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Action Editor, JINS 
jins@cambridge.org 
 
Dear Dr Verfaellie,  
 
RE: JINS#-15-RR-206.R2 - "Visuospatial processing deficits linked to posterior brain regions 
in premanifest and early stage Huntington’s disease"  
 
Thank you for accepting our manuscript. We are delighted with this news. We have made 
the requested amendments to the manuscript. Please find our responses below. 
 
Kind regards,  
 
Izelle Labuschagne and Julie Stout 
 
Editor’s comments: 
 
1.  typos in abstract: 
--  correct spelling of precuneus  
-- remove comma in "early visuospatial deficits, to functioning" 
 
RESPONSE: These typos have been corrected. 
 
2. The description of the Johnson et al. (2015) findings on p. 6/7 should be clarified: 
-- associations between reduced cortical thickness and performance deficits: which tasks 
does this refer to? 
 
RESPONSE: We now specifically list the six cognitive tasks that were included in the 
Johnson et al study, and highlight which tasks showed significant associations. 
Please see pages 5-6.  
 
-- “the other visuospatial tasks” implies multiple tasks but only mental rotation is mentioned.  
 
RESPONSE: This was an error and should be singular, i.e., “the other visual spatial 
task”. However, because of our new edits to the previous comment listing all the 
specific tasks from the Johnson et al study, we have deleted this sentence altogether 
as it became redundant. 
 
3. discussion on p. 21: The sentence pertaining to the role of the fusiform gyrus in color 
integration is confusing at it occurs in the middle of a discussion of regions that are 
implicated in Mental rotation and not in Map Search. Yet, fusiform gyrus is involved in both 
tasks.  
 
RESPONSE: We agree that this was out of place and have moved this discussion 
further down to the next paragraph. Please see our edits on page 20. 
 
4. please correct the following typos: 
-- p. 20: "that extend" should be "that extends" 
-- p. 23: "is need" should be "is needed" 
 
RESPONSE: These typos have been corrected. 
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Abstract 

Objective: Visuospatial processing deficits have been reported in Huntington’s disease (HD). To 

date, no study has examined associations between visuospatial cognition and posterior brain 

findings in HD.  Method: We compared 119 premanifest (55 > and 64 < 10.8 years to expected 

disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 

controls on visual search and mental rotation performance at baseline and 12 months. In the 

disease groups we also examined associations between task performance and disease severity, 

functional capacity and structural brain measures.  Results: Cross-sectionally, there were strong 

differences between all disease groups and controls on visual search, and between diagnosed 

groups and controls on mental rotation accuracy. Only the premanifest participants close to onset 

took longer than controls to respond correctly to mental rotation. Visual search negatively 

correlated with disease burden and motor symptoms in diagnosed individuals, and positively 

correlated with functional capacity. Mental rotation (‘same’) was negatively correlated with motor 

symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search 

and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and 

temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search 

deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental 

rotation. Conclusion: Our findings provide evidence linking early visuospatial deficits to 

functioning and posterior cortical dysfunction in HD. The findings are important since large 

research efforts have focused on fronto-striatal mediated cognitive changes, with little attention 

given to aspects of cognition outside of these areas. 

 

Keywords: Neurodegenerative disease; Occipital lobe; Parietal lobe; Cognition; Basal ganglia; 

Voxel-based morphometry; Cortical thickness; MRI 
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INTRODUCTION 

Huntington’s disease (HD) is a debilitating progressive neurodegenerative disease that disrupts all 

aspects of life due to the broad range of symptoms affecting movement, and psychiatric and 

cognitive functions. Fronto-striatal damage is a key element of the gross pathological findings in 

HD (Baizer, Desimone, & Ungerleider, 1993; Yeterian, & Pandya, 1995). Consistent with damage 

to fronto-striatal circuitry, HD is associated with impairments in attention, working memory, 

processing speed, psychomotor functions, episodic memory, emotion recognition and executive 

functions (Duff, Beglinger, Theriault, Allison, & Paulsen, 2010a; Stout et al., 2011; Labuschagne 

et al., 2013). A growing body of research suggests that HD also affects visuospatial processing 

(Mohr et al., 1991; Lawrence, Watkins, Sahakian, Hodges, & Robbins, 2000; Lineweaver, 

Salmon, Bondi, & Corey-Bloom, 2005). Posterior cortical areas, including the parietal and 

occipital cortices which subserve visuospatial functions, also show structural changes in HD, 

including volume loss, reduced cortical thickness, and associated white-matter abnormalities 

(Tabrizi et al., 2009). In addition, changes in brain metabolites (NNA and glutamate) in the 

posterior cingulate have also been reported in HD (Unschuld et al., 2012). Although decline in 

visuospatial performance has not been directly associated with posterior cortical brain changes in 

HD, these deficits are hypothesised to be linked to occipital and parietal degeneration. 

Deficits in visuospatial performance have been demonstrated across a variety of cognitive tasks 

in HD (Gomez-Tortosa, del Barrio, Barroso, & Garcia Ruiz, 1996; Lawrence et al., 2000; 

Lineweaver et al., 2005), but it is the ability to spatially manipulate information that is particularly 

poor in HD and tends to worsen with disease progression (Mohr et al., 1991). This finding points 

to the possible role in the dorsal visual stream in HD pathology. The dorsal stream is one of two 

visual pathways in primates known to be important for spatial perception and localisation (Baron-

Cohen, Wheelwright, Hill, Raste, & Plumb, 2001). The dorsal stream involves projections from 

the visual cortex to the anterior parietal lobe where information is integrated  about where objects 
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are, and provides essential input that directs movement in relation to objects in space (Goodale, & 

Milner, 1992; Kravitz, Saleem, Baker, & Mishkin, 2011; Mandal, Joshi, & Saharan, 2012). Brain 

lesion, neuroimaging, and brain stimulation studies indicate that the parietal lobes play an 

important function in tasks involving mental rotation and visual search (Harris et al., 2000; 

Donner, Kettermann, Diesch, Villringer, & Brandt, 2003; Blankenburg et al., 2010). Consistent 

with the links between ‘where’ information is and motor planning, functional magnetic resonance 

imaging (MRI) studies of mental rotation demonstrate activations of the primary motor and 

premotor cortices (Evans, & Rothbart, 2007; Rubin et al., 2013), and the subcortical motor system 

involving the basal ganglia (Harris, Harris, & Caine, 2002). These foregoing findings support a 

role for the dorsal visual pathway, motor cortex and basal ganglia in visuospatial functions, and 

are regions also implicated in the neuropathology of HD.  

Given the evidence of visuospatial dysfunction, together with the identification of brain 

changes in regions known to be important for visuospatial processing in HD, deficits in complex 

visual processing have been suggested to be markers of disease progression in HD (Gomez-

Tortosa et al., 1996). Evidence is also accumulating that visuospatial deficits can be identified in 

premanifest HD many years before onset (Robins Wahlin, Lundin, & Dear, 2007; Duff et al., 

2010a; Duff et al., 2010b), suggesting that visuospatial abilities may be one of the early cognitive 

functions to decline in HD. Nonetheless, to date, little is known about the association between 

posterior brain activity and visuospatial cognition in HD.  

Recently, in an attempt to broaden our understanding of the potential posterior cortical 

involvement in the neuropathology of HD, we examined associations between cortical thickness 

across specifically the occipital lobe and several cognitive tasks using data from the larger 

TRACK-HD study (Johnson et al., 2015). These associations between occipital lobe and cognition 

were examined for six cognitive tasks including Stroop, Trial Making, Symbol Digit, Spot the 

Change, and two visuospatial tasks Map Search and Mental Rotation. The findings showed 
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regionally-specific associations between reduced cortical thickness and performance deficits on 

five out of six tasks, mostly strongly in the lateral occipital and lingual regions, and no evidence of 

cuneus involvement. Mental Rotation was the only task that showed no associations with occipital 

brain regions. Relating to visuospatial function, occipital regions involving the lingual and lateral 

occipital cortex showed strong associations to a visual search task, Map Search; the other 

visuospatial tasks, Mental Rotation, showed no associations with posterior brain regions. 

However, tThe focus of Johnson et al. was on the occipital lobe and a range of cognitive tasks for 

which only a single variable was analysed. Thus, to obtain a clear picture of the nature of the 

visuospatial deficits in HD, a more detailed investigation, spanning across the posterior brain from 

occipital lobe to motor regions and across the spectrum of HD, is needed.  

Using data from the TRACK-HD longitudinal study, we examined the link between 

visuospatial processing and structural brain changes in premanifest and early stage diagnosed HD, 

using two visuospatial tasks: visual search and attention task requiring locating symbols on a map, 

and a mental rotation task of complex stimuli. Based on previous evidence in healthy participants, 

we selected tasks that reliably recruit posterior brain regions known to be affected in HD, in 

particular the occipital lobes, inferior and superior parietal areas and the basal ganglia. We build 

on our previous work (Johnson et al., 2015) by examining visual search and mental rotation 

performance at two time points, 12 months apart, and studied associations between task 

performance and disease severity as well as MRI measures including regional grey- and white-

matter volume and cortical thickness. We hypothesised that visuospatial deficits would: be 

detectable across the HD spectrum, deteriorate over 12 months, correlate with disease severity and 

functional capacity, and be associated with posterior and striatal brain volumes and cortical 

thickness.  

METHOD 
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Participants 

We recruited 104 participants with early HD, 119 HD gene-expanded (≥40 CAG repeats) 

premanifest HD participants, and 110 healthy controls from Paris, Leiden, Vancouver and London 

for the TRACK-HD study (Tabrizi et al., 2009). Selection criteria for premanifest HD involved 

Total Motor Scores ≤5, as assessed by the Unified Huntington’s Disease Rating Scale (UHDRS) 

(Huntington Study Group, 1999), and Disease Burden Score ≥250, calculated by age x [CAG-

35.5] (Penney, Vonsattel, MacDonald, Gusella, & Myers, 1997). The premanifest HD participants 

were divided, based on the baseline group medium (10.8 years) for predicted years to diagnosis, 

into those far from diagnosis (PreA) and those near diagnosis (PreB). The manifest HD group was 

divided, as defined by the UHDRS Total Functional Capacity score, into those with stage-1 HD 

(HD1; scores of 11-13) and stage-2 HD (HD2; scores of 7-10) (Shoulson, & Fahn, 1979).  

Controls, including primarily spouses or partners and gene negative siblings, were frequency-

matched on age, sex and education (Table 1). Study entry criteria included ages 18-65 years, 

ability to tolerate and safely undergo MRI, not participating in a clinical drug trial, and free of 

other major neurological, psychiatric or medical illnesses, including significant head injury and 

drug or alcohol abuse. All participants were tested annually as part of the larger TRACK-HD 

study. It is important to note that the visuospatial assessments reported here were introduced at 24-

month time point, and were therefore assessed at 24 and 36 months of the TRACK-HD study. 

However, for simplicity, we have referred to baseline and 12-month follow-up in the current 

study. Written informed consent was obtained from participants according to the Declaration of 

Helsinki, and the study was approved by local ethics committees. 

[INSERT TABLE 1 HERE] 

Visuospatial assessment 

Map Search 
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The Map Search task is a subtest from the Test of Everyday Attention (Robertson, Ward, 

Ridgeway, & Nimmo-Smith, 1994), and measures visuospatial selective attention. For the task, 

participants were timed for 2 minutes while they searched for, and used a pen to circle, a target 

symbol that occurred in multiple places on a map among other distracter symbols. The map was 

visually cluttered, similar to any road map, and displayed a portion of the city of Philadelphia in 

the United States. Participants began performing the task using a pen of a given colour, and then 

after one minute, the examiner exchanged the pen for a different colour to differentiate responses 

made in the first and second minutes of testing. We measured the number of correctly circled 

targets, scored separately at 1 and 2 minutes.  The maximum score was 80. Previous evidence 

using this task in early HD (n=10) vs. controls demonstrated a large effect size of -2.92 (Murray, 

& Stout, 1999). We highlight here that we have previously reported on the number correct for 2 

minutes using different statistical methods in Johnson et al. (2015). 

Mental Rotation 

 The computerised Mental Rotation task assesses the ability to mentally rotate 3-dimensional 

stimuli consisting of images of cubes, attached to each other by sharing a common side or sides 

(Shepard, & Metzler, 1971; Peters, & Battista, 2008). On each trial, a pair of stimuli was 

presented. One figure in the pair was either a rotation of the other figure, or a rotation of the mirror 

image of the other figure. Participants had to indicate whether the rotated figure was identical to 

(“same”) or a mirror image of (“mirror”) the comparison figure. The stimuli were presented using 

six degrees of rotation across four difficulty levels: i) 5 degrees, ii) 65 and 305 degrees, iii) 125 

and 245 degrees, and iv) 185 degrees. We collapsed the data across degrees that were similar in 

difficulty, i.e., those degrees that were horizontally opposites and thus required the same amount 

of rotation from 0 (e.g., 65 and 305 degrees) (Shepard, & Metzler, 1971; Bethel-Fox, & Shepard, 

1988; Lineweaver et al., 2005). Thus, for simplicity, we subsequently refer to the four angles as 5, 

65 (e.g., 65 and 305, both equal distance from 0), 125 (e.g., 125 and 245, both equal distance from 
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0), and 185 degrees. There were ten practice trials, followed by 48 experimental trials comprised 

of 12 trials each at the four difficulty levels, balanced for SAME and MIRROR conditions. We 

measured accuracy (percent correct), response time (for correctly identified targets only) and 

speed-accuracy trade-off (correlation between accuracy and response times). Previous research 

showed an effect size of -0.68 in premanifest HD (n=11) vs. controls (Robins Wahlin et al., 2007). 

We highlight here that we previously reported on a total score involving number correct collapsed 

across all degrees of rotation in a different set of analyses (Johnson et al., 2015). 

MRI acquisition 

Participants underwent 3 Tesla MRI scanning, with data acquisition procedures that were 

standardised according to the TRACK-HD study protocol (Tabrizi et al., 2009). Grey- and white-

matter were assessed using voxel-based morphometry (VBM) and cortical thickness using 

Freesurfer version 5.3; for more details see (Tabrizi et al., 2009).  

Statistical analyses 

For Map Search, we separately analysed the number of correct objects in 1 and 2 minutes. To 

jointly model the proportions at baseline and follow-up, we used a generalised estimating 

equations (GEE) approach with a logit link, a “working” assumption of independence between the 

baseline and follow-up, and robust Huber-White standard errors (Huber, 1967) that allow both for 

the fact that the baseline and follow-up measures are not independent, and that the number of 

objects identified at each visit does not truly follow a binomial distribution. For Mental Rotation, 

we separately analysed accuracy and response times as continuous variables, using a mixed-effects 

regression model with random subject-specific intercepts to simultaneously model the multiple 

outcomes. We again used robust Huber-White standard errors, which are robust to the residual 

heteroscedasticity that may be expected between disease groups. All analyses included an effect of 

time (allowing for the fact that visits were not always exactly one year apart) and adjusted for age, 

sex, educational level and study site.  Effects were permitted to vary with time and, with Mental 
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Rotation outcomes, by degree (5/65/125/185 degrees) and condition (SAME/MIRROR). We 

report between-group comparisons on only the 65 and 125 degree angles because inspection of the 

data indicated ceiling effects for accuracy at 5 degrees (all participants performed near the 90-

100% accuracy level), and floor effects for accuracy at 185 degrees (the HD groups performed 

way below chance level); Figure 1.  

For cross-sectional comparisons between-groups at baseline, we calculated standardised 

marginal contrasts between controls and each of the gene-positive groups (PreA, PreB, HD1 and 

HD2) for each outcome from the models described above. These contrasts compared the expected 

mean outcomes between groups, after standardising the groups to have the same distribution of 

adjustment covariates, thus removing the effect of these potential confounders from the contrast 

(Muller, & MacLehose, 2014). The expected outcomes were predicted by multiplying 

probabilities predicted from the GEE (for Map Search) by the number of possible events (here 

number of targets to be found=80) or from the mixed model (for Mental Rotation). For 

longitudinal analyses, we compared annualised change in performance from baseline to 12 months 

between groups. These standardised contrasts calculated the expected change in the outcome by 

taking the first derivative of the regression equation with respect to time (in units of one year), 

calculating in each group the predicted change in the probability (GEE) multiplied by 80 (Map 

Search) or the outcome (mixed effect model, Mental Rotation), and contrasting the changes.  

Standard errors of both sets of contrasts were calculated using the delta method (Oehlert, 1992).  

For Mental Rotation, we also examined the speed-accuracy trade-off relationship by adding 

accuracy as a second exposure of interest to the response time regression model. The effect of 

accuracy in each group was allowed to differ by time, degree of rotation (65 and 125 degrees) and 

SAME/MIRROR condition.  Standardised contrasts using methods described above were used to 

estimate the effect of accuracy on time taken to correctly identify objects between subgroups at 

baseline.   
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In the gene-positive groups, we then used partial Pearson correlation coefficients adjusted for 

age, sex, site, education and CAG length to determine how performance accuracy on the 

visuospatial tasks related to disease severity, measured by the Disease Burden Score (Penney et 

al., 1997), and Total Functional Capacity and Total Motor Scores taken from the UHDRS. For 

Disease Burden, we report partial correlations separately for each of the four groups. For Total 

Motor Score, only the two diagnosed groups are included because in the premanifest group, motor 

scores are very low and have little variance. Total Functional Capacity is reported for the 

diagnosed group as a whole because it also has low variance and it serves as the defining 

difference between disease stages in the two diagnosed groups. Stata v13 (StataCorp, College 

Station, TX, USA) was used for all statistical analyses involving task performance and disease 

severity. Because each cognitive task has its own independent interest, no adjustments were made 

to p-values to allow for multiple comparisons (Rothman, 1990). 

Finally, we investigated associations between regional brain volume (VBM), and the selected 

measures (i.e., accuracy) from the Map Search and Mental Rotation (65 and 125 degree) tasks 

using the combined gene-positive group (PreA, PreB, HD1, HD2), adjusting for age, gender, site, 

education, intracranial volume, CAG and Disease Burden. Results are corrected for multiple 

comparisons using a 5% false discovery rate (Deboer et al., 2013). Likewise, using the combined 

gene-positive group, associations between cortical thickness and accuracy measures from both 

tasks were examined using a general linear model and the FreeSurfer ‘Different Onset, Same 

Slope’ model (Fischl, & Dale, 2000; Fischl et al., 2002; Fischl et al., 2004). The model 

constrained the slopes of any continuous variables to evolve at the same rate in all groups. A 

DOSS model was deemed appropriate after first investigating that there were no age-related 

differences on cortical thickness within the groups, the genders or the scanners. A Monte Carlo 

correction for multiple comparisons was applied (Hagler, Saygin, & Sereno, 2006), with a vertex-

wise threshold (cluster forming threshold) of p<0.05 (two-tailed) and a cluster-wise threshold of 
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pcw<0.025 (i.e., pcw<0.05 corrected across two hemispheres). Results were adjusted for age, 

gender, site, education, CAG and Disease Burden.   

[INSERT FIGURE 1 HERE] 

RESULTS 

Cross-sectional and longitudinal visuospatial performance 

Map Search accuracy 

Cross-sectionally at baseline and 12 months, groups of increasing severity of disease showed 

worse performances (i.e., fewer correct targets found) at both 1 and 2 minutes (Figure 2). 

Between-group comparisons at 1-minute showed strong evidence (all p<0.002) of impaired 

performance in all disease groups compared to controls, with the differences from controls ranging 

from 6.3 correct targets (95% CI 2.5,10.1) for PreA to 22.7 correct targets (19.1,26.2) for HD2; 

Table 2. The 2-minute scores also showed strong evidence of impaired performance in PreB, HD1, 

and HD2 (p<0.0001) and a trend for statistical significance in PreA (p=0.06). Longitudinally, 

there were significant 12-month declines in Map Search performance at both 1 and 2 minutes for 

the HD2 group relative to controls [-3.4 (-5.8,-1.1) p=0.0043, and -3.8 (-7.0,-0.7) p=0.0167]. No 

other between-group comparisons showed significant differences in annualised change.  

[INSERT FIGURE 2 HERE] 

Mental Rotation accuracy 

Cross-sectionally at baseline and 12 months, and for both the SAME and MIRROR conditions, 

accuracy was typically lower with larger degrees of rotation in all disease groups and controls 

(Figure 1, A). Furthermore, the more severe the disease stage the poorer performance tended to be 

across all conditions (Figure 1, A). There was strong evidence of impairment in the HD1 group on 

both 65 and 125 degrees for MIRROR trials [-17.0% (-25.0,-9.0) and -17.5% (-25.7,-9.3); both 

p<0.0001], and in the HD2 group on both degrees for both SAME and MIRROR trials [ranging 
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from -18.1% (-27.9,-8.4) to -11.0% (-20.7,-1.3); all p<0.03]. However, the premanifest HD 

groups’ accuracy appeared similar to that of controls at both degrees. Longitudinally, there was no 

compelling evidence to suggest that the HD groups changed or declined more rapidly than 

controls. Four out of the sixteen comparisons made with controls reached formal statistical 

significance, but one of these was in the direction of reduced changes, and taken as a whole, no 

clear coherent pattern emerged from these results; Table 2. 

[INSERT TABLE 2 HERE] 

Mental Rotation response time 

Cross-sectionally at baseline and 12 months follow-up, in the control and PreA groups the mean 

response time for correct answers generally increased at each increment in the degree of difficulty 

under the SAME condition, but stabilised or decreased at the larger degrees in the PreB, HD1 and 

HD2 groups (Figure 1B). A similar pattern was present under the MIRROR condition except that 

all groups’ mean response times stabilised or decreased at the larger degrees. There were no 

significant differences in response time at either condition or either 65 and 125 degree between 

controls and the PreA, HD1 and HD2 groups, but the PreB group was significantly slower than 

controls at both degrees for both conditions, where differences ranged from 1020 ms (343,1698) to 

937 ms (451,1424), all p<0.004; Table 2. Longitudinally, there was no strong evidence of changes 

in performance over 12 months in the disease groups compared to controls. Two out of the sixteen 

comparisons made approached formal statistical significance (p=0.053 and p=0.075) but there was 

no coherent pattern to these results.  

Mental Rotation speed-accuracy 

For all groups except PreA, response time for accurate answers tended to be faster in participants 

with better overall performance. In contrast, PreA participants who performed better tended to be 

slower when making correct responses (Figure 3).  Of the sixteen comparisons made, one 

comparison, which was between PreA and controls at 65/MIRROR, was statistically significant 
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(p=0.048), where for each 10% absolute increase in accuracy, the difference in the corresponding 

change in response time between PreAs and controls was 239 ms (95% CI: 3, 476); 

Supplementary Table 1.  No other comparisons approached statistical significance, so 

interpretation of this result must be made with caution. 

[INSERT FIGURE 3 HERE] 

Associations between cross-sectional visuospatial accuracy and disease severity  

In HD1, performance on the Map Search 1-minute variable was negatively correlated with Disease 

Burden (partial r=-0.31, p=0.032) and Total Motor Score (partial r=-0.30, p=0.041).  In HD2, 

performance on Map Search 1-minute, and accuracy on the Mental Rotation under the SAME 

condition, were both negatively correlated with Total Motor Score (partial r=-0.37, p=0.023 and 

partial r=-0.35, p=0.034, respectively).  In the combined diagnosed HD group, Total Functional 

Capacity was associated with both Map Search 1-minute performance (partial r=0.38, p<0.001) 

and Mental Rotation (SAME) accuracy (partial r=0.29, p=0.005); Table 3.  Disease Burden in the 

premanifest groups was not associated with visuospatial task performance. 

[INSERT TALBE 3 HERE] 

Associations between cross-sectional visuospatial accuracy and structural brain 

abnormalities 

Baseline brain volumes, assessed using VBM, were significantly correlated with both Map Search 

and Mental Rotation tasks, i.e., reduced volume with poorer performance (Figure 4). Specifically, 

poorer performance (lower scores) on Map Search 1-minute scores correlated with grey-matter 

volume loss, predominantly in striatal regions of the basal ganglia (caudate, putamen) and to a 

lesser extend with parieto-occipital regions (precuneus/cuneus, left lingual gyrus), motor areas 

(precentral gyri), fusiform and insula. Poorer Map Search 1-minute scores were also associated 

with widespread white-matter volume loss, in the cortiocostriatal tract, cingulum, and cerebellum. 
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For Mental Rotation, at 65 degrees and SAME/MIRROR conditions, poorer accuracy was 

associated with grey-matter volume loss in the striatal regions (caudate, putamen), and also across 

several cortical regions including parieto-occipital cortex (precuneus, calcarine, lingual regions), 

motor regions (supplementary motor area, precentral gyrus, cerebellum), temporal lobe (fusiform, 

middle temporal gyri, temporal pole, hippocampus, parahippocampal region), superior frontal 

lobe, and cingulate. When SAME and MIRROR conditions were separated, only the MIRROR 

condition showed significant grey-matter correlations (caudate, supplementary motor area, 

precentral gyrus, cingulate, temporal pole, cerebellum).  Thus, the MIRROR condition appeared to 

account for most of the grey-matter associations observed in the combined SAME/MIRROR 

conditions. Poorer accuracy on the combined SAME/MIRROR conditions correlated with white-

matter volume loss throughout the brain, but particularly in the striatal region, corpus callosum, 

brain stem and cerebellum. When the SAME and MIRROR conditions were examined separately, 

only the SAME condition showed significant white-matter correlations and mainly in the occipital 

lobe, corticostriatal tract, cingulum, brain stem and cerebellum. Thus, the SAME condition likely 

accounted for most the white-matter associations observed in the combined SAME/MIRROR 

conditions.   

Adding to these VBM results, poorer 1-minute Map Search scores were associated with 

significantly less cortical thickness in the superior parietal lobe region extending into the lateral 

occipital region, p=0.007 (Figure 4). For Mental Rotation at 65 degrees and combined 

SAME/MIRROR conditions, poorer performance was associated with less thickness in the 

fusiform/lingual region, p=0.01 (Figure 4).   

[INSERT FIGURE 4 HERE] 

DISCUSSION 
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This study aimed to elucidate the visuospatial abnormalities across the spectrum of HD using a 

large sample of subjects. We have several key findings. First, cross-sectionally, we found large 

effects for comparisons between controls and all premanifest and early HD groups on Map Search, 

thus demonstrating the sensitivity of the Map Search task for both premanifest and diagnosed HD.  

In contrast, Mental Rotation performance differed from controls only for the early HD groups, 

suggesting that compared to Map Search, Mental Rotation, at least in the version we used, was not 

as sensitive for HD. Second, for Mental Rotation, correct response times were slower in the 

premanifest near to onset group compared to controls, but not in the premanifest far from onset or 

diagnosed groups, suggesting the presence of compensatory strategies. Third, for Map Search 

only, performance deterioration was significant over 12 months in the early HD2 group (more 

advanced but still relatively early diagnosed HD) but not in premanifest or HD1 groups, 

suggesting a detectable decline over one year in Map Search at the more severe disease stages. 

Fourth, in diagnosed individuals, Map Search, but not Mental Rotation, was significantly 

associated with Disease Burden, motor symptoms and functional capacity in most comparisons to 

controls. We found no associations between Disease Burden and Map Search or Mental Rotation 

in the premanifest groups.  Finally, we demonstrated correlations between visuospatial 

performance (Map Search and Mental Rotation) and both brain volume and cortical thickness 

evident in parieto-occipital (pre-/cuneus, calcarine, lingual) regions, as well as motor and fusiform 

gyrus regions, suggesting a link between structure and function, thereby substantiating the link 

between visuospatial performance and posterior brain dysfunction in HD. 

Possible compensation during Mental Rotation 

Interestingly, cross-sectional analyses of Mental Rotation response times, showed that those 

premanifest HD near to onset (PreB) slowed their response times (i.e., took longer to respond) 

compared to controls.  Coupled with the fact that there were no performance differences in the 

PreB group, whereas the diagnosed groups were less accurate than controls, this may indicate that 
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PreB maintained their performance on visual cognitive function by compensating with slower 

responses, whereas early HD maintained their response times but showed significantly poorer 

performance accuracy. In our speed-accuracy trade-off results, there was no strong evidence for a 

difference in the trade-off relationship between any of our gene-positive groups and controls, 

although there was a weakly significant difference in those premanifest HD far from onset (PreA). 

PreA participants who performed more accurately overall, took more time to do so; corresponding 

control participants took slightly less time, giving a total difference of 239 milliseconds per 10% 

improvement in accuracy. Previous evidence reported speed-accuracy trade-offs during mental 

rotation in diagnosed HD (Lineweaver et al., 2005), although the sample size was small and no 

premanifest HD participants were included. The lack of generality of the speed-accuracy trade-off 

in Mental Rotation across the HD groups may indirectly suggest that visuospatial compensation 

processes are evident in the early disease stages, demonstrated by maintained accuracy in the face 

of slower response times (in PreB), but that these compensation processes are diminished by the 

time the disease progresses through to the clinical stages. This finding is in line with recent 

suggestions of compensatory mechanisms in posterior (parietal) brain regions, which are regions 

implicated in visuospatial processes, in those premanifest HD closest to motor disease onset 

(Klöppel et al., 2015). 

Visual search performance dysfunction occurs early and deteriorates over 12 months 

Performance on the Map Search in all gene-positive groups was worse than controls, including the 

far from onset PreA group, whereas performance accuracy on the Mental Rotation was worse only 

in the diagnosed groups. Our findings are in line with previous evidence of visuospatial deficits in 

HD (Mohr et al., 1991; Gomez-Tortosa et al., 1996; Lawrence et al., 2000; Lineweaver et al., 

2005) including in premanifest stages (Robins Wahlin et al., 2007; Duff et al., 2010a; Duff et al., 

2010b). Our finding that Map Search showed deficits even in the premanifest stages of HD, 

suggests that a visual attentional task may be a more sensitive visuospatial marker of disease 
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progression than a more complex visuospatial task involving the ability to spatially manipulate 

information, such as mental rotation. Map Search taps into the everyday behaviour of visually 

searching for items on a map or other cluttered visual field, and thus may have some ecologically-

relevant implications. Furthermore, Map Search deteriorated over 12 months in the HD2 group 

(vs. controls), whereas there was no strong evidence of longitudinal changes on Mental Rotation. 

It is possible that Map Search, because of its attentional component, taps more into disease-related 

circuits than Mental Rotation that may contribute to its sensitivity in premanifest HD. However, 

this remains to be examined in more detailed using larger visual processing protocols. 

Nonetheless, this is the first study reporting longitudinal change, although only over 12 months, in 

visuospatial abilities in HD. Although a relatively short interval, this provides initial evidence of 

significant and rapid declines in visuospatial/visuo-atttentional processes.  

Visuospatial performance correlates with disease severity 

Our findings showed that greater disease severity (disease burden and motor signs) is associated 

with worse performance on Map Search and Mental Rotation tasks in diagnosed individuals, and 

that better functional capacity is associated with better performance. This supports our predictions 

of posterior brain region involvement, as measured by visuospatial performance, in the 

neuropathology of HD. No previous study has directly linked visuospatial performance to disease 

severity or functional capacity in HD. For Alzheimer’s disease, not only have such links been 

found, but furthermore, visuospatial functions were most strongly associated with functional 

ability compared to any other cognitive domain that was examined (Perry, & Hodges, 2000). 

These authors also found that visuospatial function was the sole cognitive predictor of functional 

abilities. These findings suggest the possibility of a link between visuospatial deficits and disease 

severity as well as functional outcomes in HD. The finding of functional significance may also 

have implications for clinical trials investigating drug treatments for HD. However, we are 
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cautious interpreting these findings as it could merely reflect that visuospatial performance track 

with the progression of the disease.  

Visuospatial performance correlates with posterior cortical and striatal areas 

We found a strong link between visuospatial performance and brain volume in HD, predominantly 

in occipito-parietal (pre-/cuneus, calcarine, lingual), motor (supplementary motor area, precentral 

gyrus, cerebellum), and temporal (fusiform) regions. Similarly, our cortical thickness correlations 

showed that Map Search was associated with thickness of the superior parietal cortex, extending 

into lateral occipital lobe, and Mental Rotation was associated with thickness of the occipital lobe, 

extending into the posterior fusiform gyrus. These findings are consistent with prior suggestions of 

cortico-striatal circuitry with connections that span not only the frontal cortex but also temporal 

and posterior cortical regions including visual and parietal cortices (Baizer et al., 1993; Yeterian, 

& Pandya, 1995). Our findings extend our previous work (Johnson et al., 2015),  by showing 

associations between visuospatial performance involving Map Search and Mental Rotation 

performances and posterior parts of brain that extend beyond that of the occipital lobe. The 

findings therefore support our predictions of additional posterior cortical involvement in the 

neuropathology of HD. 

To date, there is very limited evidence linking specific brain measures with visuospatial 

performance in HD. However, our findings of associations between occipito-parietal and striatal 

volumetrics and visuospatial processing in HD, are consistent with evidence of dorsal visual 

stream involvement in visuospatial processing in healthy participants (Harris et al., 2000; Harris et 

al., 2002; Donner et al., 2003). Dorsal visual stream deficits relating to mental rotation have been 

implicated in Alzheimer’s disease (Prvulovic et al., 2002; Jacobs et al., 2012; Mandal et al., 2012). 

Our findings may therefore suggest that the dorsal visual pathway could be more susceptible to 

early stages of neurodegeneration, conforming to the previous reports of a longitudinal 

progression pattern of dorsal-to-ventral cell death in HD (Vonsattel & DiFiglia, 1998). More 
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specifically, the Map Search findings may suggest that visual attentional processes, relating to the 

posterior parietal cortex, may specifically be implicated in the visuospatial deficits reported here. 

However, a more direct and systematic comparison of dorsal versus ventral visual stream 

involvement, in addition to the possibility of dysfunctional attentional processes, is needed. 

We also found grey-matter associations in other cortical regions for Map Search (fusiform and 

insula) and more broadly for Mental Rotation (superior frontal lobes, fusiform, middle temporal 

gyrus, temporal pole, hippocampus, parahippocampus, and cingulate). The broader range of 

regions associated with Mental Rotation, compared to Map Search, is perhaps due to the complex 

nature of the mental rotation stimuli, which represent 3-dimensional forms, compared to the 2-

dimensional forms represented on the map used for Map Search. In support, evidence suggests 

that the basal ganglia sends direct projections to the prefrontal, motor and temporal cortices, and 

these neural projections are involved in the recognition and registration of complex contextual 

patterns that are relevant to behaviour (Beiser, Hua, & Houk, 1997; Lawrence et al., 2000). For 

example, the fusiform gyrus is involved in colour integration, visuospatial processing and mental 

imagery (Bogousslavsky, Miklossy, Deruaz, Assal, & Regli, 1987) which supports its role in both 

Map Search and Mental Rotation. The broader range of cortical regions implicated in Mental 

Rotation, such as the frontal and temporal cortices, likely reflects these output projections from the 

basal ganglia in response to the processing of complex 3-dimensional stimuli.  

Both visuospatial tasks showed associations with the fusiform gyrus. The involvement of the 

fusiform gyrus in colour integration, visuospatial processing and mental imagery (Bogousslavsky 

et al., 1987) supports its role in both Map Search and Mental Rotation. The finding of temporal 

lobe involvement in visuospatial deficits in HD does not support the view that the dorsal visual 

pathway, which does not include the temporal lobes, is specifically implicated in the 

neuropathology of HD. However, evidence in Alzheimer’s disease suggests that both the dorsal 

and ventral pathways are affected in Alzheimer’s disease as a result of both compensatory 
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responses and functional reorganisation. In our study, we were unable to tease apart the 

involvement of the two visual pathways.   

Limitations and future studies 

There are key points to consider when interpreting these findings. Firstly, our findings may 

suggest that tasks involving visual search, or of selective attentional processes, are more sensitive 

at detecting differences between premanifest HD and controls, than mental rotation. However, it is 

possible that our measure of mental rotation lacks sufficient sensitivity, or may not engage 

disease-specific circuits, to detect group differences in the premanifest period, thus, it is 

impossible to attribute with certainty the lack of findings in the premanifest group to the absence 

of deficits per se rather than the lack of a sensitive measure. Furthermore, the declines in visual 

search, that were consistent across all HD groups, may have reflected slowness in processing 

speed rather than visuospatial deficits. It is therefore possible that a combination of poor visual 

search ability as well as speed or movement slowness could have contributed to the visual search 

findings. However, the effects of motor dysfunction on cognitive outcomes are likely to be small 

(Stout et al., 2011) but remains to be examined specifically for visuospatial tasks. Secondly, we 

did not adjust our p-values in our many comparisons and may have false discoveries in our 

findings. We were therefore cautious in reporting and interpreting our findings relating to speed-

accuracy and longitudinal declines in mental rotation. Thirdly, response time on mental rotation 

was for correct answers only. We therefore could have failed to detect a true cross-sectional 

deficits or longitudinal change because some participants may have been over-represented, i.e., 

those who are naturally better at the tasks or have less disease burden. In addition, the two time 

points also limits our longitudinal outcomes and more time points should be considered in future 

studies. Fourthly, we only examined brain volume changes cross-sectionally, making it impossible 

to make conclusions linking rates of brain deterioration to visuospatial performance. Finally, 

correlations between posterior brain volume loss and poorer functional capacity cannot be 
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interpreted as causal evidence that smaller posterior brain volume cause poorer function. Instead, 

our correlational findings may reflect a common association between overall HD neuropathology 

rather than a direct functional association. However, the inclusion of Disease Burden scores in the 

regression model reduced this overall disease effect and may imply a more specific association. 

Future research should replicate these findings to more clearly delineate posterior brain functions 

involving visuospatial tasks in HD. In particular, the current findings should be extended to other 

possible endpoints of posterior brain dysfunction in HD, such as other cognitive and occulomotor 

outcomes. In addition, a more comprehensive assessment of visuospatial function is needed, along 

with longer longitudinal intervals, to fully delineate the multifaceted visuospatial functions in HD. 
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Tables 

 

Table 1. Participant demographics as measured at baseline 

 Controls PreA PreB HD1 HD2 

Demographics:      

Number of participants
a
 110 55 64 59 45 

Female (%) 62 (56%) 33 (60%) 34 (53%) 38 (64%) 19 (42%) 

Education (%)
b
      

Level 1 1 (1%) 0 0 1 (2%) 0 

Level 2 20 (18%) 4 (7%) 7 (11%) 11 (19%) 12 (27%) 

Level 3 12 (11%) 11 (20%) 13 (20%) 14 (24%) 14 (31%) 

Level 4 32 (30%) 14 (25%) 19 (30%) 9 (15%) 8 (18%) 

Level 5 30 (27%) 22 (40%) 20 (31%) 18 (31%) 10 (22%) 

Level 6 15 (14%) 4 (7%) 5 (8%) 6 (10%) 1 (2%) 

Age, mean years (SD) 48.2 (10.2) 41.0 (9.7) 43.0 (8.7) 48.4 (10.2) 51.3 (9.7) 

CAG repeat length, mean (SD) - 42.3 (2.1) 43.8 (2.3) 43.7 (2.9) 43.7 (3.4) 

Disease Burden Score, mean (SD) - 259.7 (29.0) 339.7 (39.3) 371.8 (75.5) 394.9 (84.5) 

Total Motor Score, mean (SD)
c
 1.4 (1.9) 3.4 (2.9) 5.0 (3.6) 21.5 (9.8) 33.8 (11.3) 

Total Functional Capacity, mean (SD)
c
 13.0 (0.2) 12.9 (0.6) 12.8 (0.7) 12.1 (0.9) 8.6 (1.1) 

PreA = premanifest HD far from diagnosis; PreB = premanifest HD near diagnosis; HD1 = HD stage-1; 

HD2 = HD stage-2; SD = standard deviation; % = percentage. 

a. All participants who attended either baseline or 1-year follow-up. 

b. Education level was reported according to the International Standard Classification of Education. 

c. Total motor and functional capacity scores were measured using the UHDRS (Huntington Study Group, 

1999). 
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Table 2. Between-group contrasts for cross-sectional (baseline) differences and annualised change differences on the Map Search and Mental Rotation tasks.   

 PreA vs. Controls p PreB vs. Controls p HD1 vs. Controls p HD2 vs. Controls p 

Map Search (no.correct)
a
         

Baseline         

1 min -6.3 (-10.1, -2.5) 0.0011 -8.8 (-12.5, -5.0) <0.0001 -14.8 (-18.3, -11.4) <0.0001 -22.7 (-26.2, -19.1) <0.0001 

2 min -3.3 (-6.7, 0.1) 0.0603 -6.9 (-10.3, -3.5) <0.0001 -13.9 (-17.8, -10.0) <0.0001 -26.9 (-31.4, -22.4) <0.0001 

Annualised change        

1 min 1.1 (-2.1, 4.2) 0.5145 -1.8 (-4.4, 0.8) 0.1747 -2.0 (-4.6, 0.7) 0.1473 -3.4 (-5.8, -1.1) 0.0043 

2 min 0.6 (-2.1, 3.3) 0.6650 0.2 (-2.4, 2.7) 0.9062 -0.6 (-3.0, 1.8) 0.6231 -3.8 (-7.0, -0.7) 0.0167 

Mental Rotation (% correct)
b
         

Baseline        

SAME 65° -0.009 (-0.078, 0.060) 0.8000 -0.035 (-0.101, 0.031) 0.2985 -0.044 (-0.112, 0.024) 0.2087 -0.181 (-0.279, -0.084) 0.0003 

SAME 125° 0.021 (-0.066, 0.108) 0.6309 0.026 (-0.047, 0.098) 0.4869 -0.052 (-0.126, 0.022) 0.1657 -0.140 (-0.222, -0.058) 0.0008 

MIRROR 65° -0.060 (-0.157, 0.038) 0.2294 -0.042 (-0.117, 0.034) 0.2827 -0.170 (-0.250, -0.090) <0.0001 -0.154 (-0.255, -0.054) 0.0027 

MIRROR 125° 0.007 (-0.083, 0.096) 0.8859 -0.047 (-0.123, 0.029) 0.2223 -0.175 (-0.257, -0.093) <0.0001 -0.110 (-0.207, -0.013) 0.0260 

Annualised change        

SAME 65° 0.022 (-0.062, 0.107) 0.6025 -0.024 (-0.087, 0.040) 0.4675 -0.095 (-0.175, -0.015) 0.0204 -0.022 (-0.112, 0.068) 0.6274 

SAME 125° -0.055 (-0.155, 0.045) 0.2798 -0.050 (-0.133, 0.034) 0.2441 -0.136 (-0.238, -0.035) 0.0085 -0.036 (-0.148, 0.075) 0.5222 

MIRROR 65° 0.097 (0.003, 0.191) 0.0431 -0.030 (-0.121, 0.061) 0.5228 0.084 (-0.009, 0.177) 0.0773 -0.051 (-0.172, 0.069) 0.4040 
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MIRROR 125° -0.076 (-0.163, 0.011) 0.0855 -0.044 (-0.130, 0.042) 0.3190 -0.037 (-0.131, 0.057) 0.4406 -0.132 (-0.235, -0.028) 0.0127 

Mental Rotation (response time)
c         

Baseline        

SAME 65° 322 (-188, 832) 0.2162 937 (451, 1,424) 0.0002 630 (-40, 1,301) 0.0655 675 (-114, 1,464) 0.0936 

SAME 125° 242 (-377, 862) 0.4431 1,020 (343, 1,698) 0.0032 129 (-727, 984) 0.7683 680 (-310, 1,669) 0.1781 

MIRROR 65° 43 (-610, 696) 0.8970 1,000 (387, 1,613) 0.0014 83 (-620, 785) 0.8179 461 (-441, 1,363) 0.3163 

MIRROR 125° 246 (-424, 915) 0.4720 972 (369, 1,576) 0.0016 39 (-826, 905) 0.9288 98 (-869, 1,065) 0.8428 

Annualised change        

SAME 65° 133 (-417, 682) 0.6362 -515 (-1,082, 51) 0.0746 30 (-600, 660) 0.9254 227 (-632, 1,085) 0.6050 

SAME 125° 216 (-464, 896) 0.5342 -431 (-1,222, 360) 0.2857 -32 (-828, 763) 0.9367 -592 (-1,652, 469) 0.2741 

MIRROR 65° 795 (-11, 1,601) 0.0532 -336 (-1,031, 359) 0.3431 483 (-222, 1,189) 0.1792 -157 (-994, 680) 0.7136 

MIRROR 125° 187 (-551, 925) 0.6194 -128 (-810, 553) 0.7120 61 (-924, 1,045) 0.9040 -13 (-976, 950) 0.9790 

Note. Contrasts are means (95% confidence interval) and are standardised to the marginal distribution of age, sex, education and site in the groups combined. 

PreA = premanifest HD far from diagnosis; PreB = premanifest HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2. p = significance p-value 

a. Map Search is presented as the number of objects correctly identified 

b. Mental Rotation percent correct 

c. Mental Rotation response time in milliseconds  
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Table 3. Partial correlations between disease severity measures and outcomes at baseline.  

 PreA p PreB p HD1 p HD2 p 
Early 

HD 
p 

Map Search:          

Disease Burden Score 0.22 0.1338 0.05 0.7205 -0.31 0.0321 -0.11 0.5032   

Total Motor Score     -0.30 0.0406 -0.37 0.0233   

Total Functional 

Capacity         

0.38 0.0002 

Mental Rotation – SAME:         

Disease Burden Score -0.11 0.4744 -0.22 0.1009 -0.04 0.7708 -0.04 0.8036   

Total Motor Score     0.06 0.6576 -0.35 0.0337   

Total Functional 

Capacity         

0.29 0.0047 

Mental Rotation – MIRROR:         

Disease Burden Score 0.12 0.4388 -0.24 0.0759 0.03 0.8092 -0.07 0.6787   

Total Motor Score     -0.10 0.4876 -0.19 0.2513   

Total Functional 

Capacity         

-0.11 0.2796 

Note. Correlations are adjusted for age, CAG length, sex, education and site. For Map Search, we used the 1-

minute outcome, and for Mental Rotation we used average accuracy at 65 and 125 degrees in both SAME 

and MIRROR conditions. Since Total Functional Capacity score is the defining difference between disease 

stages, outcome correlations with this measure are reported across both stages combined. PreA = premanifest 

HD far from diagnosis; PreB = premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2; 

P=significance p-value. Disease Burden Scores are calculated as age x [CAG-35.5] (Penney, et al., 1995). 

Total Motor Score and Total Functioning Capacity are calculated from the UHDRS (Huntington Study 

Group, 1999).  
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Figure legends 

 

Figure 1. Mean Mental Rotation accuracy (A) and response time (B) at baseline (top, all degrees of rotation) and 

annualised change (bottom, 65 and 125 degrees). Means are standardised to the marginal distribution of age, sex, 

education and site in the groups combined. Ctrl = controls; PreA = premanifest HD far from diagnosis; PreB = 

premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2. 

 

Figure 2. Mean Map Search 1- and 2-minute scores at baseline and at annualised follow up, standardised to 

the marginal distribution of age, sex, education and site in the groups combined. Ctrl = controls; PreA = 

premanifest HD far from diagnosis; PreB = premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD 

stage-2. 

 

Figure 3. Mean Mental Rotation response time at baseline as a function of accuracy at 65 and 125 degrees 

under both SAME and MIRROR conditions. Means are standardised to the marginal distribution of age, sex, 

education and site in the groups combined. Ctrl = controls; PreA = premanifest HD far from diagnosis; PreB 

= premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2. 

 

Figure 4. Structural brain correlations to visuospatial performance at baseline. Correlations included all the 

gene-positive groups combined. For Map Search, we used the 1-minute scores, and for Mental Rotation we 

used accuracy for 65 and 125 degrees combined. Voxel based morphometry results for grey-matter (A) and 

white-matter (B) are corrected for multiple comparisons using the false discovery rate at P<0.05, and cortical 

thickness results (C) are corrected using a Monte Carlo cluster-wise correction at P<0.05. Voxel based 

morphometry associations were adjusted for age, gender, site, education, intracranial volume, CAG and 

disease burden, and cortical thickness associations were adjusted for age, gender, site, education, CAG and 

disease burden. L = left; R = right. 
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Figure 1. Mean Mental Rotation accuracy (A) and response time (B) at baseline (top, all degrees of rotation) 
and annualised change (bottom, 65 and 125 degrees). Means are standardised to the marginal distribution 
of age, sex, education and site in the groups combined. Ctrl = controls; PreA = premanifest HD far from 

diagnosis; PreB = premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2.  
783x569mm (72 x 72 DPI)  
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Figure 2. Mean Map Search 1- and 2-minute scores at baseline and at annualised follow up, standardised to 
the marginal distribution of age, sex, education and site in the groups combined. Ctrl = controls; PreA = 
premanifest HD far from diagnosis; PreB = premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD 

stage-2.  
381x276mm (100 x 100 DPI)  
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Figure 3. Mean Mental Rotation response time at baseline as a function of accuracy at 65 and 125 degrees 
under both SAME and MIRROR conditions. Means are standardised to the marginal distribution of age, sex, 
education and site in the groups combined. Ctrl = controls; PreA = premanifest HD far from diagnosis; PreB 

= premanifes HD near diagnosis; HD1 = HD stage-1; HD2 = HD stage-2.  
381x276mm (100 x 100 DPI)  
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Supplementary material 

 

Supplementary Table 1 Between-group contrasts for cross-sectional (baseline) differences in speed-accuracy tradeoff in the Mental 

Rotation task.  Tradeoff is defined as extra time taken (ms) to respond correctly per 10% absolute increase in overall accuracy.  

Contrasts are means (95% confidence intervals) and are adjusted for age, sex, education and site. 

 PreA vs. Control P PreB vs. Control P HD1 vs. Control P HD2 vs. Control P 

SAME:        

65 132 (-94, 357) 0.2522 -126 (-331, 78) 0.2249 -160 (-413, 93) 0.2141 -140 (-322, 42) 0.1305 

125 145 (-73, 363) 0.1929 -144 (-405, 117) 0.2790 -61 (-402, 280) 0.7245 -88 (-447, 271) 0.6308 

MIRROR:         

65 239 (3, 476) 0.0476 10 (-241, 260) 0.9388 69 (-146, 284) 0.5287 -103 (-351, 145) 0.4165 

125 -66 (-280, 148) 0.5454 20 (-187, 228) 0.8467 -19 (-311, 273) 0.8990 -149 (-451, 154) 0.3353 

PreA = premanifest Huntington’s disease far from diagnosis; PreB = premanifest Huntington’s disease near diagnosis; HD1 = Huntington’s 

disease stage-1; HD2 = Huntington’s disease stage-2; P=significance p-value. 
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