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Molecular Fingerprint Details. In this study, three 2D fingerprint types were used: 

dictionary-based fingerprints, circular fingerprints, and path-based fingerprints. The public 

MACCS structural keys are a collection of 166 predefined substructures associated with the 

SMILES arbitrary target specification (SMARTS) pattern and belonging to the dictionary-based 

fingerprint class.1 Morgan is a type of circular fingerprint that encodes circular atom 

environments up to determined radius from a central atom using Morgan algorithm and feature 

invariants. Atom features, such as chirality, atom, and bond types were used for generating 

Morgan fingerprints.2–4 AtomPair fingerprints, implemented by Carhart and colleagues, are 

defined as a pair of atoms (AT) or descriptor centers separated by a fixed topological distance: 

ATi-ATj-Distij, where Distij is the shortest path (the number of bonds) between ATi and ATj. In 

addition, AtomPair fingerprints account for the information about element type, the number of 

bonded non-hydrogen neighbors and the number of π electrons.5,6 

Machine Learning Details. Classification and Regression Trees (CART). The CART 

algorithm, introduced by Breiman and colleagues,7 is a non-parametric decision tree learning 

method that produces  either classification or regression trees, depending on whether the 

dependent variable is binary or continuous, respectively. In this method, tree is built by dividing 

the root node, containing all samples, in two child nodes based on a split value for one 

descriptor/fingerprint of the matrix of dependent variables. Each split of descriptors within a tree 

is created based on the best partitioning that is possible. Then, child nodes become parents and 

each new parent node can give rise to two child nodes, etc. Nodes that are not split anymore (e.g. 

because they are homogeneous) are called terminal nodes or leafs. In general, the building of a 

CART model contains two steps. First, a big tree is built. Each node is split until pure terminal 

nodes are found. The tree obtained has a large number of terminal nodes and describes the 
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training set almost perfectly, but provides a poor predictive ability for new samples. To solve this 

problem, a last step, known as pruning, is performed. The pruning step consists of cutting away 

branches of the big tree to find smaller trees with improved predictive ability. 

Random Forest (RF). The RF8 algorithm is a tree bagging method that creates a large 

collection of decorrelated decision trees, and the final prediction is defined by majority voting 

from an ensemble of decision trees. In each tree, 1/3 of the training set is randomly extracted, 

while the remaining 2/3 of the training set is used for model building. Then, each tree in the 

forest is built by CART method,7 and best split generated, among the randomly investigated 

descriptor in each node, is chosen. Each tree is grown to the largest possible extent without 

pruning. Last, the trained forest is then used to predict test set. The predicted classification values 

are defined by majority voting for one of the classes. The proportion of votes cast for a class may 

provide an indication of the probability of a label being correctly assigned, or of confidence in a 

prediction, but this should be considered an informal estimate only. 

Gradient Boosting Machine (GBM). The GBM method9 differs from bagging methods through 

the base learners, here classification or regression trees, are trained and combined sequentially. 

The principle idea behind this algorithm is generate models by computing a sequence of trees, in 

which each successive tree is built from the prediction residuals of the preceding tree. A simple 

(best) partitioning of the data is determined at each step in the boosting tree algorithm, and the 

deviations of the observed values from the respective residuals for each partition are computed. 

Given the preceding sequence of trees, the next tree will then be fitted to the residuals in order to 

find another partition that will further reduce the residual (error) variance for the data. 
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Multivariate Adaptive Regression Splines (MARS). MARS10 is a multivariate nonparametric 

regression technique that can be extended to handle classification problems.  This operating 

method is based on divide-and-conquer strategy partitioning the training data sets into separate 

regions, each of which gets its own classification. This makes MARS particularly suitable for 

problems with high input dimensions. 

Support Vector Machine (SVM). SVM11 is a kernel based approach first developed by Vapnik 

as a general data modeling methodology, aiming at minimizing structural risk  and statistical 

learning theory. Briefly, SVM maps the data into a high-dimensional hyper plane (e.g. 

descriptors or fingerprints), using a kernel function that is typically linear, radial, or polynomial. 

The SVM seeks to find an optimal separation between two classes (e.g. inhibitors and non-

inhibitors), such that each in their entirety lie on opposite sides of a separating hyper plane. Thus, 

SVM minimizes the empirical classification error and maximizes the geometric margin. This 

margin is defined as the distance from the separating hyper plane to its nearest sample. The 

hyper plane that defines such margin is called support hyper planes, and the data points that lie 

on these hyper planes are called support vectors.  Thus, SVM is also known as a maximum 

margin classifier. 

Partial Least Squares – Discriminant Analysis (PLS-DA). PLS-DA12 is a linear and parametric 

method based on the PLS model in which the dependent variable is chosen to represent the class 

membership (e.g. inhibitors or non-inhibitors). First a classical PLS model is built with a training 

set. In PLS, the number of variables is reduced using PCA by creating new latent variables which 

maximize the covariance between the original variables and the response. Using the optimal 

number of latent variables, to build a linear regression model should provide the best predictive 

model. Opposite to classical PLS, where the response is quantitative and continuous, the 
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responses in PLS-DA are qualitative, discrete and coded in a vector with a class member. For an 

unknown sample, the predicted value obtained with the PLS-DA model is normally distributed 

around 0 or 1. To determine the limit from which a sample is considered to be in the inhibitors or 

non-inhibitors class, a threshold 0.5 is determined. When a value above the threshold is 

predicted, a sample is considered to belong to the inhibitors class, while a value below the 

threshold indicates that the sample belong to the non-inhibitors class. 

Multi-Layer Perceptron (MLP). The MLP method13 is a network of simple neurons called 

perceptrons. The basic concept of a single perceptron was introduced by Rosenblatt in 1958. The 

perceptron computes a single output from multiple real-valued inputs by forming a linear 

combination according to its input weights and then possibly putting the output through some 

nonlinear activation function. A typical MLP network consists of a set of source nodes forming 

the input layer (e.g. descriptors or fingerprints), one or more hidden layers of computation nodes, 

and an output layer related directly to the activity being predicted.  The hidden layers and their 

number can generally vary depending on the problem at hand. To each of the hidden and output 

neurons, one virtual neuron can be assigned, called bias used as reference to activate or 

deactivate a neuron. In addition, MLPs are considered feed-forward neural networks since input 

signal propagates in only one direction, from the input to output layers. Finally, to train a 

network to predict values for given arguments, an iterative process that has information fed back 

from the output neurons to neurons in some layer before was performed, to enable further 

processing and adjustment of weights on the connections. In this study, training of MLP was 

performed with the back-propagation algorithm. 

k-Nearest Neighbors (kNN). The kNN14 is a non-parametric method that classifies samples 

based on a similarity measure. In this method, a sample could be classified by a majority vote of 
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its neighbors, with the sample investigated being assigned to the class most common amongst its 

k nearest neighbors measured by a distance function. This distance is usually taken to be the 

Euclidean distance, though other metrics such as the Jaccard distance could be used. If k = 3, 

then the case is simply assigned to the class of its three nearest neighbors in a feature space. The 

samples, which in chemical applications are typically compounds, are described as position 

vectors in the feature space, which is usually of high dimensionality. It is helpful to scale the 

features so that distances measured in different directions in the space are comparable. 
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Table S1. Statistical characteristics of QSAR models developed with balanced dataset. 

Model CCR k SE SP Coverage 

Morgan-GBM 0.84 0.68 0.85 0.84 0.62 

Morgan-SVM 0.84 0.69 0.83 0.85 0.62 

Morgan-RF 0.85 0.71 0.85 0.86 0.62 

Morgan-PLS-DA 0.81 0.62 0.81 0.81 0.62 

Morgan-kNN 0.78 0.55 0.90 0.66 0.62 

Morgan-CART 0.73 0.47 0.73 0.73 0.62 

Morgan-MARS 0.76 0.54 0.77 0.77 0.62 

Morgan-MLP 0.82 0.65 0.84 0.81 0.62 

CDK-GBM 0.84 0.67 0.84 0.83 0.77 

CDK-SVM 0.84 0.69 0.85 0.84 0.77 

CDK-RF 0.82 0.64 0.85 0.80 0.77 

CDK-PLS-DA 0.77 0.54 0.76 0.78 0.77 

CDK-kNN 0.78 0.57 0.78 0.78 0.77 

CDK-CART 0.70 0.40 0.71 0.69 0.77 

CDK-MARS 0.77 0.53 0.76 0.77 0.77 

CDK-MLP 0.78 0.56 0.79 0.77 0.77 

Dragon-GBM 0.85 0.70 0.85 0.84 0.69 

Dragon-SVM 0.85 0.70 0.85 0.84 0.69 

Dragon-RF 0.84 0.69 0.85 0.83 0.69 

Dragon-PLS-DA 0.80 0.61 0.80 0.81 0.69 

Dragon-kNN 0.80 0.59 0.83 0.76 0.69 

Dragon-CART 0.76 0.53 0.79 0.74 0.69 

Dragon-MARS 0.80 0.60 0.81 0.80 0.69 

Dragon-MLP 0.80 0.61 0.81 0.79 0.69 

MACCS-GBM 0.83 0.65 0.83 0.82 0.67 

MACCS-SVM 0.83 0.65 0.82 0.83 0.67 

MACCS-RF 0.83 0.66 0.83 0.83 0.67 

MACCS-PLS-DA 0.76 0.52 0.76 0.76 0.67 

MACCS-kNN 0.76 0.53 0.81 0.72 0.67 

MACCS-CART 0.73 0.46 0.74 0.72 0.67 

MACCS-MARS 0.74 0.48 0.73 0.75 0.67 

MACCS-MLP 0.78 0.57 0.79 0.78 0.67 

AtomPair-GBM 0.81 0.62 0.81 0.81 0.65 

AtomPair-SVM 0.81 0.62 0.81 0.81 0.65 

AtomPair-RF 0.80 0.61 0.79 0.82 0.65 

AtomPair-PLS-DA 0.74 0.47 0.74 0.73 0.65 

AtomPair-kNN 0.74 0.47 0.74 0.73 0.65 

AtomPair-CART 0.69 0.37 0.72 0.65 0.65 

AtomPair-MARS 0.70 0.41 0.70 0.70 0.65 

AtomPair-MLP 0.76 0.52 0.77 0.75 0.65 

CCR: correct classification rate; k: Cohen’s kappa; SE: sensitivity; SP: specificity 
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Table S2. Statistical characteristics of QSAR models developed with unbalanced dataset (1:2). 

Model CCR k SE SP Coverage 

Morgan-GBM 0.85 0.72 0.78 0.93 0.67 

Morgan-SVM 0.86 0.73 0.77 0.94 0.67 

Morgan-RF 0.86 0.74 0.76 0.95 0.67 

Morgan-PLS-DA 0.81 0.64 0.71 0.91 0.67 

Morgan-kNN 0.83 0.67 0.76 0.90 0.67 

Morgan-CART 0.67 0.38 0.44 0.90 0.67 

Morgan-MARS 0.75 0.53 0.62 0.88 0.67 

Morgan-MLP 0.84 0.68 0.77 0.90 0.67 

CDK-GBM 0.82 0.66 0.71 0.93 0.79 

CDK-SVM 0.84 0.69 0.75 0.92 0.79 

CDK-RF 0.82 0.66 0.70 0.94 0.79 

CDK-PLS-DA 0.73 0.49 0.57 0.89 0.79 

CDK-kNN 0.79 0.60 0.69 0.89 0.79 

CDK-CART 0.70 0.41 0.52 0.87 0.79 

CDK-MARS 0.76 0.53 0.63 0.88 0.79 

CDK-MLP 0.78 0.56 0.70 0.86 0.79 

Dragon-GBM 0.84 0.70 0.76 0.93 0.70 

Dragon-SVM 0.85 0.72 0.78 0.93 0.70 

Dragon-RF 0.84 0.74 0.74 0.94 0.70 

Dragon-PLS-DA 0.78 0.57 0.65 0.90 0.70 

Dragon-kNN 0.81 0.63 0.72 0.90 0.70 

Dragon-CART 0.74 0.51 0.60 0.89 0.70 

Dragon-MARS 0.78 0.58 0.68 0.89 0.70 

Dragon-MLP 0.80 0.61 0.73 0.88 0.70 

MACCS-GBM 0.82 0.66 0.74 0.91 0.64 

MACCS-SVM 0.82 0.66 0.72 0.92 0.64 

MACCS-RF 0.82 0.66 0.72 0.92 0.64 

MACCS-PLS-DA 0.72 0.46 0.55 0.88 0.64 

MACCS-kNN 0.77 0.54 0.67 0.86 0.64 

MACCS-CART 0.70 0.42 0.53 0.87 0.64 

MACCS-MARS 0.70 0.43 0.52 0.88 0.64 

MACCS-MLP 0.79 0.58 0.72 0.86 0.64 

AtomPair-GBM 0.81 0.64 0.70 0.92 0.66 

AtomPair-SVM 0.81 0.65 0.71 0.92 0.66 

AtomPair-RF 0.79 0.62 0.64 0.94 0.66 

AtomPair-PLS-DA 0.72 0.47 0.58 0.87 0.66 

AtomPair-kNN 0.78 0.55 0.71 0.85 0.66 

AtomPair-CART 0.67 0.37 0.48 0.87 0.66 

AtomPair-MARS 0.65 0.39 0.50 0.86 0.66 

AtomPair-MLP 0.78 0.56 0.70 0.86 0.66 

CCR: correct classification rate; k: Cohen’s kappa; SE: sensitivity; SP: specificity 
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Table S3. Statistical characteristics of QSAR models developed with unbalanced dataset (1:3). 

Model CCR k SE SP Coverage 

Morgan-GBM 0.85 0.73 0.74 0.95 0.65 

Morgan-SVM 0.85 0.73 0.74 0.96 0.65 

Morgan-RF 0.84 0.72 0.71 0.97 0.65 

Morgan-PLS-DA 0.79 0.61 0.64 0.94 0.65 

Morgan-kNN 0.82 0.64 0.72 0.91 0.65 

Morgan-CART 0.72 0.49 0.51 0.93 0.65 

Morgan-MARS 0.73 0.50 0.53 0.93 0.65 

Morgan-MLP 0.83 0.66 0.73 0.92 0.65 

CDK-GBM 0.80 0.65 0.65 0.95 0.80 

CDK-SVM 0.83 0.69 0.71 0.95 0.80 

CDK-RF 0.78 0.64 0.60 0.97 0.80 

CDK-PLS-DA 0.69 0.44 0.45 0.94 0.80 

CDK-kNN 0.78 0.59 0.62 0.93 0.80 

CDK-CART 0.68 0.41 0.44 0.92 0.80 

CDK-MARS 0.72 0.49 0.52 0.92 0.80 

CDK-MLP 0.77 0.55 0.65 0.90 0.80 

Dragon-GBM 0.83 0.71 0.71 0.96 0.71 

Dragon-SVM 0.85 0.72 0.74 0.95 0.71 

Dragon-RF 0.82 0.70 0.68 0.97 0.71 

Dragon-PLS-DA 0.73 0.51 0.51 0.94 0.71 

Dragon-kNN 0.79 0.60 0.65 0.93 0.71 

Dragon-CART 0.69 0.43 0.43 0.94 0.71 

Dragon-MARS 0.75 0.55 0.58 0.93 0.71 

Dragon-MLP 0.80 0.61 0.69 0.91 0.71 

MACCS-GBM 0.81 0.66 0.68 0.95 0.69 

MACCS-SVM 0.81 0.66 0.68 0.95 0.69 

MACCS-RF 0.81 0.67 0.67 0.96 0.69 

MACCS-PLS-DA 0.68 0.40 0.42 0.93 0.69 

MACCS-kNN 0.76 0.55 0.60 0.92 0.69 

MACCS-CART 0.68 0.41 0.43 0.93 0.69 

MACCS-MARS 0.66 0.37 0.40 0.93 0.69 

MACCS-MLP 0.78 0.58 0.66 0.91 0.69 

AtomPair-GBM 0.78 0.62 0.61 0.96 0.67 

AtomPair-SVM 0.75 0.58 0.53 0.97 0.67 

AtomPair-RF 0.75 0.58 0.53 0.97 0.67 

AtomPair-PLS-DA 0.69 0.43 0.45 0.93 0.67 

AtomPair-kNN 0.77 0.57 0.61 0.92 0.67 

AtomPair-CART 0.64 0.34 0.36 0.93 0.67 

AtomPair-MARS 0.64 0.34 0.36 0.93 0.67 

AtomPair-MLP 0.75 0.53 0.60 0.90 0.67 

CCR: correct classification rate; k: Cohen’s kappa; SE: sensitivity; SP: specificity 
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Table S4. Statistical characteristics of Y-randomization models developed with balanced dataset. 

Model CCR (SD) k  (SD) SE (SD) SP (SD) 

Morgan–RF 0.51 (0.01) 0.01 (0.02) 0.50 (0.01) 0.51 (0.01) 

MACCS–RF 0.51 (0.01) 0.02 (0.02) 0.51 (0.04) 0.51 (0.04) 

AtomPair–SVM 0.50 (0.01) 0.01 (0.01) 0.49 (0.01) 0.50 (0.01) 

AtomPair–GBM 0.51 (0.01) 0.01 (0.01) 0.50 (0.02) 0.51 (0.02) 

Dragon–SVM 0.50 (0.01) 0.01 (0.01) 0.51 (0.02) 0.50 (0.02) 

Dragon–GBM 0.51 (0.01) 0.01 (0.02) 0.51 (0.02) 0.51 (0.02) 

CDK–SVM 0.50 (0.01) 0.00 (0.01) 0.51 (0.01) 0.50 (0.01) 

CCR: correct classification rate; k: Cohen’s kappa; SE: sensitivity; SP: specificity 

 

Table S5. Statistical characteristics of consensus and consensus rigor models developed.  

Model CCR k SE SP Coverage Combination used 

Consensus 0.87 0.74 0.87 0.88 1.00 Morgan-RF + MACCS-RF + AtomPair-

SVM + Dragon-SVM + CDK-SVM Consensus rigor 0.91 0.81 0.96 0.87 0.38 

Consensus 0.87 0.73 0.86 0.87 1.00 Morgan-RF + MACCS-RF + AtomPair-

GBM + Dragon-GBM + CDK-GBM 
Consensus rigor 0.91 0.80 0.95 0.87 0.38 

Consensus 0.87 0.73 0.86 0.87 1.00 Morgan-RF + MACCS-RF + AtomPair-RF 

+ Dragon-SVM + CDK-SVM 
Consensus rigor 0.91 0.81 0.95 0.87 0.38 

Consensus 0.85 0.71 0.86 0.85 1.00 Morgan-RF + MACCS-RF + AtomPair-RF 

+ Dragon-RF + CDK-RF 
Consensus rigor 0.89 0.77 0.95 0.84 0.38 

Consensus 0.87 0.74 0.87 0.87 1.00 Morgan-RF + MACCS-RF + AtomPair-

SVM + Dragon-GBM + CDK-GBM 
Consensus rigor 0.91 0.80 0.95 0.87 0.38 

Consensus 0.87 0.74 0.87 0.88 1.00 Morgan-RF + MACCS-RF + AtomPair-

GBM + Dragon-SVM + CDK-SVM 
Consensus rigor 0.91 0.81 0.96 0.86 0.38 

Consensus 0.87 0.74 0.87 0.87 1.00 Morgan-RF + MACCS-RF + AtomPair-

GBM + Dragon-GBM + CDK-SVM 
Consensus rigor 0.91 0.81 0.95 0.87 0.38 

Consensus 0.87 0.74 0.87 0.87 1.00 Morgan-GBM + MACCS-GBM + 

AtomPair-SVM+ Dragon-SVM + CDK-

SVM 
Consensus rigor 0.91 0.81 0.96 0.87 0.38 

Consensus 0.87 0.74 0.87 0.87 1.00 Morgan-GBM + MACCS-RF + AtomPair-

SVM+ Dragon-SVM + CDK-SVM 
Consensus rigor 0.91 0.81 0.96 0.86 0.38 

Consensus 0.87 0.74 0.87 0.87 1.00 Morgan-RF + MACCS-GBM + AtomPair-

SVM+ Dragon-SVM + CDK-SVM 
Consensus rigor 0.91 0.81 0.96 0.87 0.38 

Consensus 0.87 0.73 0.86 0.87 1.00 Morgan-GBM + MACCS-GBM + 

AtomPair-GBM+ Dragon-GBM + CDK-

GBM 
Consensus rigor 0.90 0.78 0.95 0.86 0.38 

Consensus 0.87 0.74 0.86 0.88 1.00 Morgan-SVM + MACCS-SVM + 

AtomPair-GBM+ Dragon-GBM+ CDK-

GBM 
Consensus rigor 0.91 0.80 0.95 0.88 0.38 

CCR: correct classification rate; k: Cohen’s kappa; SE: sensitivity; SP: specificity 
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Table S6. The predictions for the PZQ, OLT, and 29 putative hits using more predictive 

consensus model and its motility and phenotype adjusted index values obtained for S. mansoni 

schistosomula exposed for 48h at a 20 µM concentration. The positive controls PZQ and OLT 

were tested at 10 µM concentration. 

Compound Chemical 

structure 

Prob. AD Motility adjusted 

index (mean ± SD) 

Phenotype adjusted 

index (mean ± SD) 

1,2-dimethoxy-4-(2-

nitrovinyl)benzene 

(LabMol-23, 1) 

 

1.0 0.6 -0.74 ± 0.08 -0.64 ± 0.01 

1-(4-iodophenyl)-3-(4H-

1,2,4-triazol-3-ylthio)-2,5-

pyrrolidinedione 

(LabMol-28, 2) 

 

1.0 0.6 -0.61 ± 0.09 -0.48 ± 0.05 

2-[2-(3-methyl-4-nitro-5-

isoxazolyl)vinyl]pyridine 

(LabMol-37, 3) 

 

1.0 0.6 -0.92 ± 0.04 -0.58 ± 0.01 

2-(benzylsulfonyl)-1,3-

benzothiazole (LabMol-

49, 4) 
 

1.0 0.8 -0.93 ± 0.02 -0.61 ± 0.09 

3-[(4-

acetylphenyl)amino]-1-(2-

thienyl)-1-propanone 

(LabMol-50, 5)  

1.0 0.8 -0.89 ± 0.02 -0.40 ± 0.03 

3-(2-furyl)-1-phenyl-1H-

pyrazole-4-carbonitrile 

(LabMol-51, 6) 

 

1.0 1.0 -0.33 ± 0.13 -0.24 ± 0.05 

4-(4-fluorobenzoyl)-5-

methyl-2-phenyl-2,4-

dihydro-3H-pyrazol-3-one 

(LabMol-24, 7) 

 

1.0 0.8 0.15 ± 0.05 -0.17 ± 0.04 
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N-[(2-hydroxy-1-

naphthyl)methylene]-4-

methylbenzenesulfonamid

e (LabMol-25, 8) 

 

1.0 0.6 -0.12 ± 0.09 -0.08 ± 0.00 

N-(4-fluorobenzylidene)-

4-

methylbenzenesulfonamid

e (LabMol-26, 9) 

 

1.0 0.6 -0.04 ± 0.04 -0.05 ± 0.02 

1-(3-bromophenyl)-2,5-

dioxo-3-pyrrolidinyl N'-

phenylimidothiocarbamate 

(LabMol-27, 10) 

 

1.0 0.6 -0.49 ± 0.06 -0.08 ± 0.04 

5-[(3-

carboxyacryloyl)amino]-

2-(4-morpholinyl)benzoic 

acid (LabMol-29, 11) 

 

1.0 0.6 0.34 ± 0.10 -0.10 ± 0.14 

4-({[(2-

furylmethyl)amino]carbon

othioyl}amino)benzenesul

fonamide (LabMol-30, 12)  

1.0 0.6 0.13 ± 0.01 -0.15 ± 0.04 

2-[(4-

methylphenyl)sulfonyl]-1-

(3-nitrophenyl)ethanone 

(LabMol-31, 13)  

 

1.0 0.6 0.22 ± 0.04 -0.11 ± 0.03 

1-benzofuran-2-yl(4-

methyl-3-

nitrophenyl)methanone 

(LabMol-32, 14) 
 

1.0 0.8 0.06 ± 0.05 -0.12 ± 0.01 

1-{[(4-

methylphenyl)sulfonyl]me

thyl}-3-nitrobenzene 

(LabMol-33, 15) 

 

1.0 0.8 -0.07 ± 0.08 -0.12 ± 0.06 
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2-{[4-allyl-5-(2-furyl)-4H-

1,2,4-triazol-3-

yl]thio}acetamide 

(LabMol-34, 16) 

 

1.0 0.6 0.17 ± 0.13 0.02 ± 0.15 

N-allyl-2-(2-furyl)-4-

(phenylsulfonyl)-1,3-

oxazol-5-amine (LabMol-

35, 17) 

 

1.0 0.8 -0.52 ± 0.02 

 

-0.08 ± 0.02 

 

2-(2-phenylvinyl)-4-

quinolinol (LabMol-36, 

18) 
 

1.0 1.0 -0.41 ± 0.10 -0.15 ± 0.02 

1-(2,4-dichlorobenzyl)-4-

nitro-1H-imidazole 

(LabMol-38, 19) 

 

1.0 0.6 0.00 ± 0.15 -0.12 ± 0.07 

1-(3-chlorobenzyl)-3-

nitro-1H-1,2,4-triazole 

(LabMol-39, 20) 

 

1.0 0.6 0.02 ± 0.06 

 

-0.04 ± 0.02 

 

4-chloro-1-(2-chloro-4-

fluorobenzyl)-3-nitro-1H-

pyrazole (LabMol-40, 21) 

 

1.0 0.6 -0.28 ± 0.01 -0.13 ± 0.02 

1-(3-chlorobenzyl)-3-

methoxy-4-nitro-1H-

pyrazole (LabMol-41, 22) 

 

1.0 0.8 -0.26 ± 0.05 

 

-0.19 ± 0.04 

 

1-(2,4-dichlorophenyl)-2-

[(4-

methylphenyl)sulfonyl]eth

anone (LabMol-42, 23) 

 

1.0 0.8 -0.05 ± 0.19 

 

-0.15 ± 0.08 
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2-{[1-(3-chloro-4-

methylphenyl)-2,5-dioxo-

3-

pyrrolidinyl]thio}nicotinic 

acid (LabMol-43, 24) 

 

1.0 0.8 0.26 ± 0.10 

 

-0.13 ± 0.01 

 

1-(4-chlorophenyl)-5-(2-

furyl)-N-isopropyl-1H-

1,2,3-triazole-4-

carboxamide (LabMol-44, 

25) 

 

1.0 0.8 0.20 ± 0.13 

 

-0.10 ± 0.02 

 

1-(1-benzofuran-2-yl)-2-

(phenylsulfonyl)ethanone 

(LabMol-45, 26)  

1.0 0.8 0.18 ± 0.12 -0.14 ± 0.02 

N-[2-(3-pyridinyl)-2-(2-

thienylsulfonyl)ethyl]-2-

furamide (LabMol-46, 27) 

 

1.0 0.8 0.35 ± 0.04 0.00 ± 0.12 

N-(2-furylmethyl)-4-(1-

piperidinylsulfonyl)-2-

thiophenecarboxamide 

(LabMol-47, 28) 

 

1.0 0.8 0.10 ± 0.05 -0.11 ± 0.03 

4-(3-

carboxypropanoyl)benzoic 

acid (LabMol-48, 29) 

 

1.0 0.6 0.12 ± 0.07 -0.10 ± 0.01 

Praziquantel (PZQ) 

 

0.0 0.8 -0.48 ± 0.04 -0.17 ± 0.02 

Oltipraz (OLT) 

 

0.8 1.0 -0.90 ± 0.04 -0.34 ± 0.07 

Prob.: probability; AD: applicability domain coverage; The identified hits are highlighted in bold 

fonts 
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Table S7. EC50 values for the effect of investigated compounds and PZQ on the motility of male 

and female S. mansoni exposed for up to 72h. 

Time (h) Compound 
EC50 (µM) 

Male Female 

24h 

PZQ 0.26 0.28 

1 9.59 12.3 

2 17.0 19.8 

3 17.5 16.1 

4 35.1 21.9 

48h 

PZQ No fit 0.64 

1 29.8 5.77 

2 10.2 17.9 

3 6.43 5.68 

4 21.1 4.91 

72h 

PZQ 0.22 0.59 

1 28.1 No Fit 

2 11.4 No Fit 

3 No fit 5.84 

4 20.4 5.83 
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Figure S1. Chemical space of SmTGR inhibitors and non-inhibitors into first two PCs computed 

using MACCS keys; blue dots representing the 2,854 inhibitors at 10 µM threshold (A); Yellow 

(B), orange (C), and red (D) dots represent non-inhibitors selected for dataset balancing with 

ratios of 1:1, 1:2, and 1:3 correspondingly; grey dots represent remaining non-inhibitors.  
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Figure S2. Predicted probability maps generated for cephalosporins (A) and their probable 

reaction mechanism in the SmTGR active site (B).  

 

 

 

 

Figure S3. Motility dose-response curves for compounds 3 (A) and 4 (B) against S. mansoni 

larvae after 48h of incubation. 
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Figure S4. Viability dose-responses curves for compounds 1−4 and PZQ against WSS-1 human 

cells after 48h of incubation. 

 

 

 

Figure S5. Effect of 0.01% Triton X-100 co-incubated with compounds 1, 3 and 4 on adult male 

and female S. mansoni worms. Motility measurements were performed after 48h and 72h, and 

compared with group without detergent. Data expressed as mean ± standard deviation. * P ≤ 0.05 

using student-t test. 
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Figure S6. Papain activity in the presence of compounds 1−4 and E-64. Data expressed as mean 

± standard deviation. * P ≤ 0.05 relative to control using ANOVA followed by Dunnett´s test. 
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Figure S7. Dose-response curves for compounds 3 (A), 4 (B) and PZQ (C) on the motility of 

male and female S. mansoni exposed for up to 72h of incubation. 
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Nuclear Magnetic Resonance (NMR) and Purity Data. The chemical structure of all 

compounds purchased from ChemBridge was confirmed using proton (1H) NMR spectra at 

300/400 MHz. The 1H RMN spectrums of compounds are listed below. The Liquid 

Chromatography–Mass Spectrometry (LC-MS) analysis with evaporative light scattering and 

ultraviolet detectors confirmed a minimum purity of 95% for all samples. 

 

1,2-dimethoxy-4-(2-nitrovinyl)benzene (LabMol-23, 1); 
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1-(4-iodophenyl)-3-(4H-1,2,4-triazol-3-ylthio)-2,5-pyrrolidinedione (LabMol-28, 2); 

 

2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine (LabMol-37, 3); 
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2-(benzylsulfonyl)-1,3-benzothiazole (LabMol-49, 4); 

 

3-[(4-acetylphenyl)amino]-1-(2-thienyl)-1-propanone (LabMol-50, 5); 
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3-(2-furyl)-1-phenyl-1H-pyrazole-4-carbonitrile (LabMol-51, 6); 

 

4-(4-fluorobenzoyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (LabMol-24, 7); 
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N-[(2-hydroxy-1-naphthyl)methylene]-4-methylbenzenesulfonamide (LabMol-25, 8); 

 

N-(4-fluorobenzylidene)-4-methylbenzenesulfonamide (LabMol-26, 9); 
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1-(3-bromophenyl)-2,5-dioxo-3-pyrrolidinyl N'-phenylimidothiocarbamate (LabMol-27, 10); 

 

5-[(3-carboxyacryloyl)amino]-2-(4-morpholinyl)benzoic acid (LabMol-29, 11); 
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4-({[(2-furylmethyl)amino]carbonothioyl}amino)benzenesulfonamide (LabMol-30, 12); 

 

2-[(4-methylphenyl)sulfonyl]-1-(3-nitrophenyl)ethanone (LabMol-31, 13); 
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1-benzofuran-2-yl(4-methyl-3-nitrophenyl)methanone (LabMol-32, 14); 

 

1-{[(4-methylphenyl)sulfonyl]methyl}-3-nitrobenzene (LabMol-33, 15); 
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2-{[4-allyl-5-(2-furyl)-4H-1,2,4-triazol-3-yl]thio}acetamide (LabMol-34, 16); 

 

N-allyl-2-(2-furyl)-4-(phenylsulfonyl)-1,3-oxazol-5-amine (LabMol-35, 17); 
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2-(2-phenylvinyl)-4-quinolinol (LabMol-36, 18); 

 

1-(2,4-dichlorobenzyl)-4-nitro-1H-imidazole (LabMol-38, 19); 
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1-(3-chlorobenzyl)-3-nitro-1H-1,2,4-triazole (LabMol-39, 20); 

 

4-chloro-1-(2-chloro-4-fluorobenzyl)-3-nitro-1H-pyrazole (LabMol-40, 21); 

 



Supporting Information 

 S33 

1-(3-chlorobenzyl)-3-methoxy-4-nitro-1H-pyrazole (LabMol-41, 22); 

 

1-(2,4-dichlorophenyl)-2-[(4-methylphenyl)sulfonyl]ethanone (LabMol-42, 23); 
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2-{[1-(3-chloro-4-methylphenyl)-2,5-dioxo-3-pyrrolidinyl]thio}nicotinic acid (LabMol-43, 

24); 

 

1-(4-chlorophenyl)-5-(2-furyl)-N-isopropyl-1H-1,2,3-triazole-4-carboxamide (LabMol-44, 25); 
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1-(1-benzofuran-2-yl)-2-(phenylsulfonyl)ethanone (LabMol-45, 26); 

 

N-[2-(3-pyridinyl)-2-(2-thienylsulfonyl)ethyl]-2-furamide (LabMol-46, 27); 
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N-(2-furylmethyl)-4-(1-piperidinylsulfonyl)-2-thiophenecarboxamide (LabMol-47, 28); 

 

4-(3-carboxypropanoyl)benzoic acid (LabMol-48, 29); 
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