limitation is that the MMIS was carried out during the

months with the highest malaria transmission and this restricts the

applicability of the malaria risk maps to this time of the year. The

lower sampling density in some districts also makes prediction of

malaria in unobserved locations in those areas a challenge. For

example, the survey did not cover some districts (Mwanza,Neno

and Likoma) thus distorting the results to some extent especially in

the southern Malawi where Mwanza and Neno are located. The

quality of the data is also affected by the possible misclassification

of malaria cases.

Despite limitations, the analysis and risk maps indicate that the

various risk factors especially geographical such as location of

residence (urban or rural) and region remain significant after years

of coordinated malaria response under the RBM framework. The

NMCP, in collaboration with local authorities has a big task in

containing the risk factors within the districts. The NMCP can

then extend its reach by coordinating with authorities in

neighbouring countries in the fight against the disease. It has

been shown that malaria in the border areas is a problem. In

Zambia, a study revealed persistent hotspots identified along the

Malawi border [13]. The fight against malaria can be greatly

improved if both in country and across country interventions work

in harmony.

The 2010 MMIS acts as a baseline upon which subsequent

surveys will be built. It is crucial to monitor trends in malaria risk

among children and to continually explore the complex relation-

ships between parasitaemia risk and environmental, climatic and

socio-economic factors. This will be possible since each round of

the MMIS will cover the same locations thus making it possible to

monitor under five malaria risk over a long period of time.

Furthermore, effective control measures of under five malaria at

household level in Malawi should start with proper mapping of the

disease risk. It is only after understanding the distribution of

malaria in Malawi that resources can be prudently allocated to

deal with the problem.

Conclusion

This research provides an empirical risk map that can be used

for intervention activities by identifying areas that are likely to

have higher risks and hence require special attention. Since the

analysis is based on the first country representative survey, the

maps produced are the most credible and reliable to date for use in

control initiatives. These results, coupled with expert opinion,

which is widely used in the absence of empirically produced maps,

can lead to a better understanding of the spatial distribution of

malaria and hence more targeted interventions in the fight against

the disease in young children.
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