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Key Messages

1. To increase power, Mendelian randomization studies frequently combine study results (two-

stage meta-analysis) or study datasets (one-stage meta-analysis). When conducting a two-stage

meta-analysis, different variance estimators may not only impact coverage or type 1 error rates

but also point estimates.

2. In two-stage meta-analyses of weak instrument or rare diseases, resampling based variance

estimators are expected to result in biased point estimates with coverage below 0.95. Two-stage

meta-analyses using the delta-method are expected to perform better.

3. In the presence of between study heterogeneity, the delta-method applied at stage one of the

meta-analysis will likely result in the least biased estimate with relatively good coverage.

4. In one-stage meta-analysis scenarios, point estimates are not influenced by the choice of

variance estimator, and coverage is generally similar between the variance estimators. One-

stage meta-analyses are however, still affected by the size and quality of the included studies.
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Abstract

Background Mendelian randomization studies perform instrumental variable (IV) analysis using

genetic IVs. Results of individual Mendelian randomization studies can be pooled through meta-

analysis. We explored how different variance estimators influence the meta-analysed IV

estimate.

Method Two versions of the delta method (IV before or after pooling), four bootstrap estimators,

a jack-knife estimator and a heteroscedasticity-consistent (HC) variance estimator were

compared using simulation. Two types of meta-analyses were compared, a two-stage meta-

analysis, pooling results and a one-stage meta-analysis, pooling datasets.

Results Using a two-stage meta-analysis, coverage of the point estimate using bootstrapped

estimators deviated from nominal levels at weak instrument settings and/or outcome

probabilities ≤ 0.10. The jack-knife estimator was the least biased resampling method, the HC 

estimator often failed at outcome probabilities ≤ 0.50, and overall the delta method estimators 

were the least biased. In the presence of between study heterogeneity the delta method before

meta-analysis performed best. Using a one-stage meta-analysis all methods performed equally

well and better than two-stage meta-analysis of greater or equal size.

Conclusion In the presence of between study heterogeneity two-stage meta-analyses should

preferentially use the delta method before meta-analysis. Weak instrument bias can be reduced

by performing a one-stage meta-analysis.

Keywords Epidemiology methods; Mendelian Randomization Analysis; Statistics.
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Introduction

Despite considerable effort, observational (i.e., nonrandomized) studies are sensitive to

confounding bias and reverse causation(1-4). To overcome these problems, Mendelian

randomization (MR) studies have been advocated, using one or multiple Single-Nucleotide

Polymorphisms (SNPs) as an instrument in instrumental variable (IV) analyses(5;6).

In this type of Mendelian randomization study the effects of an IV on an intermediate phenotype

and on an outcome are estimated, and combined to derive the causal effect of the intermediate

on the outcome. This causal effect is unbiased if (amongst others) the following three

assumptions hold: [1] the IV is associated with phenotype, [2] conditional on the phenotype and

the (possibly unmeasured) confounders, the IV is independent of the outcome and [3] the IV is

independent of confounders(7).

While the performance of the different IV point estimators has previously been explored(8;9), the

performance of the different variance estimators remains unclear. This is especially important

because, to increase precision, Mendelian randomization studies often meta-analyse results

from multiple studies. Because of this, different variance estimators not only impact type-1 error

rates and confidence intervals but may also lead to different point estimates.

Typically three types of meta-analysis can be defined: an aggregated meta-analysis combining

study specific results; a two-stage individual patient data meta-analysis, in which an analysis

script is designed and shared prospectively, before pooling study specific results; and third, a

one-stage individual patient data meta-analysis sharing the actual datasets. Given the usually

straightforward analyses in genetic epidemiology the difference between aggregated meta-

analysis and two-stage individual patient data meta-analysis are often small, therefore here we

only differentiate between two-stage meta-analyses and one-stage meta-analyses. A recent
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review by Boef et.al.(10) showed that 47 out of 80 meta-analysis of Mendelian randomization

performed a two-staged analysis; among those, 10 performed IV analysis within each study

before combining, whereas 9 combined gene-phenotype and gene-outcome associations

separately before performing IV analysis. We note that gene scores are also used as

instruments(11), using aggregated results this can be implemented, for example, by meta-

analysing aggregated results of the gene-biomarker and the gene-outcome relationships into

two estimates(12) and applying the ratio estimator (see methods). Alternatively, when individual

patient data is available, gene scores can be implemented using the “two-stage least squared

like” estimator (TSLS, see methods).

In the present study we used simulations to compare multiple variance estimators. In addition,

an empirical example on the effect of low-density lipoprotein cholesterol (LDL-C) on

cardiovascular disease (CVD) is included.

Methods

Simulation set-up

Initially we focus on a two-stage meta-analysis where each study has information on a single

SNP (ܼ), a continuous phenotype (ܺ), and a dichotomous endpoint (ܻ). The goal is to estimate

the causal [marginal] odds ratio (OR) of one unit increase in phenotype on the outcome.

Data-generating process

J studies were simulated, for the ℎݐ݆ study a disease outcome, a phenotype and an IV were

generated for ݊ independent subjects, where ݆= 1, … .ܬ, To increase readability the following

notation is presented for one study, with the same process applied to all studies. The IV

variable, ,ܼ counts the number of minor alleles for the ℎݐ݅ individual. Following a biallelic model,
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genotypes were generated from two independent Bernoulli distributions resulting in the usual

Hardy-Weinberg proportions:

ܾݎܲ (ܼ = 0,ܼ = 1,ܼ = 2) = ,ଶݍ) .(ଶ,ݍ2

Where  represents the probability of the rare allele and =ݍ 1 −  the probability of the major

allele. Phenotype ܺ was generated dependent on ܼ and an unobserved confounder :ܥ

=ݔ ߙ +ݖଵߙ�+ ଶߙ ܿ+ߝ�ݓ��� ܰ�~ߝ�ℎݐ݅ (0,1), ܿ~�ܰ (0,1).

For the ℎݐ݅ individual the probability of an event was generated based on ܺ and :ܥ

݈݃ ܾݎܲ)ݐ݅ =ݕ] 1| ܿ,ݔ]) = ݈݃ ൬
ܾݎܲ =ݕ] 1| ܿ,ݔ]

1 − ܾݎܲ =ݕ] 1| ܿ,ݔ]
൰= ߜ + ߙ)ଵߜ +ݖଵߙ�+ ଶߙ ܿ+ߝ�) + ଶߜ ܿ

= ߜ + +ݔଵߜ ଶߜ ܿ,

the event was sampled from a Bernoulli distribution:

ܤ~ݕ ݎ݁݊ ݈݈ݑ ܾݎܲ݅) =ݕ] 1| ܿ,ݔ]).

Data analyses

Point estimators

Given that the confounder ܥ is unobserved it is impossible to estimate the causal effect of the

phenotype ܺ on the outcome using regular methods such as logistic regression. Instead, SNP ܼ

can be used to estimate the causal effect of the phenotype on the outcome. The ratio estimator
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is a relatively straightforward estimator of the logarithm of the causal odds ratio (logOR), which is

the estimand here.

=ߠ −ොଵߛ) ොଵߙ/(መଷߜ [1]

Here ොଵߛ represents the effect of the SNP on the outcome measured as the log(OR), መଷߜ the

log(OR) effect of the SNP on the outcome conditional on the phenotype and unmeasured

confounders, and ොଵߙ the mean difference effect of the SNP on the phenotype (estimated by

fitting a linear regression of the type =ݔ ොߙ + +ݖොଵߙ ߝ [equation 2]). If every confounding

variable (C) was measured ොଵߛ and ,መଷߜ could be estimated by fitting the following (logistic

regression) models ݈݃ ܾݎܲ)ݐ݅ =ݕ] ([ݖ|1 = ොߛ + ݃and�݈ݖොଵߛ ܾݎܲ)ݐ݅ =ݕ] ,ݔ,ݖ|1 ܿ]) = መߜ +

+ݔመଵߜ መଶߜ ܿ+ .ݖመଷߜ However, because it is never known if all confounders are measured (and

correctly specified) this strategy is not feasible. Instead, following the exclusion restriction

(assumption 3 above), we assume that መଷߜ = 0, and equation 1 reduces to the ratio of ොଵߛ and .ොଷߙ

This ratio estimator is typically used when there is a single instrument or when a multi gene

score is based on a meta-analysis of aggregated results(12).

Instead of the ratio estimator, the “two-stage least squares like” point estimator (TSLS), also

referred to as the two-stage predictor substitution estimators(13), is used to estimate the IV

effect using a (weighted) gene score (8).

݈݃ ܾݎܲ)ݐ݅ =ݕ] ([ොݔ|1 = መߚ ොݔߠ�+ [3]

Where ොݔ represents the fitted value of a linear model regressing onݔ ݖ (i.e., the fitted values

from a linear regression defined in equation 2).
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Variance estimators

Following the usual research practice we will focus on a two-stage meta-analysis where in the

second stage study specific results are pooled by the inverse of the variance(14). Because

results are pooled by the inverse of the variance we initially focus on different variance

estimators, excluding methods that directly estimate a confidence interval.

The delta method(15;16) (DM) has the closed form solution:

ොெߪ
ଶ =

ఙෝംభ
మ

(ఈෝభ)మ
+ ොఈభߪ

ଶ (ఊෝభ)మ

(ఈෝభ)ర
− ොఊభ,ఈభߪ2

ଶ ఊෝభ

(ఈෝభ)య
[4]

Where ොఊభߪ
ଶ represents the estimated variance in ,ොଵߛ ොఈభߪ

ଶ the variance in ොଵߙ and ොఊభ,ఈభߪ
ଶ the

estimated covariance between ොଵߛ and .ොଵߙ Often the delta method is applied to meta-analysis

settings where ොఊభ,ఈభߪ
ଶ is set to zero, resulting in a small over estimation of the variance; this was

followed here. Two versions of the delta method were compared: (1) calculating the ratio

estimator and the ොெߪ
ଶ in each study followed by meta-analysis of ,[DM1]ߠ and (2) calculating

usingߠ the ratio estimator and ොெߪ
ଶ after separately meta-analysing ොଵandߛ ොଵߙ [DM2].

Alternatively, by sampling with replacement from the observed sample, creating a resampled

dataset of size ,݊ and repeating this ܤ times, a non-parametric bootstrapped distribution (17) can

be constructed. This distribution can then be used to estimate the variance in the IV point

estimate (basic bootstrap [BB]):

ො௧ߪ
ଶ =

ଵ

ିଵ
∑ ൫̅ߠ∗ − ߠ

∗൯
ଶ

ୀଵ [5]
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With ߠ
∗ the IV estimate estimated in the ℎݐܾ bootstrap sample and ∗ߠ̅ the mean IV estimate over

the ܤ bootstrap samples; here ܤ = 1,000.

All bootstrap variance estimators assume symmetry in bootstrap distribution, due to data

sparseness however, extreme values of ∗ߠ may occur, overestimation the ො௧ߪ
ଶ . Straightforward

solutions that are less sensitive to data sparseness, include a bootstrap stratified for the

outcome [outcome stratified; OS] or stratified for the SNP status [SNP stratified; SS]. A more

computer intensive solution is to perform a double bootstrap [DB](17), where for every ℎݐܾ

bootstrap sample, ܴ new bootstrap samples of size ݊ are taken using the ℎݐܾ bootstrap sample

as the source population. For every ℎݐܾ bootstrap sample the variance is estimated, with the

median of these estimates representing the DB IV variance estimate. In our simulations ܴ�= 50,

and ܤ = �ܴ ∗ 5. An jack-knife [JK](17) variance estimator can also be used:

ොߪ
ଶ =

�ି ଵ

�
∑ ൫̅ߠ − ିߠ ൯

ଶ�
ୀଵ

Here ߠ̅ represents the mean IV estimate over the ݊ jack-knife estimates and ିߠ  the IV

estimate deleting the ℎݐ݅ observation.

The previous variance estimators were all applied using the ratio estimator. The robust

sandwich [RB] heteroscedasticity-consistent [HC] variance estimator can be used for the TSLS

IV, in which the variance estimate ො௫ො௬ߪ
ଶ for (equationߠ 3) is replaced by the RB estimate. Here we

used HC1 and note that JK and RB estimators are related in the sense that, the JK

approximates the HC3 estimator, which is a refinement of HC1(18). Note, that the HC estimators

are implemented not to adjust for any heteroscedasticity, but merely to penalize the naive

variance estimator which assumes that the ොݔ in equation 3 is measured without error.
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Simulation scenarios

In all simulations =ܬ 10 studies were generated, with ݊ sampled from a uniform distribution

[400, 3600] (see Table 1 for an overview of the simulation parameters). In scenario I, the minor

allele frequency () was set to 0.50, 0.10, 0.05, 0.01, and 0.005. The probability of the outcome

was 0.50. To (initially) prevent weak instrument bias (19) the SNP effect on the phenotype was

set to ଵߙ = 0.50, and the unmeasured confounder effect to ଶߙ = 0.50. By fixing the SNP-

phenotype association and decreasing  the explained variance due to the SNP decreases, as

well as the F-statistic. For example, in scenario 1 the average F-statistic was 126, 46, 25, 6, and

5. To simulate a large amount of confounding the log(OR) of the unmeasured confounder effect

on the outcome was set to ଶߜ = 1.50, and the phenotype log(OR) set to ଵߜ = 0.00 (i.e., no causal

effect). In scenario II, was set to 0.15 and the probability of the outcome was set to 0.10, 0.05,

0.02, and 0.01. Scenarios III and IV differed from II only with respect to = {0.05, 0.01}.

All simulations were repeated 2,000 times and were performed with the statistical package R

version 3.1.2 for Unix(20). The number of replications was chosen to ensure sufficient precision

to detect small deviations from the nominal coverage rate of 0.95 (the 95% lower and upper

bounds are 0.940 and 0.960)(21). Results were pooled using the inverse variance method

following a fixed- or random-effects model where appropriate.

Performance metrics

Results were evaluated using the following metrics. Mean bias൫logORതതതതതതതത− log[ܶݑݎ �ܱ݁ ܴ]൯, with the

first term representing the mean of the ݈݃ ܱܴ ; mean standard error [SE], empirical SE [ESE];

estimated by taking the standard deviation of the distribution of ݈݃ ܱܴ . The root mean squared

error ቈܴ ܯ ܧܵ = ට൫logORതതതതതതതത− log[ܶݑݎ �ܱ݁ ܴ]൯
ଶ

+ ܧ ,ଶܧܵ coverage rate, defined as the proportion of
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times the 95% confidence interval included the true OR, and the number of models that failed to

return estimates.

Additional analyses

Obviously, the absolute performance of the methods depends on the mean sample size per

study. To explore the performance in a larger sample size setting, a “medium” sized meta-

analysis of 60,000 subjects was simulated by repeating scenario 1.

Instead of combining study results in a two-stage meta-analysis one can also combine datasets

in a one-stage meta-analysis. This was explored by repeating scenario 1, concatenating the

studies together in a single file and adjusting all analyses for study (i.e., bootstrapped by study

or adding a study covariable). Given that results do not have to be pooled in a second stage we

only report on a single DM estimator, and instead report on the bootstrap based percentile

confidence interval(22); which directly estimates the confidence interval (instead of the

variance).

In a third sensitivity analysis scenario 1 was repeated introducing between study variance of the

gene-phenotype association. This was simulated by replacing ,ߙ ,ଵߙ and byߝ� ,~ܰ(0.10ߙ 1ଶ),

,ଵ~ܰ(0.50ߙ 1ଶ), and ,~ܰ(0ߝ ߫
ଶ) with ߫

ଶ~ܰ(1.50, 0.3ଶ).

In a fourth sensitivity analysis we evaluated the performance of 1) using only the first term of the

delta method (the Toby Johnson [TJ] method), and 2) replacing the asymptotic variance

estimates, ොఊభߪ
ଶ , and ොఈభߪ

ଶ , in the delta method (using the first two terms) by bootstrapped estimates

[DM BB]. Both methods were implemented by applying the algorithms before meta-analysis,

and after meta-analysis (i.e., TJ1, TJ2, DM1 BB, and DM2 BB). Performance was evaluated in
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scenario 1. Additionally, in a fifth sensitivity analysis, we explored performance for continuous

outcomes; implemented by repeating scenario 1 using the parameters of scenario 1 as mean

differences. See Appendix Figure 1 for a flowchart of the methods evaluated.

Results

Figure 1 depicts the performance of the IV variance estimators under different minor allele

frequencies (MAF) or instrument strengths (F-statistic). Unless explicitly stated all results pertain

to the two-stage meta-analysis. At a MAF of 0.50 pooled odds ratio (OR) estimates of all

methods were unbiased, but differences between the estimators increased as MAF decreased

to 0.005 (or F-statistic went towards zero). Coverage of both the DM estimators increased

towards 1.00 as MAF decreased; the RMSE was equal for both DM estimators, and smaller than

the RMSE of other methods (Figure 1). JK and RB coverage deteriorated towards 0.80 at lower

MAFs. Coverage of the bootstrap methods decreased below 0.95 at a MAF of 0.10/F-statistic

25, recovering to 0.95 at lower MAFs using the BB, SS and DB methods. This unexpected

behaviour in coverage was due to the bias in SE (i.e., difference between mean SE and ESE,

see Figure 1, Appendix table 1) trailing behind the bias in OR. Generally the mean SE and ESE

agreed well for the DM.

In scenarios II-IV the outcome incidence varied from 0.10 to 0.01 and the MAF was set to 0.15,

0.05, or 0.01 respectively (Appendix tables 2-4). At lower outcome probabilities bias in both DM1

and DM2 was similar, and lower than bias of other methods. For example, in scenario IV at an

outcome probability of 0.05 the mean OR was 1.339 and 1.572 for DM1 and DM2, respectively.

Coverage of DM1 and DM2 differed substantially at lower outcome probabilities, for example in

scenario IV with an outcome probability of 0.01 coverage was 0.793 and 0.550 respectively.

Differences between ESE and mean SE was similar however (DM1: -5.729, and DM2: -5.404),

as were the RMSE estimates (DM1: 3.268, and DM2: 3.670). Coverage of the JK and bootstrap
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methods was similar and decreased below 0.95 at lower outcome probabilities. RMSE was also

similar for all resampling methods, but higher than the DM methods. RB estimates were by far

the most biased, with the lowest coverage and highest RMSE; this coincided with frequent

failure of this method to return estimates.

Repeating scenario 1 with a larger sample size (60,000 subjects), showed a comparable relative

pattern as before (Figure 2, Appendix Table 5). Repeating scenario 1 using a one-stage meta-

analysis (20,000 subjects) improved performance. There was no difference between the

methods in, mean OR, bias, or RMSE (Appendix Table 6); even in extreme settings bias was

low -0.016 (MAF of 0.005 or F-statistic of 4). Coverage (Figure 3) was generally close to 0.95 or

slightly larger, and agreement between mean SE and ESE was generally good; only deviating at

a MAF of 0.005 or an F-statistic of 4. A non-parametric bootstrap percentile confidence interval

was evaluated, performing similar to other methods (coverage ≈ 0.95). Repeating scenario 1 

with between study variance showed similar performance as in the original fixed effect scenario

(Appendix Table 7), except for more conservative coverage rates, and DM2 being the most

biased estimator at MAF ≤ 0.01, e.g., -0.257 mean bias at MAF 0.005, which coincided with a 

coverage rate of almost 1, a RMSE of 10.289. DM1 performed better than all other methods with

a coverage of 0.981, and an RMSE of 0.127, at a MAF of 0.005.

The Toby Johnson [TJ] variance estimator performed comparably to the DM1 or DM2 in

scenario I with only slightly lower coverage (Appendix Table 8). Implementing the delta method

by replacing the asymptotic variance estimators with bootstrapped estimators [DM BB]

performed similarly to the BB method (Appendix Table 8). Repeating scenario 1 with a

continuous outcome revealed a comparable relative performance of the variance estimators

(Appendix Table 9).
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Results on the LDL-C effect on CVD.

Table 2 shows empirical results of two different IV’s in a 6 study meta-analysis to estimate the

effect of LDL-C on CVD, (see Appendix for a description of the data sources, and baseline data).

Using SNP rs11591147 as an IV (mean F-statistic = 13.42) in a two-stage meta-analysis showed

that the bootstrap methods had the largest standard errors and their point estimates not only

disagreed with results from the remaining variance estimators but also between themselves. As

expected, using a one-stage meta-analysis increased precision and decreased differences

between methods, resulting in an IV estimate of 0.93 (95%CI 0.50;1.72). Results from the weak

instrument rs2965101 (mean F-statistic = 1.34) revealed large differences between the bootstrap

estimators and the remaining estimators; the minimal bootstrap SE estimate was 13.19,

compared to an SE of 1.49 using DM2. Precision increased using a one-stage meta-analysis,

however the bootstrapped SE were still comparatively large. Given that one-stage meta-analysis

are analysed by a single analyst, it becomes practical to explore the bootstrap distributions

(figure 4). After omitting a number of outliers the bootstrap became relatively symmetric and the

SE estimates were: 1.27 (BB), 1.29 (OS), 1.33 (SS), 3.51 (DB). The large SE of the DB and its

truncated distribution show that 50 times 250 repetitions were insufficient in this setting.

Discussion

This study showed that, depending on the strength of the IV and/or the outcome incidence, there

is considerable difference in the performance of instrumental variable (IV) variance estimators in

two-stage meta-analysis. The delta method (DM) showed the least amount of bias and the best

coverage; with the delta method implemented before meta-analysis performing better in the

presence of between study variance. Bootstrap and robust variance estimators (RB) produced

extreme estimates in two-stage meta-analysis. Differences between methods were minimal

using a one-stage meta-analysis; all providing unbiased estimates and appropriate coverage. An

empirical example on the LDL-C effect on CVD incidence, confirmed that these issues also
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occur in applied settings. Relative performance of the variance estimators was similar when

using a continuous outcome instead of a binary endpoint.

At lower MAF/F-statistic values, or lower outcome probabilities the RB estimators often failed to

converge, making it difficult to evaluate whether the underperformance of RB was due to the

estimator itself or to informative failures. Looking at the JK (which failed in less than 1% of the

simulations, and which is an approximation of the HC3 which is a refinement of the HC1 used in

the RB), it seems that to some extent this underperformance of the RB may be explained by

computational problems in the R sandwich package(23); this needs further study. Following the

usual practice in applied Mendelian randomization analyses, the ratio and the TSLS point

estimators were used. Additionally to the usual three IV assumptions, these point estimators also

assume the phenotype to be normally distributed conditional on the SNP and confounders, and

homogeneity of the phenotype (X) effect on the outcome (24). In our simulations these

assumptions held, however in applied settings this is not necessarily the case, given that

confounders are often unmeasured, these assumptions are also impossible to evaluate. Instead

of making these assumptions, different estimators or estimands may be considered in empirical

settings. For example, structural mean models or generalized method of moments point

estimators, or the risk difference estimand(8;24), make fewer assumptions.

Our results underline the difficulty of using the observed F-statistic(7) as a measure of expected

bias due to a weak instrument. We observed an increased performance in a one-stage meta-

analysis with on average 20,000 subjects and a “weak” instrument (MAF 0.05, mean F-statistic

5.97), compared to a two-stage meta-analysis with on average 60,000 subjects and a “strong”

instrument (MAF 0.05, mean F-statistic 15.98). When conducting a one-stage meta-analysis,

results do not have to be pooled by the inverse of an estimated study specific variance.

Therefore, in this scenario, point estimates, precision (ESE), and RMSEs were not influenced by
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the choice of variance estimators. The choice of variance estimator did influence coverage,

which was nevertheless markedly improved over a two-stage design.

The underperformance of the bootstrap estimators in the two-stage meta-analysis may come as

a surprise to some; however, the improved performance (over e.g., a Wald based confidence

interval) shown in the literature mostly holds for bootstrap confidence intervals such as the bias

corrected and accelerated bootstrapped confidence interval(17;22;25). Because of the need for

a variance estimate in the second stage of a two-stage meta-analysis the bootstrap can only be

used to estimate the standard error of the IV estimate, which implicitly assumes symmetry of the

bootstrap distribution(17;22;25). We did however evaluate the percentile method to directly

estimate the confidence interval when we replicated scenario 1 using a one-stage meta-

analysis. Results indeed showed proper coverage, however, this was similar to the increased

performance of all other estimators. We evaluated a delta method estimator replacing the

asymptotic variance estimates by bootstrapped variance estimates; this approach performed

worse than the regular delta method (DM1 or DM2). These results show that even though the

asymptotic approximations ofߪොఊభ
ଶ and ොఈభߪ

ଶ do not strictly hold these estimates are better

approximations (in such situations) than bootstrapped alternatives.

The simulations presented here are naturally limited and the following points merit discussion.

First, different simulation parameters will result in different absolute performance. Instead we

focussed on relative (i.e., between methods) performance which we expect to be more robust.

Second, by fixing the effect of the instrument (the SNP) on the phenotype, the instrument

strength decreases with MAF, hence our results include analyses with F-statistics below 10.

These are analyses, some might argue, an applied researcher would not perform due to

violation of IV assumption 1. We showed, however, that despite the “weak” instrument, valid

estimates can be derived. Third, while it seems logical to increase the number of bootstraps as
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the data becomes sparser (or the IV becomes weaker), we kept the number fixed to preserve

comparability between scenarios. Fourth, for simplicity we focussed on scenarios with a single

SNP instrument, whereas, to prevent weak-instrument bias, most Mendelian randomization

studies use multiple SNPs. Nevertheless, relevant information for these multiple SNP

approaches can be found in our analyses by focussing on strong-instrument settings. Fifth, we

only explored performance under the null [i.e., OR = 1] because, 1) coverage was often too low

making comparisons in power pointless, and 2) we wished to prevent influence of non-

collapsibility(26). Sixth, the small ORs observed in low frequency scenarios were most likely due

to the outcome being constant for a certain allele number (i.e., perfect separation). In these

settings penalized models, using for example a Firth(27;28) or Lasso(29) penalization, are

expected to perform better(30). Finally, random effects or fixed effect analysis models were used

depending on the simulation scenario including between study variance or not(31). In empirical

analyses, the choice between random effects and fixed effect models typically depends on a

heterogeneity measure(32). However, bias in point and variance estimates will influence the

observed heterogeneity, resulting in different modelling choices depending on the performance

of the estimator. This would make between methods comparisons difficult. Therefore, the choice

of model was based on the true, rather than the observed, between study variance.

In conclusion, the choice of variance estimator in instrumental variable analyses using a two-

stage meta-analysis is important. Simulations showed that the delta method applied at stage-

one of the two-stage meta-analysis performed best. If resampling variance estimators are used,

we suggest always checking study specific plots of these distributions for outliers. This is

especially important if the outcome and/or SNPs are rare or if the instrument is weak. Out of all

the resampling methods the jack-knife estimator performed best. However, in such a scenario an

even better alternative, when possible, is to perform a one-stage meta-analysis making the

choice of variance estimator less influential. If a one-stage design is used, resampling
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techniques can be used to directly estimate confidence intervals for which methods exist that do

not assume a symmetric distribution (e.g., the percentile method).
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Figure captions

Figure 1 Simulation results from scenarios I comparing different IV estimators.*

* solid line with a square symbol, delta method followed by meta-analysis [DM1]; solid line with a circle
symbol, basic bootstrap [BB]; solid line with triangle symbol, outcome stratified bootstrap [OS]; solid line
with a plus symbol, SNP stratified bootstrap [SS]; solid line with a filled out square symbol, double
bootstrap [DB]; solid line with a filled out circle symbol, jackknife estimator [JK]; solid line with a filled out
triangle symbol, robust variance estimator [RB]; solid line with a rhombus (diamond) symbol, meta-
analysis followed by delta method [DM2]. The DB y-value of 2.071 is not depicted for a MAF of 0.005 on
the bottom left graph.

Figure 2 Sensitivity analysis repeating simulation I comparing different IV estimators with an
average of 60,000 subjects.*
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* solid line with a square symbol, delta method followed by meta-analysis [DM1]; solid line with a circle
symbol, basic bootstrap [BB]; solid line with triangle symbol, outcome stratified bootstrap [OS]; solid line
with a plus symbol, SNP stratified bootstrap [SS]; solid line with a filled out square symbol, double
bootstrap [DB]; solid line with a filled out circle symbol, jackknife estimator [JK]; solid line with a filled out
triangle symbol, robust variance estimator [RB]; solid line with a rhombus (diamond) symbol, meta-
analysis followed by delta method [DM2].

Figure 3 Sensitivity analysis repeating simulation I comparing different IV estimators using a one
stage meta-analysis design with an average of 20,000 subjects.*
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* solid line with a square symbol, delta method followed by meta-analysis [DM1]; solid line with a circle
symbol, basic bootstrap [BB]; solid line with triangle symbol, outcome stratified bootstrap [OS]; solid line
with a plus symbol, SNP stratified bootstrap [SS]; solid line with a filled out square symbol, double
bootstrap [DB]; solid line with a filled out circle symbol, jackknife estimator [JK]; solid line with a filled out
triangle symbol, robust variance estimator [RB]; solid line with a star symbol, bootstrapped percentile
method. The BB y-value of -13.463 is not depicted for a MAF of 0.005 on the right graph.

Figure 4 Bootstrap distributions for IV rs2965101 for the relation of LDL-C and CVD.*

* Solid grey lines indicate the non-parametric density (only presented in the second row), with dashed
grey lines indicating the expected density given a normal distribution (not presented for the double
bootstrap).
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Table 1 Simulation scenarios assessing performance of different variance estimators for an instrumental variance
analysis*.

Parameters Scenario I Scenario II Scenario III Scenario IV

Number of studies ܬ 10 10 10 10

Sample size sample from a uniform

distribution ܷ( ,ܽ )ܾ

(400, 3600) (400, 3600) (400, 3600) (400, 3600)

Minor allele frequency  {0.50, 0.10,

0.05,0.01,

0.005}

0.15 0.05 0.01

Effect of SNP on the phenotype ଵߙ 0.50 0.50 0.50 0.50

Effect of unobserved confounder on

the phenotype ଶߙ

1.00 1.00 1.00 1.00

Intercept ߙ 0.10 0.10 0.10 0.10

Log(OR) of the phenotype effect on

the outcomeߜଵ

0.00 0.00 0.00 0.00

Log(OR) of the unobserved

confounder effect on the outcome

ଶߜ

1.50 1.50 1.50 1.50

Probability of the outcome 0.50 {0.10, 0.05,

0.02, 0.01}

{0.10, 0.05,

0.02, 0.01}

{0.10, 0.05,

0.02, 0.01}

Ln(odds) outcome intercept ߜ 0.00 {-2.20, -2.94, -

3.89, -4.60}

{-2.20, -2.94, -

3.89, -4.60}

{-2.20, -2.94, -

3.89, -4.60}

* Changes from the previous scenario (on the left) are presented in bold. Alpha’s represent mean differences, beta’s the natural

logarithm of the odds ratio.
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Table 2 Instrumental variable analysis of the LDL-C effect on CVD using instrument rs11591147 and rs2965101*.

Fixed effect 2 stage meta-
analysis

Random effects 2 stage

meta-analysis
Fixed effect 1 stage meta-

analysis
Heterogeneity statistics£

Odds ratio (95%CI) SE Odds ratio (95%CI) SE Odds ratio (95%CI) SE ˙Χ
2
(p-value) Τ

2

Crude LDL-C association 1.06(1.01;1.11) 0.03 1.10(0.96;1.25) 0.07 1.06(1.01;1.11) 0.03 33.25(0.00) 0.02

rs11591147 IV LDL-C estimates
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]&
Percentile Method$

0.94(0.50;1.75)
1.24(0.48;3.18)
1.44(0.49;4.18)
0.89(0.30;2.64)
1.05(0.38;2.85)
0.90(0.45;1.81)
0.82(0.45;1.51)
0.87(0.46;1.65)

NA

0.32
0.48
0.55
0.55
0.51
0.35
0.31
0.33
NA

094(0.501.75)
1.24(0.48;3.18)
1.44(0.49;4.18)
0.89(0.30;2.64)
1.05(0.38;2.85)
0.90(0.45;1.81)
0.81(0.41;1.60)
0.85(0.40;1.80)

NA

0.32
0.48
0.55
0.55
0.51
0.35
0.35
0.38
0.00

0.93(0.50;1.72)
0.93(0.49;1.76)
0.93(0.49;1.78)
0.93(0.50;1.72)
0.93(0.50;1.72)
0.93(0.51;1.69)
0.93(0.50;1.74)

NA
0.93(0.49;1.78)

0.31
0.33
0.33
0.31
0.31
0.31
0.32
NA
NA

4.88(0.43)
0.98(0.98)
0.08(1.00)
0.38(1.00)
1.58(0.93)
4.05(0.58)
5.85(0.33)

7.47(0.19)/6.21 (0.29)
NA

0.00
0.00
0.00
0.00
0.00
0.00
0.11

0.01/0.03
NA

rs2965101 IV LDL-C estimates
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]&
Percentile Method$

1.55(0.35;17.90)
0.61(0.00;2*1021)
4.61(0.00;5*10

30
)

6.67(0.00;1029)
1.55(0.00;3*1011)
1.56(0.13;18.04)
3.03(0.47;19.47)

8.52(0.46;157.69)
NA

1.25
25.35
35.32
33.29
13.19
1.25
0.95
1.49
NA

1.55(0.13;17.90)
0.61(0.00;2*1021)
4.61(0.00;5*10

30
)

6.67(0.00;1029)
1.55(0.00;3*1011)
1.56(0.13;18.04)
2.72(0.20;37.48)

9.01(0.36;223.27)
NA

1.25
25.35
35.32
33.29
13.19
1.25
1.34
1.64
NA

8.16(0.50;132.64)
8.16(0.00;9*104)
8.16(0.00;6*10

7
)

8.16(0.00;4*1015)
8.16(0.00;105)

8.16(0.70;95.04)
8.16(0.91;72.85)

NA
8.16(0.88;105)

1.42
4.77
8.07

17.21
4.93
1.25
1.12
NA
NA

3.11(0.66)
0.01(1.00)
0.01(1.00)
0.00(1.00)
0.03(1.00)
3.13(0.65)
8.11(0.13)

2.64(0.76)/6.14 (0.29)
NA

0.00
0.00
0.00
0.00
0.00
0.00
3.86

0.00/0.00
NA

* The mean F-statistics of two-stage designed IPDMAs were 13.42, and 1.34 for rs11591147 and rs2965101, respectively. The F-statistics of one-stage designed IPDMA were 500.07,
and 485.53 rs11591147 and rs2965101, respectively. The explained variance due to the instruments (measured as the squared spearman correlation coefficient) were 0. 70*10-2 and 0.
64*10-4. £ The heterogeneity statistics were determined for the fixed effect two-stage meta-analysis, tau-squared was calculated using the methods of moments estimator, chi-squared
test statistic and p-value were based on the Q-test. $ The percentile method is only available for the one-stage design. & For DM2 the heterogeneity statistics represent the
heterogeneity in ොଵߛ and ,ොଷߛ see equation 2. DM = delta method; MA = meta-analysis; SE = standard error.
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Data sources for the empirical example of the LDL-C effect on CVD.

To empirically compare performance of the different estimators, see main text, we used SNP

rs11591147 in the PCSK9 gene and SNP rs2965101 in the BCL3 gene as instruments to

estimate the causal effect of LDL-C on CVD. Data were used from 6 studies in the UCLEB

consortium(1) (overall n = 11581 with minimal n = 764, and maximum n = 3041; overall CVD

events = 2050), British Regional Heat Study (BRHS)(2), Caerphilly Prospective Study

(CaPS)(3), Edinburgh Artery Study (EAS)(4), English Longitudinal Study of Ageing (ELSA)(5),

MRC National Survey of Health and Development (MRC46)(6), and Whitehall-II (WHII)(7).

Between study heterogeneity was measured using the Q-test (8) and the method of moments

estimator of the tau-squared (9). These two instruments were chosen because of a lack of

pleiotropy (Appendix 1 figure 1), small correlation (r < 0.01), their different frequency

(rs11591147 average  = 0.02, min 0.02; max 0.02; rs2965101 average  = 0.32, min 0.31; max

0.33), and different magnitudes of association with LDL-C (Spearman correlations of -0.082 and

-0.008 for rs11591147 and rs2965101 with LDL-C).
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Appendix table 1 Simulation results for scenario I assessing performance of different instrumental variable variance
estimators under different levels of MAF with an outcome probability of 0.50 *.

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010 MAF = 0.005

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.778
1.004
1.012
1.012
1.012
1.011
1.011
1.004
1.000

1.826
1.010
1.033
1.033
1.033
1.031
1.029
1.009
0.998

1.840
1.015
1.060
1.060
1.061
1.054
1.046
1.012
0.991

1.851
1.089
1.229
1.234
1.222
1.212
1.180
1.104
0.993

1.853
1.142
1.528
1.506
1.474
1.620
1.331
1.400
0.973

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.576
0.004
0.012
0.012
0.012
0.011
0.011
0.004
0.000

0.602
0.010
0.033
0.033
0.033
0.031
0.028
0.009
-0.002

0.610
0.015
0.058
0.058
0.059
0.053
0.045
0.012
-0.009

0.616
0.085
0.206
0.211
0.201
0.193
0.166
0.099
-0.007

0.617
0.133
0.424
0.410
0.388
0.482
0.286
0.336
-0.027

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.959
0.951
0.950
0.951
0.952
0.948
0.954
0.958

0.000
0.967
0.946
0.944
0.943
0.949
0.939
0.958
0.963

0.000
0.958
0.926
0.925
0.915
0.934
0.922
0.944
0.950

0.000
0.978
0.959
0.957
0.930
0.965
0.904
0.943
0.978

0.000
0.982
0.956
0.952
0.942
0.946
0.887
0.815
0.986

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.012
0.040
0.041
0.041
0.041
0.041
0.040
0.040
0.040

0.012
0.068
0.071
0.071
0.070
0.071
0.067
0.067
0.068

0.013
0.093
0.104
0.104
0.101
0.104
0.093
0.092
0.094

0.013
0.202
0.472
0.479
0.389
0.400
0.201
0.191
0.212

0.013
0.281
1.445
1.466
1.106
1.072
0.288
0.256
0.347

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.012
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040

0.012
0.063
0.064
0.064
0.064
0.064
0.063
0.065
0.066

0.013
0.089
0.094
0.094
0.094
0.093
0.091
0.094
0.096

0.013
0.159
0.252
0.248
0.244
0.237
0.164
0.306
0.204

0.013
0.205
1.196
1.639
1.278
3.143
0.522
0.995
0.372

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.576
0.040
0.041
0.041
0.041
0.041
0.041
0.040
0.040

0.602
0.063
0.072
0.072
0.072
0.071
0.069
0.065
0.066

0.610
0.091
0.110
0.111
0.111
0.107
0.102
0.095
0.097

0.616
0.180
0.325
0.325
0.316
0.305
0.233
0.322
0.205

0.617
0.245
1.269
1.689
1.336
3.179
0.595
1.050
0.373

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
12
12
12
12
12
12
15
12

ESE – mean SE
Crude
DM before MA [DM1]

0.000
-0.001

0.000
-0.005

0.000
-0.004

0.000
-0.044

0.000
-0.075
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.001
-0.001
-0.001
-0.001
-0.001
0.000
0.000

-0.007
-0.007
-0.007
-0.008
-0.004
-0.002
-0.002

-0.010
-0.010
-0.007
-0.011
-0.002
0.003
0.003

-0.220
-0.231
-0.146
-0.163
-0.038
0.115
-0.008

-0.250
0.173
0.172
2.071
0.233
0.739
0.025

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard
error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of
the dichotomous outcome on the continuous phenotype. The mean F-statistics for the IV-phenotype association are: 126.42, 45.97,
24.67, 5.98, 3.47
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Appendix table 2 Simulation results for scenario II assessing performance of different instrumental variable variance
estimators under different probabilities for the outcome with the MAF fixed at 0.15. *

Prob(y = 1) = 0.1 Prob(y = 1) = 0.05 Prob(y = 1) = 0.02 Prob(y = 1) = 0.01

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.269
1.010
1.018
1.018
1.018
1.017
1.017
1.010
1.008

1.272
1.022
1.034
1.034
1.035
1.033
1.030
1.023
1.019

1.273
1.047
1.099
1.099
1.099
1.091
1.066
0.937
1.048

1.272
1.105
1.290
1.298
1.293
1.272
1.147
0.494
1.113

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.238
0.010
0.018
0.018
0.018
0.017
0.016
0.010
0.008

0.241
0.021
0.034
0.033
0.034
0.032
0.029
0.023
0.019

0.241
0.046
0.095
0.094
0.095
0.087
0.064
-0.065
0.047

0.240
0.100
0.254
0.261
0.257
0.241
0.137
-0.706
0.107

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.965
0.964
0.964
0.963
0.965
0.961
0.953
0.959

0.000
0.958
0.958
0.956
0.958
0.962
0.953
0.948
0.949

0.000
0.958
0.949
0.952
0.952
0.960
0.954
0.905
0.949

0.002
0.945
0.913
0.894
0.910
0.925
0.936
0.720
0.937

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.016
0.091
0.095
0.094
0.094
0.095
0.092
0.090
0.091

0.022
0.124
0.130
0.129
0.130
0.132
0.125
0.122
0.124

0.034
0.193
0.217
0.211
0.216
0.219
0.199
0.189
0.194

0.047
0.272
0.381
0.345
0.380
0.374
0.289
0.258
0.273

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.016
0.087
0.087
0.087
0.087
0.087
0.087
0.089
0.090

0.021
0.118
0.120
0.120
0.120
0.120
0.119
0.122
0.123

0.034
0.182
0.192
0.187
0.191
0.191
0.184
0.848
0.188

0.048
0.259
0.344
0.305
0.333
0.324
0.271
2.308
0.265

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.239
0.087
0.089
0.089
0.089
0.089
0.088
0.089
0.090

0.242
0.120
0.125
0.124
0.124
0.124
0.123
0.124
0.124

0.244
0.188
0.214
0.210
0.213
0.210
0.195
0.850
0.194

0.245
0.277
0.428
0.402
0.420
0.404
0.303
2.413
0.286

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
6
0

0
0
0
0
0
0
0

39
0

ESE – mean SE
Crude
DM before MA [DM1]

0.000
-0.005

-0.001
-0.006

0.000
-0.011

0.001
-0.014
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.007
-0.007
-0.007
-0.008
-0.005
-0.001
-0.002

-0.010
-0.010
-0.010
-0.011
-0.006
-0.001
-0.001

-0.024
-0.024
-0.025
-0.028
-0.015
0.659
-0.006

-0.037
-0.039
-0.047
-0.050
-0.019
2.050
-0.008

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard
error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of
the dichotomous outcome on the continuous phenotype. The mean F-statistic for the IV-phenotype association is 64.62.
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Appendix table 3 Simulation results for scenario III assessing performance of different instrumental variable variance
estimators under different probabilities for the outcome with the MAF fixed at 0.05. *

Prob(y = 1) = 0.10 Prob(y = 1) = 0.05 Prob(y = 1) = 0.02 Prob(y = 1) = 0.01

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.276
1.037
1.063
1.062
1.065
1.062
1.055
1.025
1.034

1.278
1.062
1.126
1.125
1.131
1.120
1.093
0.810
1.068

1.279
1.195
1.540
1.551
1.547
1.490
1.277
0.038
1.227

1.277
1.412
0.206
0.304
0.178
0.158
1.238

<0.001
1.490

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.244
0.036
0.061
0.060
0.063
0.060
0.054
0.024
0.033

0.245
0.060
0.119
0.118
0.123
0.114
0.089
-0.210
0.066

0.246
0.178
0.432
0.439
0.436
0.399
0.245
-3.272
0.205

0.244
0.345
-1.581
-1.191
-1.727
-1.846
0.213

-10.835
0.399

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.963
0.965
0.962
0.954
0.964
0.952
0.938
0.953

0.000
0.958
0.958
0.965
0.950
0.967
0.949
0.885
0.939

0.000
0.921
0.902
0.896
0.888
0.918
0.908
0.530
0.892

0.002
0.899
0.812
0.818
0.785
0.803
0.893
0.147
0.860

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.016
0.150
0.171
0.171
0.166
0.174
0.153
0.147
0.151

0.022
0.205
0.252
0.249
0.243
0.259
0.213
0.199
0.206

0.034
0.317
0.640
0.595
0.610
0.649
0.355
0.286
0.319

0.048
0.459
1.965
1.740
1.857
1.968
0.578
0.325
0.461

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.016
0.136
0.145
0.145
0.145
0.147
0.138
0.289
0.146

0.022
0.185
0.201
0.199
0.197
0.203
0.187
1.520
0.198

0.033
0.281
0.440
0.424
0.435
0.453
0.296
5.414
0.304

0.047
0.378
3.669
3.356
3.773
3.646
0.676
8.208
0.410

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.244
0.141
0.158
0.157
0.158
0.158
0.148
0.290
0.150

0.246
0.194
0.233
0.231
0.233
0.232
0.207
1.535
0.208

0.248
0.333
0.617
0.611
0.616
0.603
0.385
6.326
0.366

0.249
0.512
3.995
3.561
4.150
4.086
0.709

13.593
0.572

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
2
0

0
0
0
0
0
0
0
8
0

0
0
0
0
0
0
0

123
0

0
0
0
0
0
0
0

383
0

ESE – mean SE
Crude
DM before MA [DM1]

-0.001
-0.014

0.000
-0.020

-0.001
-0.036

-0.001
-0.080
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.026
-0.025
-0.021
-0.028
-0.014
0.142
-0.005

-0.051
-0.050
-0.046
-0.056
-0.027
1.321
-0.008

-0.200
-0.170
-0.175
-0.197
-0.059
5.128
-0.016

1.704
1.616
1.916
1.678
0.099
7.883
-0.051

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard
error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of
the dichotomous outcome on the continuous phenotype. The mean F-statistic for the IV-phenotype association is 24.66.
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Appendix table 4 Simulation results for scenario IV assessing performance of different instrumental variable variance
estimators under different probabilities for the outcome with the MAF fixed at 0.01. *

Prob(y = 1) = 0.10 Prob(y = 1) = 0.05 Prob(y = 1) = 0.02 Prob(y = 1) = 0.01

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.279
1.141
1.239
1.236
1.230
1.245
1.247
0.074
1.204

1.280
1.339
0.772
0.778
0.741
0.537
1.447

<0.001
1.572

1.284
2.181
0.013
0.014
0.011
0.008
0.171

<0.001
3.021

1.281
3.699

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
5.324

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.246
0.132
0.214
0.212
0.207
0.219
0.220
-2.605
0.186

0.247
0.292
-0.259
-0.251
-0.300
-0.622
0.370
-9.740
0.452

0.250
0.780
-4.324
-4.301
-4.502
-4.813
-1.765

-19.690
1.106

0.247
1.308
-9.525
-9.540
-10.020
-9.912
-9.437
-20.864
1.672

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.968
0.984
0.985
0.967
0.986
0.943
0.524
0.929

0.000
0.942
0.961
0.965
0.936
0.951
0.922
0.165
0.859

0.000
0.867
0.795
0.809
0.732
0.744
0.793
0.003
0.690

0.004
0.793
0.573
0.572
0.486
0.493
0.386
0.000
0.550

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.017
0.326
1.397
1.397
1.000
1.358
0.368
0.282
0.346

0.022
0.456
3.769
3.736
2.712
3.384
0.599
0.288
0.483

0.034
0.905
7.178
7.026
5.678
5.464
1.476
0.214
0.776

0.048
8.753
8.861
8.997
7.035
6.171
2.516
0.201
8.670

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.017
0.260
0.578
0.645
0.636
0.844
0.294
4.862
0.324

0.023
0.345
2.312
2.282
2.370
4.171
0.619
7.871
0.442

0.035
0.515
6.154
5.888
6.072
5.500
4.938
6.122
0.604

0.050
2.994
7.351
7.380
7.316
6.673
8.682
4.493
3.266

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.246
0.292
0.616
0.679
0.669
0.872
0.367
5.516
0.374

0.248
0.452
2.326
2.296
2.389
4.217
0.721

12.523
0.632

0.253
0.934
7.521
7.292
7.559
7.309
5.244

20.620
1.260

0.252
3.268

12.032
12.061
12.406
11.949
12.823
21.342
3.670

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0

93
0

0
0
0
0
0
0
0

365
0

0
0
0
0
0
0
0

782
0

0
0
0
0
0
0
0

1305
0

ESE – mean SE
Crude
DM before MA [DM1]

0.000
-0.066

0.000
-0.111

0.000
-0.390

0.002
-5.759
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.820
-0.752
-0.363
-0.514
-0.074
4.580
-0.022

-1.457
-1.454
-0.342
0.787
0.020
7.583
-0.041

-1.024
-1.138
0.394
0.036
3.462
5.909
-0.171

-1.510
-1.617
0.281
0.502
6.167
4.292
-5.404

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard
error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of
the dichotomous outcome on the continuous phenotype. The mean F-statistic for the IV-phenotype association is 5.95.
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Appendix table 5 Sensitivity analysis repeating simulation scenario 1 with an increased mean sample size of 60,000
subjects. *

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010 MAF = 0.005

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.779
1.001
1.004
1.004
1.004
1.004
1.004
1.001
1.000

1.826
1.003
1.011
1.011
1.011
1.010
1.010
1.003
0.999

1.839
1.004
1.018
1.018
1.018
1.017
1.016
1.003
0.996

1.852
1.034
1.100
1.101
1.092
1.091
1.077
1.032
0.997

1.853
1.059
1.183
1.184
1.175
1.169
1.130
1.078
0.992

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.576
0.001
0.004
0.004
0.004
0.004
0.004
0.001
0.000

0.602
0.003
0.011
0.011
0.011
0.010
0.010
0.003
-0.001

0.609
0.004
0.017
0.017
0.018
0.017
0.016
0.003
-0.004

0.616
0.033
0.095
0.096
0.088
0.087
0.075
0.031
-0.003

0.617
0.057
0.168
0.169
0.161
0.157
0.122
0.075
-0.008

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.958
0.954
0.952
0.954
0.954
0.953
0.957
0.956

0.000
0.955
0.945
0.946
0.947
0.947
0.943
0.952
0.952

0.000
0.952
0.938
0.938
0.937
0.939
0.929
0.946
0.941

0.000
0.966
0.922
0.921
0.887
0.935
0.918
0.944
0.956

0.000
0.971
0.929
0.933
0.909
0.940
0.899
0.910
0.962

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.007
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

0.007
0.039
0.040
0.040
0.039
0.040
0.039
0.039
0.039

0.007
0.054
0.055
0.055
0.055
0.055
0.054
0.053
0.054

0.007
0.118
0.142
0.142
0.126
0.141
0.117
0.115
0.119

0.007
0.166
0.269
0.270
0.240
0.252
0.165
0.159
0.170

Empirical SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.007
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

0.007
0.038
0.038
0.038
0.038
0.038
0.038
0.039
0.039

0.007
0.053
0.054
0.054
0.054
0.054
0.054
0.054
0.055

0.007
0.104
0.117
0.118
0.119
0.114
0.106
0.139
0.118

0.007
0.137
0.222
0.229
0.235
0.273
0.149
0.274
0.167

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.576
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

0.602
0.038
0.040
0.040
0.040
0.040
0.039
0.039
0.039

0.609
0.053
0.057
0.057
0.057
0.057
0.056
0.054
0.055

0.616
0.109
0.151
0.153
0.148
0.144
0.130
0.143
0.118

0.617
0.149
0.278
0.284
0.285
0.315
0.193
0.284
0.167

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
1
0

0
4
4
4
4
4
4
7
4

ESE – mean SE
Crude
DM before MA [DM1]

0.000
-0.001

0.000
-0.001

0.000
-0.001

0.000
-0.014

0.000
-0.028
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.001
-0.001
0.000
-0.001
0.000
0.000
0.000

-0.001
-0.001
-0.001
-0.001
-0.001
0.000
0.000

-0.001
-0.001
-0.001
-0.001
0.000
0.001
0.001

-0.025
-0.024
-0.007
-0.026
-0.011
0.024
-0.001

-0.047
-0.041
-0.004
0.021
-0.016
0.116
-0.003

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard

error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of

the dichotomous outcome on the continuous phenotype. The mean F-statistics for the IV-phenotype association are 375.98, 136.00,

72.20, 15.98, and 8.55.
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Appendix table 6 Sensitivity analysis repeating simulation scenario 1 with a mean sample size of 20,000 subjects using a
one stage meta-analysis design. *

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010 MAF = 0.005

Mean odds ratio (truth=1.000)
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

1.780
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.827
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.840
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997

1.853
0.991
0.991
0.991
0.991
0.991
0.991
0.991
0.991

1.855
0.984
0.984
0.984
0.984
0.984
0.984
0.984
0.984

Mean bias
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0.576
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.603
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.610
-0.003
-0.003
-0.003
-0.003
-0.003
-0.003
-0.003
-0.003

0.617
-0.009
-0.009
-0.009
-0.009
-0.009
-0.009
-0.009
-0.009

0.618
-0.016
-0.016
-0.016
-0.016
-0.016
-0.016
-0.016
-0.016

Coverage
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0.000
0.955
0.957
0.955
0.956
0.955
0.956
0.954
0.955

0.000
0.955
0.955
0.953
0.950
0.954
0.953
0.954
0.954

0.000
0.951
0.953
0.954
0.899
0.954
0.953
0.950
0.947

0.000
0.958
0.962
0.963
0.868
0.960
0.951
0.944
0.943

0.000
0.975
0.977
0.978
0.952
0.977
0.968
0.955
0.958

Mean SE
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0.012
0.041
0.041
0.041
0.041
0.041
0.041
0.041
NA

0.012
0.068
0.068
0.068
0.067
0.068
0.068
0.068
NA

0.012
0.093
0.094
0.094
0.080
0.094
0.093
0.093
NA

0.013
0.211
0.227
0.227
0.174
0.224
0.213
0.209
NA

0.013
0.307
13.775
0.891
0.859
0.436
0.310
0.298
NA

ESE
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0.012
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040

0.013
0.067
0.067
0.067
0.067
0.067
0.067
0.067
0.067

0.013
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094

0.013
0.218
0.218
0.218
0.218
0.218
0.218
0.218
0.218

0.013
0.312
0.312
0.312
0.312
0.312
0.312
0.312
0.312

RMSE
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0.577
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040

0.603
0.067
0.067
0.067
0.067
0.067
0.067
0.067
0.067

0.610
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094

0.617
0.218
0.218
0.218
0.218
0.218
0.218
0.218
0.218

0.618
0.313
0.313
0.313
0.313
0.313
0.313
0.313
0.313

Number of failed models
Crude
Delta method [DM]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

ESE – mean SE
Crude
Delta method [DM]

0.000
-0.001

0.000
0.000

0.000
0.001

0.000
0.007

0.000
0.006
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
Percentile Method

-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001

-0.001
-0.001
0.000
-0.001
0.000
0.000
0.000
-0.001

0.000
0.000
0.014
0.000
0.001
0.001
0.001
0.000

-0.009
-0.009
0.044
-0.006
0.005
0.009
0.007
-0.009

-13.463
-0.578
-0.547
-0.124
0.002
0.014
0.006
-0.061

# The basic bootstrap percentile method does not estimate a standard error. * MAF = minor allele frequency; DM = delta method; MA

= meta-analysis; SNP = single nucleotide polymorphism ; SE = standard error; ESE = empirical standard error; RMSE = square root

of the mean squared error. The crude model regresses the log(odds) of the dichotomous outcome on the continuous phenotype. The

mean F-statistics for the IV-phenotype association 125.33, 45.95, 24.84, 5.93, and 3.55.
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Appendix table 7 Sensitivity analysis repeating simulation scenario 1 with between study variance, a mean sample size of
20,000 subjects, and using a two stage meta-analysis design. *

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010# MAF = 0.005

Mean odds ratio (truth=1.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

1.375
1.001
1.003
1.002
0.905
1.025
1.004
1.002
0.978

1.418
1.002
1.006
1.006
1.006
1.016
1.007
1.002
0.996

1.437
1.006
1.012
1.012
1.011
1.005
1.014
1.006
0.996

1.453
1.019
1.007
1.035
1.023
1.044
1.042
1.021

15.21*109

1.454
1.033
1.050
1.140
1.069
1.020
1.066
1.041
0.773

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.318
0.001
0.003
0.002
-0.100
0.025
0.004
0.002
-0.023

0.349
0.002
0.006
0.006
0.006
0.016
0.006
0.002
-0.004

0.363
0.006
0.012
0.012
0.011
0.005
0.013
0.006
-0.004

0.374
0.019
0.007
0.035
0.022
0.043
0.041
0.021

23.445

0.374
0.033
0.049
0.131
0.067
0.019
0.064
0.040
-0.257

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.966
0.962
0.963
0.960
0.962
0.964
0.971
0.999

0.000
0.955
0.951
0.950
0.949
0.949
0.950
0.958
0.996

0.000
0.963
0.955
0.957
0.953
0.960
0.957
0.962
0.997

0.000
0.973
0.971
0.971
0.957
0.973
0.957
0.964
0.999

0.000
0.981
0.983
0.985
0.981
0.984
0.964
0.955
0.998

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.031
0.022
0.022
0.023
0.024
0.024
0.022
0.023

24.865

0.032
0.036
0.036
0.035
0.036
0.037
0.036
0.038
5.416

0.032
0.049
0.050
0.049
0.049
0.051
0.049
0.054
17.452

0.034
0.102
0.148
0.152
0.132
0.158
0.106
0.124

19.60*10
5

0.034
0.142
0.426
0.481
0.336
0.474
0.172
0.281

43.80*10

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.037
0.020
0.021
0.054
4.683
1.341
0.020
0.021
1.681

0.037
0.034
0.038
0.035
0.037
0.459
0.035
0.036
0.972

0.038
0.047
0.048
0.048
0.078
0.278
0.048
0.051
1.338

0.039
0.094
1.347
0.146
0.503
0.810
0.111
0.236

10.51*102

0.040
0.123
3.026
5.466
1.780
5.307
0.224
0.890

10.286

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.320
0.020
0.021
0.054
4.684
1.341
0.021
0.021
1.681

0.351
0.034
0.038
0.035
0.038
0.459
0.035
0.036
0.972

0.365
0.047
0.050
0.049
0.079
0.278
0.050
0.051
1.338

0.376
0.096
1.347
0.150
0.503
0.811
0.118
0.237

10.51*1010

0.377
0.127
3.027
5.467
1.782
5.307
0.233
0.891

10.289

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
2
0

0
5
5
5
5
5
5

28
5

ESE – mean SE
Crude
DM before MA [DM1]

0.005
-0.002

0.006
-0.001

0.006
-0.002

0.005
-0.008

0.007
-0.019
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Basic bootstrap [BB]
Outcome stratified bootstrap [OS]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

-0.001
0.031
4.659
1.316
-0.002
-0.002
-23.184

0.002
-0.001
0.001
0.422
-0.001
-0.002
-4.444

-0.002
-0.002
0.029
0.227
-0.001
-0.003

-16.113

1.199
-0.006
0.371
0.652
0.005
0.112

-195.978*10
4

2.600
4.985
1.444
4.833
0.052
0.609

-427.721

# The large deviation of the DM2 method seen at a MAF of 0.010 is due to an single estimated log odds ratio of 46988.78, excluding

this value results in a mean OR, mean bias, and empirical SE of 0.952, -0.049, 29.869 respectively. * MAF = minor allele frequency;

DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard error; ESE = empirical standard

error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of the dichotomous outcome on the

continuous phenotype. The mean F-statistics for the IV-phenotype association are 408.31, 147.15, 77.54, 17.16, 9.02.
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Appendix table 8 Sensitivity analysis repeating simulation scenario 1 with additional variance estimators. *

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010# MAF = 0.005

Mean odds ratio (truth=1.000)
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

1.778
1.003
0.999
1.002
0.999

1.825
1.010
0.998
1.009
0.998

1.839
1.018
0.998
1.013
0.998

1.850
1.066
0.978
1.106
0.976

1.854
1.126
0.966
1.238
1.177

Mean bias
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.576
0.003
-0.001
0.002
-0.001

0.602
0.010
-0.002
0.009
-0.002

0.609
0.018
-0.002
0.013
-0.002

0.615
0.064
-0.022
0.101
-0.024

0.617
0.119
-0.035
0.213
0.163

Coverage
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.000
0.950
0.949
0.954
0.947

0.000
0.960
0.957
0.966
0.961

0.000
0.949
0.949
0.962
0.953

0.000
0.942
0.946
0.969
0.952

0.000
0.940
0.967
0.889
0.859

Mean SE
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.012
0.040
0.041
0.041
0.041

0.012
0.067
0.067
0.105
0.068

0.012
0.091
0.093
0.151
0.094

0.013
0.192
0.210

238.758
0.228

0.013
0.261
0.313

28.277
0.757

ESE
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.012
0.040
0.040
0.040
0.040

0.013
0.065
0.067
0.085
0.067

0.013
0.092
0.094
0.108
0.094

0.012
0.190
0.215
3.274
0.297

0.013
0.243
0.311
2.183
4.730

RMSE
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.576
0.040
0.040
0.041
0.040

0.602
0.066
0.067
0.086
0.067

0.610
0.093
0.094
0.108
0.094

0.616
0.201
0.216
3.275
0.298

0.617
0.270
0.313
2.193
4.733

Number of failed models
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
22
22
22
22

ESE – mean SE
Crude
TJ before MA [DM2]
TJ after MA [TJ2]
DM with BB before MA [DM1 BB]
DM with BB after MA [DM2 BB]

0.000
0.000
0.000
-0.001
0.000

0.000
-0.001
-0.001
-0.020
-0.001

0.000
0.000
0.000
-0.043
0.000

0.000
-0.002
0.005

-235.485
0.069

0.000
-0.018
-0.001
-26.094
3.973

* MAF = minor allele frequency; TJ = Toby Johnson; MA = meta-analysis; BB = basic bootstrap; SE = standard error; ESE =

empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of the

dichotomous outcome on the continuous phenotype. The mean F-statistics for the IV-phenotype association are 125.45, 46.14,

24.76, 5.99, 3.45.
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Appendix table 9 Sensitivity analysis repeating simulation scenario 1 with using a continuous outcome. *

MAF = 0.500 MAF = 0.100 MAF = 0.050 MAF = 0.010 MAF = 0.005

Mean, mean difference (truth=0.000)
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.706
0.005
0.016
0.016
0.016
0.015
0.005
-0.001

0.741
0.031
0.090
0.091
0.086
0.074
0.027
-0.002

0.749
0.191
0.386
0.382
0.341
0.342
0.223
-0.033

0.748
0.113
0.277
0.265
0.266
0.224
0.108
-0.021

0.749
0.191
0.386
0.382
0.341
0.342
0.223
-0.033

Mean bias
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.706
0.005
0.016
0.016
0.016
0.015
0.005
-0.001

0.734
0.014
0.046
0.046
0.044
0.040
0.013
-0.003

0.741
0.031
0.090
0.091
0.086
0.074
0.027
-0.002

0.748
0.113
0.277
0.265
0.266
0.224
0.108
-0.021

0.749
0.191
0.386
0.382
0.341
0.342
0.223
-0.033

Coverage
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.949
0.921
0.923
0.922
0.921
0.946
0.952

0.000
0.953
0.885
0.878
0.885
0.884
0.944
0.947

0.000
0.947
0.831
0.816
0.836
0.836
0.932
0.956

0.000
0.943
0.820
0.778
0.807
0.684
0.873
0.958

0.000
0.923
0.834
0.776
0.759
0.602
0.728
0.974

Mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.007
0.036
0.037
0.037
0.037
0.036
0.036
0.036

0.007
0.061
0.063
0.063
0.063
0.060
0.060
0.061

0.007
0.083
0.091
0.089
0.090
0.081
0.081
0.084

0.007
0.181
0.392
0.325
0.306
0.164
0.164
0.190

0.007
0.246
0.934
0.743
0.530
0.212
0.200
0.281

ESE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.007
0.036
0.037
0.037
0.037
0.037
0.037
0.037

0.007
0.058
0.060
0.060
0.060
0.059
0.060
0.061

0.007
0.075
0.082
0.082
0.081
0.079
0.080
0.083

0.007
0.140
0.220
0.219
0.199
0.151
0.167
0.194

0.007
0.180
0.420
0.496
2.100
0.240
0.322
0.300

RMSE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.706
0.037
0.040
0.040
0.040
0.040
0.037
0.037

0.734
0.060
0.075
0.075
0.074
0.071
0.061
0.061

0.741
0.081
0.122
0.123
0.118
0.108
0.085
0.083

0.748
0.180
0.354
0.344
0.333
0.270
0.199
0.195

0.749
0.263
0.570
0.627
2.127
0.418
0.392
0.302

Number of failed models
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
12
12
12
12
12
12
12

ESE – mean SE
Crude
DM before MA [DM1]
Basic bootstrap [BB]
SNP stratified bootstrap [SS]
Double bootstrap [DB]
Jackknife [JK]
Robust HC1 [RB]
DM after MA [DM2]

0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.001

0.000
-0.003
-0.004
-0.003
-0.003
-0.001
0.000
0.001

0.000
-0.008
-0.009
-0.006
-0.009
-0.002
-0.001
0.000

0.000
-0.041
-0.172
-0.106
-0.107
-0.014
0.004
0.004

0.000
-0.066
-0.514
-0.246
1.570
0.027
0.121
0.019

* MAF = minor allele frequency; DM = delta method; MA = meta-analysis; SNP = single nucleotide polymorphism ; SE = standard
error; ESE = empirical standard error; RMSE = square root of the mean squared error. The crude model regresses the log(odds) of
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the dichotomous outcome on the continuous phenotype. The mean F-statistics for the IV-phenotype association are: 125.63, 46.04,
24.93, 5.94, 3.49
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Appendix table 10 Baseline characteristics of a 6 study IPDMA using SNPs rs11591147 and rs2965101 in an instrumental
variables analysis of the LDL-C effect on CVD*.

BRHS CaPS EAS ELSA

Mean(sd) n Mean(sd) n Mean(sd) n Mean(sd) n

CVD 0.34 802 0.17 182 0.67 510 0.86 1624

Men 1.00 2342 1.00 1087 0.48 370 0.53 993

Age (years) 68.91(5.62) 2342 56.77(4.46) 1065 64.51(5.64) 764 73.69(9.44) 1883

Systolic blood pressure (mm Hg) 144.17(19.95) 2340 145.78(22.40) 1061 143.42(23.76) 763 139.01(19.66) 1662

Diastolic blood pressure (mm Hg) 81.88(12.86) 2340 84.56(12.01) 1061 77.46(12.20) 761 72.97(11.43) 1662

Cholesterol (mmol/L) 6.37(1.04) 2331 5.63(1.00) 1031 7.11(1.34) 763 5.71(1.28) 1873

HDL-C (mmol/L) 1.15(0.25) 2245 1.03(0.25) 1031 1.45(0.37) 760 1.49(0.39) 1872

LDL-C (mmol/L) 3.89(1.00) 2277 3.75(0.90) 1006 5.35(1.24) 760 3.43(1.06) 1835

Triglycerides (mmol/L) 2.06(1.23) 1500 1.92(1.14) 1031 1.53(0.87) 763 1.80(1.11) 1873

rs11591147 (n rare alleles)
0
1
2

0.97
0.03
0.00

2261
81
0

0.97
0.03
0.00

1050
37
0

0.97
0.11
0.00

739
81
0

0.97
0.06
0.00

1819
121
0

rs2965101 (n rare alleles)
0
1
2

0.46
0.44
0.10

1073
1023
245

0.46
0.44
0.10

498
477
112

0.46
0.44
0.03

351
334
25

0.48
0.42
0.03

906
795
64

Total sample size 2342 1087 764 1883
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Appendix table 10 continued.

MRC46 WHII Total

Mean(sd) n Mean(sd) n Mean(sd) n

CVD 0.06 144 0.14 409 0.18 2624

Men 0.50 1231 0.23 713 0.56 8422

Age (years) 53.00(0.00) 2464 48.94(5.98) 3041 59.63(11.21) 11559

Systolic blood pressure (mm Hg) 136.22(20.01) 2425 120.37(13.01) 3034 135.40(21.20) 11285

Diastolic blood pressure (mm Hg) 84.55(12.17) 2425 79.63(9.11) 3034 80.49(12.08) 11283

Cholesterol (mmol/L) 6.09(1.07) 2314 6.44(1.13) 3040 6.21(1.20) 11352

HDL-C (mmol/L) 1.67(0.52) 2149 1.41(0.40) 3023 1.39(0.44) 11087

LDL-C (mmol/L) 3.52(0.97) 2139 4.37(1.01) 2980 3.96(1.14) 11004

Triglycerides (mmol/L) 2.16(1.51) 2310 1.44(1.15) 3041 1.80(1.26) 10517

rs11591147 (n rare alleles)
0
1
2

0.96
0.04
0.00

2368
94
2

0.97
0.03
0.00

2947
92
2

0.97
0.03
0.00

11184
393
4

rs11206510 (n rare alleles)
0
1
2

0.47
0.44
0.10

1154
1074
236

0.45
0.45
0.10

1362
1373
306

0.46
0.44
0.10

5327
5093
1160

Total sample size 2464 3041 11581

* The baseline numbers are based on complete data on CVD, and SNPS.
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Appendix figure 1 Flowchart of the implementation of the different variance estimators in a simulation study of a two-stage
meta-analysis of an instrumental variable analysis*.

*MA; meta-analysis, SS; SNP stratified, OS; outcome stratified.
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Appendix Figure 2 Spearman pairwise correlation matrix for PCSK9 SNPs rs13465, rs6511720, and multiple phenotypes;

with p-values for non-significant associations depicted (alpha = 0.05).
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