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Abstract. We report a statistical mixed model for assessing the importance of climate and non-climate drivers of
interannual variability in dengue fever in southern coastal Ecuador. Local climate data and Pacific sea surface tempera-
tures (Oceanic Niño Index [ONI]) were used to predict dengue standardized morbidity ratios (SMRs; 1995–2010).
Unobserved confounding factors were accounted for using non-structured yearly random effects. We found that ONI,
rainfall, and minimum temperature were positively associated with dengue, with more cases of dengue during El Niño
events. We assessed the influence of non-climatic factors on dengue SMR using a subset of data (2001–2010) and
found that the percent of households with Aedes aegypti immatures was also a significant predictor. Our results
indicate that monitoring the climate and non-climate drivers identified in this study could provide some predictive
lead for forecasting dengue epidemics, showing the potential to develop a dengue early-warning system in this region.

INTRODUCTION

Dengue fever is the most important mosquito-borne viral
disease affecting humans. In Latin America and the Caribbean,
over 1.5 million cases were reported from 36 countries and
territories in 2010.1 The burden of disease from dengue in this
region is comparable to the burden of malaria, hepatitis B,
or roundworm infection.2

Local climate and the El Niño–Southern Oscillation (ENSO)
are potentially important drivers of the interannual variability
(i.e., year-to-year variation) in dengue fever transmission.
ENSO is a fluctuation between unusually warm (El Niño) and
cold (La Niña) sea surface temperatures (SSTs) in the tropical
Pacific Ocean.3 El Niño and La Niña events typically recur
every 2–7 years and develop in association with large-scale
oscillations in an atmospheric pressure pattern spanning the
tropical Indian and Pacific Oceans, known as the Southern
Oscillation. ENSO influences the interannual variability in
weather patterns and the likelihood of regional extreme events,
such as droughts and floods, across the globe.4

The theoretical causal mechanisms linking ENSO to dengue
are based on the connections between ENSO and local cli-
mate anomalies in certain regions of the world and the influ-
ence of climate on the dengue mosquito vector and virus.
Precipitation can influence the availability of mosquito
larval habitat,5–7 and ambient temperatures influence rates
of mosquito larval development,8–11 adult biting activity,12

the gonotrophic cycle,13 and viral replication in the mosquito
(extrinsic incubation period).14,15

However, the influence of ENSO and local climate on
dengue transmission is debated in the literature, with previous
studies reporting inconsistent interannual associations. A pre-
vious study in Thailand found evidence that 2- to 3-year cycles
of dengue incidence were linked to ENSO and climate,
although the mechanisms were unclear, because they found that
dengue increased prior to changes in ENSO.16 Dengue trans-
mission inMexico has been shown to be strongly associated with

ENSO and minimum temperature, although not with pre-
cipitation.17 Dengue hemorrhagic fever (DHF) epidemics in
Colombia, Suriname, French Guiana, and Indonesia were
found to be associated with El Niño events, although the
effects of El Niño on local climate varied by region.18

Other studies found that ENSO and local climate were not
important determinants of interannual variability in dengue
incidence in Mexico, Puerto Rico, and Thailand,19–22 high-
lighting the importance of identifying and assessing the effects
of non-climate factors in analyses of interannual variability.
Potential non-climate drivers include intrinsic factors (e.g.,
introduction of new serotypes, herd immunity, and strain-
cross immunity)23 and other social–ecological drivers influ-
encing vector populations and human exposure, such as
vector control interventions, changes in urban poverty and
infrastructure, land use change, and human movement.24,25

Despite the debate, it is generally understood that dengue
is a climate-sensitive disease, and accordingly, the World
Health Organization (WHO) has recommended developing
climate-driven early-warning systems (EWSs) for dengue fever
similar to those systems developed for malaria in Africa.26,27

In developing an EWS, researchers should consider the
effects of both climate and non-climate factors, although
climate is a key predictor, because climate conditions can
be projected several months ahead of time (e.g., seasonal
climate forecasts). An EWS that predicts seasons and
regions with high or low disease transmission would allow
the public health sector to conduct more effective vector
control.28 To date, there has been limited success in developing
an operational EWS for dengue, although several studies have
shown the potential to develop such a system.29–31

Aims of the study. The objective of this study is to assess
the importance of climate and non-climate drivers of inter-
annual variability in dengue fever in southern coastal Ecuador.
We developed a statistical mixed model to quantify the impact
of climatic variability on dengue transmission, while control-
ling for observed and unobserved confounding factors such
as serotype circulation, mosquito abundance, and vector
control interventions.
Study area. El Oro is a coastal province in southern

Ecuador, bordering Peru in the south, the Pacific Ocean in
the west, and the Andean foothills in the east. The province
has 14 districts with a total population of 600,659 and a
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land area of 5,818 km2 (3 °03¢ S to 3 °53 ¢ S, 80 °16¢ W to
79 °21¢ W). According to the National Institute of Statis-
tics and Census (INEC), more than 85% of people in the
province live in the coastal lowlands, where dengue trans-
mission is concentrated. However, in recent years, dengue
has been documented in mountain valleys up to 650 m
above sea level (m.a.s.l). The Aedes aegypti mosquito is
the only known dengue vector in Ecuador.
As in most of Latin America, dengue fever was eradi-

cated from Ecuador in the 1950s. In 1988, the first new
cases of dengue were reported in the country, and in 1990,
the first cases of dengue were reported in El Oro province.
Since 2003, all four serotypes have circulated through the
province, and in 2005, the first cases of DHF were reported.
In 2010, the province experienced its worst dengue epi-
demic, with approximately 3,900 cases of dengue fever and
108 cases of DHF. During the epidemic, 48% of cases

from the province were reported from the capital city of
Machala, where 41% of the population of the province resides.
Dengue fever transmission in El Oro follows a distinct

seasonal pattern, with cases peaking during the rainy season
from February to May (Figure 1). The climate of El Oro is
characterized by a warmer, rainy season from December to
May and a cooler, dry season the rest of the year. In the capi-
tal city of Machala, average annual rainfall is 675 mm, with
88% of the annual rainfall occurring during the rainy season.
Temperatures vary slightly, with maximum temperatures in
Machala ranging from 26°C during the dry season to 31°C
during the wet season. The seasons are caused by the annual
north–south movement of the intertropical convergence
zone, which corresponds with the north–south movement of
the interface of the cold Humboldt (Peru) Current with the
warmer Southern Equatorial Current off the coast of Ecuador
in the Pacific Ocean.32 On average, positive anomalies in
Pacific SSTs are associated with positive anomalies in rain-
fall and air temperature in southern coastal Ecuador.32 ENSO
events cause significant year-to-year variability in rainfall, with
strong El Niño events leading to flooding and loss of life in
coastal regions of Ecuador.33,34 During the exceptionally strong
1997–1998 El Niño, annual rainfall in Machala surpassed
1,800 mm. This pattern of rainfall is less clear in other regions
of Ecuador that are also strongly influenced by atmospheric
perturbations from the eastern Amazonian region.35

Dengue control. Reported cases of dengue fever in
Ecuador have increased over the last decade despite ongoing
vector control interventions. Dengue is managed by the
National Service for the Control of Vector-Borne Diseases
in the Ministry of Health and controlled primarily through
year-round vector control campaigns that intensify leading
up to and during the rainy season. Focal vector control is
also conducted in neighborhoods with reported cases of
dengue. Dengue control includes fumigation from trucks,
indoor residual spraying, use of organophosphate larvicides,
destruction of potential mosquito breeding containers, and
community education campaigns.

DATA AND METHODS

Epidemiological data. Clinically suspected cases of dengue
fever are reported to a mandatory disease surveillance system
operated by the Ministry of Health, which started maintain-
ing records of dengue in the early 1990s. Monthly cases
of dengue reported to the Ministry of Health from El Oro
province (1995–2010) are used in this study rather than
laboratory-confirmed cases, because only a small proportion
of reported cases were confirmed historically. The Virology
Surveillance System, operated by the National Institute of
Hygiene and Tropical Medicine in the Ministry of Health,
reports the presence of dengue serotypes circulating in the
country. We converted this information to the total number
of dengue serotypes circulating in the country per month
(2001–2010). No information was provided on the number
of reported dengue cases for each serotype.
For ease of interpretation, we calculated the monthly

dengue standardized morbidity ratio (SMR), the ratio of
observed (yt) to expected (et) dengue cases, to compare
observed results with model results. Expected cases are cal-
culated as the population at risk (pt) for dengue each
month multiplied by the overall ratio of dengue for the

Figure 1. Mean annual cycle of (A) dengue SMR for El Oro
province and (B) precipitation (bars), mean temperature (solid line),
maximum and minimum temperature (dashed lines) from Machala,
El Oro (1995–2010).

972 STEWART-IBARRA AND LOWE



Copyright ASTMH

 guest

IP:  194.80.229.244

On: Mon, 27 Feb 2017 12:23:09

entire time period in El Oro et = pt
(yt

(pt

 !
. The population

of the province was obtained from national censuses (1990,
2001, and 2010) conducted by INEC, and the population in
the intervening years was estimated assuming linear growth.
The model formulated below predicts the counts of dengue
cases (yt) but includes the expected number of cases as an
offset, therefore predicting the dengue SMR (or relative
risk) at each time step.
Entomological data. The National Service for the Control

of Vector-Borne Diseases provided quarterly (2001–2010)
estimates of various indicators of vector abundance for
El Oro: Breteau Index (BI), House Index (HI), and an esti-
mate of vector control efforts. The BI is the number of
containers with Ae. aegypti immatures per 100 households,
and the HI is the number of households with Ae. aegypti

immatures per 100 households. Monthly vector control efforts
were estimated by the average number of vector control
technician labor days and kilograms of larvicide used.
Climate data. Daily precipitation,mean temperature (Tmean),

maximum temperature (Tmax), and minimum temperature
(Tmin) for the study period were provided by the National
Institute of Meteorology and Hydrology from the Granja
Santa Ines weather station located in Machala (3°17¢26² S,
79°54¢5² W, 5 m.a.s.l.). This station provided the most com-
plete climatological time series for the coastal region of
El Oro. To fill gaps in the time series, a linear statistical
model was formulated to predict missing station data using
gridded temperature and rainfall data from the grid box
within which the meteorological station is located. Rainfall
data were obtained from the Global Precipitation Climatology
Project (GPCP).36 Temperature data were obtained from the
European Re-Analysis (ERA)–Interim Reanalysis daily from
the European Center for Medium-Range Weather Forecasts
(ECMWF) Data Server.
SST data. The National Oceanic and Atmospheric Adminis-

tration (NOAA) Climate Prediction Center of NOAA/National

Weather Service provided a time series of the Oceanic Niño
Index (ONI) defined as the 3-month running mean of SST
anomalies (1971–2000 base period) in the Niño 3.4 region
(5 °N to 5 ° S, 170 ° to 120 ° W).37 The Climate Prediction

Center defines ENSO events when SST anomalies are greater
than or equal to +0.5 °C for 5 consecutive months for warm
(El Niño) events and less than or equal to −0.5 °C for cold
(La Niña) events. During the study period (1995–2010), six

El Niño and five La Niña events were recorded, includ-
ing the 1997–1998 El Niño, one of the strongest events ever
recorded (Figure 2C).
Statistical analysis. We analyzed the role of climatic and

non-climatic factors in interannual variability in dengue
SMR in El Oro by developing two sets of statistical models

using data from 1995 to 2010 (climate only) and from 2001 to
2010 (climate and non-climate).
We first calculated monthly anomalies for precipitation,

Tmin, Tmean, and Tmax using the monthly means of each

variable from the 16-year time series (1995–2010) (Figure 1B).

We then used exploratory data analysis to identify the cli-

mate variables (lagged up to 6 months) that were most

strongly correlated to the log of dengue SMR for inclusion

in the model (Figure 3). We also tested non-linear terms and
interactions in the model.

Using the modeling framework proposed in recent studies
of dengue in Brazil, a generalized linear mixed model (GLMM)
was formulated to assess the importance of significant climate
variables and other non-climatic confounding factors as
drivers of interannual variability in dengue transmission in
El Oro province.30,38 A negative binomial model was used
to account for overdispersion found in the dengue count
data (extra-Poisson variation),39,40 where yt is monthly
dengue cases, mt is mean cases, et is expected cases, and rt is
the dengue relative risk (Eq. 1). By including the expected
number of cases of dengue as an offset, we estimated the
relative risk (SMR) of dengue using a linear combination of
local climate covariates, a large-scale climate driver (ONI),
and non-climatic confounding factors:

yt~NegBin(mt, k)

logmt = loget + logrt :
ð1Þ

Using climate and dengue data from 1995 to 2010, we
developed a set of models to understand the influence of
each factor on dengue relative risk (log SMR), starting with
a seasonal base model and gradually adding climate and
random effects (Figure 6A and B and Tables 1 and 2 show
results). The inclusion of random effects in the model frame-
work allowed us to account for unknown or unobserved
confounding factors in the disease system by introducing an
extra source of variability into the model.41 Model parame-
ters were estimated within a Bayesian framework using
Markov Chain Monte Carlo (MCMC) and were considered
to be statistically significant if their 95% credible interval
did not contain zero. The Bayesian approach accounts for
parameter uncertainty by assigning prior distributions to the
parameters.42 An advantage of this approach is that the asso-
ciated MCMC sampling yields samples from full posterior
predictive distributions, which automatically incorporate all
components of variance at the different levels in the model.
Therefore, a full assessment of prediction uncertainty can be
more easily obtained with the Bayesian MCMC estimation
than the more traditional maximum likelihood approach.
The base model included an intercept(a) and temporally

autocorrelated random effects (bt ¢(t)) for each calendar month
to account for the annual cycle of dengue (Figure 4). Because
only part of the dengue annual cycle may be attributable
to climatic conditions, the inclusion of this effect allowed
us to account for other seasonal confounding variables, such
as seasonal population movements. This seasonal term is
included as a structured first-order autoregressive month
effect to account for temporal serial correlation in dengue
transmission (e.g., dengue relative risk in 1 month may
depend on the risk in the previous month). Because the
model is implemented in a Bayesian framework, the month
effect is assigned a random walk or first difference prior
distribution, in which each effect is derived from the imme-
diately preceding effect.42 To test the significance of the
autocorrelation, a posterior distribution of the autocorrela-
tion function (ACF) of the month effects was calculated.
The mean ACF at a 1-month lag was 0.82 with 95% credible
interval (0.75, 0.85). The positive and statistically significant
temporal structure in the seasonal term indicated that it was
appropriate to include autocorrelation in the month effect.
Next, a climate model was fitted that included the base

model and the important climate variables identified through
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exploratory data analysis (gjxjt
� �

. We then developed a

non-climate model by removing the climate variables and

replacing these variable with exchangeable non-structured

random effects for each year (dT ¢(t)) to account for inter-

annual changes in dengue risk attributable to factors that

we are unable to measure for the time period 1995–2010,

such as changes in vector control practices (Figure 4B). Note

that we tested autocorrelation in the yearly random effects

to potentially account for the effects of lasting immunity

between dengue outbreaks. However, when assessing the

posterior distribution of the ACF at 1-year lag, the correla-

tion was found to be weak (−0.09) and not statistically sig-

nificant (i.e., the 95% credible interval contained zero

[−0.33, 0.14]). In the final model, we included both climate

variables and yearly random effects with the base model.
The goodness of fit of all models was assessed using the

deviance information criterion (DIC)43 and an R2
LR statistic

for mixed effects models based on a likelihood ratio test.44

Smaller values of DIC indicate a better-fitting model, whereas

0 £ R2
LR £ 1, with R2

LR = 1 corresponding to a perfect fit

and R2
LR ³ 0 valid for any reasonable model specification.

We also assessed the model fitness by comparing the observed
historical dengue SMR with the posterior predictive distribu-
tion of dengue SMR.45 The posterior predictive distribution
of dengue served as a reference distribution and was obtained
by simulating new pseudo-observations using samples from
the posterior distribution of the parameters in the model.
We developed a second set of models to further investi-

gate potential non-climatic drivers of interannual variability in
dengue risk using a subset of the data (2001–2010) for which

additional information on non-climate factors (ej zjt
� �

was

available, including the number of dengue serotypes circu-
lating in the country, entomological indices (HI and BI),
and vector control intensity (number of worker days and
kilograms of larvicide) (Figure 5). Dengue serotype data
were converted into a categorical variable with three levels
(0 = no information [aliased to the intercept], 1 = one known
serotype in circulation, 2 = two or more known serotypes in
circulation). We conducted exploratory analyses to iden-
tify the most important non-climate variables and lags for
inclusion in the model, and then, we developed this set of
models using the same procedure described above. We tested

Figure 2. Three-month running mean anomalies of (A) the dengue SMR in El Oro province, (B) precipitation and mean temperature
from Machala, El Oro, and (C) SST in the Niño 3.4 region, also known as ONI.
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the relative influence of the 1997–1998 El Niño on the
ONI parameter by comparing the 1995–2010 data with the
2001–2010 data.

RESULTS

From 1995 to 2010, 18,761 cases of dengue were reported
from El Oro province, with 13,852 cases reported from
2001 to 2010. The best 1995–2010 model explained 62% of the

variability in dengue transmission, and the best 2001–2010
model explained 72% of the variability. ONI and HI were
the most important predictors of dengue in this region.
Details on these findings follow.
1995–2010 model. The most important climate variables

associated with dengue were anomalies in precipitation at a
1-month lag, anomalies in Tmin at a 2-month lag, and ONI at
a 3-month lag. These variables had positive and statistically
significant associations with dengue SMR. Precipitation, Tmin,

Figure 3. Scatter matrix showing the relations between log dengue SMR and anomalies in climate variables at the most significant lags:
SMR versus precipitation at a 1-month lag, SMR versus minimum temperature at a 2-month lag, and SMR versus ONI at a 3-month lag.
Solid line = linear regression curves for 1995–2010; dashed line = linear regression curves for 2001–2010.

Table 1

Adequacy results for models to predict dengue SMR from 1995 to 2010 and from 2001 to 2010

Model log rt DIC R2
LR

1995–2010 model
Base a + bt ¢(t) 2,079.52 0.30

Climate effects a + bt ¢(t) +(gj xjt 2,032.13 0.46

Yearly random effects a + bt ¢(t) + dT ¢(t) 1,996.45 0.57

Climate and random effects a + bt ¢(t) +(gjxjt + dT ¢(t) 1,980.12 0.62
2001–2010 model
Base a + bt ¢(t) 1,313.18 0.44

Climate effects a + bt ¢(t) +(gjxjt 1,305.28 0.49

Non-climate effects a + bt ¢(t) +(ejzjt 1,286.63 0.56

Climate and non-climate effects a + bt ¢(t) +(gj xjt +(ejzjt 1,276.67 0.61

Climate, random, and non-climate effects a + bt ¢(t) +(gjxjt + dT ¢(t) +(ejzjt 1,242.21 0.72

Models are ranked by the DIC and a likelihood ratio R2
LR statistic.
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and ONI had significant associations at other lags but at lower
magnitudes. Anomalies in Tmax and Tmean were positively
associated with dengue at a lower magnitude than Tmin and
did not improve the model fit. Polynomial terms and inter-
actions were not found to be statistically significant.
The best model explained 62% of the variability in dengue

transmission and included climate effects, yearly random
effects, and monthly random effects (Tables 1 and 2). The
seasonal base model (monthly random effects) alone explained
30% of the variation in dengue transmission. When climate
effects were added to the base model, an additional 16% of
variation was explained (46% total), and the goodness of fit
improved. In the final model, adding yearly random effects
to climate effects and the base model explained an additional
16% of the variation in dengue (62% total). The influence of
yearly random effects can be interpreted as the effect of
unobservable non-climate annual factors, such as population
immunity or vector control campaigns. Tmin was not signifi-
cant in the final model.
To assess the predictive ability of the model, posterior

predictive distributions (posterior predictive mean and 95%
prediction intervals) of dengue SMR were simulated using
parameter estimates from the best model (that also account
for unknown random effects) but omitting the yearly random
effects from the prediction calculation (Figure 6). The random
effects are important to allow more accurate parameter esti-

mates for climate and other variable. However, they are not
useful in a prediction model, because they represent unknown
factors. The 1995–2010 model was able to correctly capture
the interannual and intraseasonal variability in dengue risk,
although in some instances, the model predicted higher
dengue risk than was observed (Figure 6A and B).
2001–2010 model. The most important non-climate vari-

ables associated with dengue were HI at a 1-month lag and
the number of dengue serotypes at a 3-month lag. These vari-
ables were included in the model as non-climate effects, and
the same climate variables were included as in the 1995–2010
model. Variables accounting for vector control efforts were
not statistically significant.
The best model explained 72% of the variability in dengue

transmission and included climate, non-climate, yearly, and
monthly random effects (Tables 1 and 2). The seasonal base
model alone explained 44% of dengue transmission. The
goodness of fit of the model improved when climate and non-
climate effects were added to the base model independently,
although non-climate effects explained 7% more of the varia-
tion than climate effects. Climate and non-climate effects
together explained 61% of the variability in dengue, the
same proportion explained by the best 1995–2010 model. In
the final 2001–2010 model, yearly random effects explained
an additional 11% of the variability. Anomalies in precipita-
tion, anomalies in Tmin, and the number of dengue serotypes
were not statistically significant in the final model. The
lack of association between dengue and local climate factors
for this time period is apparent in Figure 3. The association
between dengue and the serotype variables remained positive,
although the serotype variables were not significant.
To assess the predictive ability of the 2001–2010 model,

we also simulated the posterior predictive distributions of
dengue SMR using parameter estimates from the best model
but omitting the yearly random effects (Figure 6C and D).
This model captured some of the interannual variability
in dengue risk, although it predicted higher dengue risk
than was observed in some instances, similar to the 1995–
2010 model. Predictions including both climate and non-
climate information (Figure 6D, dashed line) and only
non-climate information (Figure 6D, dotted line) are shown,
highlighting years where the inclusion of climate information

Table 2

Posterior means and 95% credible intervals (CIs) for the parame-
ters associated with the explanatory variables in the best models
(allowing for random effects) fitted to data from 1995 to 2010
and from 2001 to 2010

Parameter
Posterior mean (95% CI)

1995–2010 model
Posterior mean (95% CI)

2001–2010 model

Precipitation x1 0.09 (0.03, 0.16) 0.08 (−0.01, 0.18)
Tmin x2 0.02 (−0.02, 0.09) −0.08 (−0.42, 0.28)
ONI x3 0.24 (0.05, 0.42) 0.25 (0.00, 0.52)
HI z1 – 0.39 (0.17, 0.60)
Number of
circulating serotypes
One known serotype z2 – 0.20 (−0.12, 0.53)
Two or more
known serotypes

z2 – 0.48 (−0.04, 0.97)

Figure 4. Posterior means and 95% credible intervals at log-linear level for (A) autocorrelated monthly and (B) yearly random effects in
the 1995–2010 model.
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improved the dengue prediction (for example, in 2003, 2009,
and 2010).
ONI parameter. Our comparison of the ONI parameter

from 1995 to 2010 and from 2001 to 2010 time periods indi-
cated that it is a potentially robust predictor of dengue. For
both time periods, the parameter had similar positive associa-
tions with dengue (Figure 3), posterior means (Table 2), and
posterior distributions, although the uncertainty in the ONI
parameter in the 2001–2010 model was greater (Figure 7).
This result suggests that the strong 1997–1998 El Niño event
did not influence the 1995–2010 model.
To compare the effect of the ONI parameter with the

other model parameters, we estimated the relative risk for a
one-unit increase in xjt by calculating eg j (where j = 3).
According to the 1995–2010 model, a 1°C increase in SST
anomaly in the Niño 3.4 region (ONI) would result in
approximately a 27% (e0.24 = 1.27) increase in dengue cases
3 months later, and similarly, the 2001–2010 model predicted
a 28% increase. In comparison, a 1% increase in the propor-
tion of households with Ae. aegypti immatures (HI) would
result in a 48% increase in dengue cases 1 month later,
and a 1-mm increase in rainfall anomaly would result in an
8% increase in dengue cases 1 month later according to the
2001–2010 model.

DISCUSSION

The results of this study indicate that ENSO, local climate,
vector densities, and the number of serotypes circulating
influence interannual variability in dengue fever transmission
in southern coastal Ecuador, highlighting the importance
of considering both climate and non-climate information
in developing predictive models for dengue. The modeling
approach adopted in this study allowed us to separate the
seasonal, climate, and non-climate effects influencing dengue
variability in this region and quantify the potential influence
of unobserved factors on the dengue transmission system.
Climate drivers. ONI was the most important climate vari-

able. More cases of dengue were reported than expected
during El Niño events, which was indicated by a positive
association with the ONI. Monitoring the evolution of ENSO

in the Pacific Ocean could provide a lead time of at least
3 months to forecast dengue epidemics in this region. Addi-
tionally, ONI remains the most important climate variable
when Tmin and precipitation are included in the models,
indicating that the influence of ENSO on dengue extends
beyond these variables, which was found in a previous study
in Mexico.17

We found that ENSO has a strong influence on anomalies
in Tmin, which was indicated by a positive association during
both time periods (1995–2010 and 2001–2010) (Figure 3).
Anomalies in Tmax and Tmean were also positively associ-
ated with ENSO, although the association was weaker.
Although Tmin had significant positive associations with
dengue in preliminary analyses, it was not significant in
either final model, possibly because the effect of Tmin was
captured by ONI.
The influence of ENSO on precipitation was less clear.

We found a weak positive association between precipitation
and ENSO from 1995 to 2010 and no association from 2001
to 2010, suggesting that precipitation may be positively asso-
ciated with only very strong ENSO events, such as the
1997–1998 El Niño apparent in Figure 2. Similarly, precipi-
tation was weakly associated with dengue from 1995 to 2010
but not from 2001 to 2010. The effect of strong rainfall events
on dengue risk in this region should be investigated further.
Previous studies from the Americas found that Tmin and

precipitation were significant predictors of dengue risk.17,46–48

Likewise, field studies in this region found that Tmin and
precipitation were the most important local climate predic-
tors of seasonal Ae. aegypti population dynamics (Stewart-
Ibarra AM and others, unpublished data). Other studies
have shown that Tmin plays an important role in regulating
Ae. aegypti feeding behavior12 and influences Ae. aegypti

adult and immature abundance.49,50 Air temperature also
influences dengue virus replication in the mosquito,15 with
shorter extrinsic incubation periods at elevated tempera-
tures.14 Daily temperature fluctuations also influence dengue
transmission dynamics by reducing vector life spans and
vector susceptibility to viral infection,51 although the effect
may be minor in this region, because average diurnal tem-
perature ranges are relatively small (maximum of 8.6°C

Figure 5. Non-climate variables included in the 2001–2010 model. Log dengue SMR versus (A) the HI (percent of households with Ae. aegypti
immatures) at a 1-month lag and (B) the number of dengue serotypes circulating in Ecuador at a 3-month lag.
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in April and minimum of 5.8°C in October). The average
monthly minimum temperature in this region ranges from
20.8°C in August (dengue low season) to 23.9°C in April
(dengue high season), temperatures that fall at the lower
end of the optimal range for endemic dengue transmission
(20–30°C).10 This finding suggests that dengue transmission in
this region may be especially sensitive to changes in the mini-
mum temperature caused by ENSO or other climate forcings.
The effect of precipitation on dengue risk is confounded

by interactions with human behavior (e.g., water storage) and
local social–ecological conditions (e.g., housing condition
and piped water infrastructure) influencing vector abun-
dance. It is generally understood that rainfall can increase
dengue risk by increasing the availability of mosquito larval
habitats. However, studies in Puerto Rico showed that, in
communities where the key Ae. aegypti breeding sites are
year-round water storage containers, vector densities were
less sensitive to seasonal variation in rainfall.52 Other studies
found that rainfall shortages can increase dengue risk by
increasing the need for water storage around the house-
hold.53,54 Therefore, to understand and predict the effect
of rainfall on dengue risk may require a finer-scale model-

ing approach that incorporates these context-specific social–
ecological parameters.
Although precipitation and Tmin were not statistically sig-

nificant after we added non-climatic factors in the 2001–2010
model, we believe that these local meteorological variables
should remain in the model formulation because of the
mechanistic importance of these variables, and the strength
of the relationship should be continually assessed as new
data become available.
Non-climate drivers. Non-climatic factors (i.e., HI and

serotypes) also had an important effect on dengue trans-
mission, explaining an additional 12% of the variability
when added to the seasonal base model for 2001–2010.
Dengue risk was positively associated with Ae. aegypti

immature abundance at a 1-month lag, indicated by the
HI, which was significant even with the inclusion of climate
factors and seasonality. This result suggests that interannual
variability in Ae. aegypti abundance may be influenced by
non-climatic factors, such as changes in urban infrastruc-
ture and vector control interventions, although the vector
control variables were not significant in the model. Given
that HI is a crude measure of vector abundance, better

Figure 6. Observed dengue SMR (solid line) and predicted SMR (dashed/dotted line; shaded area = 95% prediction interval) for best
models (not including yearly random effects): (A and B) the 1995–2010 model including climate information and (C and D) the 2001–2010
model including climate, vector, and serotype information (dashed line) and only vector and serotype information (dotted line).
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measures, such as pupal indices, could potentially improve
the model prediction.
Dengue risk was also positively associated with the number

of serotypes circulating in the country at a 3-month lag,
likely because of outbreaks caused by the introduction of
new serotypes to susceptible populations and increased
reporting of severe cases caused by secondary infections.
However, in the final model, the serotype variable was no
longer statistically significant; the lack of an observed effect
may be because of the coarse scale of the serological data
(country level). Ideally, we would analyze a time series of
the serotype-specific cases of dengue reported in the prov-
ince each month; however, these data are not yet available.
Nonetheless, it is interesting to note the positive relation-
ship with the number of serotypes and dengue relative risk,
suggesting that improved serological surveillance data could
provide additional predictive lead time in a dengue EWS.
Yearly random effects explained an additional 11% of the

variability in the 2001–2010 model with climate and non-
climate information, indicating the potential to improve the
model fit by investigating these currently unknown annual
factors (e.g., herd immunity and intensive fumigation efforts).
The inclusion of the yearly random effects allowed us to
identify specific time periods where additional investiga-
tions should try to isolate confounding factors that may
alter dengue risk. Figure 4 shows the posterior mean and
95% credible intervals for the autocorrelated monthly and
yearly random effects, illustrating the annual cycle present
in the dengue data (Figure 4A) and the years that contrib-
uted to the interannual variability in dengue (Figure 4B).
For example, 2002 was an unusually low dengue year,
despite the fact that an ENSO event did not take place in
late 2001 or early 2002. DENV3, first introduced to the
country in 2000, was the dominant strain circulating in
2001 and 2002. It is possible that there were fewer cases
of dengue in 2002 because of herd immunity. Future
studies could explore such hypotheses through the use of
simulation models.

Developing a dengue EWS. Statistical and dynamical
models that predict patterns of dengue transmission are
important decision support tools that can ultimately become
part of a dengue EWS by linking models to real-time infor-
mation from seasonal climate forecasts, disease surveil-
lance systems, and monitoring of other social–ecological
risk factors.26 Probabilistic predictions of dengue risk pro-
duced by these models are translated into epidemic warn-
ings that trigger a public health preparedness plan for actions
at different warning levels. A dengue EWS would provide
public health decision-makers with greater lead time to
proactively prevent dengue outbreaks through targeted
vector control interventions and rapid response actions,
such as media and community outreach campaigns to elimi-
nate breeding containers.
The findings from this study provide evidence for the

role of climate and non-climate drivers in interannual vari-
ability in dengue transmission in this region, laying the
groundwork for developing a dengue EWS. The next steps
will be to (1) investigate the yearly random effects described
above and (2) quantify how much predictive lead time can
be gained by replacing observed climate information with
seasonal (3 month) hindcasts (i.e., retrospective forecasts)
of both local climate conditions and the evolution of Pacific
SSTs. The use of seasonal climate forecasts is promising
given that Ecuador is located in a region of the world where
seasonal forecasts show some skill (accuracy) because of the
strong influence of ENSO events in the region.55,56 Forecast-
ing centers such as the ECMWF produce such forecasts
with lead times up to 6 months. However, the greater the
forecast lead time, the greater the uncertainty in the pre-
dictions of both the climate and the disease.
After the predictive model is developed, the next step is

to evaluate its efficacy for the decision-making process by
assessing the ability of the model to predict epidemics suc-
cessfully and the tendency of the system to issue false
alarms or miss an epidemic. Out-of-sample data should be
used to test how well future unobserved epidemics can be
forecast.38 In addition, there must be careful consideration
of how the probabilistic forecasts are communicated to the
public health end-users to ensure that the information is
appropriately interpreted and that the uncertainties associated
with climate and disease forecasts are well-understood.57

Disentangling the extrinsic and intrinsic drivers of dengue
to develop an EWS is a major challenge given the relatively
short time series of dengue data available in most coun-
tries. Ultimately, understanding the mechanisms linking
ENSO and other factors to dengue risk will require a
finer-scale analysis of local social–ecological conditions.
However, it is clear from this study that both climatic and
non-climatic factors should be considered when developing
a dengue EWS.
Conclusions. Despite vector control efforts, dengue is a

growing public health problem in Ecuador and across the
tropics and subtropics. This research is contributing to an
ongoing collaborative effort by the National Institute of
Meteorology and Hydrology and Ministry of Health of
Ecuador to develop decision support tools that integrate
climate and non-climate data to better manage dengue. This
study is the first published study of dengue fever and cli-
mate and non-climate drivers in Ecuador, showing impor-
tant interrelationships among ENSO, local climate, vector,

Figure 7. Posterior distribution of the ONI parameter from the
1995–2010 model (dashed curve; includes the 1997–1998 El Niño
event) and the 2001–2010 model (solid curve).
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virus, and dengue dynamics that provide the foundation to
develop a dengue EWS.
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17. Colón-González FJ, Lake IR, Bentham G, 2011. Climate vari-
ability and dengue fever in warm and humid Mexico. Am J
Trop Med Hyg 84: 757–763.

18. Gagnon AS, Bush ABG, Smoyer-Tomic KE, 2001. Dengue
epidemics and the El Niño Southern Oscillation. Clim Res 19:
35–43.

19. Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N,
Shanks GD, Snow RW, Rogers DJ, 2000. Etiology of inter-
epidemic periods of mosquito-borne disease. Proc Natl Acad
Sci USA 97: 9335–9339.

20. Keating J, 2001. An investigation into the cyclical incidence
of dengue fever. Soc Sci Med 53: 1587–1597.

21. Thammapalo S, Chongsuwiwatwong V, McNeil D, Geater A,
2005. The climatic factors influencing the occurrence of
dengue hemorrhagic fever in Thailand. Southeast Asian J
Trop Med Public Health 36: 191–196.

22. Johansson MA, Cummings DAT, Glass GE, 2009. Multiyear cli-
mate variability and dengue—El Niño Southern Oscillation,
weather, and dengue incidence in Puerto Rico, Mexico, and
Thailand: a longitudinal data analysis. PLoS Med 6: e1000168.

23. Wearing HJ, Rohani P, 2006. Ecological and immunological
determinants of dengue epidemics. Proc Natl Acad Sci USA
103: 11802–11807.

24. Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever
as a public health, social and economic problem in the 21st
century. Trends Microbiol 10: 100–103.

25. Focks DA, Barrera R, 2006. Dengue Transmission Dynamics:
Assessment and Implications for Control. Report on the Scien-
tific Working Group on Dengue, 2006. Geneva: World Health
Organization, 92–109.

26. Kuhn K, Campbell-Lendrum D, Haines A, Cox J, 2005. Using
Climate to Predict Infectious Disease Epidemics. Available at:
http://www.who.int/globalchange/publications/infectdiseases/en/
index.html. Accessed July 24, 2012.

27. Thomson MC, Mason SJ, Phindela T, Connor SJ, 2005. Use of
rainfall and sea surface temperature monitoring for malaria
early warning in Botswana. Am J Trop Med Hyg 73: 214–221.

28. Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A, 2003.
El Niño and health. Lancet 362: 1481–1489.

29. Schreiber KV, 2001. An investigation of relationships between
climate and dengue using a water budgeting technique. Int J
Biometeorol 45: 81–89.

30. Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS,
Sa Carvalho M, Barcellos C, 2011. Spatio-temporal modeling
of climate-sensitive disease risk: towards an early warning
system for dengue in Brazil. Comput Geosci 37: 371–381.

31. Yu H-L, Yang S-J, Yen H-J, Christakos G, 2011. A spatio-
temporal climate-based model of early dengue fever warning
in southern Taiwan. Stochastic Environ Res Risk Assess 25:
485–494.

32. Pourrut P, Nouvelot JF, 1995. Anomalies and extreme climate
phenomena. Pourrut P, ed. Water in Ecuador: Climate, Precipi-
tation, Runoff. Quito, Ecuador: RR Associated Editors, 67–76.

33. Rossel F, Le Goulven P, Cadier E, 1999. Areal distribution of the
influence of ENSO on the annual rainfall in Ecuador. Journal
of Water Science 12: 183–200.
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