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1.  Iniroedoction

The use of normal residual ermors in linear regression modeks (LRMs) is perhaps the most com-
mon distributional assumption. However, the nomuality assumption can be inappropriate in prac-
tice given that the inference about the regression parameters is affected when the true distribution
of the emrors is asymmetric or heavy tailed. In order to overcome this shoncoming, alternative
distributional assumptions have been proposed. We refer the reader o [16] for an extensive
review of the different distributional assumptions which include, for instance, the family of
scale mixtures of normals (SKM) [E, 20, 21], skew-elliptical and skew-symmetric distributions
[1,4. 15, 18], semiparametric approaches such as quantile regression [10, 13, 25], among others.

In a Bavesian framework, it is often of interest to employ noninformative prioes; for instance,
when the prior knowledge about the model parameters is vague. These kinds of priors are func-
tions of the parameters, not necessarily integrable, that induce a well-defined posterior distribu-
tiom with good frequentist properties. In this dinection, [#] proposed an improper prior strocture
for LEM= with residual errors distriboted according to the family of SMN. In the context of sur-
vival regression models, [20] studied the use of Jeffreys-type prioes for accelerated failure time
(AFT) models (which are LRMs for the logarithm of a set of survival times) with SMMN ermors.
Hewever, the use of noninformative priors in LEMs with fexible errocs that allow For captur-
ing skewness has received litte attention. In this line, [14] proposed an improper prior strocture
for AFT models with errors distributed sccording to the generalised extreme value distribution.
They provided a list of sufficient conditions for the propriety of the comesponding posterior
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distribution which imvolves truncating the parameter space. Recently, [15] proposed a general
noninformative prior structure for LRMs with skew-symmetdic emors. They provided conditions
for the propriety of the posterior distribution that cover cases where the response variables are
censored.

In this paper, we study the wse of the class of two-picce scale mixtures of normal (TPSMM)
distributions for modelling the residual errors in LRMs from o Bayesian pemspective. These
sorts of distributional assumptions enjoy several advantages. First, this family of cmor models
contains the class of SMMN distributions as a particular case, which has been used o account
for the presence of outliers and certain tvpes of heteroscedasticity [21]. In addition, TPSMN
distributions can also be used 1o capture unobserved heterogeneity that induces asvmmetry of
the residual errors [16]. The implementation of these models is straightforwand vus=ing the B
package “twopiece’ (available under request). We propose o general improper prior structure
for the models of interest that covers certain priors obtained by formal rules. We show that the
corresponding posterior is proper under mild conditions that can be extended to cases where the
response variahles are censored, a common phenomenon in survival analysis. The contribution
of this paper consists mainly of extending the LRMs in [16]. who only consider likelihood-
based inference and prediction, w the Bayesian framework. The Bayesian approach provides
natural tools, namely, the posterior predictive distribution, for conducting prediction about right-
censored responses. This paper also presents a tractable alternative strategy to that proposed in
[15] 0 Aexibly modelling the errors in LEMs. The rest of the paper is organised as follows. In
Section 2, we present the family of distributions of interest (TFSMN) and briefly discuss some
of their propertics. In Section 3, we deseribe the LEMs with TPSMM cmrors and the proposed
prior structure, and then provide sufficient conditions for the propriety of the corresponding
posterior distribution. In Section 4, we discuss the propriety of the posterior distribution in cases
when the response variables are censored. We link these results with survival regression models.
[n Section 5, we present a simulation swdy which shews good frequentist performance of the
proposed models. In Section & we present two examples with real data in the context of survival
times of concer patients. Prools of the results as well as wahles associated to the simulation study
in Section 5 gre presentzd in the Supplemental Material.

2, Backzround on two—plece distribuotions

Let us Arst recall the definition of two-piece distributions. We refer the reader o [17] and [16] for
g more exlensive discussion on these models. A real random variable 2 is said w be distributed
acconding to a tao-piece distribution, denoted & - TP, o 8,5 1), if its probahility density
function (P can be writlen as:

i _ 2 el ET ML ) Lf E— 0 . -
iz, m 8, 7) ) + B07] l (r.r-[.-[“,] n) Tiz= w)+ | (f'-"_dl:_":]|l5) Iz a_,r.']] . ze Kl

where 7 is a symmetric POF with support on B and mode at 0, g £ E is g localion parameter
and the mode of the density, 7 £ B is a scale parameter, § £ A C B is a shape parameter,
7 & I'  Ris a skewness parameter, and {af~). 8} are positive functions of the parameter
7. Several parameterisations [af-), 801} of these models are stodied in [2] and [17]. n our
applications we will adopt the parameterisation proposed in [12]: {a(~). 60~} = (1=~ 1+ 7},
7 £ (—1.1). Some properties of this family of distributions are presented below.

(13 The tail behaviowr af (1) s the same in each direction.

(23 The moments of (1) exist whenever the momenis of the baseline POV | exist.

(3) The Fisher information matrix associated w this sort of models is well definesd [17]. in
contrast to some skew-symmetric models, such as the Aszalini’s skew-normal distribu-



April 22 2006

Journal al Applisd Swatistics TFIAS

Licm [3].

(41 Despite the fact that the PDE (1) is nob twice differentable at the mode, [2] showed
that the maximum likelihood estimators of the parameters of (1) have good asvmptotic
properties.

Throughout, we focus on the case where [ belongs o the family of SMN. Recall also that a
symmetric PRV is said to be a SMM f it can be written as:

Flz]d) f a2 ) dH (|, (23

= s

where I is o mixing distribution with positive support, @ represents the standard normal PIVE,
and d = A © H is a shape paameter. This family contains distributions of great interest in
practice such as the normal distribution, Logistic distribotion, Laplace distribution, general vsed
hvperbolic distribution, and the Stodent-i distri bution.

From the expressions in [2] we con obtain the comulative distribution (CDEF) associated to (1)
as forllonas:

- . 2o(7) Sz )
Gzl 6,7) a(7) -fril’:]r(-f’i'{'.]k)l”' <4

bly) —aly) _ 2a(y) F(=—n 5
a7 T W) e i) \Fa)

)f[: =n) ze R, i3)

where £ is the CDF associated to the POE . From the latler expression we can see that PF <

ol = F, ..|-F;-I:.-r:-:- -, That is, the parameter g is the P, —th quantile of Z, and the parameter 7
contrals the allocation of mass on either side of the mode . The PDE CDE, quantile function,
and random number generation of two-piece distributions are implemented in the B package
‘wopices’, which is available under request. Some examples of the shape of the density (1), for
some choices of the baseline density f, are presented in the Supplemental Material.

A, Linear regression with two-plece errors

Consider the linear regression model:

w; =% B+ =5 ()
where ¥; € E, i | i, F i a p-dimensional vector of regression paramelers, =; BA
TR0, o doy ), Fisa SMMN, and X — (=, .....x ) is aknown = @ p design matrix of full

column rank. The resulting model 3 centred at the mode of the distribution of the errors {(which
is ), which represents the 2 —th quantile. We can re-centre the model gt the mean, provided
it exists, or any quantile of interest by adjusting the intercept afler oblaining estimators For the
corresponding parameters. The likelihood function associated to these assumptions is given by:

ra

a(y| 3. o d, v H aly; — x_l: A0, e, 8, ), (5

i=1
where £ is the PDE given by (1), We adopt the prior structure:

w(y)mid)

(i)

(B b, ) x (L]

il
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where g = 0 and 7(~) and 7(d) are proper priors. This prior structure covers the stuctune of
some priors obtained by formal rules, Tor speciic choices of the power hyperparameter g and
the priors x{7] and 7(d). For instance, for the choices g I and =(7)] = (1 — 7] 2, the
prior (6) corresponds o the independence Jeffreys prior (see [17] for a study of cthis prior in
the context of Iocation-scale TPSMM). Expressions for the reference prior and the Teffreys prior
have not been calculated, bul we conjecture that they have a similar strocture to that of prior (&),
Their calculation represents a possible research direction. The following resull provides general
conditions for the propricty of the posterior distribution under the prior (&),

THEOREM 1 Consider the model {4}+6], where =5 a
Congider the following conditions:

TR0, o &, 7: ) and f is a SMN.

(i) The posterior associated to the linear regression model (4), with ervors distributed aceord-
ing o the symmeiric baseline distribution [, logether with the prior ©(@, o, 8) o0 o~ 7(d)
iy prapear

.. Ul .
{ii} _||-| mw Way < oo, where () = min{a(~). b~}

|"[ :Ir_..-
(i) [a(7) + b7 )]

Then, (i) and (i) are necessary conditions, while (i) and (i) are sufficient conditions for the
propriety of the posterior disiribuiion of (3, @, 8, 7).

w(viay < oo, where H () = max{aiv]. 57}

This result indicates that. in order o check the propriety of the posterior of (&, 0,48, ), we
only need 1o check the propriety of the posterior associated o the underlying model with residuoal
errors distributed according to the svmmetric haseline distribution £ together with a condition on
the parameterisation [a(v]. &7}, In particular, for g = 1, conditions (i} and (iii) are satished
bv any choice of {a(~), b~ )} Moreover, if the functions af-) and &) are bounded and g = 1,
conditions (i) and (iii) are automatically satisfied. The parameterisation {aiv). 007} = {1 —
7.1+ v}, proposed in [12], v £ (=1, 1], satisfies this boundedness condition. For unbounded
parameterizations and g = 1 (such as the ome proposed by [T]: fal~), 0070} = {71/} 7= 0
the finiteness condition in (i) depends on the choice of the prior =),

The following resull presents comditions for the exislence of the posterior for the case when
the baseline density f belongs to the family of SMN and g = 1.

COROLLARY | Consider the model (4)46) with g = 1, where =; wakrp (O, d,7: ) and [
is @ SMN. Then, the posterior distribugion of (3, &, 7] is proper ,.':Im'.mf: dthat ¥y & C {J[] where
CI(X) denotes the column space of X, n = p, lagether with candition (i) from Theorem [,

This result is satisfied with probability one since the distribution of the residval ermors is con-
tinuons. For the case when g = 1, conditions for the existence of the posterior associated to the
model with symmetric errors become mone restrictive. Next, we presenl some paricular cases
where the propriety of the posterior distribution can be casily checked.

COROLLARY 2 Consider the model (4)<6) and suppose that the baseline densit [ in (1) is
either a normal diviribetion, a Logivtic disiribution, @ Laplaoce distribution, or a generalived
hyperbaolic distribution with fived shape parameter Suppose thaty @ C(X). n > p+ 1 — g, and
condition (ifi) from Theorem (1) are satisfied. Then, the posterior distribution (3, o, 7] is proper.

Muodel (43-(6) can be implemented by using the “twopisce” B package. Moreover, several
Markov Chain Monte Carlo (MO "‘..ll11p|:.‘r“. have been developed for this kind of models.
For instance, [22] propose a blocked Metropolis-within-Giibbs algorithm that takes advantage of
the representation of SMM distributions. For the case when £ in (1) is a Laplace distribution,
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23] proposed an altemative MCMC algorithm based on a uniform mixiure representation of the
[aplace distributicon.

We point out that Bayesian quantile LEMs [25] represent a family of models closely related
tor (4). These models can be interpreted as the LRM i4), with ¢ ; distriboted according 1o o two-
picce Laplace distribution, where the parameter 7 is fixed acconding to the quantile of interest
specificd by the vser. We emphasise that, in our context, we do not ix the parameter = but,
instead, obtain posterior inference about this parameter using the prior stuctue (6).

Choice of the prior for

Rubio and Steel [17] proposed a prior elicitation strategy for the parameter v, based on the
interpretation of this parameter, that can be vsed o construct a weakly informative proper prior
They propose assigning a Beta(og. &) prior on a measure of skewness which is an injective
function of the parameter <. This strlegy induces o proper prior on 7 which can be used 1o
coms el informative and noninformative priors on 72

() la’ (7 )B(7) — a7y ()]

- I.[,lﬂ Ly |.
() + bfy)]==te al ) ()1,

where a'(+) and (-] denote the derivatives of a-) and &(.), respectively. For the case when
dn = by 1 /2, coupled with the parameterisation in [12], this strategy leads to the Jeffreys
priocof 7 [17].1fa; = By = 1, this strategy leads to a uniform prioron 3 € (—1, 1). Throughout
this paper we adopt this prior with ag = &, = 12, this is 7{7) = (1 —+¥) . This prior has
been shown to indouce a posterior distribution with good frequentist properties in the context of
location-scale models [17].

4. Accelerated Mailure time models

4.1  Propriety results

AYT models ane of great interest in survival analysis given that they can be used for modelling

a =et of survival times T = (T, ... 7] in lemms of a set of covariates 3 through the model
equalion:

;= loe(T) =x/B+e;, §=1,....m, (73
where @ is a p-dimensional vector of regression parameters, and X — %/ ..., x 1 is aknown

i pdesign matrix of full column rank. The use of normal and Logistic residual errors represent
the most commeon distributional assumptions. Other distribotional assomplions were discussed
Section 1 and in [ 1&].

We assume that «; i TR0, o, d, 71 ). where the baseline density [ is a SMMN. IF we adopt
the prior structure (6) for this model, then the corresponding posterior is proper under the con-
ditions in Corollaries 1 and 2. However, 4 common challenge that arises in the context of the
analysis of ime-to-event data is the presence of censoned observations (see [16] for a discussion
on this). The following resull provides sufficient conditions for the propriety of the posterior
distribution for the case when the sample contains both censored and uncensored observations.

THEOREM 2 Consider the linear regresion madel (7] with prior {6). Suppose that n. < n
swrvival timey are censored anad 1w, it — n, are obyerved. Lel v, be the sel of uncensored
obrervalions and X be the corresponding design mairix. Then, the posierior distribulion of
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(3. . 8,7 is proper provided that the posterior distribution associated 1o the n. uncensored
ohyervalions iy proper.

Since this result relies only on the sub-sample of uncensored observations, we can use the
resulls in the previous section o check the propricty of the posterior. Cormollary 1 provides con-
ditions for the case when s a SMN and g = 1, while Corollary 2 provides conditions for the
case when g = 1 and cenain particular choices of f.

An extreme case that arises in practice is when the sample contains only censored observa-
tions. The next result presents sufficient conditions for the existence of the posterior distribution
in this scenarico.

COROLLARY 3 Consider the model | 7) with prior (6). Suppaxe that [ is a sweale mixture of
normals, g = 1, n; < n observalions are interval censored, where the length of these intervals
is finite, and that the other n — n; observations are censored of any other type. Denote the
ny interval-censored ehservations as (Iy,... 1, ), and let X, | be the corresponding design
submatriv. Then, the correspending posterior ix proper if £ 0y ® s I, and the column
space of X, | are disjoint, fogether with the condition vy = p, and condition (ii) from Thearem
i

Similarly, for g = 1 we have the following results.

COROLLARY 4 Consider the model { 7) with prier {6 | Suppose that [ is either a normal, Logis-
tic, Laplace or peneralised hyperbolic disiribution; ny < w chservations are interval censored,
where the length of thexe infervals iy finite, and that the other v — ny observations are censored
af anv ather vee. Then, the corresponding posterior is proper if £ I w oo % I, and the
column space of X, are disjoint, together with the condition vy > p + 1 — g, and condition
(i) from Theorem [

As discussed in [15], checking that £ and the column space of X, are disjoint can be for-
mulated s a linear programming problem (LPL Denote g € BP E = (£, ..., 5, ) € £ and
Fo= ;] 3 = 1o ny. Deline the 1P problem:

o

Find max 1,
r.I.E

Subjecito X, 1p = £,

and logii;) = & = logiug), 7= 1.....%05. i8)

Thus, the disjoininess condition is equivalent to verifying the infeasibility of the LP problem
(8), for which there are several theoretical and numerical wols (LP solvers) available [6]. 1t is
Imporiand o notice that the oplimisation stepin (3) represents just a tool o connect the propriety
conditions in Corollaries 3 and 4 with the feasibility of the restrictions inoa LP problem.

5 Simulation stody

[n this section we present a simulation study that illustrates the performance of the proposed
prior structure, We adopt the simulation scenarios used in [16] in onder to allow for qualitative
comparisons. We study the LEM:

s

=t

T 4 .ﬂ-_'-.l‘|_. ] .i;..n"-_:-_,' FEj, i I, ....1, {51

where we simulate the variables =) and .. from g standard normal distribution and consider
different combinations of the distribution of the residual errors and the sample size .
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In the first scenario, we simulate the residual errors from a two-picce normal distribution wich
unit scale parameter and skewness parameler O 025,005, 0075, (1. 32, 5 11.2,3],

e o

and n = 100, 250, 300, We it the LRM (9) with =, "= TP(0, o, +; £, where [ is the standard
normal PIOE. We adopt the product prior strocture (&) with | and the Jeffrevs prior on the
parameter . For each of these scenarios, we obtain [V = 1, 000 samples of size 2, 000 from the
posterior distribution using the B t-walk sampler [5] after a bum-in period of 5, 000 ierations
and thinned to every 25th iteration (this is, a chain of length 55, 000). Then, we calculate the
proportion of 95% credible intervals that include the tue value of the parameter, the median
posterior estimators, the maximum a pesterion (MAP) estimators, the maximum likelihood es-
timators (MLEs) for comparison, as well as the median of the Bayes factors associated o the
hvpothesis By @~ = 0 (approcimated using the Savage-Dickey density ratio).

In the second and third scenarios, we simulate the residual errors from a pvo-piece Student-
i distribution with degrees of freedom & 2. 4. For these scenarios we O the RN (9 with
= TR0, 8, 7 Fowhere (s the Student-f PDEF with § = 0 degrees of freedom. We adopt
the prior structure (6) with o I and the Teffreys prior on the parameter 7. For the degrees of
frecdom 4, we use the approximation o the Jeffreys prior for this parameter proposed in [9]:

28

T[] = ——.
[] [I'.||"'II-:|!.

(100}

We choose the hyperparameter d = 10, which induces a prior with mode at & = 5. In the fourth
scenario, we simulate from the linear regression model:

log (257 ) I_,:_-'ff bepy d=1,0..,m,

with = = 100, 230, 500, F = (1,2,3)", and x; = [Lizp, 2) " The second and third entries
of the covariates x; are simulated from a right-half-nomal with scale parameter 1/3. The er-
mors =, ane simulated from a two-piece normal distribution with pamameters g = 0, ¢ = .25,
ancd “,- 0,025, 0.5, 0,75, We tuncate the observations o, that are greater than 17.5, produc-
ing samples with 15%-35% censored observations. Results are reported in Tables 1-12 of the
Supplemental Material. In the first scenario we can observe a good coverage as well as good
frequentist properties of the estimators associated o the proposed model overall, We can also
observe that the Bayes factors clearly identify the case when the errors are syvmmetric. In the
sevond and third scenarics we observe a good coverage of the credible intervals associated to
the regression pammeters (3, J2, 94 ) as well as an acourate point estimation. However, in order
to gel a decent coverage of the credible intervals associated to the scale an tail parameters [, 8],
wee need at least 250 observalions. This is a well known phenomenon aboul the estimation of de-
arees of freedom of the Stdent-f distribution. Interesting v, the level of skewness does nol seem
tov affect the performance of the credible intervals, even though for the case when 7 = 0 we ane
fitting an overparameterised model. Although the proposed mode] performs well even when the
true distribution of the residual emorms is symmetric, in practice, we recommend conducting a
formal model selection between the models with symmetric and asvmmetric crrors in order 1o
avoid overparameterisation, which has o other unpleasant effects such as increasing the length
of the credible intervals. The presence of mild levels of censored observations does not greatly
affect the performance of the Baves estimators and the coverage proportions as we can see from
Tables 10-12 in the Supplemental Material.
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. Applications

[nn this section we present bwo examples with publicly available real data o illustrate the vseful-
ness and performance of the proposed Bayesian LEMs. Both examples concem the study of the
survival times of cancer patients. In the second example, we discuss the impact of vsing flexible
errors in erms of prediction. For the models with two-picee residual emrors, we employ the pa-
rametersation in [12]. Posterior samples are obtained vsing the B twalk sampler [5]. Since the
implementation of the log-posterior associated o the models of interest is very tractable, other
samplers (such as Metropolis-Hastings or Metropolis-within-Giibbs samplers) can also be easily
implemented. B codes and data used for these examples are available upon request.

Model comparison is conducted in terms of three formal model selection tools: Bayesian
information criterion (BIC), Bayes factors, and log-predictive marginal likelihood (LPMIL, [19]).
Bayes factors are caleulated using an importance sampling technique. The use of the Bayes
factors with the proposed improper prior structurne is justified since we are employing improper
priors only on the common parameters of the different models, while the priors on the shape
parameters have the same interpretation across the different models (see [20] for a discussion on
this point). Baves factors and BIC are useful to identify the model that provides the best fit. O
the other hand, LPML is & measure that ranks the models of interest in terms of their predictive
performance [19]. Therefore, these o vanables provide complementary information. Their
combination is particularly relevant in survival analysis given that we are interested on selecting
the best model for the data but, since this model is often used for prediction of the residual life
of patients that survived beyond the end of the study (see [L&]), it is important o check that the
model also has a better predictive pecformance than the competitor models.

6.1 Small Cell Cancer Dala

W analyse the data set from [24] about a lung cancer study with two different types of treat-
ment. The data set contains 7 — 121 survival times (in days) of patients with small cell Jung
cancer (SCLEC) that were administrated two types of therapies. For patients with SCLC the stan-
dard treatment consists of a combination of eoposide (E) and cisplatin (P); however the optimal
order for the administration of these two treatments has not been established [24]. The group
of patients was splitted into two groups: Arm A (62 patients), whose therapy consisted of P
followed by E, and Arm B (59 patients), whose therapy consisted of E followed by B The co-
variates used for this study are the “Entry age™ (in years) and the type of treatment (Arm A
and Amm B ). The sample contains n. = 23 right-censored observations. We fit an AFT model
(71 with 4 distributional assumptions for the residoal errors: two-picce Laplace TP Laplace),
two-piece Normal (TP Normal), as well as comesponding symmetric submodels (Laplace and
Mormal). The propriety of the corresponding pesterior distributions is guaranteed by Theorem 1
and Corollary 2. We adopt the prior structure (8) with g = 1 and the Jeffreys prior on the shew-
ness parameter v £ (—1, 1), For each of these models, a sample of size 10, 000 was obtained
from the posterior distribution after a bum-in period of 50, 000 ierations and thinned o every
25 dterations (this is, 300, 000 MOMC ilerations in wotaly, Table 1 presenis a summary of the
posterior samples as well as the model comparison wols. The TP Laplace model performs better
overall (elosely follovwred by the TP Mormal model) in werms of BIC, LPML and Bayes factors,
which suggests the need for o model with heavier lails than normal and asymmetry.
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Tuhiz 1. SCLC Long Cancer data: Pesterior median and 95% credible inkerals and moedel comparison
tools. The Bayes facilors are calculated against the mode]l with TP Laplace ermors.

0.2 North Central Cancer Treatmeni Group (NCCTG) Lung Cancer Data

[n this application we analyse the NCCTG Lung Cancer data set, which is available in the “sur-
vival" B package. The data set with complete cases (removing missing covariates) conlains the
survival times (in days) of ® — 227 patients with advanced lung cancer from the NOCTG. The
sample contains n- — 63 right-censored observations. The aim of this study was to compare the
information From a questionnaire gpplied 1o a group of patients against the infonmation obtained
b the patient’s physician in terms of prognostic power [11]. We fit an AFT model with three
covariates (“age” (in vears),"sex” (Male=1 Female=2), “ph.ecog”™ [ECOG performance score,
D=good-5=dead]) as well as an intercept with 4 residual error distributions: two—picce Logistic
errors (TP Logistic), tao-picce nomal ermors (TP Mormal), and the corresponding symmetric
sub-models (Logistic and normal). Wi adopt the prior structure (6) with g = 1 and the Jeffreys
prior on . The propricty of the corresponding posterior distributions is guaranteed by Theorem
1 and Corollary 2. We obtain g posterior sample of size 10, 000 after a bum-in of 50, 000 and
thinned w every 25th iteration (300, 000 MO iterations in total). Table 2 shows a summary of
the posterior samples as well as the model comparison tools. The model with TP Logistic ermors
performs better overall, which suggests the presence of skewness and slightly heavier tails than
normal.

Meadz] IF Legmalic TF N 1 i Roamal
Taleracpt 4531 [ 8314 7565 [ FOEET T TiieE=r T 5045 [ 49E5, 962 & 477 (5.3, T.62E61
Age L0100 0025, Ol S10LS | -00030, 00015 1008 (41023, Q06 SADLE (0034, 110035
S 1435 (0L13R 07013 4 (DU157.0.T25) 045 1272, 1.7T61) L5218 1.23], LT
phaocop I3RT 00573, 14T 1326 (D07 LT 1407 ¢-0ADL, 221 S35 (05710157
o Q495 D420 0560 0.9 ¢DUEOG L0135 0548 ¢ 0470005235 1.IH3 .90, 11700
» 1354 (D129, DAl NARL DI 5050
RIC SER AN L5050 5I1T ] e
Herpes Fctar 000G n.0149 110"
1FMI I SN -1T4A4LE -272.91 -3

Tubie 2. NOCTO Lung Cancer daia: Posterior median and 95% credible intervals and model comparison
tools. The Hu}-\:x fctors ame caloulated :|gu.in.-:l the model with TF |.-::-Ei.-:li¢_' arrars

We now analyse the impact of using more fAexible errors in terms of prediction. As discussed
in [16] and [13]. it is often of interest © study the distribution of the residoal life of patienis
that survived beyond the end of the study. In order to obiain these predictions, consider the AFT
model (7) with a general residual error distribution = ; i TP(e(m ). a3 f), whene e(m, 7)
denoles the point at which the AFT model is centred (e, the mode, mean, or median). Denole
kv @ = (@, 7, 7) the model parameters, and let 7 @) be the comesponding prior. Suppose that
the jth subject survived beyend time 75, and therefore the corresponding observation is right-
censored. Then, the posterior predictive CDF of the residual life for this subject is given by:

LI, 3) — LT T )
| — II(T_, [T, )

el |1, ) =Ty, (11)
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where

]
LT, ) w(r|T, j)dr,
a0

is the posterior predictive CIE associated to this model, and
l
m(r|T. ) f—.~i|lug rl@, x| m@|T)de, v =0, i12)
.

is the posterior predictive POV associated 1o subject §, and = 8)°1') represents the pesterior distri-
buticm of @, We recommend centring the model (after sampling from the posterior distribution)
around the median rather than the mean since the laiter may not exist for cerain combinations
of the distribution of the residual errors and priors. Moreover, median estimators are mobust o
the presence of outliers. The posterior predictive survival function of the residual life of subject
§ is given by Sg(f|L j) I — [g(#| T, 7). This estimator takes into account the uncertainty
on the model parameters given that they are integrated oul with respect 1© the corresponding
posterior distribution in (12). If we have a sample from the posterior distribution =(&|°1). then
we can approximate (11 by vsing a Monte Carlo approximation of (12). One advantage of the
predictive estimator (11 over the plug-in estimator proposed in [ 16] is that this incorporates the
posterior uncertainty aboul the model parameters.

Tahle 3 presents a summary of the quantiles of the residual life distributions, for the Gest 5 cen-
sored patients, using the AT models with TP Logistic and Logistic errors centred at the median.
As we discussed before, the model with TP Logistic erroms produces a better fit and a better pre-
dictive performance. The quantiles higher than 505 associaled to the model with Logistic ermors
are much larger than those obtained with the model with TP Logistic errors. Therefore, although
the inference on the regression parameters is very similar for these two models (see Table 2), the
corresponding prediction intervals are very different. These differences can be explained using
the expressions (1150123 which indicale the dependence of the predictions on the residual ermor
distribution and the posterior distribution (which are different in this case).

huandile % 1% R THE 1%
TF Lagabe radel
Paticat 1 10374 116345 13620 1THOD | ZHTaR
Patical 1040 2 11257 1267.3% 16150 | Dedld
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Paticat 4 L E 10735 140 3 1M27.5 | 33T
Paticat 5 [ 63 11E7.5 15456 | DoIdS
Legiatic musdel

Paticat 1 10439 1211.7 1549 4 151R6 | STELS
Patical 15z a 120&.5 15303 | 12415 | %4530
Paticat 3 a3 11600 14B5.5 1757 | %E1Z
Paticat 4 ERES 1054.R 13743 11367 | 53ET.E
Patical 5 Ar3 1013.% 1302 4 11562 | A0

Tuhiz 3. NOCTO Long Cancer data: Quantiles of the predictive mesidual life distribution for the Medizan
TP Lagistic and Logistic models.

7. Discussion

We introduced a Aexible class of LREN that can account for departures from normality of the
residual errors in terms of heavy tails, asymmetry and certain kinds of heteroscedasticity. We
proposed a general noninformative prior strocture and provided easy o check conditions For the
propricty of the comesponding posterior distribution. A simulation study suggests a good Fre-
quentist pecformance of the proposed Bavesian models. The propriety resulis cover cases when

10
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the response variables are censored, which allows Tor implementing the proposed Bayesian mod-
els in survival analysis. The implementation of these models is tactable using already available
R packages. For instance, the R package “twopiece” provides commands for the implementation
of the PDE and CIE associated to TPSMM distributions.

In the real data applications, we have compared the proposed models against appropriate com-
petitors using different sonts of mode] comparison tools, In the context of survival analysis, we
advocated for the use of model selection wols that provide information about the model chat
better fits the data, as well as tools that prowide information about the predictive performance of
the models. This is particolarly imporant in cases when the selected model is used for predicting
the remaining life of o censored subject.
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