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Abstract

Background: Culture remains the diagnostic gold standard for many bacterial infections, and the method against which
other tests are often evaluated. Specificity of culture is 100% if the pathogenic organism is not found in healthy subjects,
but the sensitivity of culture is more difficult to determine and may be low. Here, we apply Bayesian latent class models
(LCMs) to data from patients with a single Gram-negative bacterial infection and define the true sensitivity of culture
together with the impact of misclassification by culture on the reported accuracy of alternative diagnostic tests.

Methods/Principal Findings: Data from published studies describing the application of five diagnostic tests (culture and
four serological tests) to a patient cohort with suspected melioidosis were re-analysed using several Bayesian LCMs.
Sensitivities, specificities, and positive and negative predictive values (PPVs and NPVs) were calculated. Of 320 patients with
suspected melioidosis, 119 (37%) had culture confirmed melioidosis. Using the final model (Bayesian LCM with conditional
dependence between serological tests), the sensitivity of culture was estimated to be 60.2%. Prediction accuracy of the final
model was assessed using a classification tool to grade patients according to the likelihood of melioidosis, which indicated
that an estimated disease prevalence of 61.6% was credible. Estimates of sensitivities, specificities, PPVs and NPVs of four
serological tests were significantly different from previously published values in which culture was used as the gold
standard.

Conclusions/Significance: Culture has low sensitivity and low NPV for the diagnosis of melioidosis and is an imperfect gold
standard against which to evaluate alternative tests. Models should be used to support the evaluation of diagnostic tests
with an imperfect gold standard. It is likely that the poor sensitivity/specificity of culture is not specific for melioidosis, but
rather a generic problem for many bacterial and fungal infections.
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Introduction

Culture remains the diagnostic gold standard for many bacterial

and fungal infections [1,2]. Specificity of culture is based on the

likelihood that the organism isolated can be found in healthy

subjects, and varies between samples taken from normally sterile

versus colonised sites as well as the microbial species in question

[3]. More problematic is the true sensitivity of culture, which is

difficult to determine but may be low. Insights into the extent to

which culture is falsely negative can be gained using molecular

tests with a higher predicted diagnostic sensitivity, although both

culture and molecular tests are prone to reduced sensitivity from

factors such as inadequate sampling, the intermittent presence or

low number of organisms in specimens such as blood, and prior

administration of antimicrobial therapy [1].

Despite its obvious imperfections and often because of the lack

of a better alternative, culture may be used as the gold standard

against which alternative diagnostic tests for bacterial infectious

diseases are evaluated. The impact of using an imperfect gold

standard during the evaluation of a second test can be

demonstrated using a hypothetical example, in which a population

of 1,000 infected subjects and 1,000 non-infected subjects are
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evaluated using an imperfect gold standard with a true sensitivity

of 60% and true specificity of 100%, and a new test with a true

sensitivity of 95% and true specificity of 95%. The estimated

sensitivity and specificity of the new test under these circumstances

would be 95% (570/600) and 69% (970/1,400), respectively. In

addition, the estimated prevalence would be 30% (600/2,000)

rather than 50%. Hence, the estimates of both test accuracy and

prevalence are strongly biased due to disease misclassification by

the imperfect gold standard.

Here, we describe the application of Bayesian latent class

models (LCM’s) to define the true sensitivity of culture for

microbial infection, in which we use a single Gram-negative

bacterial infection (melioidosis) as a model system. This often life-

threatening infection caused by the environmental saprophyte

Burkholderia pseudomallei occurs across Southeast Asia and northern

Australia [4]. The current diagnostic gold standard is culture and

isolation of B. pseudomallei from any clinical specimen. The

specificity of a positive culture is assumed to be 100% since B.

pseudomallei is not a member of the normal colonizing flora [5,6],

but sensitivity is unlikely to be as high since experienced clinicians

commonly make a clinical diagnosis of melioidosis in culture-

negative patients. Culture has also been used previously as a gold

standard against which alternative diagnostic assays for melioidosis

have been evaluated, including several serological tests [7,8].

These have performed poorly, a finding attributed to high rates of

seropositivity in the background population [9]. We have re-

analysed existing datasets to define the impact of misclassification

by culture on the reported accuracy of these diagnostic tests.

Methods

Study patients and diagnostic tests
The data analyzed in this study was generated during two

previously published prospective clinical evaluations of diagnostic

laboratory tests for melioidosis [7,8]. The same patient cohort was

used in both studies. In brief, patients were recruited between June

and October 2004 at the Sappasithiprasong Hospital, Ubon

Ratchathani, northeast Thailand [7]. Inclusion criteria were the

presence of a fever (.38.5uC) in patients aged 14 years or more

who were suspected to have melioidosis in the absence of clinical

or laboratory findings suggestive of an alternative diagnosis.

Patients underwent sampling for culture (blood from all patients,

and urine, pus, respiratory secretions, throat swab, and swabs from

surface lesions, as available or clinically appropriate), and were

tested using four serological tests (indirect hemagglutination test

(IHA), IgM immunochromogenic cassette test (ICT), IgG ICT,

and ELISA using affinity-purified antigen), as previously described

[7,8]. The IHA detects antibody to a poorly defined mixture of

antigens present in B. pseudomallei culture supernatant, the ICT

detects specific IgM or IgG antibodies to B. pseudomallei [7], and

the ELISA detects antibody to affinity-purified B. pseudomallei

antigen prepared using a monoclonal antibody to B. pseudomallei

exopolysaccharide [8]. The serum used in the serological tests was

taken at the time of hospital admission. Of the 322 patients

recruited [7], two cases were enrolled twice and were excluded

from this study.

Ethics Statement
Ethical approval for the cohort study was obtained from the

Ministry of Public Health, Royal Government of Thailand, and

the Oxford Tropical Research Ethics Committee, UK. Written

inform consent was obtained from each subject enrolled into the

study [7].

Statistical analysis
Results of the five diagnostic test results (culture and four

serological tests) were analyzed in three ways. First, culture was

used as the gold standard reference, and prevalence, sensitivities,

specificities, positive and negative predictive values (PPV’s and

NPV’s) for the four serological tests were calculated with exact

95% confidence intervals using the Stata 10.1 statistical software

package (Stata Corp., College Station, Tex.). This was comparable

to data published previously [7,8]. Second, a Bayesian latent class

model (LCM) with conditional independence between all five tests

was used. In brief, the LCM calculated prevalence and sensitivities

and specificities of all tests from the observed frequencies of each

possible combination of test results and assumed that, in a given

patient, the result of any given test was not associated with the

result of any other test. Therefore, this model did not assume a

single gold standard test but regarded each test as imperfect in

diagnosing the true disease status (infected or not infected). The

true disease status of the patient population was defined on the

basis of overall prevalence. All parameters were estimated with

95% credible intervals using WinBUGS 1.4 (http://www.mrc-bsu.

cam.ac.uk/bugs/welcome.shtml) [10]. Third, Bayesian LCM’s

with conditional dependence between diagnostic tests were used. A

class of fixed effect and random effect models described by

Dendukuri and Joseph were used to take account of conditional

dependence between tests [11,12]. Fixed effect models were used

for pairwise correlation between two tests, and random effect

models were used for correlation between more than two tests. On

the basis of published knowledge [4,8,9,13], four probable

correlations between diagnostic tests were explored (Table S1).

For Bayesian LCM’s, specificity of culture was fixed at 100%, and

we assumed that we knew nothing (non-informative priors) about

the unknown parameters (prevalence, sensitivities of all five tests

and specificities of all four serological tests). Bayesian p-value,

deviance information criteria (DIC) and Akaike’s information

criterion (AIC) were used to compare the models [14].

Post-hoc model evaluation
The prediction accuracy of the final model was tested using a

clinical tool that was developed to estimate the probability of

melioidosis in patients who were culture negative for B.

pseudomallei. This was based on the following data that was

gathered throughout hospital admission to the time of death or

discharge: (i) clinical progression, (ii) the results of additional

investigations, and (iii) administration and response to antimicro-

bial therapy, including details of the antimicrobial(s) used and

whether this would be effective treatment for melioidosis. Final

diagnoses were categorized into 4 groups: (i) definite melioidosis

(culture-confirmed), (ii) probable melioidosis, (iii) possible melioi-

dosis, or (iv) melioidosis was unlikely or excluded. Table 1

describes the definitions used for each group.

Results

A total of 320 patients with suspected melioidosis were included

in the study. The median patient age was 54 years (interquartile

range 43–65 years), and 161 patients (50%) were male. 119 out of

320 patients were culture positive for B. pseudomallei, giving a

prevalence of 37.2% (95% confidence interval 31.9–42.7). The

number of patients who were culture-positive for each sample type

was as follows: blood, 65 (54.6%); urine, 20 (16.8%); sputum, 37

(31.1%); throat swab, 26 (21.9%); and other specimens, 51

(42.9%); (many patients were positive for more than one sample

type). IHA, IgM ICT, IgG ICT and ELISA were positive in 158,

True Sensitivity of Culture
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200, 206 and 152 patients, respectively. Sixty-nine patients

(21.6%) were positive for culture and all four serological tests.

Using data on clinical progression during the course of hospital

admission through to the time of death or hospital discharge, 119/

320 patients (37.2%) were defined as having definite (culture

confirmed) melioidosis, 34/320 (10.6%) were assigned to the

probable group, 83/320 (25.9%) were assigned to the possible

group, and 84/320 (26.3%) were assigned to the unlikely/non-

melioidosis group. Diabetes was present in 85/119 (71%) patients

with definite melioidosis, 21/35 (60%) with probable melioidosis,

49/76 (65%) with possible melioidosis and 49/90 (54%) in the

non-melioidosis group (p = 0.08). In the probable group, 33/34

patients were defined as having clinical melioidosis on the basis of

hepatosplenic abscess(es) detected by ultrasonogram, and 1 patient

re-presented with culture confirmed melioidosis after hospital

discharge. In the possible group, 63 patients improved after

treatment with effective antimicrobial regimens for melioidosis,

and 20 patients died before clinical progression could be observed.

In the non-melioidosis group, 44 patients had resolution of clinical

features without treatment with antimicrobial drugs that are active

against B. pseudomallei, and the remaining patients had a range of

other diagnoses, as follows: bacteremia with an organism other

than B. pseudomallei (11), leptospirosis (7), malignancy (7),

tuberculosis (5), acute myocardial infarction (3), amoebic liver

abscess (1), single liver abscess of unknown cause (1), cholangitis

(1), cholecystitis (1), herpes zoster (1), polyarteritis nodosa (1), and

congestive heart failure (1).

Culture as a perfect gold standard
We first assumed that culture was a perfect gold standard (100%

sensitivity and 100% specificity), and used this assumption to

calculate the sensitivities, specificities, PPV’s and NPV’s of the four

serological tests (Table 2). The ELISA gave the highest

combination of sensitivity and specificity (82.4% and 73.1%,

respectively). All serological tests lacked specificity, a finding that

was most marked for the IgM ICT (48.8%) and IgG ICT (49.3%).

Conditional independence model
We then assumed that culture might be an imperfect gold

standard and applied a conditional independence model to the

data for the five tests, which we termed Model 0. Inherent to this

model is the assumption that, for a given patient, knowing the

result of the first test has no influence on the result of the second

test. Similarly, knowing the results of the first and second test has

no influence on the result of the remaining tests. The observed

frequencies of the 32 possible combinations of results for the 5 tests

(from all tests positive giving a profile of 1,1,1,1,1 to all tests

negative giving a profile of 0,0,0,0,0) are shown in Table S2. Using

the observed frequencies of the 32 possible combinations, we can

estimate the sensitivities, specificities, PPV’s and NPV’s of the 5

diagnostic tests (Table 2). Sensitivity of culture was estimated to be

60.9% (95% Credible Interval 53.3–68.6). Specificities of the other

four tests were considerably higher than those estimated using

culture as a perfect gold standard. However, the observed

frequency of patients having all tests positive was considerably

higher than was predicted by the conditional independence model

(69 vs. 49 patients; Bayesian p value = 0.015; Table S3, Figure 1a).

A Bayesian p value this close to zero indicates that the observed

result would be unlikely to be seen in replications of the data if the

model was true. This was strongly suggestive of a positive

correlation between diagnostic tests where patients who were

positive for one test were more likely to be positive for other tests,

an observation with biological plausibility. We concluded,

therefore, that this conditional independence model was not a

good fit for the data.

Conditional dependence model
We then assumed not only that culture might be imperfect, but

also that diagnostic tests could be correlated. Correlations were

evaluated between IHA and IgM ICT (Model 1; DIC = 219.4),

and between IHA and IgG ICT in infected patients (Model 2;

DIC = 198.7). Both models were a significantly better fit than

Model 0 (DIC = 233.1), as reflected by the fact that Model 1 and 2

had lower DIC values than Model 0 and that this difference was

more than 10 [14]. However, the Bayesian p values of both Model

1 and 2 were still very close to 0 (Table S3), indicating that Model

1 and Model 2 were still not a good fit for the data.

We then assessed the correlation between more than two

diagnostic tests by using models with a random effect variable.

Correlation among all serological tests in infected patients (Model

3; AIC = 170.5) and correlation among all serological tests in non-

infected patients (Model 4; AIC = 226.9) were evaluated. AIC was

used rather than DIC, as the DIC of random effect models could

not be estimated by WinBUGS [14]. Model 4 did not fit the data

better than Model 0 (AIC = 233.7), indicating that correlation of

false positivity among serological tests in non-infected patients with

high background antibody level was not observed. Model 3 was

the best fit for the data (AIC = 170.5, Bayesian p value = 0.24,

Figure 1b), and was selected as the final model. WinBUGS code

and detail of each model is provided in Text S1 and S2.

Table 1. Criteria used to determine the possibility of having melioidosis.

Definite melioidosis (Culture confirmed) One or more clinical samples culture positive for B. pseudomallei

Probable melioidosis (Clinical melioidosis) Presence of multiple liver abscesses and/or single or multiple splenic abscess(es) on
abdominal ultrasound with an appearance that is characteristic for melioidosis (swiss
cheese appearance or small dispersed abscesses), but culture not performed or
negative for B. pseudomallei OR Culture negative for B. pseudomallei on first
presentation but represented to hospital within one month with culture proven
melioidosis

Possible melioidosis (Findings that fall short of
‘probable’ but are not ‘unlikely’)

Clinically suspected melioidosis and improved after treatment with an effective
antimicrobial regimen for melioidosis (ceftazidime/carbapenem drug/amoxicillin-
clavulanate), OR Clinically suspected melioidosis and died before improvement
observed

Not melioidosis (Melioidosis is unlikely) Definite alternative diagnosis for manifestations leading to suspected melioidosis, OR
Resolution of clinical features of suspected melioidosis without treatment with
antimicrobial drugs with activity against B. pseudomallei

doi:10.1371/journal.pone.0012485.t001
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Final model
The prevalence of infected patients in the test population was

estimated to be 61.6% (95% confidence interval 54.4%–69.2%),

and around 197 (320661.6%) subjects were classified as having

melioidosis. This model indicated that culture had low sensitivity

(60.2%, 95% confidence interval 51.7%–68.5%; Table 2). All

parameters estimated by the final model were moderately different

from those estimated by Model 0 (conditional independence

model). This indicated that estimates of parameters could be

biased not only by misclassification of the gold standard, but also

by failure to take account of conditional dependence between

diagnostic tests.

Post-hoc model validation
The classification of 37.2% of patients into the definite

melioidosis group, 10.6% into the probable melioidosis group

and 25.9% into the possible melioidosis group means that the true

prevalence of melioidosis in the test population could range from

47.8% to 73.7%. This indicates that the estimated prevalence from

the final model was credible.

Discussion

Understanding the sensitivity and specificity of a diagnostic test

is central to its appropriate use in clinical practice. Culture is the

leading investigation for patients with suspected infection from a

wide range of pathogens, but ascertaining the true sensitivity of

this test is difficult. Here, we describe an approach to define the

sensitivity of culture using melioidosis as a model system, in which

Bayesian LCM with conditional dependence gave an estimated

sensitivity of 60.2%. Bayesian LCM also gave an estimated

prevalence of 61.6% in patients who were investigated for

suspected melioidosis, compared with 37.2% based on culture

alone. This higher estimated prevalence is credible, since the study

was performed at a hospital where melioidosis is the most common

cause of community-acquired bacteremia [15], and during the

rainy season when most cases of melioidosis occur. These findings

have important implications for clinical care. Influenced by the

high associated death rate from melioidosis in our setting of 45%

[16], we propose that all patients suspected to have this infection

should be commenced on empirical intravenous antimicrobials to

cover B. pseudomallei, and that this be discontinued or changed to

another agent only if an alternative diagnosis is made or

melioidosis is considered unlikely. The decision to proceed to a

course of oral antimicrobial therapy (which is required for 12–20

weeks to eradicate B. pseudomallei) should be based on a summary of

all available information.

The development of strategies for the evaluation of a diagnostic

test when the gold standard used is known to be imperfect has

been an active area of biostatistical research applied to many areas

including infectious diseases, oncology and veterinary medicine

[11,17–20]. Our study has demonstrated that culture represents a

poor gold standard against which to compare alternative

diagnostic tests for melioidosis, and has shown the utility of

statistical models under such circumstances. The shift we observed

in calculated diagnostic accuracy of serological tests based on

Bayesian LCM compared with previous figures based on the use of

culture as gold standard are of sufficient magnitude that some of

these tests might now be considered for use in the clinical setting.

For example, the ELISA had a PPV and NPV of 64.5% and

87.5%, respectively, when compared with culture and as such had

no clinical utility. When re-calculated using Bayesian LCM with

conditional dependence, the PPV and NPV were 98.3% and

71.3%, respectively, representing a test that could be used to rule

in melioidosis with a high degree of accuracy. No tests had a high

NPV in the models used here, and so the clinical problem remains

that a diagnosis of melioidosis is difficult to rule out.

Poor sensitivity of culture has several possible explanations. A

number of patients received antimicrobials before all clinical

specimens could be obtained. The detectable B. pseudomallei count

in the blood of patients with melioidosis has been reported to be as

low as 0.1 CFU/ml [21], and may fall below the level of detection.

Sensitivity may also be reduced by the use of non-selective media

for samples from colonized sites [22]. Despite these problems,

culture of all available clinical specimens is required since

microbiological isolation is needed for a definite diagnosis for

melioidosis, and a blood or urine culture positive for B. pseudomallei

is an independent prognostic factor for mortality outcome [23].

Our data supported positive correlations between serological

tests in patients with melioidosis. Seropositivity is common in

Table 2. Prevalence, sensitivities and specificities, positive
and negative predictive values (PPV’s and NPV’s) using culture
as gold standard and for two Bayesian latent class models.

Parameters
Culture as gold
standard* Model 0{ Final model{

Prevalence 37.2 (31.9–42.7) 61.0 (54.7–67.2){ 61.6 (54.4–69.2){

Culture

Sensitivity 100 60.9 (53.3–68.6) 60.2 (51.7–68.5)

Specificity 100 100 100

PPV 100 100 100

NPV 100 62.1 (53.5–70.5) 61.9 (50.0–70.9)

IHA

Sensitivity 71.4 (63.2–79.7) 73.0 (66.1–79.4) 69.9 (63.6–76.0)

Specificity 63.7 (57.0–70.4) 87.7 (80.0–93.9) 83.9 (74.9–91.4)

PPV 53.8 (45.9–61.7) 90.3 (83.7–95.3) 87.5 (79.4–93.9)

NPV 79.0 (72.7–85.4) 67.4 (58.8–75.5) 63.4 (52.7–72.5)

IgM ICT

Sensitivity 81.5 (74.4–88.6) 80.4 (74.1–85.8) 77.5 (71.4–83.1)

Specificity 48.8 (41.8–55.7) 65.5 (56.3–74.5) 62.0 (52.0–72.1)

PPV 48.5 (41.5–55.5) 78.5 (71.2–84.9) 76.7 (68.5–84.2)

NPV 81.7 (74.6–88.7) 68.0 (58.4–76.9) 63.2 (51.0–73.4)

IgG ICT

Sensitivity 87.4 (81.3–93.4) 91.1 (86.3–94.7) 88.0 (82.4–92.4)

Specificity 49.3 (42.3–56.2) 77.5 (67.8–86.4) 74.1 (63.2–85.2)

PPV 50.5 (43.6–57.4) 86.4 (79.3–92.3) 84.5 (76.1–92.2)

NPV 86.8 (80.5–93.1) 84.8 (76.8–91.0) 79.4 (68.4–87.3)

ELISA

Sensitivity 82.4 (75.4–89.3) 77.1 (69.9–83.8) 75.6 (67.9–82.8)

Specificity 73.1 (67.0–79.3) 99.4 (94.5–100) 97.9 (92.4–99.9)

PPV 64.5 (56.8–72.2) 99.5 (95.4–100) 98.3 (93.7–99.9)

NPV 87.5 (82.4–92.6) 73.5 (64.3–81.6) 71.3 (59.3–81.3)

Model 0 assumed that for a given patient, each diagnostic test was not
correlated. The final model (Model 3) assumed that in infected patients, all
serological tests were correlated.
*Values shown are mean estimates with 95% confidence interval.
{Values shown are median estimates with 95% credible interval.
{Prevalence estimated by the models are for the test population as a whole,
since they cannot determine whether a given patient was infected or not
infected.

doi:10.1371/journal.pone.0012485.t002
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apparently healthy people living in northeast Thailand where

contact with B. pseudomallei present in the environment is a regular

occurrence [24,25], and we also expected to find that serological

tests in non-infected seropositive persons would be correlated, but

this was not the case. One possible explanation is that

immunological responses occur to a specific subset of bacterial

antigens during health, but that infected patients are exposed to a

wider range of bacterial antigens. This is consistent with the

findings of study that defined immunological responses to B.

pseudomallei in health and during melioidosis using an immunoar-

ray approach [26].

The development of a standardised tool to assign patients with

suspected melioidosis into categories based on variable degrees of

diagnostic certainty was an important component of the external

Figure 1. Assessing the fitness of model 0 (conditional independence model) (A) and the final model (conditional dependence
model) (B) using probability analysis (posterior predictive distribution). Dataset was replicated for 20,000 times per model to assess the
probability that the actual dataset was being observed, if that model was true. Running model 0 a total of 20,000 times (Figure 1A), we found that
only 298 replicate datasets had at least 69 patients with all five tests positive and giving the profile ‘11111’ (69 was the number of patients having this
profile in the actual dataset) (298/20,000, Bayesian p value 0.015). This indicated that model 0 was not a good fit for the observed data. Running the
final model a total of 20,000 times (Figure 1B), we found that 4,752 replicate datasets had at least 69 patients with the profile ‘11111’ (4,752/20,000,
Bayesian p value 0.24), indicating that the final model fit the observed data well.
doi:10.1371/journal.pone.0012485.g001
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model validation. This represents the first description of a

systematic grading scheme for melioidosis. We consider it likely

that the probable melioidosis and non-melioidosis categories had a

high degree of accuracy. All but one patient was assigned to the

probable group based on the presence of multiple liver abscesses

and/or splenic abscess(es), a feature that has been reported

previously to be highly associated with melioidosis in patients

presenting with a febrile illness in northeast Thailand [27,28]. In

the non-melioidosis group, a definitive diagnosis was made in most

cases, and melioidosis was unlikely to have been the cause of

infection in patients without a diagnosis who recovered without

antimicrobial therapy with activity against B. pseudomallei [29]. The

assignment of patients to the possible melioidosis group is likely to

be associated with a higher level of uncertainty, since infections

caused by other bacterial pathogens may respond well to

antimicrobials prescribed for melioidosis.

In conclusion, we consider it likely that the poor sensitivity of

culture is not specific for melioidosis, but rather is likely to

represent a generic problem of the test. Application of the

methodology described here to the evaluation of culture for other

infectious diseases would lead to a broader understanding of the

utility and limitations of this test. The models described here also

represent tools for the future evaluation of diagnostic tests for

infectious diseases when the gold standard assay is imperfect.
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