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Abstract

Background: Malaria transmission is influenced by variations in meteorological conditions, which impact the biology
of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and
education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic,
such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge
for the modelling of malaria risk in space and time.

Methods: A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using
an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic
and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to
account for the unobserved confounding factors that influence malaria, which are not accounted for using measured
covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and
temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for
model fitting and prediction.

Results: Using a stepwise model selection procedure, several explanatory variables were identified to have
significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention
variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final
model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation)
and average temperature during the three months previous to the month of interest.

Conclusions: When modelling malaria risk in Malawi it is important to account for spatial and temporal
heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for,
precipitation and temperature in the months prior to the malaria season of interest are found to significantly
determine spatial and temporal variations of malaria incidence. Climate information was found to improve the
estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is
irregular. This highlights the potential value of climate-driven seasonal malaria forecasts.
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Background
Malaria is one of the greatest public health problems
in Malawi, placing children under the age of five and
pregnant women at the highest risk of the disease. It is
estimated that about 6 million clinical cases of malaria
(for both under and over five years age groups) are
reported annually [1], in a population of approximately
15 million [2]. Plasmodium falciparum is the leading
malaria-causing parasite in Malawi and accounts for most
of the cases reported. The 2010 Malaria indicator sur-
vey reported prevalence of 43.3% [3]. In a bid to reduce
the spread of the disease, the Malawi government has
embarked on different interventions such as vector con-
trol through indoor residual spraying and insecticide-
treated nets (ITN) [4]. The latter primarily focuses on
the high-risk groups of pregnant women and children
under the age of five and is the main intervention method
in Malawi. The government is now encouraging the
use of long-lasting insecticidal nets of which there are
mass distributions conducted periodically. Several Non
Governmental Organizations (NGOs) and international
organizations such as the World Health Organization
(WHO), the President’s Malaria Initiative and the Global
Fund are involved in malaria intervention activities. How-
ever, these NGOs usually work in selected districts and
as such, some districts receive no aid. Despite the scaling
up of malaria control measures over the last decade, the
recent data have not suggested a decrease in the burden of
disease [4,5].
Another challenge that the government faces in the

fight against malaria is the detection of the disease at the
health facilities, especially those in rural areas without
the necessary laboratory facilities for testing. Presump-
tive malaria diagnosis has been used in the past and
this led to over-diagnosis of malaria cases and conse-
quently poor guidance to map regional risk and manage
the disease. In 2011 the government of Malawi adopted
the WHO recommendation that tests should be carried
out in all suspected malaria cases and rapid diagnostic
tests (RDT) were subsequently progressively introduced
to health facilities across the country [6].
The focus of the government through the National

Malaria Control Programme is to achieve universal cover-
age in the prevention and treatment of malaria. The aim is
that by the year 2015, the 2010 levels of malaria morbid-
ity and mortality will be reduced by half [1]. In order to
achieve this goal, there is a pressing need for tools that can
be implemented rapidly and cost-effectively to mitigate
the burden of malaria. The government needs to know
which districts are most at risk and when. Defining the
spatial distribution of a disease within a country or region
allows public health decisionmakers to identify zones sus-
ceptible to epidemics and to target resources toward those
areas at greatest risk [7].

Climate variability can affect malaria transmission, both
in terms of spatial and seasonal distribution, inter-annual
variability and epidemic potential [8]. Rainfall can affect
the availability of mosquito breeding, developmental and
resting sites [9], while temperature influences the rate of
development of immature stages and adult survival rate,
biting frequency and the extrinsic incubation periods (the
period between infection of the vector and the vector’s
ability to infect the next susceptible host) of disease agents
[10]. Climate variability and change in the epidemiology of
mosquito-borne diseases are complex. While increasing
temperature speeds up vector, larvae and parasite bio-
logical cycles, high temperatures can increase mosquito
and larva mortality [11,12] and prevent malaria trans-
mission above an upper temperature limit in the range
of 33-39°C [13]. Likewise, rainfall can promote trans-
mission by creating ground pools and other breeding
sites, but heavy rains can have a flushing effect, cleansing
such sites of early stage larvae [14,15]. The relationships
between malaria and climate have been well documented
and statistical and dynamical models have been developed
to represent them. With such models, climate observa-
tions and forecasts could be used to predict epidemics
on monthly to seasonal time scales [16-23]. In addition
to the climatic factors that affect malaria transmission,
consideration of the interaction of ecological variables
with human behaviour and the urban environment is
also important. Predictive models for malaria morbidity
risk should also include potentially important non-climate
variables that can affect population vulnerability and alter
the underlying spatial distribution of infectious disease
hazard associated with climate and environment [24].
The socio-economic status of a population can lead to

conditions and environments conducive to vector prolif-
eration and enhanced disease transmission. For example,
rapid urbanization in Africa has contributed to unpro-
tected water reservoirs, poor housing and lack of sani-
tation, which have implications for malaria transmission
and epidemiology [25]. Poor sanitation in a household
can lead to stagnant water holes that can act as breed-
ing sites. Similarly, poor water storage and sanitation can
provide breeding sites for mosquitoes around the house-
hold. A previous study of malaria risk in Ethiopia found
that households with no toilet facilities were more likely
to test positive for malaria [26]. That said, it is believed
that those living in urban areas in Malawi are at a reduced
risk of malaria compared to their rural counterparts. The
2010 Malawi Demographic and Health Survey reported
that 30.7% of those surveyed in urban areas had fever in
the preceding two weeks before the survey as compared
to 35.1% in rural areas [27]. Kelly-Hope and McKenzie
[28] report lower transmission intensities in urbanAfrican
environments relative to rural areas. Urban areas possess
qualities that reduce population vulnerability, compared
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to their rural counterparts. For example, literacy levels are
generally higher and access to prevention interventions is
greater than in rural settings. A study in Malawi found
that the poorest populations in rural areas are not reached
by intervention methods and ITN ownership was asso-
ciated with living in urban areas and higher educational
levels [29]. Further explanations posed as to why malaria
transmission is lower in urban areas include pollution,
which affects larval habitats and their life cycles [25,30],
mosquito avoidance behaviour by urban dwellers [25] and
higher population densities resulting in lower biting rates
[25,31]. In rural locations, one room households are likely
to be associated with greater risk of malaria compared to
houses with more rooms, since such homes are unlikely
to have sufficient nets for all members of extended fami-
lies that frequently occupy such dwellings in rural Malawi.
A study in Kenya found that adult mosquito abundance
was significantly associated with traditional housing, with
more mosquitoes found in grass thatched and mud wall
houses [32].
Education status is a socio-economic factor that may

impact malaria prevalence. Education status tends to
affect the knowledge about malaria prevention and con-
trol among the population. Over recent years there has
been emphasis on the idea that improving knowledge
about malaria in communities will lead to better use of
interventions [33,34]. A study in India found educated
respondents were more knowledgeable about malaria
than the illiterate [35]. Literacy has been found to be pos-
itively associated with parasitaemia in Kenya [36]. Never-
theless, some of the observed association between disease
prevalence and education may also be due to its role as a
proxy for poverty.
Concerning interventions, malaria prevalence is

expected to reduce as ITN distribution rates increase. The
National Malaria Control Programme has been distribut-
ing ITNs freely with the purpose of reducing prevalence
amongst the most vulnerable groups (children and preg-
nant women). Prevalence is expected to drop in areas with
a high distribution rate, given that this results in greater
usage. However, in Malawi, where the use of mosquito
nets is the most widely used intervention, owing to its low
cost, net usage is still not as high as anticipated, despite
several mass distribution campaigns.
Although climate demonstratively defines the temporal

limits of the transmission season and spatially demarks
endemic, epidemic and malaria free zones, the role that
climate variations play in governing year to year variability
in malaria morbidity rates is not well understood. Previ-
ous modelling efforts in Malawi used spatial analysis to
predict and map malaria risk across the country, by mod-
elling point-referenced prevalence of infection data, with
topographical and climatic factors as explanatory covari-
ates [37]. Kazembe [38] then went on to profile the spatial

variation of malaria risk in under fives, using Bayesian
spatial analysis to investigate the possible association of
disease risk with environmental factors at the sub-district
level in northern Malawi.
This study extends that of Kazembe [38] by using a

spatio-temporal dataset stratified by age (under five years
and five years and over) for the whole country, span-
ning several years (July 2004 - June 2011). This improves
the ability of the model to inform malaria risk trends in
Malawi as a whole. Further, clinical malaria data is used,
which, although has the propensity to over-estimate the
risk, provides a general picture of the overall malaria bur-
den and resources required to decrease malaria risk. As
well as environmental data, socio-economic determinants
are also considered to better account for spatial variations
in malaria risk. The aim of this analysis is to investigate
the spatial and inter-annual variations in malaria morbid-
ity in Malawi and to determine how much, if any, of the
inter-annual variability is due to climate variability rela-
tive to other non-climatic factors. This is accomplished
by using a Bayesian statistical modelling approach, which
is increasingly being used for mapping and predicting
the risk of infectious diseases and can account for spa-
tial dependence and unknown random effects [38-44].
Here, the spatio-temporal model framework developed by
Lowe [41,43] is applied and extended to analyze a newly
compiled database of malaria morbidity in Malawi and
determine which socio-economic, geographic and climate
effects explain the spatial and inter-annual variability.

Methods
Study area
Malawi is a small country in Southern Africa, bor-
dered by Tanzania to the north, Zambia to the west and
Mozambique to the south, with an area of about
120,000 km2. Malawi is divided into 28 districts within
three administrative regions. The country has a varied
topographical landscape with highland areas in the north-
ern districts of Chitipa and Rumphi, where the Nyika
Plateau is located. High mountainous areas also include
Dedza, the Zomba Plateau and Mulanje Mountain in the
south east corner of Malawi. These areas have lower tem-
peratures, which reduce the transmission of the disease. In
contrast, low-lying areas are found in the Shire river valley
and along LakeMalawi. Districts in these areas experience
higher temperatures and generally report higher malaria
incidence. Lilongwe and Kasungu plains in the central
region are the two biggest plains in the country.
Malawi falls within the tropics between latitudes 9°S

and 18°S and longitudes 32°E and 36°E and experiences
two distinct rainy and dry seasons. Malaria transmis-
sion mainly occurs between November and April during
and shortly after the warm and wet months in which
95% of the annual precipitation is recorded. Average
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temperatures vary between 25-37°C in this period [45],
which provides the best environmental conditions for the
breeding of the malaria vectors. There is a considerable
drop in malaria cases during the dry season between May
and October, with mean temperatures varying between
17-27°C.
The majority of the population of Malawi live in rural

areas and are involved in small scale subsistence farming.
The rural population typically live in traditional dwellings
with mud walls and a thatched roof. Overall, illiteracy is
still a challenge in Malawi with an adult literacy rate in
2009 of 70% [46].

Data sources
Malaria data
Malaria case information was obtained from the Health
Management Information Systems (HMIS) operated by
the Ministry of Health (MOH), a database which records
routine health data. In this system, both clinically and
non-clinically diagnosed malaria cases disaggregated by
age are routinely collected from all health facilities across
Malawi, aggregated monthly to the district level. The
HMIS in its current form was developed in 2002 but only
started functioning nationally in 2004. During the first
two years of being established, there weremany challenges

as the system did not function well in most districts.
As RDT testing was introduced in 2011, the majority of
diagnosed cases are non-clinically diagnosed suspected
cases, which is likely to cause a significant overestima-
tion of cases. From the district offices, data is sent to the
national central database at the Ministry of Health every
quarter. The malaria data used for this study was strat-
ified by age (under five years and five years and over)
for the period July 2004 - June 2011, as the reporting
year starts in July and ends in June. Population and other
demographic indicators were obtained from the National
Statistical Office (NSO). The population figures for the
districts were obtained from the population projections
report by the NSO based on the 1998 population and
housing census [47].

Socio-economic data
A database of potential drivers of malaria risk in Malawi
was collated for every district for each month between
July 2004 - June 2011 (see Table 1). Certain variables were
calculated using population estimates, for example popu-
lation density, the proportion of the population living in
urban areas and the proportion of health facilities and ITN
distribution per inhabitant. Data on urbanization, hous-
ing, health care provision, sanitation and literacy levels

Table 1 Source and original resolution of datasets

Data Description Spatial
resolution

Temporal
resolution

Source

Malaria cases Malaria cases from July 2004 - June 2011 reported at
health facilities

District Monthly HMIS, Ministry of Health

Area Land area of the districts in Malawi District Unpublished reports

Population Population projections based on the 1998 population
and housing census.

District Yearly NSO population projections [47]

Urban population Population residing in the urban centres of Malawi District Yearly NSO population projections [47]

One room Proportion of dwelling units with one sleeping room District Demographic and Health Survey [27]

No toilet facilities Percentage of households without toilet facilities District Welfare Monitoring Survey [46]

Literacy rate Proportion of those aged five and above who can
read and write in any language

District Welfare Monitoring Survey [46]

No school Proportion of the adult population who never
attended school

District Welfare Monitoring Survey [46]

Traditional housing Defined as a dwelling with mud walls and a thatched
roof

District Welfare Monitoring Survey [46]

ITN distribution Number of nets distributed by government, NGOs
and some international agencies

District Yearly Unpublished reports by the National
Malaria Control Programme

Number of health
facilities

Network of health facilities operated by government
and religious bodies

District MOH database

Precipitation Precipitation estimates (units: mm day−1) 10km grid Daily FEWS CPC/Famine Early Warning
System Daily Rainfall Estimates [48]

Temperature Temperature reanalysis data (units: °C) 80km grid Daily ERA-Interim reanalysis [49]

Altitude Digital elevation data 90m grid Shuttle Radar Topography Mission 90
m dataset [50]
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were obtained from Welfare Monitoring Surveys (WMS)
[46] conducted annually by the NSO (see Table 1).

Climatic and geographic data
Monthly precipitation estimates (units: mm day−1) were
derived from the CPC/Famine Early Warning System
Daily Rainfall Estimates (RFE 2.0) over Africa, available at
a 10km resolution [48]. Temperature estimates (units: °C)
were derived from the ERA-Interim reanalysis produced
by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [49], with a coarser resolution of
80km. Altitude data was obtained from the Shuttle Radar
Topography Mission 90m digital elevation dataset [50].
Climatic and topographic data were calculated for each
district in Malawi using an interpolation method to relate
gridded products to administrative districts [51]. Districts
were further grouped into administrative regions (north,
central, south) and ecological zones (lakeshore, lowland,
highland, highland/lakeshore, highland/lowland).

Statistical analysis
The objective of statistical modelling is to determine a
minimal adequate model from the large set of potential
models that might be used to describe the given set of
data. Selecting few predictors from among a large num-
ber of potential candidates is a major challenge and can
easily become arbitrary. An explanatory variable should
only be included in the model if it significantly improves
the fit of the model. A limitation of standard statistical
modelling approaches is that they assume independence
between survey locations and neglect potential spatial
dependency between neighbouring locations due to unob-
served common exposures [44]. Estimation of standard
errors of explanatory variables is biased if overdispersion
or spatial correlation is not taken into account within
a model. Geostatistical models take into account spatial
correlation by incorporating additional location-specific
random effect parameters into a model. Such correlations
may arise from factors such as variations in health system
performance, intervention coverage or population immu-
nity. Bayesian geostatistical approaches are increasingly
used for mapping and predicting the risk of infectious dis-
eases [52]. Ideally every possible combination of variables
would be tested and compared in a Bayesian framework.
However, this is not presently a viable approach as it is
extremely time and computing-intensive. The most prac-
tical approach is to reduce the list of potential explana-
tory variables using general regression selection methods,
before moving to a Bayesian context [40].
In this paper, the extent to which spatio-temporal vari-

ations in malaria risk in Malawi can be accounted for
by climate variations is investigated, while accounting for
both observed and unobserved non-climatic confound-
ing factors, spatial heterogeneity and correlation. First, a

maximal ‘fixed effects’ model was fitted within a negative
binomial generalized linearmodel (GLM) framework [53],
to assess the relation between potential predictors and
age-stratified counts of malaria cases per month from July
2004 - June 2011. The initial model included the climatic,
demographic, socio-economic and cartographic variables
described above, with relevant lags and polynomial terms.
Categorical variables, to account for the annual cycle,
administrative regions and ecological zones, with associ-
ated interaction terms, were also tested. With the assis-
tance of a stepwise model selection procedure based on
the Akaike Information Criterion (AIC), the model was
simplified by removing non-significant interaction terms,
quadratic terms and explanatory variables.
Although the GLM accounted for extra variation by the

inclusion of climate and non-climate variables and fac-
tors, such as the annual cycle and ecological zones, there
was still a large proportion of the variance that was unex-
plained. Consequently, a generalized linear mixed model
(GLMM) [54] was adopted. The GLMM is an extension
of the GLM that allows for additional variation in the
response arising from unobservable random effects. The
inclusion of random effects introduces an extra source
of variability (a latent effect) into the model to capture
the impact of unknown/unobserved confounding factors,
such as variations in health care provision, unequally
distributed aid or variations in population immunity. Spa-
tially unstructured random effects can assist in modelling
overdispersion, previously allowed for solely via the sin-
gle scale parameter in the negative binomial GLM, while
spatially structured random effects allow for correlated
heterogeneity between districts. Parameters in a GLMM
can be estimated using a Bayesian framework, where
parameter uncertainty is accounted for by assigning prior
distributions to the parameters. Hierarchical models can
be created by parameterizing prior distributions with
unknown ‘hyperparameters’ which have their own ‘hyper-
prior’ distribution. Markov Chain Monte Carlo (MCMC
methods) make estimation of parameters in Bayesian
models a practical feasibility [55-57]. This is because asso-
ciated MCMC sampling yields samples from full posterior
predictive distributions, which automatically incorporate
all components of variance at the different levels in the
model and therefore, provide a full assessment of predic-
tion uncertainty.
When assessing complex Bayesian models, it can be

useful to use posterior predictive distributions as refer-
ence distributions for comparison to observed data [58].
The posterior predictive distribution of the response is
obtained by simulating new pseudo-observations using
samples from the posterior distribution of the parame-
ters in the model. The distribution of estimated values
can then be compared to observed values. This approach
is an alternative to cross-validation, where the model is
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fitted with part of the data and the remaining observa-
tions are compared to the posterior predictive distribution
calculated from the sample used for fitting.

Model formulation
Let yjst be counts of malaria cases in each age group (j =
1, 2, where age group 1 represents five years and over and
age group 2 represents under five years), district (s =
1, . . . , 27) and month (t = 1, . . . , 84). After conducting
preliminary tests to assess the presence of overdisperion
in the count data [59], it was assumed that yjst arises from
a negative binomial distribution

yjst|μjst ∼ NegBin(μjst , κ)

logμjst = log ejst + log ρjst

ρjst =
∏p

i=1
exp(θixijst),

where μjst is the corresponding distribution mean, which
is equal to the expected number of cases ejst multiplied
by the unknown relative malaria risk ρjst for a given age
group j, district s and time t. κ is the scale (or overdis-
persion) parameter and θ represents the parameters asso-
ciated with fixed and random effects included in the
model parametrization. Note that population effects are
accounted for by including the expected number of cases
ejst (i.e. the population within each district, multiplied by
the overall malaria risk) as an offset (see [41] for more
details). The model equation can then be rearranged such
that the relative risk ρjst is equivalent to the standard-
ized morbidity ratio (SMR), where SMR = yjst/ejst , i.e. the
ratio of observed to expected cases within a district at a
given time. Then, the most suitable estimate of the rela-
tive risk ρjst (or SMR) is sought via a linear combination
of climate covariates (temperature and precipitation) and
non-climate confounding factors, both observed, i.e. car-
tographic, demographic and socio-economic covariates,
or unobserved (using random effects) that might explain
variations in malaria risk.
Initially for the model selection stage ‘fixed effects’,

both continuous and categorical, were included in the
log-linear predictor logρjst = α + ∑

i βixijst + ∑
i γizijst ,

where α is the model intercept, β is the parameter associ-
ated with climate covariates xijst and γ with ‘non-climate’
covariates zijst . Next, random effects were included (hence
mixed effects model). As the model parameters were esti-
mated in a Bayesian model framework, prior distributions
were specified for all parameters.
Area-specific random effects that are divided into spa-

tially unstructured φs and structured υs components are
often termed the ‘convolution prior’, φs + υs [60,61]. Spa-
tial heterogeneity was introduced by assigning exchange-
able location specific random effects using a Gaussian

distribution with zero mean and large variance for the
unstructured prior φs ∼ N(0, σ 2

φ ). Spatial clustering and
correlation were accounted for by assigning a conditional
intrinsic Gaussian autoregressive model (CAR) to the spa-
tially structured prior, which takes the neighbourhood
structure of the districts into account, υs ∼ CAR(σ 2

υ )

[62]. Note that Likoma island, located in Lake Malawi,
was excluded from the analysis to facilitate the creation
of the neighbourhood structure (hence 27 districts were
modelled rather than 28).
Autocorrelated random effects for each calendar month

were included to account for the annual cycle of malaria.
Since only part of the malaria annual cycle may be
attributable to climatic conditions, the inclusion of this
effect allowed the model to account for other potential
seasonal confounding variables, such as seasonal popula-
tion movements [63]. Thus, climate variables are retained
in the GLMM only if they add additional information
that improves the fit of the model. This seasonal term is
included as a structured first order autoregressive month
effect to account for temporal serial correlation in malaria
transmission (e.g., malaria relative risk in one month may
depend on the risk in the previous month). The month
effect was assigned a random walk or first difference
prior distribution, in which each effect is derived from
the immediately preceding effect, ω1(t) = 0, ωt′(t) ∼
N(ωt′(t)−1, σ 2

ω), t′(t) = 2, . . . , 12 [55]. To account for the
apparent trend in the data and unobserved confounding
factors, an exchangeable unstructured prior was assigned
to the year effect with year 1 (July 2004 - June 2005) set to
zero and subsequent years assigned a Gaussian distribu-
tion with zero mean and large variance τ1(t) = 0, τt′(t) ∼
N(0, σ 2

τ ), t′(t) = 2, . . . , 7 [61].
Diffuse gamma hyperpriors were assigned to the preci-

sions (1/σ 2) for the spatial and temporal random effects.
The specification for the relative risk is then

log ρjst = α+
∑

i
βixijst+

∑

i
γizijst+φs+υs+ωt′(t)+τt′(t).

MCMC simulation was used to produce samples of
model parameter values from their joint posterior dis-
tribution. Two parallel MCMC chains were generated,
each of length 25,000 with a burn-in of 20,000 and thin-
ning of 10 to obtain 1000 samples from the joint pos-
terior distribution (see [43]). Convergence was assessed
by inspecting plots of traces of simulations for individual
parameters and monitoring the Gelman-Rubin diagnos-
tic [64]. Finally, posterior predictive distributions were
generated to compare model predictions to observations.

Results & discussion
Potential drivers
A precursory view of the temporal and spatial variation
of the malaria SMR in Malawi is given in Figure 1 and 2,
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Figure 1Malaria SMR and average climate in Malawi for the
period July 2004 - June 2011. (a)Malaria standardised morbidity
ratios (SMR) for the under five (dashed curve) and five years and over
(solid curve) age categories and (b) average precipitation (solid bars)
and average temperature (dashed curve) in Malawi for the period July
2004 - June 2011.

along with potential driver variables. Figure 1a shows the
temporal series of malaria SMR from July 2004 - June 2011
for the under five year and five year and over age cate-
gories. A strong annual cycle is apparent, with the peak in
the early months of the year. Figure 1b shows the corre-
sponding monthly average precipitation and temperature.
The known lag between the malaria transmission season
and the rains is clearly apparent. The inter-annual vari-
ability in the peak SMR is superimposed on an upward
trend over the period. While changes in climate and envi-
ronmental conditions cannot be ruled out, it is far more
likely that this trend is a result of the improved levels of
reporting that resulted as districts moved to and became
familiar with the electronic based reported system that
was introduced in 2004. Figure 2a and 2b show the over-
all malaria SMR (for under fives and five years and over
respectively) in each district over the whole time period
(84 months). Figure 2c-f shows the ecological zones, mean
altitude, population density, proportion of households
with one room for sleeping, the mean ITN distribution

rate over the seven year period and the number of health
facilities per 1000 inhabitants, respectively.
It is interesting to note that the spatial distribution of

SMR for the under fives category broadly reflects the
map of prevalence produced by the Malaria Atlas Project
(MAP) Bayesian analysis of survey data [65], with higher
SMR rates along the western shoreline of lake Malawi
and central-west lowlands of the southern part of the
country. The adult distribution of SMR reflects the same
pattern to a certain extent, with the exception of the high
SMR in Mzimba district which was due to an outbreak
in April 2006. The greatest contrast to the MAP data is
that significant cases are still reported in the northern
districts of Chitipa, Rumphi and Karonga, for which the
MAP analysis reports very low prevalence rates, although
it should be recalled that the MAP survey data is relatively
sparse in Chitipa and Karonga districts. In the southern
most district of Malawi, Nsanje, a relatively high SMR is
observed along with a high proportion of household with
only one room for sleeping and also low altitude. Note that
the health facility rate is also higher than in surrounding
districts.

Fixed effects model
Using the negative binomial GLM framework specified
above (i.e. with only fixed effects), exploratory analy-
ses were conducted to find the best time lags between
climate variables and malaria. At the 0.05 level of sig-
nificance, precipitation and temperature covariates lag
1-3 were found to be statistically significant. Rather than
selecting a particular lag, or including all three lags sep-
arately, which could result in over-fitting, these variables
were combined into three month average precipitation
and temperature variables, lagged two months previous
to the malaria month of interest. Quadratic terms related
to these climate covariates were also tested in order to
capture possible non-linear effects, along with various
interaction terms. Other geographic and socio-economic
variables (listed in Table 1) were tested.
As there may be other spatially varying determinants

of disease transmission risk, such as soil type, land cover
and land use, for which data was not available, a low
order varying proxy location parameter was incorporated
in the GLM analysis by including polynomial functions
of longitude and latitude, thereby treating location as a
continuous predictor. Several categorical variables were
also tested including age group (under five years and
five years and over) to account for different vulnerabil-
ity for children under the age of five; calendar month, to
model the annual cycle and avoid over-estimating rela-
tionships between malaria and climatic variables due to
seasonality; year, to account for the trend in the data;
region (north, central and south) to account for possible
inequalities between the management of malaria between
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Figure 2 Spatial distribution of malaria SMR, geographic and socio-economic indicators across Malawi for the period July 2004 - June
2011.Map of (a)malaria SMR for under fives, (b)malaria SMR for five years and over, (c) ecological zones, (d)mean altitude, (e) population density,
(f) proportion of households with only one room for sleeping, (g)mean ITN distribution rate and (h) the number of health facilities per 1000
inhabitants in each district over the period July 2004 - June 2011.

these administratively defined regions; and ecological
zone (lakeshore, lowland, highland, highland/lakeshore,
highland/lowland). This preliminary analysis was assisted
by use of a model selection algorithm based on the AIC
stepwise regression [53]. In order to compare the fixed
effects model with subsequent models including ran-
dom effects, model parameters were estimated within a
Bayesian framework using MCMC and were considered
to be statistically significant if their 95% credible interval
did not contain zero. Note that all continuous variables
were first standardized to zero mean and unit variance
to aid MCMC convergence. Table 2 shows the parame-
ter estimates and 95% credible interval for the continuous
explanatory variables that were retained in the model as
statistically significant, and resulted in the lowest deviance
information criterion (DIC) [66] (indicating goodness of
fit). Certain variables, such as the proportion of house-
holds with no toilet facilities, the proportion of the adult
population who never attended school and literacy rates
were not found to be statistically significant and did not
improve the fit of the model. Note that the categorical
variables age, month, year, region and ecological zone
were also found to be statistically significant.

Table 2 Parameter estimates for statistically significant
continuous explanatory variables for selected fixed effects
model (GLM)

Variable Parameter 95% credible
estimate interval

Altitude -0.263 (-0.338, -0.192)

Longitude 1.141 (0.321, 2.256)

Longitude2 -1.285 (-2.388, -0.469)

Latitude -3.108 (-3.425, -2.840)

Latitude2 -2.935 (-3.315, -2.630)

Urban population -0.039 (-0.062, -0.019)

One room -0.101 (-0.128, -0.075)

ITN/population 0.049 (0.031, 0.068)

Health facilities/population 0.079 (0.057, 0.100)

Traditional housing -0.026 (-0.047, -0.002)

Rainfall 0.190 (0.134, 0.239)

Rainfall2 -0.063 (-0.085, -0.040)

Temperature 0.073 (0.030, 0.127)

Temperature2 -0.014 (-0.027, -0.001)
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Mixed effects model
As standard statistical regression models assume inde-
pendent (or at least uncorrelated) observations, a mixed
effects model (GLMM) was fitted in a Bayesian hierar-
chical modelling framework to account for spatial and
temporal dependence. The continuous and categorical
variables selected in the fixed effects model were included.
However, a random walk was introduced in the annual
cycle, to account for dependencies between one month
to the next and exchangeable random year effects were
assigned to account for the trend and unobserved con-
founding factors. Spatial heterogeneity and correlation
were accounted for using the convolution prior, described
in the model formulation section. Interestingly, all the
previously selected variables, except average temperature,
rainfall (quadratic relation), age group, the ITN distribu-
tion rate and proportion of health facilities per inhabi-
tant, ceased to be statistically significant (i.e. the credible
interval contained zero).
Figure 3 shows the kernel density estimates for the

marginal posterior distributions for the statistically signif-
icant parameters associated with the variables rainfall and
rainfall squared, temperature and temperature squared,
the proportion of health facilities per inhabitant and the
ITN distribution rate. As in the fixed effects model, a
statistically significant quadratic relation between average
rainfall during the proceeding three months and malaria
risk was found (see Figures 3a and 3b). Although tempera-
ture was statistically significant, once confounding factors
were accounted for, a quadratic relationship between tem-
perature and malaria risk in Malawi was not found to be
statistically significant (see Figure 3d). This is likely due to
the monthly average temperature range (15.8 - 28.9°C) in
Malawi over the time period not exceeding values at which
mosquito activity is suppressed [13].
As in the fixed effects model, the number of health facil-

ities per inhabitant was positively associated to malaria
relative risk, as was the ITN distribution rate (see
Figures 3e and 3f). At first this appears contrary to expec-
tations, since improved access to medical treatment and
preventative measures is expected to reduce the para-
site burden in the population and hence, the transmission
intensity, resulting in an inverse relationship. The positive
relationship observed most likely reflects more frequent
reporting and greater distribution of ITNs where more
health facilities are present, along with possible targeting
of ITN distribution by donors in highly burdened dis-
tricts. This result potentially highlights the gap between
ITN possession and proper use [67]. According to Amexo
et al. [68] 70% of people in Africa self-diagnose malaria
and self-treat at home. It is likely that the proportion of
the population reporting promptly increases with prox-
imity to health centres. The construction of new health
centres is determined by the distance that members of

a community have to walk to an already existing facility.
The Government of Malawi recommends that the popu-
lation should live within an 8km radius of a health facility.
New health centres are constructed in order to attain this
target. In a study conducted by the Ministry of Health,
some districts were found to be better served than others.
For example, 51% of the population in sparsely populated
Chitipa district lives more 8km from a health facility. In
Blantyre, Chiradzulu, Mulanje and Zomba less than 5% of
the population residemore than 8km from a health facility
[69].
Figure 4 shows the multiplicative effect of the two

components of the convolution prior to the model. The
key feature of the convolution prior is that it allows the
assessment of relative contributions of unstructured het-
erogeneity and spatial clustering to the overall variation of
the area effects [70]. From Figure 4 it is evident that spa-
tial heterogeneity is the dominant cause of overdispersion
in Malawi. The spatially unstructured random effect φs
accounts for residual overdispersion in districts that is not
attributable to spatial correlation between districts. Here,
the spatial correlation component has a minimal yet sig-
nificant contribution to the convolution prior. Although
other geographic and socio-economic covariates such as
altitude, longitude, latitude, ecological zone, region, and
proportion of the population in each district residing in
traditional housing were significant in the fixed effects
model, they became non-significant in the mixed effects
model. This demonstrates the importance of accounting
for spatial heterogeneity and correlation, when analysing
geographical data in order to avoid under-estimation of
the credible intervals of model covariates. The structure
of the random spatial component of the model provides
a combined measure of the various potential risk factors
that might contribute to the underlying spatial variation
in malaria risk. The advantage is that only two hyper-
priors are estimated for the precisions of spatial random
effects, rather than numerous parameters for each dif-
ferent fixed effect. This results in a more parsimonious
model, containing few strong predictors that are more
easily interpretable. Figure 5 shows the contribution of the
auto-correlated annual cycle and random yearly effects to
themalaria relative risk, stratified by age group (under five
years and five years and over) over the period July 2004
to June 2011. These effects help account for the annual
cycle in malaria, that could be attributed to climate and/or
seasonal population movements, and the overall upward
trend that could be the result of improved reporting over
the years as the health facilities became accustomed to the
newly established HMIS.

The role of climate in estimating malaria relative risk
Figure 6 shows a surface of the multiplicative contribu-
tion of climate variables to malaria relative risk in Malawi.
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Figure 3 Kernel density estimates for significant explanatory variables. Kernel density estimates for the marginal posterior distributions for the
parameters associated with (a) average precipitation, (b) precipitation squared, (c) average temperature (d) temperature squared, (e) health
facilities per inhabitant and (f) ITN distribution rate.

Given varying average precipitation and temperature val-
ues, the maximum relative risk is found at the maximum
temperature of 28°C and a precipitation rate of 6.24 mm
day−1. This result is supported by other studies, for exam-
ple, a quadratic relationship between malaria incidence

and rainfall was found in Botswana [20]. This likely relates
to the wash out of first stage larvae from breeding sites
by intense rainfall. These effects have been included in
some dynamical models of malaria transmission either
implicitly [71] or explicitly [31].
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Figure 4Multiplicative contribution of spatially unstructured and structured random effects to malaria relative risk. Spatial distribution of
multiplicative contribution of posterior mean spatially (a) unstructured φ̂s and (b) structured υ̂s random effects.

To assess the predictive ability of the mixed effects
model, posterior predictive distributions of malaria rela-
tive risk were obtained for each district and month. New
pseudo-observations were simulated by drawing random
values from a negative binomial distribution with mean
and scale parameter estimated using samples from the

posterior distribution of the parameters in the model. To
summarize this information, the observed and posterior
predictive mean malaria risk (SMR) estimates were aggre-
gated across space. Figure 7 shows scatter plots and time
series of observed versus predicted malaria SMR for the
84 month period for age groups five years and over (upper

Figure 5Multiplicative contribution of temporally unstructured and structured random effects to malaria relative risk. Temporal
distribution of auto-correlated randommonth effects ω̂t(t) (accounting for annual cycle) and random year effects τt(t) (to account for unexplained
trend) for under five and five years and over age categories.
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Figure 6Multiplicative contribution of climate variables to malaria relative risk. Surface of malaria relative risk given varying average
precipitation and temperature values. Note that the maximum relative risk is found at the maximum temperature of 28°C and a precipitation
threshold of 6.24 mm day−1.

panel) and under five years (lower panel). To evaluate the
model across space, the root mean squared error (RMSE),
a measure of the difference between model predicted and
observed values, was calculated over the 84 month period
for each district. For both age groups there is an over-
all positive agreement between predicted and observed
space aggregated malaria risk (Figures 7a and 7e). Both
time series plots for the two age groups averaged over the
whole of Malawi show that the model is able to capture
the inter-seasonal variability. In order to assess how much
additional inter-seasonal and inter-annual variability is
explained by the climate covariates, climate was removed
from the model and a prediction without climate was
superimposed on the plot (Figures 7b and 7f). In general,
when averaging across the country, little or no improve-
ment in malaria relative risk estimation is achieved by the
addition of climate covariates in the model. Figure 7 (c and
g) show maps comparing observed to predicted malaria
risk in each district. Relatively low values of RMSE are
found, particularly in the southern districts of Malawi. In
general, crude maps of SMRs are subject to considerable
random error, particularly if the population count within
a district is low. Therefore, visual attention is drawn to
areas where rates are based on the least stable estimates,
for example, the large but sparsely population Mzimba

district (north region). The inclusion of random effects
in the model framework makes it possible to ‘borrow
strength’ from neighbouring districts, resulting in spatial
smoothing of risk surfaces. Therefore, the greater differ-
ence between observed and predicted malaria risk for
Mzimba may in fact highlight the poor reliability of the
data in this area.
To assess whether the inclusion of climate informa-

tion in the model could improve model estimation of
malaria relative risk at the district level from year to
year, the RMSE of the model excluding climate covari-
ates, RMSEnoclim, was subtracted from the RMSE of
the model including climate covariates, RMSEclim. Areas
where RMSEclim − RMSEnoclim < 0, highlighted in grey
in Figure 7 (d and h), indicate that climate information
improves the estimation of malaria relative risk, as the
inclusion of these covariates results in a smaller difference
between the model predicted values and the observa-
tions. Therefore, according to this model, climate infor-
mation could help estimate malaria relative risk in under
fives and five years and over several months ahead in
the districts: Blantyre, Chikhwawa, Chitipa, Machinga,
Mzimba, Nkhata Bay, Nkhotakota, Nsanje, Ntchisi,
Rumphi and Salima. This represents 41% of the districts in
Malawi.
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Figure 7 Observed versus predicted malaria SMR in space and time. Scatter plot (a, e) and time series (b, f) of space aggregated observed
versus posterior predictive mean malaria SMR for the 84 month time period. Root mean squared error (RMSE) of observed and posterior mean
malaria SMR for the 27 districts of Malawi for the period July 2004 - June 2011 (c, g) for the five years and over (upper panel) and under five years
(lower panel) age groups. The lower the RMSE, the better the model fit. Difference between RMSE for the model including climate information and
RMSE for a model fit without climate information (d, h). Districts with negative values of RMSEclim - RMSEnoclim (white) suggest that climate
information improves the model in these areas. Districts with positive values of RMSEclim - RMSEnoclim (grey) suggest that climate information does
not improve the model.

It is interesting to note that many of the districts, where
climate is found to improve the model, are located in the
north of the country. In this region, away from the lake-
side communities, prevalence is generallymuch lower, due
to the altitude and lower temperatures [65]. In these cir-
cumstances, inter-annual variability in climate can inter-
mittently lead to years with wetter or warmer conditions,
which can result in more intense malaria transmission.
In contrast, in the low-lying southern districts, where cli-
mate is conducive to intense transmission, year to year
climate perturbations are perhaps not expected to impact
morbidity. Instead, changes to socio-economic conditions
and interventions may dominate. In addition, it should be
recalled that the spatial resolution of the district scale data
may average out climatic effects if districts include widely
varying terrain.
Although the model is able to identify the relative

importance of climatic, geographic and socio-economic
determinants of malaria in Malawi, this study has sev-
eral limitations. Firstly, malaria data was only available for
the whole of Malawi at the relatively coarse spatial reso-
lution of the district-level. One advantage of using aggre-
gated data is to alleviate problems of misreporting due

to variations in the diagnostic capabilities and reporting
practices between individual health facilities. However,
given this limitation and the coarse resolution of the cli-
mate data, the model formulated is unable to capture sub-
district variations in malaria, which are likely influenced
by localized meteorological and social conditions.
Secondly, the statistical analysis is limited by the short

time period for which malaria data is available. Neverthe-
less, the information gained from the spatial component
allows some inference to be drawn as the role of climate
and other factors in the transmission of malaria in Malawi
which can also be used for improvement and evaluation
of dynamical transmission model [31,72]. As time goes by
and the established monitoring system provides a clearer
long-term picture of malaria transmission, more detailed
temporal and spatial information can be included in the
model.
Thirdly, malaria data was obtained from case records at

clinics, health facilities and hospitals. Therefore, malaria
cases treated at home are missed. As malaria is endemic in
much of the country, data incurs the omission of asymp-
tomatic cases. Both home treated and asymptomatic cases
result in underestimation. However, overestimation can
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occur when health facilities report suspected cases of
malaria that are not clinically confirmed. In fact, it is esti-
mated that only 37% of fever cases in children in Malawi
are actually due to malaria [73]. Although there is no
specific measure included in the model to account for
misreporting over time, the health care provision indica-
tor gives a broad indication of the accuracy of recording,
while the spatial and temporal random effects account for
potential unmeasured variability.
This work compliments the spatial risk maps of

malaria that have been produced using finer scale point-
referenced prevalence of infection data for Malawi [37].
An advantage of using point referenced data obtained
from surveys such as the malaria indicator survey (MIS) is
that malaria in children under five years of age is clinically
diagnosed using RDTs, thus preventing over estimation
of cases. The MIS for Malawi was first conducted in
2010 and will be repeated every two years, thus allow-
ing the incorporation of temporal effects in such models.
By combining geostatistical and process-based modelling
approaches, spatio-temporal predictions of malaria risk
may be possible at a finer spatial scale in areas where
data is not recorded. However, there is an on-going need
for continued collaboration between statisticians, mathe-
matical modellers, meteorologists, public health decision
makers and stakeholders in Malawi to construct mod-
els and interpret model results. Despite the limitations of
this case study, due to the relatively coarse spatial resolu-
tion, short time series and data quality issues, with careful
model selection this sophisticated modelling framework
could serve as a useful tool to understand the relation-
ship between climate, geographic and socio-economic
conditions and malaria burden in other countries.

Conclusion
The main contribution of this paper is the collation of a
unique dataset of potential spatial and temporal drivers
of malaria in Malawi and the use of a sophisticated mod-
elling procedure to determine the most important of these
drivers. An initial model was selected that contained sta-
tistically significant fixed effects. After accounting for
spatial heterogeneity and correlation, the mixed effects
model was reduced to contain a few predictors that are
easily interpretable, including average temperature and
rainfall. Including climate information improves the esti-
mation of inter-annual variations inmalaria relative risk in
41% of the districts in Malawi, some of which are located
in the north highland regions that are subject to lower
and intermittent malaria transmission intensity (with the
exception of lake-side communities). In the southern
region, where malaria transmission is more intense, cli-
mate improved the model’s capability to represent year
to year variations in malaria relative risk in only a few
districts.

While this analysis has the common caveats associ-
ated with reliability and limited time-span of health data,
this is the first spatio-temporal model for malaria rel-
ative risk in Malawi, at the district level. The analysis
indicates that a climate-based early warning system could
have some value in Malawi’s northern epidemic-prone
districts and emphasizes the critical requirement for an
effective climate monitoring system, and access to high
quality climate forecasts. A climate-based malaria deci-
sion support system could be invaluable for the Malawi
National Malaria Control Programme to be able to annu-
ally plan their locally targeted control interventions and
manage scarce health resources.
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