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Abstract

Background: In population-based cancer research, piecewise exponential regression models are used to derive
adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework.
However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates xi
are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance
exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for
overdispersion.

Methods: We used a regression-based score test for overdispersion under the relative survival framework and
proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors
estimation, negative binomial regression and flexible piecewise modelling.

Results: All piecewise exponential regression models showed the presence of significant inherent overdispersion
(p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter
(3.2 versus 21.3) for non-flexible piecewise exponential models.

Conclusion: We showed that there were no major differences between methods. However, using a flexible
piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it
deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
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Background
In population-based cancer research, the relative survival
setting is used because the cause of death is often not
available or considered to be unreliable [1]. Therefore, the
survival and the mortality associated with cancer are esti-
mated by incorporating the information of the expected
mortality from the general population (i.e. background
mortality) obtained from national or regional life tables
[1, 2]. Themain advantage of the relative survival setting is
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that it provides a measure of patients survival and mortal-
ity associated with cancer without the need for informa-
tion on the specific cause of death [1]. These measures of
survival and mortality are known as the net survival and
the excess mortality respectively [2–4]. When multivari-
able adjustment is of interest, the excess mortality can be
modelled using piecewise exponential regression models
[3, 5]. Piecewise exponential regression excess mortality
(PEREM) models derive adjusted excess mortality rates
accounting for the expected mortality of the background
population [5, 6].
It has been shown that PEREM models can be fitted

in the Generalized Linear Modelling (GLM) framework
[3]. Using the GLM framework it is relatively easy to
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extend themodels to deal with clustering, through either a
random-effects model or by utilizing sandwich-type esti-
mators for the standard errors (SE) [6–8]. To fit PEREM
models follow-up time is split into k intervals (e.g., yearly,
monthly) and person-times of follow-up yk is introduced
as an offset in the model, assuming that the excess mor-
tality rate is constant within each interval but, it can
vary arbitrarily between the intervals. Moreover, the usual
assumption that the number of deaths (dk) observed in
interval k can be described by a Poisson distribution with
rate parameter λk = dk

yk has been adapted to the relative
survival setting [3].
The rate parameter λk is adapted to include the expected

mortality of the general population under the relative
survival setting

λ+
k = dk − d∗

k
yk

= d+
k
yk

, (1)

where (dk) and (d∗
k ) are the observed and expected num-

ber of deaths from the general population and
(
d+
k
)
, the

excess number of deaths.
Thus, the Log-likelihood for the PEREMmodel includes

the updated rate parameter:

ln
(
λ+
k
) = ln

(
λ+
0k

) + xTβ , (2)

where ln(λ+
k ) is the logarithm of the excess mortality and

xT denotes the transpose of the vector of covariates x and
β represent the corresponding parameter estimates.
Using (1), we can rewrite the rate parameter defined in

(2) as:

ln
(
dk − d∗

k
) = ln(yk) + ln

(
λ+
0k

) + xTβ , (3)

where ln(yk) is the logarithm of the person-time at risk
for the kth interval incorporated in the model as an off-
set and ln(λ+

0k), is the log of the baseline excess mortality
rate [3, 6].
Using (1), we can rewrite the PEREMmodel in (3):

dk
yk

= d∗
k
yk

+ λ+
0k exp

(
xTβ

)
.

The model in (3) assumes constant rates over intervals
of time and it may lead to overdispersion due to extra vari-
ability in the rate parameter (i.e. the variance is greater
than the mean). The assumption that the conditional
mean and variance of the rate parameter given covariates
x are equal is strong and may fail to account for inher-
ent or genuine overdispersion. The variance exceeds the
mean generally because of positive correlation between
variables or excess variation between rates [9].
Overdispersion in PEREM models is typically due

to extra variability in the rate parameter (genuine
overdispersion). However, other forms of non-genuine

overdispersion may appear when the model omits impor-
tant explanatory predictors; the data contain outliers, or
the model fails to introduce enough interaction terms or
non-linear functional form between predictors and out-
come. By contrast, no external remedy can be applied in
the case of inherent or genuine overdispersion [10].
Fitting an overdispersed PEREM model leads to under-

estimating standard errors (SE) and therefore to the inap-
propriate interpretation of the conditional estimates of the
covariates introduced in the model (i.e. a variable may be
wrongly considered as a significant predictor).
Using an empirical example, we aim to take advantage

of the relationship between the GLM framework and the
PEREM model to apply a simple method to test and cor-
rect for overdispersion that could be easily implemented
and used by population-based cancer researchers.

Methods
The presence of overdispersion can be recognized when
the value of the ratio between the Pearson χ2 (or deviance
statistics) over the degrees of freedom is larger than one.
However, a more formal statistical approach is required
to test the presence of inherent overdispersion, then to
correct for it [11].

Testing overdispersion in PEREMmodels
A regression-based score test enables us to evaluate
whether the variance is equal to the mean (Var(λ+) =
E(λ+)) or proportional to the square mean [11]:

Var
(
λ+) = E

(
λ+) + α E

(
λ+)2 , (4)

We first calculate the score statistic (Z) to test H0: α = 0
against H1: α > 0, using the fitted values of the excess
mortality rate λ̂+ [11–13]:

Z =
N∑

i=1

M∑

k=1

⎛

⎜
⎝

(
λ+
ik − λ̂+

ik

)2 − λ+
ik

λ̂+
ik

⎞

⎟
⎠ ,

where λ+
ik = d+

ik
yik and substituting λik and λ̂+

ik gives:

Z =
N∑

i=1

M∑

k=1

⎛

⎜
⎜
⎜
⎝

(
d+
ik
yik − d̂+

ik
yik

)2
− d+

ik
yik

d̂+
ik
yik

⎞

⎟
⎟
⎟
⎠
. (5)

The test is implemented by a linear regression of the
generated dependent variable Z on λ̂+

ik (independent vari-
able), without including an intercept term. Hence the
output can be interpreted as a T-test of whether the coef-
ficient of λ̂+

ik is zero testing whether the variance of the
rate parameter is equal to the mean [12].
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Correcting for overdispersion
Themost commonly used approaches to correct for inher-
ent overdispersion are relatively straightforward to imple-
ment in common statistical software.

Quasi-likelihood approach
Inherent overdispersion in PEREM modeling may be due
to extra variability in the parameter λ+

ik = dik−d∗
ik

yik . Includ-
ing an extra parameter φ in the model allows the variance
to vary freely from the mean [14]. There are several
options to compute the extra parameter φ. The simplest is
to take f (λ+,φ) = φ×λ+, which specifies a constant pro-
portional overdispersion φ across all individuals. Using a
PEREM modeling approach, we assume that the distri-
bution of λ+

ik is Poisson. Hence the Pearson Chi-squared
statistic can be computed as a criteria of goodness of fit
using the observed (O) and expected values (E) from the
model:

χ2 =
n∑

i=1

(Oi − Ei)2

Ei
.

Substituting O and E by λ+
ik and λ̂+

ik gives:

χ2 =
N∑

i=1

M∑

k=1

⎛

⎜
⎜
⎜
⎝

(
d+
ik
yik − d̂+

ik
yik

)2

d̂+
ik
yik

⎞

⎟
⎟
⎟
⎠
.

The ratio between the Pearson χ2 or deviance statistic,
and the degrees of freedom should be closed to one as
we expect that the variance of the model is equal to that
of the assumed Poisson distribution. We can estimate the
overdispersion parameter φ multiplying the inverse of the
degrees of freedom (df) of the model times the Pearson χ2

statistic.
Scaling the SE with

√
φ̂ = √

χ2/df will correct the esti-
mated SE of β̂ , which was estimated under the model of
constant overdispersion [15, 16]. The estimated φ̂ is inte-
grated as a scalar updating the variance-covariance matrix
of the PEREM model estimated under the GLM frame-
work and thus correcting for overdispersion [17]. Under
the GLM framework β̂ and the SE of β̂ is optimized via
an iteratively reweighted least squares procedure [11, 17].
Therefore, scaling the SE of β̂ in terms of matrix notation
is given by [17]

Variance(β̂) = φ̂
(
XTWX

)−1
,

whereX represents the n×p designmatrix of the observed
data and, W is a diagonal n×n matrix with the values of
λ̂+ = exp(xTβ) on the diagonal. Thus, the variance is
updated with the new values of the weighted matrix under
the assumption of no specific probability distribution [14].

Robust standard errors of parameters estimates
In maximum likelihood estimation, the standard errors of
the estimated parameters are derived from the Hessian
(matrix of second derivatives on the parameters) of the
likelihood. However, theses standard errors are correct
only if the likelihood is the true likelihood of the data
[14]. In cases where we consider that overdispersionmight
be due to unobserved covariates and the link function or
the probability distribution function are misspecified, the
assumption about the true likelihood of the data does not
hold. Under these scenarios, we can still use robust esti-
mates of the standard error known as Huber, White, or
sandwich variance estimates to correct for overdispersion
Additional file 1 [18–20].

Variance(β̂) = (XTWX)−1(XT�X)(XTWX)−1,

where � is a n×n matrix with the values of (λ+ − λ̂+)2

on the diagonal.

Negative binomial regressionmodel
Given the presence of heterogeneity of subject-specific
rates leads naturally to the question of whether we can
model subject-specific rates using a random effects frame-
work. The simplest random effects model assumes a
person-to-person heterogeneity can be expressed by a
model for the mean along with a log-Gamma distribu-
tion of the random intercept term. The random intercept
follows a log-Gamma distribution, and the marginal dis-
tribution of the outcome followed a negative binomial
distribution which has two parameters, shape (E(λ+)) and
scale (Var(λ+)), but importantly its variance andmean are
related by (4), where the parameter α must be positive
allowing the variance of λ+ to be greater than the mean
[11]. The Poisson distribution is a special case of the neg-
ative binomial distribution where α = 0 [11]. We can
estimate α using the coefficient from a linear regression
with Z (5) as dependent variable on λ̂+ (independent vari-
able), without including an intercept term, as described
above [12].

Flexible PEREMmodel
The piecewise exponential regression model under the
GLM and relative survival frameworks could be extended
by finely splitting the time scale and using a flexible func-
tion of time such as splines [21, 22]. The flexible PEREM
models allow modelling the baseline hazard and any time-
dependent effects as smooth and continuous functions
[6]. A time-dependent effect is easily modelled by includ-
ing an interaction term between the smooth function of
time and the covariate [23]. Cubic regression splines is a
very popular choice for modelling flexible functions. In
a truncated power basis, a cubic regression spline s(t) of
time t, with K knots located in different places of the
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distribution of the smooth function of time can be written
as [5]:

s(t) =
3∑

j=0
β0jtj +

K∑

i=1
βi3(t − ki)3+,

where

(t − ki)3+ =
{

(t − ki)3 if t > ki,
0 otherwise.

In order to deal with high variance at the outer range of
the predictors, they may be forced (restricted) to be lin-
ear before the first knot and after the last knot leading to
a natural or restricted cubic spline [23]. The first and the
last knots are known as boundary knots [24, 25]. If we
define m interior knots, k1, . . . , km, and also two boundary
knots, kmin, . . . , kmax, we can now write s(t) as a func-
tion of parameters γ and some newly created variables
z1, . . . , zm+1, giving [5]:

s(t) = γ0 + γ1z1 + γ2z2 + . . . + γm+1zm+1,

The basic functions zj(j = 2, . . . ,m + 1) are derived as
follows:

z1 = t,
zj = (x − kj)3+ − λj(x − kmin)

3+ − (
1 − λj

)
(x − kmax)

3+,

λj = kmax − kj
kmax − kmin

.

These functions can be easily implemented using var-
ious Stata commands (e.g., rcsgen) [5, 6]. The flexible
PEREM approach using splines allows modelling easily
non-proportional excess mortality rate ratios including
time-dependent effects of the covariates. Thus, we can
achieve a better model specification which should mini-
mize non-genuine overdispersion [25]. However, we can
still scale the SE estimates in case of inherent overdisper-
sion previously detected using the suggested regression
based Score test.

Illustration
Data were obtained from the Office for National Statis-
tics (ONS), comprising 376,791 women diagnosed with
breast cancer in England between 1997 and 2005, with a
follow-up to the end of 2012. The event of interest is death
from any cause, with follow-up restricted to 7 years after
diagnosis though we estimated up to 5 years excess mor-
tality [21]. We built life tables from England to derive the
expected mortality in the background population, by sex,
single year of age, calendar year, and deprivation quintile.
We aimed to estimate excess mortality hazard rate for age
and deprivation in the first five years after the diagno-
sis of a breast cancer. Legal authority to hold the cancer
data derives from a contract with the ONS to produce the
official national statistics on cancer survival.

Statistical methods
First, we split the times-to-event to merge the cancer
data with the estimated expected number of deaths for
all causes using life tables from England [26]. Then, we
fitted four types of PEREM models: in model A, we did
not correct for overdispersion, in model B we scaled the
SEs by the

√
φ̂, in model C we used the Sandwich esti-

mates of the SEs and inmodel D we fitted a NBR assuming
a log-gamma distribution. All models were within the
GLM framework with the Poisson family and the modi-
fied link

(
ln

(
dik − d∗

ik
))
. The modified link log was used

to incorporate in the maximum likelihood estimation the
expected number of deaths (d∗) from the background
population [3, 5].
Deprivation was included in all PEREMmodels as a cat-

egorical variable, with Q1, the least deprived group, as
the reference category. Age was included as a categorical
variable with five levels (<50, 50-59, 60-69, 70-79, ≥80)
using <50 as reference. Follow-up time was parameter-
ized as a categorical variable in PEREM models and as a
smooth function of time for the flexible PEREM models.
We reported β̂ , var(β̂), and the relative loss in efficiency
(RLE) of var(β̂). To estimate RLE for each PEREM model
corrected for overdispersion, the model not corrected
for overdispersion was the reference [27]. The RLE was
computed as the ratio between the variance of the esti-
mates from the models adjusted for overdispersion and
the variance from the uncorrected model

RLE(var(β̂2), var(β̂1)) = var(β̂2)

var(β̂1)
, (6)

where var(β̂2) refers to the corrected estimate of the vari-
ance for overdispersion (scaling the SE or using the sand-
wich robust estimates) and var(β̂1) to the uncorrected.
The RLE was interpreted as the percentage of efficiency
loss (% of increase in the variance estimate) for PEREM
models needed to reduce bias after correction for overdis-
persion.
Finally, we fitted a flexible PEREM model which

included an interaction between deprivation quintiles and
follow-up time to allow the effect of deprivation to vary
over time. Hence, the baseline rate was defined as a
restricted cubic spline, with one-month intervals and five
knots placed at the minimum and the maximum and
at the 25th, 50th, and 75th centiles of the event times.
For this flexible PEREM model, we plotted the excess
mortality rate ratios and 95% CI for each quintile of depri-
vation in categories with corrected and uncorrected SE
for overdispersion [6, 23, 28]. All analysis were performed
using Stata v.14 (StataCorp LP, College Station, Texas, US)
Additional file 2.
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Results
The Pearson χ2 deviance residuals were non-normally
distributed for the uncorrected PEREM model (Shapiro-
Wilk test for normality p-value = 0.01) [29], and the
overdispersion parameter (φ) was 21.3% times higher
than expected suggesting the presence of overdisper-
sion. The Score test for overdispersion rejected the
H0 (p-value < 0.001) indicating the presence of truly
overdispersion in the rate parameter and, the scatter
plot of the standardized Pearson’s χ2 residuals against
the excess mortality rates suggested the presence of
heteroscedasticity and hence, potential overdispersion
(Fig. 1).
Table 1 contrasts the exponentiated coefficients, SE,

and RLE for the four different PEREM models, uncor-
rected (model A) or corrected for the presence of inherent
overdispersion (models B, C with φ parameter = 21.3)
and model D adjusted for overdispersion using the NBR
approach.
The model with the less conservative SE, model A,

showed significant excess mortality rate ratio for each of
the four deprivation quintiles (compared with the first
quintile). Models corrected for overdispersion (B, C, and
D) provided more conservative estimates of the SEs. After
accounting for oversdispersion, deprivation showed a sig-
nificant excess mortality, compared to Q1, only for the
deprivation quintiles Q3-Q5 for models B and D, and
for the deprivation quintiles Q4 and Q5 for model C
(Table 1). Compared with the unadjusted model A, all
corrected models showed a non-significant effect for age
groups 60-69 and 50-59. Overall, the RLE ranged between
12 and 46 percent for corrected models compared with
the model uncorrected for overdispersion. The RLE was,
however, larger for model C (robust SE). The model D

Fig. 1 Piecewise exponential regression excess mortality model:
standardized Pearson χ2 residual analysis, n= 376,791 women
diagnosed with breast cancer in England between 1997 and the end
of 2005

(NBR), compared with model B (scaled SE) and C, showed
the smallest RLE. The loss of precision in the models
corrected for overdispersion was reflected by the loss of
statistical significance for the age groups 50-59, 60-69 and
the deprivation quintiles Q1 and Q2. However, scaling the
SE to control for overdispersion (model B) showed bet-
ter efficiency (smaller RLE) compared with the robust SE
estimation (model C)(Table 1).
Finally, the flexible PEREM model showed smaller

overdispersion parameter (φ = 3.2). The test for
overdispersion showed the presence of significant inher-
ent overdispersion (p-value <0.001). The flexible PEREM
model reduced significantly the overdispersion param-
eter compared with the models without the smooth
functions of time (21.3 vs. 3.2). Allowing for the time
dependent effect of deprivation, revealed a decreas-
ing trend of the excess mortality over time during
the first five years after the diagnosis of breast can-
cer. Furthermore, the interaction between the smooth
function of time with deprivation showed a stronger
effect of deprivation over time, illustrated with 8 to
4 times higher excess mortality rate ratios for the
most deprived group compared with the least deprived
(Fig. 2).

Discussion
We have shown that under the relative survival and
GLM frameworks, the modified link to fit PEREM
models, allows the inclusion in the maximum like-
lihood estimation of the information regarding the
background mortality of the reference population [3].
However, data analysts may expect to find inherent
overdispersion as a characteristic of this modelling
approach [30].
We have shown, that inappropriate imposition of the

Poisson restriction may produce spuriously small SEs
of the estimated coefficients β̂ . Fitting an overdisperse
PEREM model under the relative survival and GLM
frameworks, may lead to underestimate SEs and, there-
fore, to inappropriate statistical interpretation of the sig-
nificance of the conditional estimates from the effects of
the covariates introduced in the model (i.e., a variable
or the levels of a categorical variable, may appear to be
significant predictors of the outcome, when in fact it is
not).
We encourage epidemiologist and applied statistician

using PEREM models under the relative survival frame-
work, to consider to test the Poisson restriction and
to relax it, if appropriate, using the methodological
approaches described in this article. However, in addition
to cancer, the same advice may apply to any other chronic
disease or condition for which estimates of disease-
specific population-based survival time controlling for
competing risk are of interest. We have shown, that using
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Table 1 Piecewise exponential regression excess mortality models with and without correcting for overdispesion, n = 376,791 women
diagnosed with breast cancer in England between 1997 and the end of 2005

PEREM A PEREM B (scaled SE) PEREM C (Robust SE) PEREM D (NBR)

Age at diagnosis EMRR SE EMRR SE RLE (%) EMRR SE RLE (%) EMRR SE RLE (%)

50 − 59vs. < 50 0.75 0.0107 0.75* 0.0493 21.3579 0.75* 0.0576 29.2222 0.75* 0.0380 12.6944

60-69 vs. <50 0.88 0.0130 0.88* 0.0600 21.3580 0.88* 0.0599 21.2823 0.87* 0.0486 14.0296

70-79 vs. <50 1.71 0.0235 1.71 0.1086 21.3578 1.71 0.1324 31.7953 1.65 0.1005 18.3181

≥80 vs. <50 3.39 0.0465 3.39 0.2150 21.3579 3.39 0.3159 46.1198 3.15 0.2222 22.8188

Quintiles of deprivation

Q2 vs. Q1 1.05 0.0153 1.05* 0.0705 21.3659 1.05* 0.0747 24.0197 1.05* 0.0626 16.8745

Q3 vs. Q1 1.16 0.0166 1.16 0.0767 21.3711 1.16* 0.0873 27.6612 1.15 0.0687 17.1404

Q4 vs. Q1 1.27 0.0182 1.27 0.0839 21.2723 1.27 0.0934 26.3313 1.27 0.0762 17.5240

Q5 vs. Q1 1.48 0.0218 1.48 0.1007 21.3249 1.48 0.1046 23.0039 1.47 0.0885 16.4928

EMRR Excess mortality rate ratio, NBR Negative binomial regression, PEREM Piecewise exponential regression excess mortality model, RLE Relative loss in efficiency,
SE Standard error, *p-value >0.05

a simple test for overdispersion we can identify significant
inherent overdispersion, and applying a pseudo-likelihood
estimation, fitting an NBR or a more advanced flexible
PEREM modeling approach we can correct for it. These
simple approaches may allow applied researchers in

population-based cancer registries to infer correct con-
clusions from the analysis of their data in the presence of
significant overdispersion. Applied researchers will have
to consider the trade-off between modelling complex-
ity and model interpretation as it might happen that

Fig. 2 Flexible piecewise exponential regression model: A (non-scaled SE) B (robust SE), n = 376,791 women diagnosed with breast cancer in
England between 1997 and the end of 2005
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there is no reason for applying a more advanced flex-
ible PEREM modelling given a non-significant overdis-
persion test. However, it rarely happens, as under the
relative survival framework we may expect the presence
of overdispersion due to the variability of the rate param-
eter. Furthermore, in case of a significant overdispersion
test, applied researchers will have to consider the compro-
mise ofmodel efficiency (i.e., the precision of the SE) while
deciding which method or approach to use to deal with
overdispersion. As suggested in our results, the flexible
PEREMmodel showed the smaller loss in precision.
We suggest scaling the SE to correct for overdisper-

sion due to the variability of the rate parameter with a
significant overdispersion test and a small overdispersed
parameter φ. However, it should be noticed that our
results regarding the RLE are based on only one empirical
data. Hence, further investigation is warranted using
simulations.
The maximum likelihood methods are based on

strong distributional assumptions, while quasi-likelihood
or maximum likelihood methods with robust SEs rely
on weaker assumptions. Furthermore, using a flexible
parametric approach including time-dependent effects
allows for a better model specification decreasing
overdispersion. We suggest testing for the presence of
inherent overdispersion in the data and correct for it using
any of the approaches presented in this article. Given
that there are no major differences between the above-
described methods, the question is not which method
to use (robust SE, scaled SE or NBR) in the presence of
inherent overdispersed data, but to use any of them to cor-
rect for overdispersion and to infer correct conclusions
from the models. However, we have shown the benefits of
using the flexible PEREM modelling approach with either
scaled, robust SE or NBR, under the GLM and relative
survival frameworks. Flexible PEREM modelling benefits
are double as it deals with model misspecification and
overdispersion. The introduction of smooth functions of
time and time-dependent effects in the flexible PEREM
models may improve the model specification reducing
significantly the overdispersion parameter.

Conclusion
In population-based cancer research, PEREM models are
used to estimate the excess mortality rate from cancer
under the relative survival framework. We have shown
the impact of overdispersion on the excess mortality rate
estimates by deprivation among women diagnosed with
breast cancer in England between 1997 and the end
of 2005. PEREM models are fitted under the assump-
tion of a Poisson distribution leading to overdispersion.
We have shown that inappropriate imposition of the
Poisson restriction may produce spuriously small esti-
mated standard errors, and thus, wrong interpretation of

the model estimates. Given the public health relevance
of population-based data analyses for policy and decision
making, it is desirable to test for overdispersion and to
correct it if appropriate.

Additional files

Additional file 1: Robust standard error estimation for generalized linear
models. (PDF 104 kb)

Additional file 2: Stata do file with commented syntax. (PDF 40 kb)
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