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Introduction: Prenatal exposures such as infections and immunisation may influence infant responses.
We had an opportunity to undertake an analysis of innate responses in infants within the context of a
study investigating the effects of maternal mycobacterial exposures and infection on BCG vaccine-
induced responses in Ugandan infants.
Material and methods: Maternal and cord blood samples from 29 mother-infant pairs were stimulated
with innate stimuli for 24 h and cytokines and chemokines in supernatants were measured using the
Luminex� assay. The associations between maternal latent Mycobacterium tuberculosis infection (LTBI),
maternal BCG scar (adjusted for each other’s effect) and infant responses were examined using linear
regression. Principal Component Analysis (PCA) was used to assess patterns of cytokine and chemokine
responses. Gene expression profiles for pathways associated with maternal LTBI and with maternal BCG
scar were examined using samples collected at one (n = 42) and six (n = 51) weeks after BCG immunisa-
tion using microarray.
Results: Maternal LTBI was positively associated with infant IP-10 responses with an adjusted geometric
mean ratio (aGMR) [95% confidence interval (CI)] of 5.10 [1.21, 21.48]. Maternal BCG scar showed strong
and consistent associations with IFN-c (aGMR 2.69 [1.15, 6.17]), IL-12p70 (1.95 [1.10, 3.55]), IL-10 (1.82
[1.07, 3.09]), VEGF (3.55 [1.07, 11.48]) and IP-10 (6.76 [1.17, 38.02]). Further assessment of the associa-
tions using PCA showed no differences for maternal LTBI, but maternal BCG scar was associated with
higher scores for principal component (PC) 1 (median level of scores: 1.44 in scar-positive versus
�0.94 in scar-negative, p = 0.020) in the infants. PC1 represented a controlled proinflammatory response.
Interferon and inflammation response pathways were up-regulated in infants of mothers with LTBI at six
weeks, and in infants of mothers with a BCG scar at one and six weeks after BCG immunisation.
Conclusions: Maternal BCG scar had a stronger association with infant responses than maternal LTBI, with
an increased proinflammatory immune profile.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction investigated the effect of maternal latent Mycobacterium tuberculo-
The bacillus Calmette-Guérin (BCG) vaccine protects against
tuberculous meningitis and miliary tuberculosis (TB) in the infant
[1–3], and also protects against leprosy [4]. However, the
protective efficacy of BCG against pulmonary TB varies between
populations, with latitude highlighted as an important factor for
responses in adolescents and adults [1,5,6]. We recently
sis infection (LTBI) on the infant response to BCG immunisation [7],
with results suggesting that maternal M. tuberculosis infection may
impair adaptive immune responses in the infants, although a study
in South Africa showed no such effect [8]. The associations with
innate immune responses were not assessed.

Evidence that BCG immunisation may influence innate
responses includes findings in both observational studies and ran-
domized controlled trials that have highlighted the heterologous
effects of BCG on childhood survival in both low- and
high-income countries [9–13]. This has been suggested to be due
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to BCG-induced increases in function of the innate immune system,
a phenomenon termed ‘trained immunity’ [14–18]. This is an
observation of great global health significance, since mortality
due to infectious agents other than TB is high in developing tropi-
cal countries [19].

One of the indicators of previous immunisation with BCG, in
place of or in addition to vaccination records, is the presence or
absence of a scar [20–22]. It has been shown that 52–97% of new-
borns administered BCG vaccine develop a scar, with differences
depending on the strain of BCG vaccine used, the administrator
and age of administration [20,23–26]. However, not all BCG vacci-
nated babies will scar. There are reports of a correlation between
the presence of a scar and protection against TB [27,28], as well
as studies showing better survival with fewer respiratory infec-
tions [24,29,30], fewer skin infections and sepsis [31] in infants
with a BCG scar.

Little is known about the link between the development of a
BCG scar in mothers and immune responses in infants. We have
previously observed that maternal BCG scar was associated with
lower T helper (Th) 2 responses to crude culture filtrate proteins
of mycobacteria in the infants [32]. In the context of a study
designed to investigate the effects of maternal infections, including
LTBI, on infant immune responses [7], we had the opportunity to
also evaluate associations between maternal BCG scar and immune
response profiles in the offspring.
2. Materials and methods

2.1. Study design, setting and ethical approval

The study design, settings, laboratory and clinical procedures
have been described elsewhere [7]. Briefly, women residing within
the study area and delivering in Entebbe General Hospital were
eligible for inclusion. They were approached for consent, on admis-
sion in early labour, if they were willing to participate in the study,
had a normal singleton pregnancy and were HIV negative. Cord
blood was obtained at delivery, following consent. A questionnaire
was completed to assess eligibility after delivery. The tuberculin
skin test (TST, Statens Serum Institut, Copenhagen, Denmark) and
T-SPOT.TB assay (Oxford Immunotec, Abingdon, UK) were used to
test mothers for LTBI at approximately one week after delivery.
Infants were then followed up to six weeks of life. This was an
exploratory observational study in a relatively small number of
subjects. The number of infants included in the study was chosen
to be feasible within the time frame and resources available. The
study was approved by the Uganda Virus Research Institute-
Research and Ethics Committee, the Uganda National Council for
Science and Technology and the London School of Hygiene &
Tropical Medicine. Written, informed consent was obtained from
participating women for themselves and their infant.

2.2. Immunological assays

Innate immune responses were measured in 29 mother-infant
pairs using a whole blood assay (WBA) with supernatant analytes
measured by Luminex�, and gene expression profiles were mea-
sured in infant samples obtained at one (n = 42) and six (n = 51)
weeks after BCG immunisation using microarray.

2.3. Innate stimulation and measurement of responses using luminex�

assay

Heparinized maternal and cord blood samples were diluted 1:1
with RPMI 1640 medium (Life Technologies Corporation, NY, USA)
and stimulated with lipopolysaccharide (LPS) (toll-like receptor
(TLR) 4 agonist, 100 ng/ml), FSL-1 (TLR2/6 agonist, 50 ng/ml),
CpG-ODN2006 (TLR9 agonist, 5 lg/ml), CL097 (TLR7/8 agonist,
1 lg/ml) all from InvivoGen, San Diego, CA, USA, PAM3Cys-Ser
(TLR1/2 agonist; ECMMicrocollections GmbH, Tubingen, Germany;
100 ng/ml), Mannan (DC-SIGN agonist; Sigma-Aldrich; 100 lg/ml)
and Curdlan (Dectin-1 agonist; Wako Chemicals GmbH, Neuss,
Germany; 100 lg/ml). An unstimulated well was included to act
as a negative control. After 24 h of incubation at 37 �C in 5% CO2,
culture supernatants were harvested and stored at -80 �C for anal-
ysis of cytokines and chemokines. The concentrations of analytes
in the culture supernatants were measured using a Bioplex multi-
plex cytokine assay system (Bio-Rad Laboratories, Hercules, CA,
USA), following instructions from the manufacturer. A Bio-Plex
200 System (Bio-Rad Laboratories, Hercules, CA, USA) and the
Bio-Plex Manager software (version 6.0; Bio-Rad Laboratories, Her-
cules, CA, USA) were used to run the samples. According to the
manufacturer’s instructions, a curve fit was applied to standard
curves, which were then used to extract sample concentrations.
Limits of the assay working range (lower limit of quantification
(LLOQ) and upper limit of quantification (ULOQ)) quoted by the
manufacturer for each cytokine/chemokine were used to clean
the data. For values below the acceptable range, half of the LLOQ
was used and for values above the ULOQ, the ULOQ value for that
particular analyte was used. The cytokines and chemokines anal-
ysed were IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13,
IL-17A, IFN-c, IP-10, MCP-1, MIP-1a, MIP-1b, RANTES, TNF-a,
GM-CSF and VEGF.

2.4. RNA amplification and microarray

Gene expression microarrays were undertaken using unstimu-
lated whole blood samples obtained from 42 and 51 infants at
one and six weeks, respectively, to assess gene expression profiles
after BCG immunisation. The Illumina RNA Amplification Kit
(Ambion, Austin, TX, USA) was used to amplify a median of
124 ng (range 63–174 ng) of the extracted RNA. A Biotin-16-UTP
label was incorporated into amplified RNA during the in vitro tran-
scription process (Perkin Elmer Life and Analytical Sciences, Wood-
bridge, Ontario, Canada). Amplification gave yields ranging from
1 lg to 25 lg. Amplified RNA (1000 ng per array) was hybridized
to the IlluminaHumanHT-12_V4 BeadChip according to the manu-
facturer’s instructions (Illumina, San Diego, CA, USA). The
IlluminaHumanHT-12_V4 bead chip comprises 42,000 sequences
representing 31,000 annotated genes from the curated portion of
the NIH Reference Sequence Database (http://www.ncbi.nlm.nih.-
gov/RefSeq/). Each sequence is represented at least 30 times on
the array. Arrays were scanned with an Illumina bead array confo-
cal scanner, according to the manufacturer’s instructions. Array
data processing and analysis was performed using Illumina BeadS-
tudio software.

2.5. Statistical analysis

The objective of this analysis was to investigate the effects of
maternal latent TB and helminth infection on infant innate
immune responses. In the event, helminth infections were rare in
this study group [7], so the principal exposures considered were
maternal LTBI and maternal BCG scar. In the multivariate analysis,
the effects of maternal LTBI and maternal BCG scar were adjusted
for. Maternal and infant factors such as maternal age, gravidity
status, infant birth weight and gender were not crudely associated
with infant responses and were not adjusted for, and the numbers
involved were generally small.

Cytokine and chemokine concentrations showed skewed
distributions. Results were transformed to log10 (cytokine
concentration + 1) for graphical representation using GraphPad
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Prism v6.0c (GraphPad software, Inc., La Jolla, CA, USA) and for anal-
ysis by linear regression using bootstrapping [33] using STATA
v. 13.1 (College Station, TX, USA). Results from regression analyses
are presented as adjusted geometric mean ratios (aGMR) [95% con-
fidence interval (CI)]. Multiplex data values below the lowest con-
centration were assigned as 1.6 pg/ml. Unstimulated responses
were subtracted from antigen-stimulated results and negative val-
ues were set to zero. The Mann–Whitney U test was used to com-
pare responses between infants of mothers with and without LTBI
and those with and without a BCG scar and correlation between
two continuous variables was assessed using the spearman rho test.
For the different stimuli, the median maternal and cord blood
responses, as well as the associations of infant responses with
maternal LTBI and maternal BCG scar were analysed. In addition
to looking at single cytokines and chemokines, Principal Component
Analysis (PCA) [34] was performed on the cytokine and chemokine
variables to summarize them. For this, an average cytokine or che-
mokine response was worked out for each infant by calculating
the mean concentration obtained from the seven different stimuli
(after subtracting unstimulated responses). The R programme
(v3.2.2. R Foundation for Statistical Computing, Vienna, Austria)
was used for further assessment of the associations.

For microarray, raw Illumina probe data were exported from
BeadStudio and screened for quality. Pre-processing and statistical
analysis was conducted using the R statistical language and various
software packages from Bioconductor [35]. Quantile normalization
was applied, followed by a log2 transformation. The LIMMA pack-
age was used to fit a linear model to each probe and (moderated)
t tests or F tests were performed on the groups being compared.
To control the expected proportions of false positives, the FDR for
each unadjusted p value was calculated using the Benjamini and
Hockberg method implemented in LIMMA. The microarray data
are available through the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (GSE87801). Pathway analysis
was performed using Gene Set Enrichment Analysis (GSEA), a
non-parametric annotation-driven statistical analysis method
[36], to assess which biological processes are associated with the
different LTBI and BCG scar groups. We tested gene sets from the
Molecular signature Database (MsigDB, http://www.broad.mit.
edu/gsea/msigdb Hallmark collection (h.all.v5.0.symbols.gmt)
which summarize and represent specific well-defined biological
states or processes displaying coherent expression. Statistical sig-
nificance was set for p value below 0.05.

3. Results

3.1. Participant characteristics

The flow of the participants through the study and recruitment
details have been described elsewhere [7]. Of the twenty-nine
mothers considered for the WBA/Luminex analysis, 12 had a LTBI
Table 1
Characteristics of participants by maternal BCG scar status. The figures are given as numbe
test for differences in maternal age and infant birth weight, and a two-sided Fisher’s exact te
scar-negative groups.

Characteristics Participants for Luminex assay

Maternal BCG Scar
present (n = 16)

Maternal BCG Scar
absent (n = 10)

Mothers
Age, mean (years) 25 26
Latent TBI status, Present, no (%) 5 (31) 5 (50)
Gravidity, Primigravida, no (%) 6 (37) 5 (50)
Infants
Sex, Male, no (%) 3 (19) 4 (40)
Mean birth weight (kg) 3.09 3.22
and 16 had a BCG scar. Three mothers had missing information
on BCG scar and were not included in the analysis. Mothers with
and without a BCG scar were comparable in terms of age (25 years
versus 26 years, p = 0.78), LTBI (31% versus 50%, p = 0.42) and
gravidity status (37% versus 50% primigravida, p = 0.70). Their
infants were comparable in terms of birth weight (3.09 versus
3.22, p = 0.47) and gender (19% versus 40% male, p = 0.38).
Ninety-three mothers were considered for the gene expression
microarray, and of these, 21 had a LTBI and 38 had a BCG scar.
Mothers with and without a BCG scar were comparable in terms
of age (24 years versus 25 years, p = 0.34), LTBI (26% versus 41%,
p = 0.26), gravidity status (39% versus 45% primigravida, p = 0.78).
Their infants were comparable in terms of birth weight (3.24
versus 3.21, p = 0.77) and gender (40% versus 47% male, p = 0.77)
(Table 1).
3.2. The innate immune responses to the different stimuli

The median cytokine and chemokine responses to the different
stimuli were analysed. Supplementary Tables 1A and 1B illustrate
these for mothers and infants, respectively. There were overall low
to moderate concentrations of cytokines, chemokines and growth
factors in both maternal and cord blood samples, except for IL-6,
IL-8, MCP-1, MIP-1a, MIP-1b and IP-10 (to TLR 7/8 agonist) where
concentrations were high across the different stimuli.
3.3. The association between maternal LTBI, maternal BCG scar and
innate immune responses in mothers and their offspring

Cytokine and chemokine responses were analysed for associa-
tions with maternal LTBI and maternal BCG scar.

For the combined results, maternal responses were not associ-
ated with their own BCG scar, except for VEGF where mothers
without a BCG scar, compared to those with, had higher concentra-
tions (p = 0.031, Fig. 1A). For IL-4, mothers with a BCG scar, com-
pared to those without, had higher responses (p = 0.012,
Supplementary Table 1). Maternal LTBI was positively associated
with cord blood IP-10 responses, with an aGMR [95% CI] of 5.10
[1.21, 21.48], p = 0.026 (data not shown).

Cord blood samples obtained from infants of mothers with a
BCG scar, compared to those without BCG scar, had overall higher
responses to innate stimuli for the following analytes: IFN-c
(aGMR 2.69 [1.15, 6.17]), IL-12p70 (1.95 [1.10, 3.55]), IL-10 (1.82
[1.07, 3.09]), VEGF (3.55 [1.07, 11.48]) and IP-10 (6.76 [1.17,
38.02] There was a similar, but weaker, trend for the proinflamma-
tory cytokines TNF-a (aGMR 1.99 [0.69, 5.89]) and IL-1b (1.55
[0.37, 6.61]). (Fig. 1B, and Supplementary Tables 2 and 3).

The associations between infant responses to the different
stimuli and maternal LTBI (Supplementary Figs. 1A and 1B) and
maternal BCG scar (Supplementary Figs. 2A and 2B) were analysed.
rs with percentage (%) in brackets, or as mean values. P value is based on unmatched t
st for differences in maternal LTBI, parity and infant gender between scar-positive and

Participants for microarray

P value Maternal BCG Scar
present (n = 38)

MaternalBCG Scar
absent (n = 22)

P value

0.78 24 25 0.39
0.42 10 (26) 9 (41) 0.26
0.70 14 (39) 10 (45) 0.78

0.38 14 (40) 8 (47) 0.77
0.47 3.24 3.21 0.77

http://www.broad.mit.edu/gsea/msigdb
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Fig. 1. The association between maternal BCG scar and infant innate responses. Combined median cytokine or chemokine production following overnight stimulation with
lipopolysaccharide (LPS) (toll-like receptor (TLR) 4 agonist), FSL-1 (TLR2/6 agonist), CpG-ODN2006 (TLR9 agonist), PAM3Cys-Ser (TLR1/2 agonist), CL097 (TLR7/8 agonist),
Mannan (DC-SIGN agonist) and Curdlan (Dectin-1 agonist). Cytokines representing Th1/proinflammatory (IFN-c, IL-12p70, TNF-a and IL-1b), immunoregulatory responses
(IL-10) and chemokines/growth factors (IP-10, VEGF and GM-CSF) measured by Luminex� assay are shown for the mothers’ blood (Fig. 1A) and for infants’ cord blood
(Fig. 1B). Data presentation was performed using GraphPad Prism.
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The following CpG-specific cytokine and chemokines were posi-
tively associated with maternal LTBI: IL-12p70 (p = 0.014), MCP-1
(p = 0.011) and MIP-1b (p = 0.007) (Supplementary Fig. 1B). Cytoki-
nes and chemokines that were positively associated with maternal
BCG scar included: IL-10 (p = 0.017) and GM-CSF (p = 0.042) to
PAM3Cys-Ser; TNF-a (p = 0.044), IL-2 (p = 0.019), IL-1b (0.005),
IL-6 (p = 0.017), IL-10 (p = 0.001), GM-CSF (p = 0.014) and VEGF
(p = 0.048) to FSL-1; TNF-a (0.017) to LPS; IFN-c (p = 0.018),
IL-12p70 (p = 0.023), GM-CSF (p = 0.047) to CL097; IL-2
(p = 0.048), IL-1b (0.017), IL-10 (p = 0.040), IL-8 (p = 0.011), GM-
CSF (p = 0.027) to Mannan; TNF-a (p = 0.027), IL-12p70
(P = 0.012) and VEGF (P = 0.003) to Curdlan (Supplementary
Figs. 2A and 2B).

3.4. Principle component analysis of infant innate immune responses

We observed correlations among the cytokines and chemokines
measured and this was summarized using PCA. For the mothers,
two principle components (PCs) were identified, which together,
accounted for 43% of the variance in the dataset. The first PC
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explained 25% of the total variance and was characterized by IFN-c,
TNF-a, IL-12p70, IL-1b, IL-6, IL-4, IL-10, IL-13 and the second PC
explained a further 18% of the total variance and was characterized
by MCP-1, MIP-1a, MIP-1b, IL-8, and IL-17A based on factor load-
ings > 0.1 (Fig. 2A). Neither Maternal LTBI (data not shown) nor
maternal BCG scar (Fig. 2B) was associated with the mothers’
own PC scores.

For the infants, two PCs identified accounted for 53% of the vari-
ance in the dataset. The first PC explained 39% of the total variance
and was characterized by most of the cytokines and growth factors
measured (IFN-c, TNF-a, IL2, IL-12p70, IL-4, IL-13, IL-10, IL-1b, IL-6,
IL-8, VEGF and GM-CSF) (Fig. 2C). The second PC explained a fur-
ther 14% of the total variance and was characterized by MCP-1
and MIP-1b. Infants with a high response in PC1 were born to
mothers with a BCG scar (Fig. 2D).

These results are illustrated in Fig. 3. There were no associations
between maternal LTBI and levels of PCs in the infants
(Fig. 3A and B), and no associations between maternal BCG scar
Fig. 2. Scatterplots of first and second factor loadings for maternal and cord blood, d
chemokines (A and C), individual mothers (B) and neonates (D). For mothers, the first prin
consisted of chemokines. For neonates, the first PC was characterized by proinflammatory
Red circles represent BCG scar-positive (Scar+) mothers and their infants. BCG scar-nega
had overall high background responses (unstimulated samples) for most cytokines/che
values gave overall low net values, thus the negative PC scores (�6.311 for PC1 and �6.2
reader is referred to the web version of this article.)
and levels of PCs in the mothers (Fig. 3C and D). Maternal BCG scar
was associated with high levels of PC1 in the infants (median level
of scores: 1.44 in scar-positive versus �0.94 in scar-negative,
p = 0.020, Fig. 3E). There was no association between maternal
BCG scar and levels of PC2 in the infants (median level of scores:
�0.002 in scar-positive versus 0.754 in scar-negative, p = 0.065,
Fig. 3F).

The correlations among the cytokines and chemokines mea-
sured are shown in Supplementary Table 4.

3.5. Analyses of clusters of innate cytokines and chemokines

In addition to the PCA, we performed a hierarchical bicluster
analysis of the innate responses to further identify sets of cytokines
and chemokines that might be coordinately expressed in infants of
mothers with and without a BCG scar using R programming. Three
clusters (C) of cytokines were identified (illustrated in Fig. 4):
MCP-1, MIP-1a, MIP-1b, IL-17A (C1), VEGF, GM-CSF, IL-12p70
erived from Principal Component Analysis of 17 analytes, showing cytokines and
cipal component (PC) was characterized by a mixture of cytokines and the second PC
cytokines and the second PC consisted of chemokines, based on factor loadings >0.1.
tive (Scar�) mothers and their infants are represented by blue triangles. One infant
mokines measured. Subtracting the unstimulated values from antigen stimulated
28 for PC2). (For interpretation of the references to colour in this figure legend, the



Fig. 3. The association between maternal LTBI, maternal BCG scar and the innate immune responses in mothers and neonates. PCA was used to assess the association
between maternal LTBI, maternal BCG scar and infant responses. The association between maternal LTBI and infant innate responses (A and B), and the association between
maternal BCG scar and maternal (C and D) and infant (E and F) responses are shown. Two PCs that explained 43% and 53% of the variance in the dataset for mothers and
neonates, respectively, were identified. The box plots represent the median and the interquartile range of the levels of the two PCs. The whiskers show the minimum and
maximum values. P values are from Wilcoxon rank sum test.
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Fig. 4. Cluster analysis of the innate cytokines and chemokines using the average linkage distance between clusters using R. Clusters go from root to leaf node for each
cytokine and for the individual infants. Clusters in between are based on their agglomerative value. The branch shows the similarity, the shorter the branch, the more similar.
Expression levels of individual cytokines (log10 [pg/ml]) are represented by shades of blue to red based on their correlations according to the dendrogram on the left, with
highest values in dark red and the lowest in dark blue. Three distinct sets of correlated cytokines ‘‘clusters” are indicated as C1, C2 and C3 on the left. In addition, eleven
cytokines (C4) form a cluster that has mainly inflammatory cytokines. Most infants of mothers with a BCG scar (top, green) clustered together in one discrete group, distinct
from infants of mothers without a BCG scar (top, light blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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(C2) and IL-1b, IL-8, TNFa, IFN-c, IL-2, IL-4, IL-10 (C3). Eleven
cytokines formed an additional cluster (C4) that contained high
concentrations of the proinflammatory cytokines produced by
infants of mothers with a BCG scar.

3.6. Gene expression profiles in infants of mothers with and without
LTBI, and in the infants of mothers with and without a BCG scar

In order to further examine the associations we found with the
innate responses using the Luminex� assay, gene expression
microarray analysis was performed using blood obtained from 42
and 51 infants at one and six weeks post-BCG, respectively, using
RNA extracted from unstimulated whole blood. Gene expression
from infants of mothers with and without LTBI and those with
and without a BCG scar were compared. Infants of mothers with
LTBI, compared to those of mothers without LTBI, had down-
regulated interferon and inflammation pathways one week after
BCG immunisation (Fig. 5A), but up-regulated interferon and
inflammation pathways at six weeks post immunisation (Fig. 5B).
In contrast, the interferon and inflammation pathways were both
up regulated in infants of mothers with a BCG scar at one
(Fig. 6A and Supplementary Fig. 3A) and six (Fig. 6B and Supple-
mentary Fig. 3B) weeks after BCG immunisation.

4. Discussion

This study reports an unexpected finding about the association
between maternal BCG scar and infant responses in a birth cohort.
We have shown that infants of mothers with a BCG scar have
enhanced proinflammatory responses. The concentrations of
proinflammatory cytokines measured in cord blood in response
to stimulation with innate stimuli using the Luminex� assay were
increased in infants of mothers with a BCG scar. The expression of
genes in the interferon and inflammation responses pathways
measured using gene transcription microarray was also increased
in infants of mothers with LTBI at six week post BCG immunisation,
and in infants of mothers with a BCG scar at one and six weeks
after BCG immunisation.

Innate immune responses may determine the effectiveness of
adaptive responses [37] and lead to either biased [38] or regula-
tory immune profiles [39–41]. The increased responses reported
here may therefore impact on immune responses to vaccines
administered at birth and on the course of infections and disease
in childhood. Further studies of human innate immune profiles
in response to immunisation, and during infections and disease,
are needed.

There were no associations between maternal BCG scar and the
mothers’ own innate immune responses: associations were mani-
fested only in the infants. The presence of a maternal BCG scar
was taken to indicate BCG immunisation of a mother during
infancy. There are suggestions of positive associations between
IFN-c responses and reactions at the site of BCG immunisation
[42,43], and presence of a scar has been associated (in other studies)
with protection against LTBI [27,28]. Scar might therefore be a good
measure of protective immune responses. However, it is difficult to
reconcile how a response to a vaccine administered to mothers in
their infancy would exert its effects several years later in the off-
spring. It is possible that there may be common genetic factors
between the mothers and their infants that determine scar forma-
tion and subsequent responses in the infants, or that the factors
associated with scar formation in the mothers are transmitted to
the infants. The lack of association between maternal BCG scar
and the mother’s own responses could be attributed to cumulative
life-time exposures that alter the initial maternal innate immune
responses after BCG immunisation. We did not collect data on scar-
ring in these infants, but an ongoing larger study with a longer fol-
low upwill provide the opportunity to assess relationships between
scarring and immune responses in mothers and their infants.

The development of a scar is also dependent upon the strain,
dose and method of administration of the BCG vaccine [44]. The



Fig. 5. Gene Set Enrichment Analysis for the comparison of infants of mothers with and without LTBI. A checkerboard map showing top enriched pathways on y-axis and top
leading edge genes (gene members contributing most to the enrichment score) on the x-axis. Scale at the right represents the gene expression fold change (log2 (exposed/
unexposed)). Red (blue) indicates genes that are up-regulated (down-regulated) among infants of mothers with LTBI mothers. Interferon and inflammation response
pathways were up regulated in infants of mothers with LTBI at six weeks. FDR adjusted p-value cut off of <0.25 was applied for pathways significance. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Gene Set Enrichment Analysis for the comparison of infants of mothers with and without a BCG scar. A checkerboard map is presented showing top enriched pathways
on y-axis and top leading edge genes (gene members contributing most to the enrichment score) on the x-axis. Scale at the right represents the gene expression fold change
(log2 (scar+/scar�). Red (blue) indicates genes that are up-regulated (down-regulated) among infants of scar-positive mothers. Interferon and inflammation response
pathways are up regulated in infants of mothers with a BCG scar at one and six weeks after BCG immunisation. FDR adjusted p-value cut off of <0.25 was applied for pathways
significance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Danish strain of BCG vaccine, compared to BCG Russia, has been
shown to elicit stronger responses in infants one year later and
to cause more scarring [23–25,45,46], and the intradermal route
of administration is associated with the formation of distinctive
scars [47,48]. We were unable to ascertain the strain, the dose
and the method of administration of BCG vaccine in these women,
although the most common strain and the method used in this set-
ting are BCG Russia and the intradermal method, respectively.
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Since BCG immunisation is administered in the neonatal period, it
is difficult to obtain information about BCG immunisation status of
adults in a country where hospitals do not routinely record vaccine
strain. There is therefore the possibility of misclassification of
women based on the presence or absence of a scar. It is possible
that the scar-negative women may have been BCG vaccinated
without developing a scar, or that scars were lost with time. Our
observed differences in infant response may therefore relate either
to the mother’s BCG immunisation status or to the quality of the
mother’s response to BCG immunisation.

Previous studies have reported the presence [49,50] or absence
[51] of maternal cells in cord blood samples. It is therefore possible
that the high proinflammatory response observed in cord blood
could be due to responses from maternal cells in cord blood, but
the method we used for collecting cord blood (by needle and syr-
inge, with no ‘‘milking” of the cord, coupled with the use of trained
midwives) minimized contamination. Previous tests carried out on
maternal and cord blood samples in our studies (comparing levels
of b-human chorionic gonadotropin) showed that contamination of
cord blood by maternal blood was rare (unpublished data).

Interferon and inflammatory pathways were down-regulated in
infants of mothers with LTBI at one week, but up-regulated at six
weeks after BCG immunisation; this offers some support to the
hypothesis that prenatal exposure to maternal LTBI modifies the
infant response to BCG, but the change in direction of effect as
the immune response matured was unexpected, and these findings
would need to be confirmed in a larger study.

Limitations of the study were its observational and explorative
nature, its small sample size relative to the many outcomes
assessed. Maternal and infant factors such as maternal age, gravid-
ity status, infant birth weight and gender were not adjusted for
since these were not crudely associated with infant responses,
and the numbers involved were generally small.

In summary, maternal BCG scar had a stronger association with
infant responses than maternal LTBI, with an increased proinflam-
matory profile of immune responses. The mechanisms that under-
lie this association need to be further examined in a larger study.
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