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ABSTRACT 

 

Studies that explore associations between the local food environment and diet routinely use 

global regression models, which assume that relationships are invariant across space. Yet, 

such stationarity assumptions have been little tested. We used global and geographically 

weighted regression models to explore associations between the residential food 

environment and fruit and vegetable intake. Analyses were performed in four East London 

boroughs, using the data of 969 adults in The ORiEL (Olympic Regeneration in East 

London) Study, collected between April and July 2012. Exposures were assessed both as 

absolute densities of healthy and unhealthy outlets taken separately, and as a relative 

measure (%healthy outlets). Overall, local models performed better than global models 

(decreased Akaike Information Criterion). Locally estimated coefficients varied across 

space, regardless of the type of exposure measure, although changes of sign were observed 

only when absolute measures were used. Despite findings from global models showing 

significant associations between the relative measure and fruit and vegetable intake 

(β=0.022, P<0.01) only, geographically weighted regression models using absolute 

measures outperformed those using relative measures. This study suggests that a greater 

attention should be given to non-stationary relationships between the food environment and 

diet. It further challenges the idea that one single measure of exposure, whether relative or 

absolute, can reflect the many ways the food environment may shape health behaviours.  
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Over the last decade, an extensive body of research has investigated how the local food 

environment may be related to dietary behaviours (1). A large majority of studies have used 

global regression to model the association between exposure to either healthy or unhealthy 

food environments and diet-related outcomes (2, 3). Reviews have however highlighted the 

lack of consistency in findings (2, 3), with associations being either positive (4-10), 

negative  (11), or non-existent (12-18).  

 

By using global regression models, researchers have implicitly relied on the assumption of 

a stationary relationship, that is, parameter estimates describe what is assumed to be an 

invariant relationship across space. However, public health researchers have begun to 

challenge the stationarity assumption. Using spatial regression modelling, such as 

geographically weighted regressions (GWR), a technique that allows for spatial variations 

in parameters estimates (19, 20), they have highlighted variations in associations across 

space between a range of environmental exposures and outcomes such as diet (21), obesity 

(22-27), active transportation (28), and birth weight (29). Fraser et al. have observed 

marked spatial variations, both in magnitude and nature, in the relationship between fast-

food residential exposure and consumption among adolescents living in Bristol, United 

Kingdom (21). Higher exposure was significantly associated with increased consumption in 

some areas, but decreased consumption in others, even after adjusting for deprivation, 

gender, and physical activity levels. Overall, local modelling, when compared to global 

modeling, has shown better performance in terms of improved goodness-of-fit (22, 25, 27, 

28), increased R² (22, 23, 25, 27, 28), and decreased spatial autocorrelation in regression 

residuals (22, 23, 25, 27)). Where non-stationarity has been pointed out, authors have 

therefore raised a caveat associated with the use of global models (22, 30). 
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Demonstrations of how a more spatially explicit approach to modelling might improve the 

understanding of associations between the food environment and diet is limited, however. 

To address this gap, this paper uses GWR models, alongside ‘classical’ global models, to 

predict fruit and vegetable intakes in relation to the residential food environment. Recent 

literature has suggested that relative measures, that account simultaneously for both healthy 

and unhealthy exposures, may be better correlates of diet than the traditional absolute 

measures, that account for either healthy or unhealthy outlets alone (31, 32). Therefore, 

residential exposure was assessed both as absolute densities of healthy and unhealthy 

outlets, taken separately, and as a relative measure as the percentage of healthy outlets. 

 

 

METHODS 

 

Data 

 

Study design and participants. Adult socio-demographic and behavioural data were drawn 

from The ORiEL (Olympic Regeneration in East London) Study, a school-based 

longitudinal controlled quasi-experimental study in four boroughs of East London 

(Hackney, Tower Hamlets, Newham, and Barking and Dagenham) evaluating the health 

and social legacy of the London 2012 Olympics (33). For the purposes of the current study, 

baseline cross-sectional data collected between April 2012 and July 2012 on the parents of 

the adolescents in the surveyed schools were utilised (n=1277). Data were collected via 

computer assisted personal interviews with a response rate of 60%. Out of the 1277 

interview participants, those whose home was located outside of the four study boroughs 
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(n=31), who declared they had resided for less than a year at their current address (n=73), 

and for whom data was missing on the variables included in the models (n=228), were 

removed. 969 individuals were used for the analyses. 

 

Food environment data. Data on the local food environment was collected from each of the 

four study boroughs, and in two coterminous boroughs in order to mitigate edge effects 

where the boundaries between study and non-study boroughs were most likely to be 

crossed by participants (Web Figure 1). It was assumed that the River Thames which 

bounds the southern study area acts as a natural barrier, and hence we did not collect data 

south of the river. Secondary data on the location of food businesses were obtained from 

the public register of food premises for each borough. 7,927 food outlets were geocoded to 

address-level using the OS MasterMap® Address Layer 2 product (Ordnance Survey, 

Southampton, UK) (34, 35). A sample was validated against concurrent Google Street 

View (Google Inc., Googleplex, Mountain View, California) and Bing Maps Streetside 

(Microsoft, Redmond, Washington) (see details about this validation in the Web Table 1). 

Finally, food businesses were classified according to a mutually exclusive classification 

informed by the literature (Web Table 1). Food outlet types were further categorized as 

“healthy” and “unhealthy”. The term “healthy” referred to outlets that provide a range of 

fresh, frozen and canned fruits and vegetables options (6, 36), and included chain 

supermarkets, independent supermarkets, fruit and vegetable shops, and ethnic-specific 

supermarkets. Inversely, outlets providing few or no fruit and vegetable options were 

termed “unhealthy”. They encompassed convenience stores, fast-food chains, and 

independent fast-food. The other listed outlet classes were not retained, as their affiliation 
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to either “healthy” or “unhealthy” categories was rendered difficult by a lack of visibility 

regarding how many fruit and vegetable options they were assumed to offer. 

 

Variables 

 

Fruit and vegetable intake. Building on the Health Survey for England 

(http://data.gov.uk/dataset/health_survey_for_england), participants were asked two questions about 

their average daily portions - or handful size amount ‐ of fruit and vegetable intake. 

Response categories were: “none”, “one”, “two”, “three”, “four”, and “five or more”. Fruits 

included fresh, frozen, canned and dried fruits, as well as fruit juices. Vegetables 

(excluding potatoes) encompassed fresh, frozen and canned vegetables. Fruit intake and 

vegetable intake were examined separately since previous research has found that the food 

environment may impact their intake differently (1, 5). 

 

Food environment exposure. Kernel Density Estimations were computed in CrimeStat 3.3 

(National Institute of JusticeUS) (37) for each of the seven food outlets categories retained. 

Kernel Density Estimation is an interpolation technique that transforms discrete spatial data 

into continuous density estimations based on a kernel of particular bandwidth and density 

function (38). The surface value is highest at the location of the observation point (i.e. food 

outlet location) and diminishes with increasing distance from this point, reaching its lowest 

value (e.g. zero for a quartic kernel) at the search radius (bandwidth) distance. The 

bandwidth can be fixed so that the distance from the observation point is either constant 

(fixed kernel density), or varies to maintain a constant number of observations under the 
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curve (adaptive kernel density). The output is a raster file, with density estimates provided 

at each raster cell center, by adding the values of all kernel surfaces. 

  

Density estimates were computed for raster cells of a 30 meter size, with a quartic function 

and an adaptive bandwidth using 7% of the nearest observations (Web Table 1). The use of 

adaptive rather than fixed bandwidths was motivated by two considerations. First, by 

accounting for the uneven distributions of food outlets, adaptive bandwidths avoid over- or 

under-smoothing of the continuous density function. The surface produced should thus be a 

better representation of the true density of the phenomenon than the more commonly used 

fixed bandwidth approach. Second, due to variations in the average distance between home 

and different outlet types, it is likely that people exhibit different spatial behaviours when 

accessing different types of food outlets (39-43). By allowing the bandwidth to vary as a 

function of the density of outlet types (larger and smaller bandwidths for more sparsely and 

more densely located outlet types, respectively), potential accessibility to these different 

outlet types may be better approximate. Several sizes of adaptive bandwidth were tested: 

1%, 3%, 5%, 7%, and 10% of the nearest observations (Web Table 2). The 7% bandwidth 

was retained. Density values for each category of food outlets were extracted at 

participants’ addresses, using the spatial analyst tools in ArcGIS 10.1 (Esri, Redlands, 

California). 

 

Two absolute and one relative density-based measures of food environment exposure were 

computed at the participant’s address level. Absolute exposure to healthy outlets was 

obtained by summing the densities of fruit and vegetable shops and chain, independent, and 

ethnic-specific supermarkets. Absolute exposure to unhealthy outlets was computed by 
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summing the densities of convenience stores, fast-food chains, and independent fast-food 

restaurants. The proportion of healthy outlets was derived by dividing absolute exposure to 

healthy outlets by the sum of densities of health and unhealthy outlets. 

 

Socio-demographic data. The following variables were considered as potential confounders 

of the relationship between the food environment and fruit and vegetable intake: age 

[continuous]; sex [female/male]; marital status [married, single, 

divorced/separated/widowed]; ethnic origin [White British/Irish, Asian/Asian British, 

Black/Black British, other]; highest qualification  based on National Vocational 

Qualification level [none, low, intermediate, high, foreign]; and neighbourhood deprivation 

[low, medium-low, medium-high, high] based on the “income deprivation” score of the 

2010 Index of Multiple Deprivation (Department for Communities and Local Government 

2011) available for every Lower Layer Super Output Area (LSOA) in England. We 

extracted score values at participants’ postcode using ArcGIS 10.1 and classified the 

resulting variable into quartiles. Because time spent at home may confound how the food 

environment relates to fruit and vegetable intake (44), we computed a proxy for time spent 

in the neighbourhood variable, termed time-budget [low, intermediate, high, other], derived 

from employment status and working hours. We considered time-budget to be inversely 

proportional to the time individuals reported spending in constrained activities, including 

work, studying and looking after the home or family members. Individuals working more 

than 30 hours a week were categorised as having a ‘low’ time budget; those working 

between 30 and 12 hours a week, being students, or looking after home or family were 

classified in the “intermediate” group. Finally, those working less than 12 hours a week,  or 

being retired, or unemployed were considered having a ‘high’ time budget. An additional 
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category - “other” - encompassed people with long-term sickness or disability, on maternity 

leave, on holiday or temporarily laid off, and individuals who declared another employment 

status. 

 

Statistical analyses 

First, fruit intake and vegetable intake were modelled separately using global linear 

regression (Ordinary Least Squares) in SPSS v.20 (IBM Corporation, Armonk, New York), 

with the three density measures used as the exposure variable in separate models. All six 

resulting models were fully adjusted for the following potential confounders: age, sex, 

marital status, qualification, ethnicity, time-budget, and neighbourhood deprivation. 

Because previous studies have found gender differences in the relationship between food 

environment exposure and dietary intake (15, 45-47), the interactions between sex and 

exposure were included in preliminary analyses, but excluded from each of the six models 

since they were not significant (p-values ranged from 0.141 to 0.972). 

 

Second, spatial regressions (GWR) were performed with GWR 4.0.8 software (48), in order 

to account for the possible spatial non-stationarity of these relationships. Rather than 

calculating global parameter estimates based on one regression, GWR performs a series of 

local regressions with coefficients varying conditional on the location (i.e. participant 

address), drawing on the weighted surrounding data points (i.e. other participants’ location) 

(20). Only the β-coefficients of exposure to the food environment were allowed to locally 

vary over space, while the terms for other explanatory variables were fixed (semi-

parametric GWR). We used a kernel with an adaptive Gaussian function, due to the uneven 

distribution of participants’ address (regression points), and with the bandwidth minimizing 
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the corrected Akaike Information Criterion (AICc). The local β-coefficients of the six 

relationships under study, as well as the corresponding t-values, were mapped with ArcGIS 

10.1 using Inverse Distance Weighted interpolations. 

  

Third, AICc values, reported for both global regression and GWR models, were used to 

compare models’ performance (49). The model with the lower AICc was taken as having a 

better fıt. A difference in AICc of more than 3 values was regarded as a notable difference 

between two models (20). Eventually, spatial autocorrelation of standardized residuals was 

checked for both global and GWR models in GeoDa (GeoDa center, Arizona State 

University), using Moran’sI. Spatial weights were row-standardized and Euclidean inverse 

distance-based, with a 1 kilometer - bandwidth.  

 

 

RESULTS 

 

Descriptive analyses 

 

Descriptive characteristics of participants are presented in Table 1. Participants were 

mostly women (75.5%), married (63.8%), and had predominantly no or low qualifications 

(22.7% and 29.2% respectively) and an intermediate time-budget (54.6%). The study 

sample was ethnically diverse with the largest group being “Asian/Asian British” (33.3%), 

followed by “White British/Irish” (25.0%), “Black/Black British” (22.5%) and “Other 

White Background” (13.8%). Three-quarters (74.6%) of participants declared eating two or 

more portions of fruits a day, 42.3% reported consuming three or more portions of 
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vegetables, and 51.6% attained the recommended intake of five or more portions of fruits 

and vegetables (50). Participants’ exposure to the food environment is presented in Table 2. 

On average, participants were exposed to 2.65 [Min: 0.13; Max: 15.03] healthy and 16.33 

[1.26; 50.66] unhealthy outlets per km². The average percentage of healthy outlets around 

home was 12.55% [3.32%; 37.42%]. Participants with higher exposure to healthy outlets 

were more likely to also have higher exposure to unhealthy outlets (Table 2). 

 

Global regressions 

 

In fully-adjusted global models (Table 3), the proportion of healthy outlets was positively 

associated with both fruit intake (Model 3: β=0.022; P < 0.01) and vegetable intake (Model 

6: β=0.022; P < 0.01). However, absolute measures of food environment exposure were not 

associated with any outcome. Both for fruit and vegetable intake, AICc values were lower 

for models using relative measures, suggesting better model performances. Spatial 

autocorrelation in standardised residuals was detected in all six models (P<0.001). 

 

Local regressions 

 

Table 3 shows that, compared to global regressions, local modelling was associated with 

both a decrease of AICc (around 12 points for models using relative exposures, up to 32 

point for models using absolute exposure measures) and a suppression of spatial 

autocorrelation in standardised residuals. Furthermore, regression estimates varied across 

space (Figures 1 to 4). In the relationship between absolute measures and fruit or vegetable 

intake, there were spatial variations in the magnitude and sign of local estimates. Increased 
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exposure to healthy outlets was significantly associated with increased fruit (Fig1A)&3A)) 

and vegetable (Fig2A)&4A)) intake in the central and extreme north-east parts of the study 

area, but with decreased vegetable intake in the south-western part. For unhealthy outlets, 

increased exposure was not significantly associated with decreased fruit intake 

(Fig1B)&3B)) and vegetable intake (Fig2B)&4B)) in the eastern part of the study area, but 

to increased fruit intake in the central part and increased vegetable intake in the eastern part 

of the study location. When relative measures were used, local estimates kept strictly 

positive, and were significant in the eastern half (vegetable intake – Fig2C)&4C)) and two-

thirds (fruit intake – Fig1C)&3C)) of the study area. Local modelling of fruit intake 

performed the best (lowest AICc) when exposure was assessed as absolute density of 

unhealthy outlets. Local modelling of vegetable intake performed the best with exposure 

assessed as absolute density of healthy outlets. 

 

 

DISCUSSION 

 

This study used local (GWR) alongside global (Ordinary Least Squares) modelling to 

explore the relationship between different specifications of the food environment (absolute 

and relative measures of exposure) and dietary behaviours. We found evidence of non-

stationarity in the relationship between the food environment and fruit and vegetable intake, 

regardless of the type of exposure measure. In line with previous studies (21-23, 25, 27), 

we observed that local regressions performed better than global regressions (decreased 

AICc and suppression of spatial autocorrelation in standardised residuals). Moreover, 

locally estimated coefficients and t-values varied across the study area. Among the 
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plausible reasons for these variations, the omission of spatially structured determinants of 

fruit and vegetable intake is to be mentioned (20). Structural factors shaping individuals’ 

behaviours across space (e.g. car ownership, proximity to public transport, walkable 

neighborhood) may modify how people relate to their residential environment (51, 52), by 

extending or conversely limiting food outlet experiences beyond the vicinity of home. In an 

attempt to account for the food environment individuals get exposed to away from home, 

all models were adjusted for a proxy of the time spent at home. This variable may, 

however, have only partially reflected the weight of non-residential exposures on the diet 

and residential food environment relationship. Additionally, personal income may not have 

been fully accounted for by using a proxy in the form of an aggregated measure of income 

at Lower Layer Super Output Area (LSOA) scale. Moreover, a few outlet types were 

excluded from exposure assessment (e.g. full-service restaurants), which may yet play a 

role in fruit and vegetable intake. As a result, potential misclassification issues are to be 

expected, especially in the western part of the study area where excluded outlets were 

particularly concentrated. Eventually, for models using absolute measures, considering only 

“healthy” outlets, while overlooking “unhealthy” options (and vice-versa) may plausibly 

give rise to an omitted variable bias (53). We found negative correlations (P <0.05) 

between unhealthy (or healthy) outlet density and the locally estimated coefficients of the 

associations between healthy (or unhealthy, respectively) outlet density and fruit and 

vegetable intake (results not shown). Changes of sign across the study area when absolute 

measures are used may therefore partly result from not controlling for the alternate 

exposure. This finding suggests that greater consideration of relative measures of exposure 

is required, consistent with mounting evidence of association between relative measures of 



14 

exposure and various health outcomes in the US (e.g. using the Retail Food Environment 

Index or RFEI (54-56)), Australia (32) and Canada (31, 57, 58).  

 

The better performing (lower AICc) of the GWR models using absolute measures of 

exposure compared to those using the relative measure however warns us against the overly 

simplistic assertion that relative measures are “superior” to absolute measures. Exploration 

of potential threshold and saturation effects of relative measures of exposure on fruit and 

vegetable intake may help understand the better performing of local models using absolute 

measures. Masson et al. observed that, in Melbourne, for households in areas with between 

10% and 15% of healthy outlets, the adjusted odds of healthier purchasing were 48% higher 

than those of households in areas with no more than 10% healthy food outlets (adjusted 

odds ratio (OR) =1.48, 95% confidence interval(): 1.12 to 1.96). However, the magnitude 

of the association for those living in areas with between 15% and 22% of healthy outlets 

was fairly similar to that estimated for the middle category of the relative measure (i.e. 10–

15%). Mason et al.’s findings suggest a possible saturation effect above 10% of healthy 

stores. Furthermore, estimates failed to reach significance in areas located in the western 

part of the study, regardless of the type of exposure measure. An explanation may be that, 

in environments abundantly provided with food sources (which is the case in the western 

part of the study), the influence of exposure to the food environment may decline in favour 

of socio-economic or personal influences (59).  

Alongside model misspecifications, non-stationarity may therefore also stem from intrinsic 

differences in the way individuals respond to specific characteristics (i.e. densities of 

healthy outlets or unhealthy outlets, or relative densities of healthy and unhealthy outlets) 

of their local food environment (20). The relationship of individuals to their environment is 
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likely to be of a recursive nature, with environments and individuals mutually influencing 

each other (60, 61). Over time, this recursive relationship may induce specific emerging 

properties pushing individuals to relate differently to some specifically measured 

characteristics of their environment. Identifying the contextual conditions under which 

absolute and relative measures of exposure should be used to model fruit and vegetable 

intake would help better quantify the influence of local food environments on dietary 

behaviours. In turn, this would help develop locally-targeted policy interventions 

accounting for context-specificities. 

 

Limitations 

 

First, the cross-sectional nature of our data precludes any conclusions regarding causal 

relationships between exposure to the food environment and fruit and vegetable intakes. 

Second, external validity of this study is limited since ORiEL participants are non-

representative of the United Kingdom population as whole. The overrepresentation of 

women (75.5%), and some ethnic minorities in our sample may have impacted the declared 

intake of fruit and vegetable of participants (5, 62, 63), which is approximately twice as 

great as the national figure (62). However, our findings are conceptually acceptable and 

consistent with existing literature (21, 31, 32). Third, due to ambiguities over how to 

classify a few food outlet types as “healthy” and “unhealthy”, we excluded from our 

analysis outlets that may have yet played an important role in fruit and vegetable intake. 

Not fully accounting for the local food environment may have resulted in biased estimates. 

Fourth, exposure measures derived by using an adaptive bandwidth do not account for 

possible individualised spatial mobility potential (e.g. having access to a car) (64). Better 
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exposure assessment would benefit from investigating individuals’ movements across 

space and time, and considering individuals’ perception of the food environment  (65) ‒ for 

example through using ecological momentary assessments (EMAs) (66). Finally, multi-

collinearity issues among local coefficients have been raised in GWR models (67). 

However, this is unlikely to have a major impact on our findings as only the β-coefficients 

of exposure to the food environment were allowed to vary over space. 

 

Conclusion 

 

In this paper we demonstrated that global models using the relative measure outperformed 

those using absolute measures. The local modelling of exposure-diet relationships, 

however, suggests that the relative measure may not fully capture the complexity of 

environmental risks for dietary behaviours. We have highlighted spatial variations in the 

association between the food environment and fruit and vegetable intake, regardless of the 

type of exposure measure. Moreover, local models using absolute measures outperformed 

those using the relative measure. More research on the relative contributions of absolute 

and relative measures of exposure is needed in order to guide efficient contextual policy 

responses to unhealthy dietary behaviours. GWR can be a useful tool to better understand 

the role of contextual factors that shape how individuals respond to their local food 

environment. 
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Tables 

 

 

Table 1. Socio‐demographic Characteristics and Fruit and Vegetable Intakes of Individuals (n=969), Baseline 
of the Olympic Regeneration in East London (ORiEL) Study, London, United‐Kingdom, 2012 

 

 
 No. %   

Sociodemographic characteristics  
 

Age a   40.25 (8.21)  

Sex   
 

   Female 732 75.5  

   Male 237 24.5  

Ethnic origin   

   White British or Irish 242 25.0  

   Other White background 134 13.8  

   Asian or Asian British 323 33.3  

   Black or Black British 218 22.5  

   Other ethnic background, including mixed background 52 5.4  

Highest qualification level    
 

   None 220 22.7  

   Low 283 29.2  

   Intermediate 83 8.6  

   High 188 19.4  

   Foreign 195 20.1  

Marital status   

   Married or in a civil partnership 618 63.8  

   Separated, but still legally married or 
   in a civil partnership; Divorced; Widowed 123 12.7  

   Never married or never in a civil partnership 228 23.5  

Time-budget   

   Low time-budget 193 19.9  

   Intermediate time-budget 529 54.6  
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   High time-budget 206 21.3  

   Non applicable 41 4.2  

    
 

Food intakes   
 

Daily fruit consumption    
 

   0 portion 70  7.2  

   1 portion 176  18.2  

   2 portions 280  28.9  

   3 portions 258  26.6  

   4 portions 112  11.6  

   5 or + portions 73  7.5  

Daily vegetable consumption   
 

   0 portion 47 4.9  

   1 portion 204 21.1  

   2 portions 308 31.7  

   3 portions 227 23.4  

   4 portions 103 10.6  

   5 or + portions 80 8.3  

Daily fruit and vegetable consumption   
 

   < 5 portions 469 48.4  

   5 or + portions 500 51.6  

Abbreviations : SD, standard deviation. 

a Value is expressed as mean (SD)    
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Table 2. Measures of the Food Environment Exposure at Residential Address of ORIEL Participants (n=969), 
London, United‐Kingdom, 2012 

 

 

Mean  
(SD) Minimum Maximum 

Spearman r Value 
(p‐value) 

Absolute densities around home   

All healthy outlets (nb of healthy outlets/km²) 2.65 (2.26) 0.13 15.03  

All unhealthy outlets (nb of unhealthy outlets/km²) 16.33 (9.05) 1.26 50.66  

Relative density around home     

Percentage of healthy outlets (%) 12.55 (5.83) 3.32 37.42  

    
Correlation between densities of healthy and unhealthy 
outlets around home    0.866 (<0.001) 

Abbreviations : SD, standard deviation.     
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Table 3. Global and Local Modelling of the Relationships Between Different Food Environment Exposures and Fruit and Vegetable  Intake  for ORiEL Participants 
(n=969), London, United‐Kingdom, 2012 

 

Model 
 

OLS  GWR 

β  95% CI  AICc  Moran’s I  β g  AICc 

Selected 
Bandwidth 

Minimizing the 
AICc 

Moran’s I 

1a  0.037  0.00, 0.07  3248.56  0.0258 j  ‐0.121, 0.14  3232.11  120  ‐0.0022 

2b  0.003  ‐ 0.01, 0.01  3252.09  0.0257 j  ‐0.098, 0.061  3220.73  48  ‐0.0073 

3c  0.022 i  0.01, 0.04  3243.88  0.0239 j  0.009, 0.039  3232.65  269  0.006 

4d  0.023  ‐0.01, 0.06  3196.53  0.0254 j  ‐0.584, 0.187  3163.85  70  ‐0.0075 

5e  ‐0.003  ‐0.01, 0.01  3197.68  0.0251 j  ‐0.022, 0.019  3175.73  259  0.0038 

6f  0.022 i  0.01, 0.04  3189.29  0.0242 j  0.01, 0.045  3176.39  253  0.0025 
Abbreviations : AICc, Akaike information criterion corrected; CI, confidence interval; GWR, geographically weighted regression; OLS, ordinary least squares 

a Fully adjusted linear regression model estimating the association between healthy outlets’ density (nb/km²) and fruit intake 
b Fully adjusted linear regression model estimating the association between unhealthy outlets’ density (nb/km²) and fruit intake 
c Fully adjusted linear regression model estimating the association between %healthy outlets’ density (nb/km²) and fruit intake 
d Fully adjusted linear regression model estimating the association between healthy outlets’ density (nb/km²) and vegetable intake 
e Fully adjusted linear regression model estimating the association between unhealthy outlets’ density (nb/km²) and vegetable intake 
f Fully adjusted linear regression model estimating the association between %healthy outlets’ density (nb/km²) and vegetable intake 
g Range of locally estimated coefficients 
i P < 0.01 
j P < 0.001 
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List of figures 

 

Figure 1. Spatial variations of the estimated coefficients of the relation between three types 

of food environment exposures ‒ A) density of healthy food outlets, B) density of 

unhealthy food outlets, and C) percentage of healthy outlets ‒ and fruit intake for ORiEL 

participants (n=969), London, United-Kingdom, 2012. Cut-points of β-coefficients 

approximate quartiles, yet slightly modified so that positive and negative values of 

estimates are not mixed within a same colour hue. 

Figure 2 Spatial variations of the β-coefficients of the relation between three types of food 

environment exposures ‒ A) density of healthy food outlets, B) density of unhealthy food 

outlets, and C) percentage of healthy outlets ‒ and vegetable intake for ORiEL participants 

(n=969), London, United-Kingdom, 2012. Cut-points of β-coefficients approximate 

quartiles, yet slightly modified so that positive and negative values of estimates are not 

mixed within a same colour range. 

Figure 3 Spatial variations of the t-values (absolute value) of the relation between three 

types of food environment exposures ‒ A) density of healthy food outlets, B) density of 

unhealthy food outlets, and C) percentage of healthy outlets ‒ and fruit intake, for ORiEL 

participants (n=969), London, United-Kingdom, 2012. A |t-value| ≥ 1.96 shows significant 

associations (P-value ≤ 0.05). 

Figure 4 Spatial variations of the t-values (absolute value) of the relation between three 

types of food environment exposures ‒ A) density of healthy food outlets, B) density of 

unhealthy food outlets, and C) percentage of healthy outlets ‒ and vegetable intake, for 

ORiEL participants (n=969), London, United-Kingdom, 2012. A |t-value| ≥ 1.96 shows 

significant associations (P-value ≤ 0.05). 
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Web Table 1. Descriptive Data of the Food Environment of Six East-London Boroughsa (Newham, Tower Hamlets, Hackney, Barking & Dagenham, Islington and 
Redbridge), London, United-Kingdom, 2012 
 

  

Type of Food Outlets Description Nutritional Class No. of Food
Outlets 

Kernel density estimation 
Bandwidth size: 7% nearest 

neighbors  

   Number of 
neighbors 

Distance(meters) b 

   Mean SD 

Food Stores         

  

Chain Supermarkets Nationally recognisable multi-store companies that are able to 
leverage supply to sell a wide range of products competitively 
(i.e. Tesco, Sainsburies, Asda, Morrisons). 

Healthy 94 7 2414 1035 

  Independent Supermarkets Generic non-chain supermarket. Healthy 78 5 2054 961 

  
Ethnic-Specific Supermarkets. Independent supermarket that specialises in selling 

culturally/ethnically specific “world” food. 
Healthy 136 10 2196 1623 

  Fruit and Vegetables stores Green grocers, fruiterers. Healthy 42 3 1940 878 

  
Convenience Stores Small store (i.e. corner shop, petrol station forecourt) selling a 

limited range of foods. 
Unhealthy 1237 87 1960 617 

  
Discount Retailers Stores, either chain or independent, specifically dealing in 

discount foods (i.e. Lidl, Aldi, Iceland) 
ND 72 . . . 

  
“Pound Store” Retailers General discount stores which sell a range of non-food items as 

well as long-life or dried food goods. 
ND 57 . . . 

  
Affiliated Food stores Symbol group/franchise store (i.e. Budgens, Spar, Costcutter, 

Nisa). 
ND 167 . . . 

  
Specialist Food Stores Food store focusing on particular niches: butchers, fishmongers, 

health foods, bakers, confectioners etc. 
ND 307 . . . 

Food Services 
        

  

Fast-Food Restaurants 
(Chain&Franchised) 

A multi-premises restaurant business that offers food and drink 
in a self-service manner to eat in, or by collection or delivery to 
take away. 

Unhealthy 86 6 2031 667 

  
Fast-Food Restaurants 
(Independent) As above, but for independent restaurants. Unhealthy 1064 74 1895 579 

  
Full Service Restaurants A restaurant offering a selection of foods and beverages in 

addition to table service. 
ND 777 . . . 

  
Cafes, Coffee Shops and 
Sandwich bars 

Chain and non-chain sandwich, snack and coffee bars (i.e. 
Subway, Starbucks, Greggs, Percy Ingle) 

ND 1037 . . . 

  Pubs and Bars A drinking establishment that also provides meals.  ND 671 . . . 

Other        

  Entertainment or sport focussed 
food retailers, and private food 
businesses 

Cinemas, theatres, leisure activities, sports clubs, sports centres 
and other sporting venues that also sell food. Medical, schools, 
caring establishments, catering, wholesalers (where 
membership is required), and light food industry. 

ND 439 . . . 

Abbreviations : ND, non-determined, SD, standard deviation.  
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 a Notes on the validation of the food environment dataset. A 10% stratified random sample (n= 604) of the list of registered food businesses at the time of ORiEL 
study baseline (i.e. 2012) was taken from the four main ORiEL study boroughs (Hackney, Tower Hamlets, Newham, Barking & Dagenham). Validation was 
performed based on the match between each business in the sample and age concomitant Google Streetview street photographies. Matches (true positives) and 
mismatches (false positives) were assigned where the business was respectively the same as, and different from, the photographed businesses. False negatives 
were not assessed, because we did not have a dataset of food businesses that exist but are not recorded by the registration data. However, as it is a mandatory 
requirement under UK food safety legislation for businesses to be registered, it is unlikely that food businesses would be operating without having been recorded by 
the local authority. False negatives are therefore likely to be infrequent. The positive predictive value (PPV) for the food businesses was 0.96 (0.94, 0.98 - Clopper-
Pearson exact binomial CI). This implies that the dataset contains 96% valid records. Chi-squared tests showed no significant differences by borough, deprivation 
(tertiles of Index of Multiple Deprivation), or type of food business (food stores versus restaurants). For the reasons evoked above, sensitivity could not be 
assessed, but is expected to be high. 

b Measures of central tendency (mean) or spread (standard deviation) for the radius of the set of circular home‐centered buffers encapsulating 7% of the point 
distribution of the food outlet type 
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Web Table 2. Impact of Adaptive Bandwidth Size on the Associations Between Food Environment Exposure and Fruit and Vegetable Intakes for ORiEL 
Participants (n=969), London, United-Kingdom, 2012 

 

   
Outcome - Fruit intake   Outcome - Vegetable intake 

Adaptive 
bandwidth 

size 
Foodscape exposures 

Model 1  Model 2  Model 3   Model 4  Model 5  Model 6 

β p-value  β p-value  β p-value
  

β p-value  β p-value  β p-value

1%
 Healthy outlets .005 .539 -.001 .856 

Unhealthy outlets .002 .381 .000 .871 
%healthy outlets .000 .948 .001 .887 

3%
 Healthy outlets .016 .087 .003 .716 

Unhealthy outlets .005 .267 -.001 .822 
% healthy outlets .007 .182 .010 .062 

5%
 Healthy outlets .038 .020 .023 .146 

Unhealthy outlets .004 .430 -.003 .511 
% healthy outlets .017 .008 .017 .005 

7%
 Healthy outlets .037 .052 .023 .204 

Unhealthy outlets .003 .568 -.003 .489 
% healthy outlets .022 .004 .022 .003 

10
%

 Healthy outlets .052 .018 .032 .135 
Unhealthy outlets .003 .546 -.002 .660 
% healthy outlets .012 .011 .011 .015 
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