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Background: Oral cancers are preceded by oral potentially malignant disorders (OPMD). Understanding
genetic susceptibility for OPMD risk could provide an opportunity for risk assessment of oral cancer
through early disease course. We conducted a review of single nucleotide polymorphism (SNP) studies
for OPMD risk.
Methods: We identified all relevant studies examining associations of SNPs with OPMD (leukoplakia, ery-
throplakia and oral sub-mucous fibrosis) conducted world-wide between January, 2000 and February,
. . . 2016 using a combined keyword search on PubMed. Of these, 47 studies that presented results as odds
Oral potentially malignant disorders . o . .
Susceptibility ratios and 95% C.I were copgldered fqr full review. . o
SNP Results: The majority of eligible studies that explored candidate gene associations for OPMD were small
(N < 200 cases), limiting their scope to provide strong inference for any SNP identified to date in any pop-
ulation. Commonly studied SNPs were genes of carcinogen metabolism (n=18 studies), DNA repair
(n=11 studies), cell cycle control (n=8 studies), extra-cellular matrix alteration (n=8 studies) and
immune-inflammatory (n =6 studies) pathways. Based on significant associations as reported by two
or more studies, suggestive markers included SNPs in GSTM1 (null), CCND1 (G870A), MMP3 (-1171; promo-
tor region), TNFa. (-308; rs800629), XPD (codon 751) and Gemin3 (rs197412) as well as in p53 (codon 72) in
Indian populations. However, an equal or greater number of studies reported null or mixed associations
for SNPs in GSTM1 (null), p53 (codon 72), XPD (codon 751), XRCC (rs25487 C/T), GSTT1 (null) and CYP1A1m1
(Mspl site).
Conclusion: Candidate gene association studies have not yielded consistent data on risk loci for OPMD.
High-throughput genotyping approaches for OPMD, with concurrent efforts for oral cancer, could prove
useful in identifying robust risk-loci to help understand early disease course susceptibility for oral cancer.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Introduction

Oral cancer is a growing public health problem in the high
incidence zones of Asia (i.e. Sri Lanka, India, Pakistan and
China-Taiwan), as well as in certain parts of Western and Eastern
Europe, Latin America, the Caribbean and the Pacific Islands [1].
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Recent trends also suggest increasing incidence in the US and in
other parts of Europe including the United Kingdom [2,3]. A poor
5-year survival (3.1-3.3%) attributed to advanced stages of diagno-
sis has been shown to improve with early detection (54.3-60.2%)
[4]. Oral cancer is believed to be preceded by oral potentially
malignant disorders (OPMD), a well-established pre-cancer stage,
that can be visually detected in the oral cavity [5,6].

Oral potentially malignant disorders are early clinical features
that are thought to undergo histopathological and molecular
changes en-route to invasive oral cancer [5,7]. OPMD (leukoplakia,
erthyroplakia and oral sub-mucous fibrosis) are primarily caused
by life-style risk exposures (tobacco smoking, smokeless tobacco
use, betel quid chewing and alcohol), [5,8,9] but it is possible that
inter-individual and inter-population differences in risk [5] could
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be partially explained by different distributions of genetic variants
(including single nucleotide polymorphisms, SNPs) [10,11] that
may cause variation in the ability to metabolize carcinogens and/
or effective repair of the damage caused by them [12]. Identifying
genetic factors that render individuals susceptible to OPMD risk
could have practical significance in terms of identifying potential
biomarkers for long term risk assessment for the development of
oral cancer [13].

Systematic analyses of candidate gene association studies have
suggested that SNPs in genes involved in carcinogen metabolism,
DNA repair, cell cycle control, extracellular matrix alteration and
folate metabolism could be associated with increased susceptibil-
ity for oral cancer [11], with varying susceptibility for different eth-
nic groups [11]. However, false-positive report probability (FPRP)
analysis of these candidate gene association studies based on study
power and prior probability found no true oral cancer susceptibil-
ity variants [11].

Here, we conduct a review of candidate gene SNP association
studies for OPMD (leukoplakia, erythroplakia and oral sub-
mucous fibrosis, which have generally been related to lifestyle risk
exposures such as tobacco, betel quid and alcohol), to summarize
existing evidence on genetic variants (SNPs) for OPMD risk and
to ascertain knowledge gaps to inform future research on potential
biomarkers for risk assessment of oral cancer development
through early disease course susceptibility in high-risk populations
(based on use of tobacco, betel quid and alcohol).

Methods

We conducted a literature search in PubMed to identify genetic
association studies of single nucleotide polymorphisms (SNPs) for
OPMD conducted world-wide and published in the English
language using the following key words in titles and abstracts:
“polymorphism” OR “mutation” OR “SNP” OR “gene mutation” OR
“gene polymorphism” OR ‘“gene alteration” AND “ pre-cancer”
OR “premalignant” OR “potentially malignant” OR “leukoplakia”
OR “erythroplakia” OR “OSMF” OR *“sub-mucous fibrosis” OR
“dysplasia” AND “oral” OR “head” OR “neck” AND Humans. The
search was conducted for publications between 2000 and 2016
with the last retrieval done on 29th of February 2016. A preliminary
review of abstracts was conducted to determine study relevance. A
set of eligibility criteria was applied at this stage: (1) Genetic
association studies for single nucleotide polymorphisms in OPMD
(2) article in English (3) include human subjects (not in vitro or in
animals). Studies that met these eligibility criteria were obtained
for further review of the full-text article. Final inclusion was made
for case control studies with two specific criteria:

(i) Biopsy-confirmed cases and unrelated healthy controls
(ii) Studies which reported odds ratios with associated 95%
confidence intervals.

In addition to the electronic search of keywords, we also
searched the reference list of all identified relevant studies. If
two or more studies examined overlapping study populations, all
studies were retained if they reported on different SNPs. If no
additional SNPs were evaluated, studies of smaller sample size
were excluded.

Data extraction

The following information was extracted from each study when
possible and applicable, using a standard data collection form with
the following elements: first author, year of publication,
population ethnicity, sample size, age of study subjects, clinical

and pathological description of OPMD examined (such as leuko-
plakia, oral sub-mucous fibrosis, erythroplakia and histopatholog-
ical features such as hyperplasia and dysplasia), genes studied
and function of the gene. Information was collected on SNPs and
odds ratios with 95% confidence intervals for observed associations
(Table 1; online material only).

Results

A total of 263 articles were retrieved using the combined key
term search on Pubmed. A review of abstracts yielded 51 original
articles and 4 review articles that met the eligibility criteria for fur-
ther review of the full-text articles. Five more original research
articles were identified to meet the inclusion criteria from a man-
ual search of the reference list of the 55 included original articles
and review studies. A total of 47 eligible original research studies
conducted world-wide were included for final review (Fig. 1).

All eligible studies had biopsy-confirmed cases and healthy
unrelated controls. Heterogeneity existed among the studies in
terms of sample size and reporting of results, with less emphasis
on standardized loci information and replication. A majority of
the reviewed studies had small sample sizes and thus were under-
powered for reliably detecting risk alleles with a low to moderate
prevalence (20% or less) and effect size (RR < 1.5) [10,14].

Table 1 (online material) summarizes key characteristics of the
reviewed studies. The majority of included studies (n = 39 out of 47
studies) were small (N¢ases < 200). Over three-fourths (82.9%) of the
studies were conducted on Asian populations (53.2% Indians and
29.7% Taiwanese) and the rest (17.1%) on Caucasians, Hispanics,
African-Americans and Brazilians. The most commonly studied
SNPs were in genes of carcinogen metabolism (n=18 studies),
DNA repair (n=11 studies), cell cycle control (n=8 studies),
extra-cellular matrix alteration (n=8 studies) and immune-
inflammatory (n = 6) pathways.

Suggestive markers of increased susceptibility for OPMD risk
based on significant associations as reported by at least 2 or more
studies worldwide included GSTM1 null genotype, CCND1 (G870A)
with risk allele A, MMP3 (-1171; promotor region) with risk allele
5A, TNFa (308; rs800629) with risk allele A and XPD (codon 751)
with risk allele C as well as p53 (codon72) with risk allele C in
Indian populations. However, an equal or more number of studies
reported null associations for GSTM1 (null), p53 (codon72) and XPD
(codon 751). The C allele of rs197412 in Gemin3, a micro RNA pro-
cessing gene, was associated with reduced risk of OPMD based on
significant associations as reported by at least 2 or more studies.
Markers that showed mixed associations included XRCC1
(rs25487 C/T; codon399) with allele T, GSTT1 (null genotype) and
CYP1A1 m1 (Mspl site).

There were few studies conducted on similar loci from across
the world, limiting our ability to compare these findings across
populations. However, increased susceptibility for OPMD risk with
SNPs in GSTM1 (null), CCND1 (G870A), XPD (codon 751) and MMP3
(-1171; promotor region) was seen equally across the majority of
populations (Asians, Caucasians, Brazilians and others). Risk
associated with a SNP in p53 (codon 72) was reported in Indian
populations only. The C allele of Gemin3 (rs197412 C/T) was found
to be associated with reduced risk for OPMD in Indian and
Caucasian populations. Frequencies of allele or genotype for
increased susceptibility, reduced risk or mixed associations for
OPMD in different control populations are compared in Table 2.

Discussion

We conducted a review of SNP association studies regarding
risk of OPMD (leukoplakia, erythroplakia and oral sub-mucous
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Fig. 1. Summary of evidence search and selection for Single nucleotide polymorphisms and OPMDs (up to 29th February 2016).

Table 2

A comparison of allele or genotype frequencies for increased susceptibility, reduced risk or mixed associations for OPMD in different control populations based on reviewed

studies.

Susceptible gene/SNP loci Risk allele/genotype

Risk allele/genotype frequency in controls (%)

Asians Caucasians and others®  Brazilians
GSTM1 Null genotype 18-60 (Indians) NA 33.8
49.4 (Taiwanese)
p53codon 72 Heterozygous (Arg/Pro) 46-54 (Indians); 54.3 (Taiwanese) 38.7 NA
Homozygous (Arg/Arg) 22-24 (Indians); 20 (Taiwanese) 11.7
CCND1 G870A Heterozygous (G/A) 49 (Indians) 47.8 NA
Homozygous (A/A) 23 (Indians) 18.7
MMP3 5A allele 7 (Indians and Taiwanese) NA NA
TNFo308° Heterozygous AG 17.6-29.7 (Taiwanese) 12.3-433 NA
Homozygous AA 0.7-7.8 (Taiwanese) 0-1
Gene/SNP loci with reduced risk Allele with reduced risk Allele/genotype frequency in controls (%)
Gemin(rs197412)° C 38 (Indians); 10-59.4 (Asians) 45.8-69 NA
Gene/SNP loci with mixed associations  Allele/genotype with mixed associations  Allele/genotype frequency in controls (%)
XRCC1 (rs25487) T 20.7-56.5 (Indians) NA NA
CYP1A1 m1 (Mspl site) Heterozygous () 35 to 47.5 (Indians); 54.1 (Taiwanese) NA NA
Homozygous (—/-) 4-27.5 (Indians); 9.6 (Taiwanese)
GSTT1 Null genotype 6.2-75 (Indians); 61.2 (Taiwanese) NA 22.5

@ African-Americans, Hispanics and Africans.

b Also extracted from National Center for Biotechnology Information. Available at http://www.ncbi.nlm.nih.gov/SNP/.

fibrosis) to understand the state of evidence with respect to genetic
determinants of risk. With no previous GWAS data available in
OPMD in Indian or other populations, the selection of studied SNPs
was largely driven through pathway exploration. These included
genes involved in pathways of carcinogen metabolism, DNA repair,
cell cycle control, extra-cellular matrix alteration and immune-
inflammation.

In our review of 47 eligible studies, six SNPs in GSTM1 (null)
[15-18], CCND1 (G870A) [19,20], MMP3 (-1171; promotor region)
[21,22], TNFo (-308; rs800629) [23,24], XPD (codon 751) [25,26]
and Gemin3 (rs197412) [27,28] were identified as suggestive

markers for OPMD susceptibility in populations worldwide and
an additional SNP in p53 (codon72) for Indian populations
[29,30]. However, we found an equal or more number of studies
reporting null associations for SNPs in GSTM1 (null), XPD (codon
751) and p53 (codon72) [19,31-39] and mixed associations for
SNPs in XRCC1 (rs25487 C/T) [19,32,40,41], GSTT1 (null)
[16,17,31-33] and CYP1A1m1 (Mspl site) [16,31,42,43] in different
populations, leaving no strong loci for follow up.

Most reviewed studies examined risk of leukoplakia, erythro-
plakia and oral sub-mucous fibrosis, except for two studies which
also included a sub-set of lichen planus samples [23,44]. Small
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sample sizes with respect to different sub-types of OPMD, lack of
validation efforts and limited comparisons among different OPMD
(e.g., studies have been conducted only in OSMF samples for MMP3
(-1171; promotor region)) restrict our scope to draw conclusions
about difference in susceptibility for different OPMD with respect
to the presence of a particular SNP.

Increased susceptibility for OPMD risk with SNPs in GSTM1
(null), CCND1 (G870A), XPD (codon 751) and MMP3 (-1171; promotor
region) was common to majority of populations (Asians, Cau-
casians, Brazilians and others). However, the risk associated with
SNP in p53 (codon 72) was restricted to Indian populations. It is
possible that the high prevalence of SNP in p53 (codon 72) in Indian
population (Table 2) may be partly responsible for higher incidence
of OPMD in Indian population [6]. This draws some support from
the fact that p53 is the most commonly inactivated tumour sup-
pressor gene in the development of oral cancer [7]. However, it is
also possible that this is a chance association. Gemin3 (rs197412
C/T) was found to be associated with reduced risk for OPMD in
Indian and Caucasian populations. However, validation studies in
similar or other populations are scarce which restrict our scope
for valid comparisons and these results have to be interpreted with
great caution.

All eligible studies included in the review were of case-control
design limiting further comparisons based on study design.
Regarding genotyping methods, 40.4% of the studies (19/47) used
Polymerase Chain Reaction-Restriction Fragment Length Polymor-
phism (PCR-RFLP). The rest used PCR-DNA direct sequencing
(n=7), Tagman assays (n=7), multiplex PCR/PCR (n =5) or Illu-
mina Goldengate assay (n=1) or SNPlex assay (n=1) and a few
studies (n = 7) used more than one method for different SNPs such
as different PCR methods including RFLP, single strand conforma-
tion polymorphism, polyacrylamide gel analysis and multiplex or
Tagman assays. Studies that utilized more than one method on a
subset or on all samples confirmed the validity of the different
methods of genotyping such as direct sequencing, PCR-RFLP and
Tagman assays [27,38,45,46].

The reviewed studies on OPMD were subject to several limita-
tions. Most studies lacked sufficient sample size, and hence power
to detect low-to moderate risk associations (particularly with
respect to sub-types of OPMD); reporting of results including risk
allele/genotype frequencies was not standardized; and all reported
studies lacked validation efforts. Further, very small sample sizes
could also have over-estimated the magnitude of true associations
in addition to their inability to detect true associations and report
false associations [10,47]. Finally, with few exceptions, the candi-
date gene approach has generally not reliably identified the correct
target loci [48]. Thus, it is not possible to indicate strong inference
for any SNP identified to date in any population.

The current level of evidence from candidate gene studies for
genetic susceptibility to OPMD susceptibility is limited. Although
there are no published GWAS data for OPMD [11,49], GWA studies
of cancers of the upper aero-digestive tract (UADT; Oral, pharynx,
laryngeal, oesophageal cancers) have identified variants at 12q24
(rs4767364) in the ALDH2 gene, 4921 (rs1494961) in the HELQ
gene, rs1042758 (ADHIC), rs1229984 (ADHIB), and rs1573496
(ADH?) as being significantly associated with risk of all UADT can-
cers including oral cavity cancers [50,51].

High-throughput genotyping strategies with sufficient numbers
of each sub-type of OPMD might be a better strategy to identify
robust risk loci for potential early identification of susceptible indi-
viduals. The genome-wide association study (GWAS) approach has
successfully identified hundreds of risk loci in germline DNA for
various cancers. There are no GWAS data published to date for
OPMD, and no published large-scale GWAS data for oral cancer
[11,49,52], although efforts are under way for oral cancer. The

integrated characterization of germline and somatic alterations
for OPMD and oral cancer, with well-annotated information on
sub-types and a sophisticated analysis for combined and unique
risk loci could help to identify susceptibility markers during early
disease course and predict disease progression [7,53]. Such an
effort is likely to be relevant to public health prevention and pro-
motion in high incidence zones of oral cancer such as in South Asia.
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Appendix A. Table 1 material
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