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Abstract 34 

 35 

After several decades of intensive research, the steady improvement in our ability to understand and 36 

model the climate system has led to the release of the first generation of operational health early warning 37 

systems in the so-called era of climate services. These schemes are based on multidisciplinary collaborations 38 

across science disciplines, bringing together real-time climate and health data collection, state-of-the-art 39 

seasonal climate predictions, epidemiological impact models based on historical data, and an understanding 40 

of end-user and stakeholder needs. In the present review, we discuss the challenges and opportunities of this 41 

kind of complex, multidisciplinary collaboration, with a particular focus on the factors limiting the role of 42 

seasonal forecasting as a source of predictability for climate impact models. 43 

 44 

 45 

1. Introduction 46 

 47 

The environmental consequences of climate change, such as sea-level rise, flooding and drought, more 48 

intense hurricanes and storms, heat waves and degraded air quality, make substantial impacts on human well-49 

being1. The health effects of these disruptions include population displacement, injury and death related to 50 

extreme weather events, changes in the prevalence and geographical distribution of food-, water- and vector-51 

borne diseases, increased respiratory and cardiovascular disease and threats to mental health2,3. Climate has a 52 

potentially large impact on the incidence of vector-borne diseases, such as dengue and malaria4. This is felt 53 

either directly, by affecting the developmental rates and survival of both the mosquito and pathogen, or 54 

indirectly, through changes in land cover and land-surface characteristics, which affect the availability of 55 

mosquito breeding sites5,6. In addition, the climate interacts with local conditions and population herd 56 

immunity, affecting not only mosquito infestation, but also human susceptibility and the contact rate between 57 

mosquitoes and humans7. 58 

As well as climate variability and change, infectious disease emergence and spread can be exacerbated 59 
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by anthropogenic activities, such as deforestation, mining, urbanization and human mobility8. For example, 60 

the global expansion of the mosquito-transmitted viral disease, dengue fever, and the recent spread of 61 

chikungunya and Zika viruses to the Americas, has been attributed, in part, to international travel and 62 

ineffective vector control9. In Europe, the climate is becoming increasingly suitable for the mosquito species 63 

Ae. albopictus, which is already established in several southern European countries. In 2010, locally acquired 64 

dengue infections were reported in France and Croatia, and in 2012, an outbreak of more than 2000 dengue 65 

cases occurred in Madeira, Portugal, in areas where Ae. aegypti exists10. Deforestation and mining activities in 66 

the Amazon rainforest have coincided with an upsurge of malaria, due to the creation of natural and man-67 

made mosquito breeding sites and clustering of non-immune migrants close to these sites11,12. For some 68 

diseases, the most important factors may be the contact among people and wildlife that harbor zoonotic 69 

pathogens13. For example, in tropical urban slum environments, epidemics of the bacterial disease 70 

leptospirosis can occur during periods of heavy rainfall14. Flooding can lead to human infection after direct 71 

contact with flood waters contaminated with the urine of infected rats. On the other hand, the transmission of 72 

water and food-borne bacterial diseases, such as cholera or E. coli, is exacerbated by poor sanitation and 73 

hygiene15. 74 

Mitigation of climate change and adaptation to its negative effects are public health priorities in the 75 

coming decades. The impacts of climate on health are felt across all sectors of society, from the local to the 76 

global level, and climate change is becoming a central issue in public health and global political agendas16. 77 

Infectious disease epidemics and extreme temperature-related mortality have a direct impact on the health of 78 

local populations, strain healthcare systems, and cause substantial economic loss17,18. Policy-makers are aware 79 

of the effects of climate on the dynamics of many diseases and health outcomes. However, despite this 80 

understanding, climate information is rarely exploited as a means to help prevent and control such health 81 

risks19. To improve the ability to adapt to a changing climate and mitigate its effects, it is necessary to improve 82 

the linkages between the production and supply of climate-science information and its accommodation to end-83 

users needs. Climate services, which aim to provide timely, tailored information and decision-support tools to 84 

decision makers, are an important part of improving our capacity to manage climate-related risk20. The Global 85 
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Framework for Climate Services (GFCS) is a climate service coordinating body, created in 2012 and led by the 86 

World Meteorological Organization21. The GFCS aims to create a structure to support better, more informed 87 

decisions, with the ultimate goal of saving lives, protecting the environment, and improving economic 88 

development. The GFCS has so far focused efforts on developing countries, with health selected as one of its 89 

priority sectors. 90 

In this article, we discuss the challenges associated with incorporating climate information in health 91 

impact models to understand variations in health risks. We first discuss spatio-temporal modeling tools of 92 

climate impacts and diseases, and then we outline some the factors limiting the role of seasonal forecasting as 93 

a source of predictability for these climate impact models, such as the transfer of predictable information, the 94 

transient nature of climate teleconnections or the time-varying relationship between climate and associated 95 

impacts. 96 

 97 

 98 

2. Spatio-temporal modeling of climate impacts and diseases 99 

 100 

 101 

Infectious diseases can be modeled by spatio-temporal statistical methods22. These tools, which tend to 102 

be of an empirical kind rather than rooted in scientific mechanisms, are widely used in both environmental 103 

and health sciences applications. In considering the many possible statistical models for disease processes, the 104 

distinction between empirical and mechanistic models is important. An empirical model seeks only to describe 105 

the spatio-temporal structure of the process, whereas a mechanistic model seeks to explain it. For example, an 106 

empirical model might represent the behavior of the disease process by specifying the mean value at every 107 

time and location as a regression on one or more spatially and/or temporally varying covariates, and the 108 

covariance between any two values as a function of their spatio-temporal distance; whereas a mechanistic 109 

model would more likely incorporate an explicit and asymmetric dependence between the present and the 110 

past, for example by specifying disease risk at any particular time and location, conditional on the historical 111 
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incidence pattern. 112 

The distinction between empirical and mechanistic modeling is sometimes equated to the distinction 113 

between mathematical and statistical modeling, respectively. But this is at best an over-simplification. Data 114 

relating to the scientific process of interest are invariably noisy. For this reason, whichever approach is taken 115 

to modeling the scientific process, it is necessary to supplement the process model by a data model, which 116 

specifies the joint distribution of the data conditional on the underlying temporal sequence of spatial states of 117 

the process, and this model is inherently statistical. In practice, this hierarchical structure, combining a process 118 

model with a data model conditional on the unobserved state of the process, is particularly important when 119 

analyzing data with a relatively low signal-to-noise ratio. The data model is typically of limited scientific 120 

interest in itself, but is essential to the delivery of valid inferences about the underlying process. 121 

Empirical spatio-temporal models typically take the form of generalized linear models in which either 122 

the regression parameters or the residuals are replaced by stochastic processes. In particular, Bayesian 123 

geostatistical approaches, which replace the residual by a spatially and/or temporally correlated stochastic 124 

process, are increasingly used for mapping the incidence of both infectious and non-infectious diseases23. 125 

These methods can be used for the identification of important covariates along with estimation of their 126 

regression parameters, and for the prediction and mapping of future, unobserved values of the response 127 

variable of interest. Also, they can provide valuable information for improving the design of future studies by 128 

identifying and quantifying sources of variation that could be better controlled, or even eliminated altogether. 129 

In contrast, mechanistic models typically use deterministic or stochastic differential equations to express 130 

the dynamics of an underlying infectious disease process. Early accounts of this approach include a pair of 131 

articles by Refs. 24-25. A more recent book-length account is Ref. 26. When locations and times of individual 132 

cases are available, mechanistic models can be formulated as spatio-temporal point processes in which the 133 

current incidence depends explicitly on the locations and times of past cases. Ref. 27 used this approach to 134 

model the spread of the 2001 foot-and-mouth epidemic in the United Kingdom. The ability to combine 135 

mechanistic models with principled, i.e. likelihood-based, methods of statistical inference is relatively recent. 136 

It has been shown how a partial likelihood method due to Ref. 28 could be used to fit the Ref. 27 model. Ref. 137 
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29 showed that widely used empirical models of spatial correlation can be derived as the solutions to particular 138 

kinds of stochastic differential equations, thereby rendering these models amenable to likelihood-based 139 

inference. 140 

A versatile modeling procedure was recently developed to determine the most important drivers of 141 

spatio-temporal variability in disease risk30. The model framework combines climatic and non-climatic factors 142 

in the model parameterization to correctly quantify variability captured by climate information. The 143 

methodology exploits recent advances in spatio-temporal hierarchical mixed modeling. An advantage of 144 

implementing the model in a Bayesian framework is the ability to address specific public health issues in terms 145 

of probabilities. Explanatory variables at various spatial and temporal resolutions (e.g. data on climate, land-146 

use, socio-economic conditions, health infrastructure, etc) can be incorporated and tested in the model 147 

framework, to select a suitable combination of statistically significant variables. However, when health 148 

outcome and climate data are both available, they are not necessarily measured at the same set of spatio-149 

temporal points, therefore a scale mismatch often exists. More generally, either or both of the health outcome 150 

and climate data may take the form of spatial averages rather than point-referenced measurements. For 151 

example, a common scenario is that health outcomes are recorded as case-counts and population 152 

denominators on a set of small-area units that partition the region of interest, while ground truth 153 

meteorological data are collected as time series at each location in an irregular network of weather-recording 154 

stations. These data typically suffer from either or both measurement error and micro-scale fluctuations that 155 

distort the underlying correct value. Data that are both spatially incomplete and error-prone are not necessarily 156 

more useful than proxies such as remotely sensed images or the outputs from physically based climate models, 157 

which are usually calculated on a raster grid31. 158 

In principle, an extension of the hierarchical approach described above can accommodate multiple 159 

spatially mis-aligned data sources by combining a spatially and temporally continuous process model with a 160 

collection of spatially and temporally discrete data models, one for each data-source32. More pragmatically, 161 

gridded data (e.g. climate or topographical) can be reconciled with spatial area data (e.g. disease counts and 162 

demographic characteristics) using interpolation methods33, or by assigning a grid point to each spatial 163 
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polygon on the basis of the shortest Euclidean distance between the area centroid and neighboring grid 164 

points34. Once all available explanatory data has been transformed to the same spatial and temporal resolution 165 

as the response variable, it can be incorporated into the model framework to account for confounding factors 166 

and help more correctly attribute variations in disease risk to variation in climatic factors. 167 

In many cases, data on important drivers of disease systems are not routinely collected or readily 168 

available. This limitation typically detracts from adequate progress in developing useful prediction systems 169 

at the local scale of cities or small regions. To overcome this problem, spatio-temporal random effects can be 170 

included in the model framework. Unstructured random effects help account for unknown or unobserved 171 

disease risk factors (e.g. mosquito abundance, population immunity, health care inequalities and 172 

interventions). Such effects introduce an extra source of variability (a latent effect) into the model, which can 173 

assist in modeling overdispersion. To allow for correlated heterogeneity between locations or spatial 174 

clustering, which is a typical feature of infectious disease dynamics, structured random effects can be included 175 

in the model. One way to impose a spatial dependency structure is to assume a Gaussian intrinsic conditional 176 

autoregressive model prior distribution for the spatial effects35, which accounts for spatial dependence by 177 

specifying a neighborhood structure of the area under consideration. Once unknown structures are accounted 178 

for, we can identify which of the available indicators could significantly contribute to an effective early 179 

warning system. 180 

 181 

 182 

3. Factors limiting seasonal forecasting as a source of predictability for climate impact models 183 

 184 

Seasonal forecasts of the climate with lead times up to several months36-38, along with strong public 185 

health surveillance systems, provide the opportunity to issue timely early warnings of imminent threats39,40. 186 

Several studies have investigated the use of climate information in early warning systems for diseases such as 187 

malaria and Rift Valley fever41,42. The efficacy of any climate-driven early warning system however strongly 188 

depends on the underlying skill of the climate forecasting system. Seasonal climate forecasts have been 189 
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reported to have skill in tropical regions of Brazil and, to a lesser extent, in extratropical regions43,44. For 190 

example, in a recent study, real-time seasonal climate forecasts and disease surveillance data were integrated 191 

into a spatio-temporal model framework45, to provide a dengue forecast for Brazil, three months in advance 192 

of a major global event (the 2014 FIFA World Cup46). The probability of dengue incidence falling into pre-193 

defined categories of low, medium and high risk was mapped using a visualization technique in which color 194 

saturation expresses forecast certainty47. As an indication of the trust a decision maker can place in the dengue 195 

predictions for a specific location, the forecast map was accompanied by a verification map, expressing the 196 

past-performance of the model (see Figure 1). This climate-driven dengue early warning was used to support 197 

the decisions of the National Dengue Control Programme several months ahead of the event, to help direct 198 

mitigation and control actions to those areas with a higher probability of dengue outbreaks. The early 199 

warnings were also disseminated to the general public via the media and visitors traveling to Brazil48. 200 

This example of successful early warning system illustrates the potential of climate services in terms of 201 

health benefits. Nonetheless, there are several theoretical and practical issues to be considered that largely 202 

limit the operational value of some of these schemes. These factors mainly refer to the scale-mismatch and the 203 

transfer of predictable information from climate forecasts to the above-described models of climate-driven 204 

impacts and diseases, which we proceed to discuss in the following subsections. 205 

 206 

 207 

3.1. Sources of climate predictability and transfer of predictable information 208 

 209 

Although weather phenomena are not predictable at lead times beyond two weeks (i.e. the atmosphere 210 

is chaotic49), average values of climate variables are potentially predictable months, years and even decades in 211 

advance50. Nevertheless, the longer the lead time of the prediction, the longer the period of time for which the 212 

variable needs to be averaged. The tropical belt plays a key role in the predictability of climate variables51, 213 

which has an influence worldwide through the activation of atmospheric responses when thermally-driven 214 

processes exceed certain thresholds. This region is largely influenced by the incident solar radiation that heats 215 
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the ocean surface, which in turn drives the atmospheric circulation, both locally and at distant regions through 216 

large-scale teleconnections52,53. Ocean anomalies, and thus these thermally-driven atmospheric patterns, 217 

persist over longer periods than weather phenomena. Therefore, atmospheric variables are to some extent 218 

predictable at lead times of months, years and decades54. Climate forecasts at seasonal time-scales provide an 219 

opportunity to anticipate potential health threats several months in advance. These forecasts occupy an 220 

intermediate zone between weather forecasting and long-term climate projections, and are typically used to 221 

issue probabilistic statements of the expected climate conditions for the next one to six months54. These 222 

forecasts are particularly skilful for certain seasons and locations around the world. 223 

For example, El Niño-Southern Oscillation (ENSO) is a predictable phenomenon55,56 that is key to 224 

seasonal climate forecasting worldwide57,58. ENSO is a coupled oceanic-atmospheric phenomenon, 225 

characterized by sustained fluctuations between unusually warm (El Niño) and cold (La Niña) sea surface 226 

temperature conditions in the central and eastern tropical Pacific Ocean59,60. ENSO influences the inter-annual 227 

variability in weather patterns and the likelihood of activation, enhancement, weakening and/or displacement 228 

of regional extreme events, such as droughts and floods, across the globe61-63. Figures 2a,b exemplify the 229 

associations that can be found between ENSO events and climate variables at distant regions several months 230 

later. A negative relationship between Pacific sea surface temperatures in December-February and 231 

precipitation the following March-May is observed for North Brazil, South East Africa and South East Asia, 232 

implying dry conditions during El Niño events and wet conditions during La Niña events (Figure 2a). At the 233 

same time of year, El Niño conditions are associated with anomalous warming over much of the Amazon, 234 

South East Africa and Asia and North Australia (Figure 2b). An association between ENSO and a heightened 235 

risk of certain vector-borne64,65, water-borne66,67 and wind-borne51,68,69 diseases has been identified in specific 236 

geographical areas where climate anomalies and ENSO are linked. 237 

The potential predictability of climate variables in the tropics, and particularly that derived from ENSO, 238 

is therefore key for the development of modeling tools to predict climate impacts and design early warning 239 

systems41,46,70. Nonetheless, there are other sources of predictability that can be explored for the use of climate 240 

services71, and particularly in the mid-latitudes, where weaker atmospheric flow instabilities in summer favor 241 
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the influence of long memory drivers such as soil moisture72. Thus, the amount of available soil moisture 242 

controls the fraction of heat that is released as latent and sensible heat fluxes, so that the frequency and 243 

intensity of summer heat waves is largely controlled by the rainfall in the preceding winter and spring73,74. 244 

Some authors have however highlighted the complexity of this delayed association, and despite recent 245 

advances in the prediction of heat waves, such as the record-breaking 2003 summer event in Europe75, the skill 246 

of these predictions remains rather poor. Ref. 76 for example showed that rainy winter/spring seasons over 247 

southern Europe inhibit hot summer days whereas dry seasons are followed by either a high or a low 248 

frequency of hot days. Ref. 77 later showed that summer heat is more sensitive to the occurrence of specific 249 

weather regimes in initially dry cases than wet cases, inducing an asymmetry in summer heat predictability. 250 

The still poor predictability of these forecasts represents a serious constraint for the applicability of 251 

seasonal forecasts in the domain of climate services. For example, within the EUPORIAS project78, a climate 252 

service tool was developed to provide probabilistic predictions of exceeding emergency mortality thresholds 253 

for heat wave scenarios79. The predictions were based on sub-seasonal to seasonal temperature forecasts, to 254 

support decision making for the preparedness of health services and protection of vulnerable communities 255 

ahead of future extreme temperature events79-81. The tool was designed to provide multi-lead probabilistic 256 

forecasts of mortality risk ahead of the peak summer season. In general, a decreasing transition in skill was 257 

found between excellent predictions when using observed temperature or weather forecasts at very short lead 258 

times as driving climate conditions for the temperature-related mortality model, to predictions with no skill 259 

when using forecast temperature with lead times greater than one week (Figure 3). This result showed that 260 

the performance of climate services is in some cases more limited by the predictability of the climate variables, 261 

and not by the impact model itself. 262 

 263 

 264 

3.2. The transient nature of climate variability and teleconnections 265 

 266 

Although a clear window of opportunity for climate services emerges during El Niño and La Niña years 267 
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in those areas with both climate predictability and large climate-driven disease incidence, there are several 268 

factors limiting the potential use of this information in climate services. For example, predictability is generally 269 

larger for surface air temperature than for precipitation, and therefore, the areas with large potential 270 

predictability coincident in both variables are rather small. More importantly, ENSO should be seen as a non-271 

stationary mode of variability whose potential predictability and teleconnections change at the decadal and 272 

longer timescales. Figures 2c-f illustrate the time-varying relationship between ENSO and climate variables 273 

for two consecutive 30-year time periods, showing the transient nature of ENSO dynamics and 274 

teleconnections. While there are large areas in the tropics with significant correlations with temperature in 275 

both periods (cf. Figures 2d,f), we see no overlapping regions in the precipitation maps (cf. Figures 2c,e). We 276 

find for example that a multidecadal regime shift in the late seventies decreased the relationship between 277 

ENSO and the Asian monsoons82 (cf. Figures 2d,f), or that global warming is expected to favor the relative 278 

occurrence of central Pacific El Niño events (also referred to as El Niño Modoki83) to the detriment of the 279 

canonical type in the eastern Pacific84,85. These changes modify the areas and time lags that characterize the 280 

associated teleconnections, whose non-stationary nature imposes a strong constraint to the calibration and 281 

application of climate-driven impact models, being sensitive to regime shifts in the ENSO phenomenon, and 282 

in general, in the climate system. 283 

ENSO also exemplifies the intermittent relationship between climate and associated impacts at the 284 

interannual timescale, for which El Niño and La Niña define transient windows of opportunity for enhanced 285 

predictability. Despite the active search for climatic drivers of infectious diseases, the irregularity of this link 286 

and the temporal scales of these windows impose a limit in our ability to anticipate disease risk, which 287 

typically leads to low reported correlations between disease descriptors and climatic variables. Different 288 

factors could explain these low values, ranging from climatic variables being inherently weak drivers of the 289 

dynamics of the disease, or being strong modulators operating in a nonlinear way. The former can take place 290 

when the forcing occurs only during limited intervals of time (for example, during El Niño or La Niña 291 

episodes), or when local variation in environmental factors and the immunological status of the at-risk 292 

population mask the underlying climate-related dynamics86. The latter implies an association between 293 
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variables that is not fully addressed by standard statistical techniques, and can therefore be incorrectly 294 

interpreted as a weak dynamical association. It is critical to distinguish between these different outcomes, 295 

given that the information provided on the underlying processes is radically different. A strong coupling 296 

between climate and disease variables, albeit transient in time or imperfectly measured, can provide potential 297 

for long-lead disease forecasting. 298 

A clear example was provided by the study of population dynamics of cholera epidemics in 299 

Bangladesh66, which demonstrated an influence of the ENSO phenomenon on the disease. However, this study 300 

could not address the strength of this influence, given that the effect of the different independent variables 301 

was not additive in the model, and changed over time. The clear relationship between temperature and the 302 

amplification of cholera incidence worldwide has since been well documented67,87,88. Nevertheless, there seems 303 

to be an apparent discrepancy between known aspects of cholera epidemiology and the low values obtained 304 

in correlations reported by many studies. This can be also seen, for example, in the relationship that was found 305 

between cholera and rainfall in Zanzibar, where attained significance levels were low despite the known 306 

strong relationships between extreme rainfall and the disease89. 307 

 308 

 309 

3.3. The time-varying association between climate variability and impacts 310 

 311 

In addition to the transient nature of climate variability and associated teleconnections, temporal 312 

changes in the association between climate metrics and impacts on health can also affect the applicability of 313 

climate forecast information into impact models. Apart from secular changes in infrastructure and public 314 

health, anthropogenic global warming due to human activities can also redefine these associations, whose 315 

future evolution is not easy to anticipate because either the relationships are not fully understood or changes 316 

in the key driving climate variables are still uncertain51,68. In addition, the future evolution of the incidence of 317 

certain diseases is closely determined by the degree of exposure of human individuals and societies, which 318 

can change through a natural response of the body metabolism90, the adoption of new habits by individuals 319 
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and populations91, or the design of societal strategies and measures aimed at reducing the vulnerability of their 320 

citizens92,93. 321 

We here illustrate these points with regard to temperature-related mortality, whose expected increase 322 

in summer probably represents the most direct consequence of temperature rise to human health18,94. Recent 323 

heat waves suggest that changes in the degree of exposure of human populations is not only the result of a 324 

slow and progressive process due to background temperatures, but also a relatively rapid response to large 325 

impact events. For example, Ref. 92 used a model that successfully predicted the death toll associated with the 326 

record-breaking summer 2003 heat wave in France, and showed that the impact of heat waves changed after 327 

the event: excess mortality predictions for the following heat wave in 2006 (6452 deaths) were found to largely 328 

exceed the observed mortality (2065 cases). The study concluded that the overestimation in the prediction was 329 

due to the decline of the vulnerability to heat, the increase in the awareness of the risk, the adoption of 330 

preventive measures and the implementation of a coordinated early warning system. 331 

This result suggests that the relation between climate variables and human mortality is constantly being 332 

redefined, and therefore climate impact models need to be recalibrated accordingly95. For example, Ref. 96 333 

used spatiotemporal climate and mortality data in France to describe the dependency between long-term 334 

changes in heat stress factors and their relationship with mortality. This study showed that the +1.2°C warming 335 

in mean temperatures observed in recent decades was associated with a +0.7°C warming in the comfort 336 

temperature (i.e. temperature of minimum mortality), suggesting that human populations have experienced 337 

a set of long-term acclimatization mechanisms to slow-varying background temperatures. The response ratio 338 

0.7 / 1.2 ≈ 0.58 is found to be lower than 1, suggesting that this set of slow-varying acclimatization processes 339 

might be partially limited by other factors, e.g. mechanisms linked to the physiology of the human body and/or 340 

the natural dynamics of the pathogens associated with the seasonal rise of mortality in winter97. 341 

In this regard, Ref. 5 proposed a qualitative conceptual model in which the degree of exposure of a 342 

society to summer temperatures is reduced under warming conditions (Figure 4a), and Ref. 80 later 343 

hypothesized a scenario in which the rise in winter temperatures increases the sensitivity of individuals to 344 

cold events (Figure 4b). These scenarios of exposure to warm and/or cold temperatures were used to infer 345 
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long-term projections of future annual mortality in Europe80, showing that the rise in heat-related mortality 346 

will start to completely compensate the reduction of deaths from cold during the second half of the century (R 347 

= 0 in Figures 4c,d). Nevertheless, changes in annual mortality are seen to be small compared to those that are 348 

inferred from scenarios of immediate gain or loss of acclimatization to warmer summer or winter 349 

temperatures, respectively (R = 1 in Figures 4c,d). This result thus highlights the key importance of 350 

uncertainties associated with the relationship between climate variability and impacts for the study of some 351 

health effects. 352 

 353 

 354 

4. Conclusions and future work 355 

 356 

The health sector is starting to benefit from tailored climate services based on climate forecasts, to 357 

support decision making at local, regional, national and global levels. Health stakeholders include government 358 

ministries and departments, hospitals and other health services98. These agencies are starting to make use of 359 

climate impact indicators to optimize the resources in the health system, and to enforce preventive measures 360 

to improve quality of life, particularly for the most vulnerable sectors of society. However, information from 361 

climate forecasts used in operational early warning systems requires a rigorous assessment of its real 362 

predictability and applicability. Moreover, factors determining the vulnerability to adverse health effects, 363 

including biological susceptibility, socio-economic status and the built environment, also need to be 364 

considered in the decision making process. Only in this way, by integrating useful climate and non-climate 365 

information in decision-support systems, policy makers are expected to be best placed to mitigate and adapt 366 

to the environmental effects of climate change in the most efficient ways possible. Despite some progress in 367 

demonstrating the potential for incorporating climate information into public health decision-making 368 

processes, there remain substantial challenges to the implementation of sustainable operational early warning 369 

systems. They require significant financial resources and long-lasting inter-agency collaboration to stand a 370 

chance of being successful. Further, effective communication of tailored climate information99, an iterative 371 
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evaluation of the efficacy of the system20 and local capacity building are necessary components to achieve 372 

effective and sustainable services. 373 

The many potential drivers of complex health systems, both extrinsic (e.g. climate and socio-economic 374 

factors) and intrinsic (e.g. population immunity, vulnerability and demography) are often difficult to 375 

disentangle. Spatio-temporal modeling tools are therefore required to simultaneously consider the complex 376 

interaction of climate hazards, disease transmission, socio-economic disparities and human vulnerability in 377 

predictive health risk models. There is however an urgent need for more interdisciplinary collaboration to 378 

make available global datasets of important health risk factors, and to understand the caveats associated to 379 

each dataset before embarking on modeling exercises. New endeavors are required to synthesize data 380 

collection and modeling efforts, and to design health early warning systems in close collaboration with public 381 

health decision makers. 382 

These initiatives also depend on the availability of accurate climate information and skilful climate 383 

forecasts for the implementation of operational early warning systems. There are windows of opportunity for 384 

the prediction of climate variables with lead-times from months to a few seasons, especially during El Niño 385 

and La Niña episodes and in ENSO affected regions. Climate forecasts are found to be more accurate during 386 

these events, particularly in the tropics where climate-sensitive diseases pose the largest burden to public 387 

health. When these events occur, there is a clear opportunity to incorporate climate information into decision-388 

making processes for climate-sensitive sectors, also out of the tropics due to the nature of atmospheric 389 

teleconnections. Nonetheless, this information is subject to large uncertainties associated for example with the 390 

complex and non-stationary nature of the climate system. Moreover, the skill of the climate forecasts rapidly 391 

decreases when these windows of opportunity close, which in many cases can make the information provided 392 

in the climate service systems no better than a coin toss. In that regard, the skill of climate model simulations 393 

and predictions still represents a major research area for improving the usefulness of health early warning 394 

systems to public health decision-makers, particularly in those many regions and time-scales for which climate 395 

forecast skill is low or non-existent. 396 

In conclusion, future endeavors aimed at developing new scientific tools and platforms for the 397 
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mitigation of climate-related health risks and the adaptation of society to environmental emergencies will 398 

require the close coordination of climate modelers and scientists, epidemiologists, hospitals, public health 399 

agencies and governments. This will help ensure the successful implementation and delivery of useful tools 400 

for the well-being and adaptation of society to the threats posed by climate change. 401 

 402 
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Figures 424 

 425 

Figure 1. (a) Probabilistic dengue forecast for Brazil, June 2014. The continuous color palette (ternary 426 

phase diagram) conveys the probabilities assigned to low-risk, medium-risk and high-risk dengue categories. 427 

Category boundaries are defined as 100 cases per 100,000 inhabitants and 300 cases per 100,000 inhabitants. 428 

The greater the color saturation, the more certain is the forecast of a particular outcome. Strong red shows a 429 

high probability of high dengue risk. Strong blue indicates a high probability of low dengue risk. Colors close 430 

to white indicate a forecast similar to the benchmark, i.e. long-term average distribution of dengue incidence 431 

in Brazil, marked by a cross. (b) Evaluation of past performance for each area based on out-of-sample 432 

retrospective dengue forecasts, June 2000-13. The skill score takes the value one for a perfect forecast and zero 433 

for the benchmark (long-term average) forecast. The darker the shade of green, the greater the skill of the 434 

forecasting system. Negative values (white) show areas where the model did worse than using the benchmark. 435 

Adapted from Ref. 46. 436 
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 437 

Figure 2. Maps of statistically significant (at the 10% level) correlations between December-February sea 438 

surface temperature anomalies in the Nino3.4 region (170-120W, 5S-5N) and March-May global precipitation 439 

(a,c,e) and temperature (b,d,f). Data is taken from the Climatic Research Unit dataset for 1901-2013 (a,b), 1951-440 

1980 (c,d) and 1981-2010 (e,f), and maps are produced using KNMI Climate Explorer (http://climexp.knmi.nl). 441 
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 442 

Figure 3. Receiver Operating Characteristic (ROC) curves for the binary event of exceeding an 443 

emergency mortality threshold in Europe for a heat wave scenario (1-15 August 2003), using a probabilistic 444 

mortality model driven by climate forecast data at lead times ranging from 1 day to 3 months. The ROC curve 445 

for the mortality model driven by observed climate data is shown for reference (black curve). Adapted from 446 

Ref. 79. 447 

 448 
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 449 

Figure 4. Scenarios of acclimatization to warm and/or cold temperatures. Panel (a) corresponds to a 450 

scenario with only decreased exposure to warm temperatures, while in panel (b) the sensitivity to cold 451 

temperatures is also increased. Acclimatization is expressed as the shift along the temperature axis of the 452 

temperature-mortality relationship by a fraction (0 ≤ R ≤ 1) of the increase in annual mean temperatures (∆T). 453 

This fraction is equal to 0 (1) for a scenario with no (immediate) gain or loss of acclimatization to warmer 454 

summer or winter temperatures, respectively. Panels (c) and (d) correspond to the projections of annual 455 

mortality for western Europe according to these scenarios of acclimatization. Adapted from Ref. 80. 456 
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