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a b s t r a c t

Campylobacter jejuni is the leading cause of bacterial food borne illness. While helical cell shape is
considered important for C. jejuni pathogenesis, this bacterium is capable of adopting other morphol-
ogies. To better understand how helical-shaped C. jejuni maintain their shape and thus any associated
colonisation, pathogenicity or other advantage, it is first important to identify the genes and proteins
involved. So far, two peptidoglycan modifying enzymes Pgp1 and Pgp2 have been shown to be required
for C. jejuni helical cell shape. We performed a visual screen of ~2000 transposon mutants of C. jejuni for
cell shape mutants. Whole genome sequence data of the mutants with altered cell shape, directed
mutants, wild type stocks and isolated helical and rod-shaped ‘wild type’ C. jejuni, identified a number of
different mutations in pgp1 and pgp2, which result in a change in helical to rod bacterial cell shape. We
also identified an isolate with a loss of curvature. In this study, we have identified the genomic change in
this isolate, and found that targeted deletion of the gene with the change resulted in bacteria with loss of
curvature. Helical cell shape was restored by supplying the gene in trans. We examined the effect of loss
of the gene on bacterial motility, adhesion and invasion of tissue culture cells and chicken colonisation, as
well as the effect on the muropeptide profile of the peptidoglycan sacculus. Our work identifies another
factor involved in helical cell shape.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Infection by Campylobacter spp, especially Campylobacter jejuni,
is considered to be the most prevalent cause of bacterial diarrhoeal
disease worldwide [1]. The bacterium is found in the gastrointes-
tinal tract of healthy animals, especially chickens, destined for
ine, University of Cambridge,
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human consumption. The helical shape of C. jejuni is believed to be
important for the bacteria to colonise chickens and during infec-
tion, to move through the mucus layer of the gastrointestinal tract
and to ‘corkscrew’ into the cells of a human (or other animal) host.

There is limited understanding of how C. jejuni adopts a helical
morphology. One study identified a mutation in flhB that affected
flagella formation and apparently correlated with C. jejuni
becoming rod-shaped [2], but mutations at other sites in the same
flagellar gene resulted in bacteria that remained helical. A mutant
in cj1564 (transducer-like protein 3, Tlrp3) has many altered
phenotypic characteristics including loss of curvature, but the
mechanism for the change in shape is not clear [3]. Occasionally,
laboratory strains of C. jejuni lose cell curvature and become rod
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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shaped [4]. C. jejuni can also undergo a transition from helical cells
to rod shaped or coccoid forms in older cultures, and under con-
ditions of stress. It is not clear whether C. jejuni can move back and
forth between different conformational states during growth. The
only genes known to be involved in determination of the helical cell
shape of C. jejuni are pgp1 and pgp2 [5e7], and their protein
products are peptidoglycan (PG) peptidases that are important for
PG modification [5,6].

The bacterial cell wall is important for providing both rigidity
and shape to cells and is composed of layers of PG, ormurein, which
forms the murein sacculus [8]. In Gram-negative bacteria, such as
C. jejuni, the murein sacculus is very thin and lies in the periplasm
between the inner and outer membranes. PG is a web of glycan
polymers joined by peptide side chains, which are either directly
crosslinked or joined by short peptide bridges. The peptide side
chains are synthesised at the inner membrane as pentapeptides
and may be cleaved into shorter fragments by a number of pepti-
dases. Peptidases may be endopeptidases or carboxypeptidases
depending on whether they cleave an internal or C-terminal amino
acid, respectively. Peptidases are also classified by whether they
hydrolyse the bond between two D-amino acids (DD) or between a
L-amino acid and a D-amino acid (LD or DL). The number and length
of peptides attached to the glycan backbone provide unique mur-
opeptide profiles for each bacterium. The PG modification pathway
in bacteria is known to contain a wide array of carboxy- and en-
dopeptidases responsible for cleaving monomeric, dimeric and
trimeric peptides [9].

To date, only two carboxypeptidases involved in cleaving
monomeric peptides have been identified in C. jejuni, Pgp1 [5] and
Pgp2 [6]. Pgp2 is an LD-carboxypeptidase, which cleaves disaccha-
ride tetrapeptides into tripeptides [6]. Pgp1 is a DL-carboxypepti-
dase, which cleaves disaccharide tripeptides into dipeptides [5].
Pgp1 activity is metal-dependent and requires the activity of Pgp2
to provide the tripeptide substrate [6]. When either of the pgp1 or
pgp2 genes is mutated in the laboratory the muropeptide profile
radically changes and helical cell shape cannot be maintained [5,6].
Loss of pgp1 causes a decrease in dipeptides and tetrapeptides and
an increase in tripeptides [5]. Loss of pgp2 causes a decrease in
dipeptides and tripeptides and an increase in tetrapeptides [6].
Furthermore, overexpression of pgp1 in C. jejuni results in a kinked
rod morphology, and muropeptide analysis of the pgp1 over-
expressing strain demonstrates a decrease in tripeptides and an
increase in dipeptides [5]. Combined, these findings suggest that
even subtle changes to proportions of peptides in the PG can affect
C. jejuni cell shape.

Pgp2 orthologs are present in a wide range of bacteria that
display helical, rod, vibroid (curved rod) or coccoid cell shapes [6].
In contrast, Pgp1 is most highly conserved in helical and vibroid
species of the Epsilon- and Delta-proteobacteria [5]. The Pgp1
ortholog in H. pylori, Csd4, has also been characterised as a neces-
sary determinant of cell shape in this helical pathogen. A defined
csd4mutant in H. pylori generates a rod-shaped strain that exhibits
a similar muropeptide profile to Dpgp1 in C. jejuni [5,10]. The
conserved nature of Pgp1 in particular supports the hypothesis that
this protein is fundamental to cell curvature and helical cell shape.

While it is known that peptidases can be redundant [11,12],
single and double knockouts of Pgp1 and Pgp2 do not demonstrate
any change to levels of peptide crosslinking [5,6], suggesting that
there remain unidentified PG peptidases in C. jejuni. Thus, further
identification and characterisation of the enzymes involved in PG
synthesis and modification systems and how these enzymes are
localised and regulated is required before we can fully understand
how helical shape is generated in C. jejuni.

We recently performed a visual screen of 1933 transposon (Tn)
mutants of C. jejuni for changes in cell morphology [13]. Whole
genome sequence (WGS) data of the Tn mutants with altered cell
shape, directed mutants, wild type (WT) stocks and isolated helical
and rod-shaped ‘WT’ C. jejuni, identified a number of different ge-
netic mutations in pgp1 and pgp2, which result in a change in he-
lical to rod bacterial cell shape [13]. In addition, we identified an
isolate with a loss of curvature. In this study, we report the genome
change leading to the loss of curvature and initial characterisation
of the gene.

2. Materials and methods

2.1. Bacterial strains, media and growth conditions

C. jejuni strains were routinely cultured on Mueller Hinton (MH)
agar (Oxoid) supplemented with 5% defibrinated horse blood
(Thermo Scientific) and 5 mg/ml trimethoprim (Tp). Defined mu-
tants and complemented strains were selected on 10 mg/ml chlor-
amphenicol (Cm) or 50 mg/ml kanamycin (Km), as appropriate.
C. jejuni cultures were grown in standard microaerophilic condi-
tions (5% CO2, 5% H2, 85% N2, 5% O2) at 42 �C, unless otherwise
indicated. Electrocompetent Escherichia coli and C. jejuni used in
cloning were prepared and transformed as previously described
[14]. Bacterial strains and plasmids used in this study are detailed in
Table 1.

2.2. DNA sequencing

Sanger sequencing was performed by Source BioScience Life-
Sciences. WGS was performed at the Wellcome Trust Sanger
Institute. Isolates were sequenced as multiplex libraries with 100 or
150 base paired-end reads using next-generation Illumina HiSeq®

or MiSeq® sequencing technology, respectively. De novo draft as-
semblies were created using Velvet v1.2.08 or v1.2.10 [21] and
sequencing reads were mapped to the reference genome using
SMALT v.0.6.4 and v.0.7.4 [22]. SNPs and INDELs were called using
SAMtools mpileup [23].

2.3. Recombinant DNA techniques

Standard methods were used for molecular cloning [24]. Chro-
mosomal and plasmid DNA purification, DNA modification and li-
gations were performed using commercial kits according to the
manufacturers' instructions (QIAGEN, Thermo Scientific, New En-
gland Biolabs). DNA concentrationwas measured using a Nanodrop
ND-1000 spectrophotometer (Thermo Scientific). PCR primers
were purchased from Sigma (Sigma-Genosys). Thermal cycling was
performed in a Gene Amp® PCR System 9700 (PE Applied Bio-
systems) or T100™ Thermal Cycler (Bio-Rad). Thermal cycling
conditions were 96 �C for 2 min, then 30 cycles at 96 �C for 1 min,
55e60 �C for 1min and 72 �C for 30 s/kb, and finally an extension at
72 �C for 5 min.

2.4. Generation of C. jejuni defined gene deletion mutants and
complemented strains

Targeted gene deletions of CJJ81176_1105 and CJM1_1064 were
performed by exchanging the gene with a chloramphenicol acetyl-
transferase (cat) cassette from pRY111 [19]. The cat cassette was
amplified with primers containing PstI (dare010) or SacI (dare011)
restriction endonuclease (RE) target sites. Flanking regions of
CJJ81176_1105 and CJM1_10643were amplified using upstream and
downstream primers (dare_1001 to 4) containing RE sites matched
to the cat cassette primers. PCR-amplified fragments were ligated
to pUC19 prior to transformation into E. coli. Purified plasmid DNA
was used to naturally transform C. jejuni. The correct genomic



Table 1
Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant genotype or description Source and/or
reference

C. jejuni M1 Chicken and human clinical isolate Diane Newell, [15]
M1 Helical Helical M1 wild type (M1 isolate, bacteria confirmed to be helical) This study
M1 Rod Rod M1 wild type (INDEL in pgp1, 8Ae7A, leading to a Stop at amino acid 403) This study
C. jejuni 81-176 Human clinical isolate, hyperinvasive [16]
81176_KR 81-176 wild type with loss of curvature This study
81-176 Helical Helical 81e176 wild type (81e176 isolate, bacteria confirmed to be helical) This study
81-176 Rod Rod 81e176 wild type (INDEL in pgp1, 8Ae7A, leading to a Stop at amino acid 403) This study
CJJ81176_1105 Helical 81e176 background, CJJ81176_1105, CmR (loss of curvature) This study
CJJ81176_1105comp CJJ81176_1105 background, CmR KmR (complemented mutant - Helical) This study
CJM1_1064 Helical M1 background, CJM1_1064, CmR (loss of curvature) This study
CJM1_1064comp CJM1_1064 background, pDARE14, CmR KmR (complemented mutant - Helical) This study
E. coli DH5a Subcloning Efficiency™ DH5a™ Competent Cells. F� F80lacZDM15 D(lacZYA-argF) U169 recA1 endA1 hsdR17(rk�, mk

þ) phoA
supE44 thi-1 gyrA96 relA1 l-

Thermo Scientific

Plasmids
pUC19 E. coli cloning vector, C. jejuni suicide vector, ApR New England Biolabs,

[17]
pCE107/70 C. jejuni shuttle vector, KmR [18]
pRY111 Source of Campylobacter cat cassette, CmR [19]
pSV009 C. jejuni genetic complementation vector, ApR, KmR [20]
pDARE12 pUC19 derivative encoding CJM1_1064, ApR, CmR This study
pDARE14 pCE107/70 derivative encoding CJM1_1064, KmR This study
pSV009-pgp3c pSV009 derivative encoding CJ81176_1105, ApR, KmR This study

Abbreviationsfor antibiotics: Cm, Chloramphenicol; Km, Kanamycin; Ap, Ampicillin.
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rearrangement was confirmed by PCR and sequencing using the
primers dare_ck1 and ck2, respectively. Primers used in this study
are listed in Table 2.

Complementation of CJJ81176_1105 and CJM1_1064 in the tar-
geted deletion strains was performed by amplifying CJM1_1064
from DNA isolated from WT helical isolates of strain M1 using
primers darec_F and darec_R. The PCR product was ligated into the
Campylobacter shuttle vector pCE107/70 (KmR) [18] and trans-
formed into electrocompetent mutants. A novel genetic comple-
mentation system that we have developed [20] was used to
complement CJJ81176_1105 in the strain 81-176, since the trans-
formation of C. jejuni 81e176 with pCE107/70 was unsuccessful
after repeated attempts. DNA isolated from 81 to 176 WT strain
served as the template for the amplification of CJJ81176_1105 coding
sequence using primers darec_F and darec_R. The PCR product was
cloned into pSV009 (KmR) using the BamHI and PstI restriction
sites. The resulting plasmid, pSV009-pgp3c (KmR), was confirmed
by PCR and sequencing. Following which, the CJJ81176_1105
complementation region was amplified by PCR from pSV009-
CJJ81176_1105c using the primers pSV009_GCampl_FW1/RV1 and
Table 2
Primer sequences used in this study.

Primer Target

dare008 cat cassette
dare009 cat cassette
dare010 cat cassette
dare011 cat cassette
dare_1001 CJJ81176_1105 upstream
dare_1002 CJJ81176_1105 upstream
dare_1003 CJJ81176_1105 downstream
dare_1004 CJJ81176_1105 downstream
darec_F CJJ81176_1105
darec_R CJJ81176_1105
dare_ck1 CJJ81176_1105
dare_ck2 CJJ81176_1105
pSV009_GCamplif_FW1 Genetic complementation region
pSV009_GCamplif_RV1 Genetic complementation region
pSV009_seq_FW1 Sequencing genetic complementatio
pSV009_seq_RV1 Sequencing genetic complementatio

Upper-case indicates homology to target sequence. Restriction enzyme sites are underli
subsequently introduced into C. jejuni 81e176 by electroporation.
Primers used in this study are listed in Table 2.

2.5. Muropeptide analysis

PG purification and digestion protocols were adapted from
those described in Glauner [25], Li et al. [26] and Frirdich et al. [5].
HPLC of purified and muramidase-digested C. jejuni PG was per-
formed in the same manner and using the same instrumentation as
described in Christie et al. [27].

2.6. Motility assay

The motility of C. jejuniwas quantified using motility agar made
with 0.4%, 0.6%, 0.8% and 1.0% (w/v) select agar (Sigma) in MH
broth. Motility agar was used to fill 6-well plates (7 ml of agar per
well) 20 min prior to use. C. jejuni isolates were transferred via
pipette tip from 12 h lawn growth (on MH agar plates) into each
well of the motility agar. For each strain to be tested, three replicate
6-well plates were incubated for each motility agar concentration.
Sequence (50 e 30)

gaattcggtaccCTCGGCGGTGTTCCTTTCCAAGTT
gcatgcggatccCGCCCTTTAGTTCCTAAAGGGTT
gcatgcctgcagCGCCCTTTAGTTCCTAAAGGGTT
agtactgagctcCTCGGCGGTGTTCCTTTCCAAGTT
cccggggaattcAAAAGTGCAGAACGAAAGCTG
tctagagagctcAAAATGTCTTGAACCGTTAATATCTG
gtcgacggatccCCGCATTTGCACTATGAGGT
gttaacgcatgcCCTCAAGTTGCCCTTCAAAA
gtcgacggatccGTGGTAAAAAATAAATTCAC
agtactctgcagTTACTGTTGTTTCTGAGCTAG
GGCTATGCTTGATAAATTTCA
AGTTCCATTAAAGCGACCGCC
TAATAGAAATTTCCCCAAGTCCCA
CTATTGCCATAGTAGCTCTTAGTGG

n insert GGAGACATTCCTTCCGTATCT
n insert AGCGAGACAAAAACACTGAGC

ned and preceded by an arbitrary 6-bp sequence.
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Motility was measured as the diameter of the halo of motility after
12 h incubation.
2.7. Culture of Caco-2 cells

Caco-2 cell lines were purchased from the ATCC (CC-L244, HTB-
37). Cells were grown using DMEM (Gibco) supplemented with 10%
FBS and 1% non-essential amino acids. Cells were routinely grown
in 75 cm2 tissue culture flasks and incubated at 37 �Cwith 5% CO2 in
a humidified atmosphere.
2.8. Caco-2 cell infection assays

Caco-2 cells were seeded at 5 � 104 cells on 24 well plates
(Greiner) until confluency was observed. Caco-2 cells were infected
with different C. jejuni strains at a multiplicity of infection (MOI) of
100. To assay adherence/invasion, infected cells were incubated at
37 �C with 5% CO2 in a humidified atmosphere for 2 h. At this point,
non-adherent bacteria were removed, subjected to 10-fold serial
dilutions and plated on BHI blood agar plates with 5 mg/ml
trimethoprim. Wells were washed three times with PBS, and cells
were lysed with 0.1% Triton-X-100 in PBS for 15 min. Lysed cells
were subjected to 10-fold serial dilutions and plated on BHI blood
agar plates with 5 mg/ml trimethoprim. To determine the number of
internalised bacteria, infected Caco-2 cells were incubated at 37 �C
with 5% CO2 in a humidified atmosphere. After 2 h, the media
overlaying the infected cells was changed to complete DMEM
containing 250 mg/ml gentamycin sulphate and infected cells were
incubated at 37 �C with 5% CO2 in a humidified atmosphere for a
further 2 h. Cells were then washed three times with PBS and lysed
with 0.1% Triton X-100 in PBS for 10 min. Serial dilutions of the cell
lysates were carried out and plated on BHI blood agar plates with
5 mg/ml trimethoprim. Dilutions of mutant C. jejuni strains were
plated on BHI blood agar plates containing 10 mg/ml chloram-
phenicol, whereas genetically complemented strains were recov-
ered on MH blood agar plates supplemented with 10 mg/ml
chloramphenicol and 50 mg/ml kanamycin. All plates were incu-
bated for 48 h under microaerophilic conditions at 42 �C before
colony counting took place. For both total association and invasion
experiments, the percentage of C. jejuni interacting with Caco-
2 cells was calculated as a percentage of the non-adherent fraction,
to account for various strain survival within DMEM (n ¼ 3).
Fig. 1. Scanning electron micrographs of helical and loss of curvature morphologies of C. je
81e176 laboratory frozen stock. Scale bars represent 2.5 mm.
2.9. Chicken colonisation experiments

All work was conducted in accordance with UK legislation
governing experimental animals under project licence 40/3652 and
was approved by the University of Liverpool ethical review process
prior to the award of the licence.

One-day-old Ross 308 broiler chicks were obtained from a
commercial hatchery. Chicks were housed in the University of
Liverpool, High Biosecurity Poultry unit. Chicks were maintained in
floor pens at UK legislation recommended stocking levels allowing
a floor space of 2,000 cm2 per bird and were given ad libitum access
to water and a pelleted laboratory grade vegetable protein-based
diet (SDS, Witham, Essex, UK). Chicks were housed in separate
groups at a temperature of 30 �C, which was reduced to 20 �C at 3
weeks of age. Prior to experimental infection, all birds were
confirmed as Campylobacter-free by taking cloacal swabs, which
were streaked onto selective blood-free agar (mCCDA) supple-
mented with Campylobacter Enrichment Supplement (SV59; Mast
group, Bootle, Merseyside, UK) and grown for 48 h in microaerobic
conditions at 41.5 �C. All microbiological media were purchased
from Lab M (Heywood, Lancashire, UK).

At 21 days of age birds were infected with 2 � 109 CFU of either
C. jejuniM1 or the CJM1_1064mutant. At 5 days post infection (p.i.),
chickens were killed by cervical dislocation. At necroscopy the ceca
were removed aseptically and the cecal contents plated onto
mCCDA Campylobacter selective agar plates for enumeration as
previously described [28].
3. Results and discussion

3.1. Identification of a C. jejuni 81e176 isolate with a loss of
curvature

When isolating helical and rod bacteria fromWT C. jejuni strains
based on colony morphology as described in Esson et al. [13], we
noticed a colony, which was not quite as grey and flat as the typical
rod colony morphology but still distinct from the helical colony
morphology, and was composed of bacteria with a loss of curvature
(‘kinked rod’ cell morphology, 81176_KR). This cell morphology
contrasted with the helical morphology of WT 81e176 and was
confirmed by scanning electronmicroscopy (SEM) (Fig. 1). Based on
a qualitative assessment of our SEM analyses, there appears to be a
difference in the degree of curvature between shorter (presumably
younger cells) and longer (presumably older) cells of the ‘kinked
juni 81e176. (a) 81e176 helical isolate and (b) isolate 81176_KR from the WT C. jejuni
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rod’ bacteria.
3.2. Whole genome sequence analysis of the 81e176 isolate with a
loss of curvature

The 81e176 isolate with a loss of curvature (81176_KR) was
analysed by WGS and was a change in the number of bases in a
documented phase variable region (PVR), and two unique point
mutations.

Phase variation (PV) enables genetic and phenotypic variation in
a number of bacteria, including C. jejuni [29e31]. Regions of the
bacterial genome that are prone to these reversible mutations are
called PVR. In C. jejuni the PVRs are typically homopolymeric tracts
(HTs) that are highly susceptible to slipped-strand mispairings,
which alter the length of the tracts and generate frameshift mu-
tations during DNA replication and repair [32,33]. In this way, PVRs
are able to randomly switch genes ‘on’ and ‘off’ and stochastically
regulate gene expression [32]. The unique PV pattern was in PVR3
and demonstrated a mostly ‘on’ length, which contrasted with the
mostly ‘off’ lengths of other 81e176 isolates. PVR3 in strain 81-176
is 118 bp upstream of CJJ81176_0590, encoding a putative unchar-
acterised protein. This PVR correlates to PVR2 in strain M1, which
Fig. 2. Gene locus and targeted deletion of CJJ81176_1105 (81e176) and CJM1_1064 (M1). (a)
backgrounds by exchanging the gene with a cat cassette (CmR). The cat cassette along with
(pDARE10, M1 derivative and pDARE12, 81e176 derivative, CmR). A complementing plasm
generated by cloning M1 CJM1_1064 into pCE107/70, a kanamycin-resistant shuttle vector.
pDARE14 (M1) or pSV009- CJJ81176_1105c (81e176) (supplying CJJ81176_1105 in trans), stra
demonstrated ‘on’ lengths in helical M1 Tn mutants and WT iso-
lates (data not shown). For this reason, as well as the absence of a
CJJ81176_0590 ortholog in strain NCTC11168 [29], we hypothesised
that the altered polyG tract upstream of CJJ81176_0590 was not
responsible for the loss of curvature of isolate 81176_KR.

One of the unique point mutations in 81176_KR was a non-
synonymous SNP (G > A) in rpiB at base location 860819
(CP000538.1). This SNP was predicted to cause a single glutamic
acid to lysine amino acid change. The protein product of rpiB, ribose
5-phosphate isomerase B, is involved in carbohydrate metabolism
[34] and our searches did not demonstrate any link between this
enzyme and bacterial cell shape. Therefore, we hypothesised that a
single amino acid change to RpiB was not responsible for the
observed loss of curvature in 81176_KR.

The other point mutation detected in 81176_KR was an INDEL in
CJJ81176_1105, a predicted LytM peptidase-encoding gene. This
single guanine deletion (2G > G) at base location 1022254
(CP000538.1) was predicted to cause a truncation at residue 65 of
the 300 amino acid protein product. BLAST analysis of
CJJ81176_1105 revealed that this gene is highly conserved (>50%
coverage and >70% identity) in helical Campylobacter spp. (data not
shown). We investigated the presence and allelic variances of
A targeted deletion of CJJ81176_1105 was generated in the 81e176 and M1 (CJM1_1064)
the flanking regions indicated (CJM1_1064), was cloned into the suicide vector pUC19
id (pDARE14, M1 derivative, and pSV009-CJJ81176_1105, 81e176 derivative, KmR) was
(b) CJM1_1064 and CJJ81176_1105 displayed loss of curvature, complementation with
ins CJM1_1064comp and CJJ81176_1105comp, rescued the morphology back to helical.



Fig. 3. Average motility of helical and rod WT C. jejuni M1 isolates, CJJ81176_1105 and
CJM1_1064 mutants and complemented strains in 0.4%, 0.6%, 0.8% and 1.0% (w/v) select
agar in two different C. jejuni backgrounds (a) M1, and (b) 81e176. Statistical differ-
ences at each agar concentration were determined using an unpaired t-test correcting
for multiple comparisons using a �Síd�ak-Bonferroni method (* ¼ p < 0.005). Data shown
is mean and SD (n ¼ 4).
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CJJ81176_1105 in 859 genomes of C. jejuni and C. coli. The genomes
were from a wide range of isolates: 192 from clinical, agricultural
and wild bird sources [35], 319 from multiple stages of poultry
processing, including farms, abattoirs and retail chicken meat [36]
and 348 from clinical cases [37]. Analysis of these genomes
revealed that CJJ81176_1105 is conserved (data not shown), sug-
gesting this gene is core to both Campylobacter species.
3.3. Bioinformatic analysis of CJJ81176_1105

A detailed comparison of the translated sequence of
CJJ81176_1105 from four laboratory C. jejuni strains (M1, 81116,
81e176 and NCTC11168) demonstrated identical amino acid se-
quences at all except four residues (Fig. S1). The protein product of
CJJ81176_1105 contains prefoldin, coiled-coil and peptidase do-
mains. Prefoldin is a coiled-coil-containing molecular chaperone
that assists in the proper folding of polypeptide products [38]. In
eukaryotes, prefoldin is responsible for the folding and localisation
of the cytoskeleton components actin and tubulin [39]. The pepti-
dase domain is conserved within the Peptidase M23 (LytM) family,
which is composed of zinc-dependent endopeptidases often
involved in cell division, elongation and shape determination [40].

Further analysis revealed CJJ81176_1105 to be orthologous to
csd1 (cell shape determinant 1) in H. pylori [41]. In the helical
pathogen H. pylori, a targeted deletion of csd1 results in a curved
rod morphology, which is fully complemented when csd1 is sup-
plied elsewhere on the chromosome [41]. Sycuro et al. [41]
compared the Csd1 protein product from H. pylori to the crystal-
lised LytM endopeptidase from Staphylococcus aureus, which
demonstrated conserved LytM active site residues in Csd1.
Although the csd1 ortholog in C. jejuni was identified by Sycuro
et al., the gene was unable to complement the Dcsd1 phenotype in
H. pylori [41]. Another group also investigated the role of the csd1
ortholog in C. jejunimorphology but results from these preliminary
studies were reported as inconclusive (unpublished work
mentioned in Frirdich et al. [5]).

Due to the sequence similarity between csd1 and CJJ81176_1105
and the similar ‘intermediate’ morphologies of the H. pylori Dcsd1
strain and 81176_KR, we hypothesised that the frameshift mutation
in CJJ81176_1105 was responsible for loss of curvature morphology
of 81176_KR. Moreover, due to its predicted endopeptidase function
[41,42], we hypothesised that the CJJ81176_1105 protein product
might be involved in the same PGmodification cascade as Pgp1 and
Pgp2.

3.4. Defined gene deletion mutants of CJJ81176_1105 alter C. jejuni
motility and interaction with Caco-2 cells, but not chicken
colonisation

To test whether the mutation in CJJ81176_1105 was responsible
for the loss of curvature of 81176_KR, we constructed targeted
deletions, and complemented strains, on different C. jejuni WT
backgrounds (CJJ81176_1105 for strain 81-176 and CJM1_1064 for
strain M1). The defined mutants displayed loss of curvature mor-
phologies, which were restored to helical morphologies by
complementation (Fig. 2). From these data, we conclude that
CJJ81176_1105, and its homolog in other strains, is necessary for a
fully helical morphology in C. jejuni. We next compared physio-
logical characteristics of the CJJ81176_1105 and CJM1_1064mutants
and complemented strains with helical-shaped and rod-shaped
WT isolates.

We tested themotility ofWT helical and rod isolates, against the
CJJ81176_1105 and CJM1_1064 mutants and complemented strains,
across a range of motility agar concentrations (Fig. 3). The results
showed that migration through increasing agar concentrations
(decreasing porosity) was significantly reduced in the WT-rod
(INDEL in pgp1) and CJJ81176_1105 and CJM1_1064 mutants
compared to the helical isolates (WT-helical and complemented
strains). Our work demonstrates that at 0.4 and 0.6% (w/v) agar, the
motility of the CJJ81176_1105 and CJM1_1064 mutants is slightly
greater (although not statistically significant) from the WT-rod
isolates. At 0.8% (w/v) agar the motility of the WT-rod (INDEL in
pgp1) and CJJ81176_1105 and CJM1_1064mutants were comparable,
and significantly reduced from the helical isolates. All the isolates
were effectively non-motile through 1.0% (w/v) agar, i.e. all isolates
measured 1 mm in diameter, roughly equivalent to the original
pipette stab.

Next, the ability of the CJJ81176_1105 and CJM1_1064mutants to
adhere to, and invade, Caco-2 cells was measured (Fig. 4). The WT-
rod and CJJ81176_1105 and CJM1_1064 mutants displayed statisti-
cally significant reductions in adhesion and invasion compared to
the WT-helical and complemented strains. For both C. jejuni back-
grounds, M1 and 81e176, the adherence and invasion of themutant
was slightly greater (although not statistically significant) from the
WT-rod isolate (INDEL in pgp1).

Chicken colonisation experiments were performed using
C. jejuni strain M1 WT-helical isolate, a natural poultry isolate
which is an efficient coloniser of chickens [15], and the CJM1_1064
mutant. Chickens were inoculated with 2� 109 CFU of either strain.
At 5 days post infection (p.i.), chickens were killed and the cecal
contents plated onto mCCDA Campylobacter selective agar plates as
previously described [28]. The viable counts per gram of cecal
contents revealed that there was no difference in the colonisation
of the WT or the CJM1_1064 mutant (Fig. 5).



Fig. 4. Adhesion (a) to, and invasion (b) of Caco-2 cells by C. jejuniM1 and 81e176 rod and helical isolates, CJJ81176_1105 and CJM1_1064mutants and complemented strains. Data is
represented as percentage of wild-type (n � 3) and plotted as means and SEM. Statistical significance was calculated using a Mann-Whitney test where * P < 0.05 and **P < 0.005.
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Fig. 5. Chicken colonisation of C. jejuni M1 WT-helical isolate and CJM1_1064 mutant.
Chickens were orally infected with 0.3 ml of a MH broth culture containing
2 � 109 CFU/ml of the C. jejuni isolates. Viable counts from serial dilutions of the cecal
contents of chickens show that the WT and mutant colonised to similar levels.
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3.5. Muropeptide analysis of helical WT and CJJ81176_1105 (and
CJM1_1064) mutant C. jejuni

Muropeptide analysis via high-performance liquid chromatog-
raphy (HPLC) andmass spectrometry (MS)was used to compare the
Fig. 6. Muropeptide profiles of C. jejuni M1 and 81e176 helical WT strains and CJJ81176_110
from C. jejuni strain (a) WT M1, (b) M1 CJM1_1064, (c) WT 81e176, and (d) 81e176 CJJ81176
mutant strains. Muropeptide peaks have been putatively numbered and identified accordin
PG sacculi of WT, CJJ81176_1105 and CJM1_1064 mutant and com-
plemented C. jejuni strains. Muropeptide profiles of mutanolysin-
digested PG sacculi isolated from CJJ81176_1105 and CJM1_1064
deletion strains appeared virtually identical to muropeptide pro-
files derived from the parental strains (Fig. 6). Hence in contrast to
Pgp1 and Pgp2, CJJ81176_1105 (and CJM1_1064) activity in model-
ling the PG sacculus appears to be below the threshold for detection
via the muropeptide analysis technique, and definitive identifica-
tion of the hydrolytic bond specificity against PG will require
further attention.
4. Conclusion

There is no effective vaccine against C. jejuni and preventative
measures aimed at reducing environmental contamination have so
far proved ineffective. There is a need for alternative strategies to
reduce campylobacteriosis. Most of the Campylobacteraceae are
helical and it appears that the helical shape of C. jejuni is important
for its ability to colonise its hosts and cause disease. To address this
hypothesis, it is essential to know how helical shape is determined
in C. jejuni, both genetically and biochemically, but we currently
have limited understanding of this. Loss of helical cell shape
through interference may hold therapeutic potential by reducing
this pathogen's virulence or ability to colonise animals.

This work identifies CJJ81176_1105 as a novel cell shape
5 and CJM1_1064 mutants. HPLC chromatograms of mutanolysin digested PG purified
_1105. The muropeptide profiles are very similar between the respective WT and pgp3
g to published muropeptide profiles of strain 81-176 [5].
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determinant in C. jejuni. CJJ81176_1105 was identified by the
isolation and WGS analysis of a bacterium with loss of curvature
within our laboratory WT C. jejuni 81-176 stock. This isolate was
found to contain a nonsense mutation in CJJ81176_1105. Targeted
deletions of the gene in both the C. jejuni 81e176 and M1 back-
grounds reproduced the loss of curvature morphology of the orig-
inal isolate. This intermediate cell shape was rescued by supplying
the gene in trans, which confirmed that it is necessary for a fully-
helical C. jejuni morphology. The homology of CJJ81176_1105 to
the endopeptidase Csd1 in H. pylori suggests that it may also be
involved in this muropeptide cascade.

The intermediate nature of the loss of curvature morphology
implies that there exists a hierarchy to helical cell shape mainte-
nance within C. jejuni. Based on the evidence demonstrating the
importance of endo- and carboxypeptidases in helical cell shape
[5,6,10,41], this hierarchy is likely a product of PG peptide lengths
and the degree of crosslinking that promotes the cell wall to twist.

As a possible explanation for the differences between the heli-
cal, loss of curvature and rod forms of C. jejuni, we hypothesise that
shorter peptides within the cell wall are localised to the inside of
the helix. As such, while the loss of di- and tripeptides in pgp1 and
pgp2 mutants prevents the maintenance of any curvature [5,6] the
predicted reduction of tetra- and pentapeptide substrates in the
CJJ81176_1105mutant may merely ration the distribution of di- and
tripeptide products throughout the PG, lessening the tension of the
helix. To address this hypothesis, future work will require an
investigation into the distribution of PG peptides throughout the
cell wall in situ.
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Glossary

BHI brain heart infusion
Cat chloramphenicol acetyl transferase
CFU colony forming units
Cm chloramphenicol
DMEM Dulbecco's Modified Eagle's Medium
FBS fetal bovine serum
HPLC high performance liquid chromatography
INDELs insertions and deletions
Km kanamycin
mCCDA modified charcoal-cefoperazone deoxycholate agar
MH Mueller Hinton
MOI multiplicity of infection
MS mass spectrometry
PBS phosphate buffered saline
PG peptidoglycan
p.i. post infection
PV phase variable
PVR phase variable region
RE restriction enzyme
SEM scanning electron microscopy
SNPs single nucleotide polymorphisms
Tn transposon
Tp trimethoprim
WGS whole genome sequence
WT wild type
w/v weight per volume
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