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Entropy Balancing: A maximum-entropy reweighting scheme to adjust for coverage error 
 
Abstract: This paper presents a newly available technique to adjust for bias in non-probabilistically selected 
samples. To date, applications of this innovative technique – termed entropy balancing – have been 
restricted to evaluation settings, where the goal is to reduce model dependence prior to the estimation of 
treatment effects. In a novel application, we demonstrate the technique’s utility in cases where the goal is 
to correct for sample bias originating in coverage error.  
 
The appeal of entropy balancing in this latter setting lies in its capacity to optimise the twin goals of 
improved balance in covariate distribution and maximum retention of information. Entropy balancing 
combines the opportunity to incorporate a large set of moment conditions in the calculation of weights, 
with the ability to directly implement exact balance. The technique thus builds upon the theoretical appeal 
of the more widely known and applied propensity score adjustment method, while addressing that 
method’s practical limitations. 
 
We demonstrate the utility of the entropy balancing technique empirically, through an example using the 
Young Lives Project survey data for rural Andhra Pradesh, South India. We conclude by summarising the 
potential of this procedure to contribute to robust survey-based research more widely. 
 
Key words: causal inference, coverage error, design based inference, entropy balance, propensity score 
adjustment 
 
1. Introduction 
 
In many fields of survey analysis, generalisation from sample to population rests on design based inference, 
the plausibility of which depends on the adoption of randomisation procedures in sample selection and the 
application of survey weights to produce estimates that are unbiased, or at least “approximately unbiased” 
(Kalton 2002: 129). Under this mode of inference, survey procedures are ideally designed and implemented 
to permit generalisation of findings beyond the surveyed sample of respondents “n”, to a defined 
population of interest “N”. Various sources of error can undermine this ideal and so compromise the 
external validity of findings. Here our interest is in a newly available technique to compensate for bias 
originating in coverage error, which occurs when a portion of the target population is excluded from the 
sampling frame or a sampling frame is unavailable or unutilised.  
 
The advent of internet-based surveys has led to an increase in methodological work to adjust for coverage 
error (see for example Schonlau et al. 2009; Steinmetz and Tijdens 2009, Steinmetz et al. 2014). Techniques 
developed in this setting have applicability to any sample design that employs non-random methods to 
select respondents, where selection bias may be an issue (Stuart et al. 2011). They have particular 
relevance for research utilising data for the Global South, where out-dated, inadequate, or absent sampling 
frames tend to be more commonly encountered (UN 2006; Wilson et al 2006). One increasingly prominent 
technique to adjust for bias in such settings involves the extension of propensity score adjustment (PSA) 
methods beyond their traditional evaluative application to the separate but related field of survey sample 
weighting. The remainder of this section outlines the theoretical appeal and practical limitations of PSA 
methods in this context, before introducing entropy balancing as an alternative approach.  
 
To date, propensity score adjustment (PSA) has been applied to a number of substantive studies employing 
survey samples in which bias originating in coverage error is present or suspected. Examples include work 
by Isakson and Forsman (2003) and Duffy et al (2005) to predict election results from non-probability 
sample surveys canvassing political opinions, by Yoshimura (2004) to generalise findings on consumption 
patterns beyond an internet survey sample, by Frölich (2007) for analysis of the UK gender wage gap, and 
by Stuart et al. (2011) to assess the generalizabilty of results from a randomised trial to evaluate the impact 
of an education intervention. In each of these examples, the aim is the analysis of one or more outcome(s) 
in the non-probability survey sample “n”, given the distribution of covariates in the target population “N”.  
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The application of PSA to adjust for coverage error relies upon the general approach developed by 
Rosenbaum and Rubin (1983) for the evaluation of causal effects, and shares its key assumptions. In the 
traditional evaluative application, propensity score pre-processing methods are employed to reweight or 
remove survey units to equate (or “balance”) the distribution of covariates in “treatment” and “control” 
groups prior to the estimation of treatment effects. The propensity score, P(X), is calculated as the 
conditional probability e(x) of each observation i, being exposed to a “treatment” z = 1, as a function of a 
vector of observed covariates x. Under strong ignorability (also termed conditional independence), z is 
independent of x, and the propensity score is constant (Rosenbaum and Rubin, 1983). The estimation 
process orthogonalizes the treatment indicator to the covariate moments included in the reweighting - in 
theory reducing model dependence prior to treatment effect estimation (see Sekhon 2009, Abadie and 
Imbens 2011 for example applications of this principle). In their seminal 1983 paper Rosenbaum and Rubin 
formally demonstrate that, under strong ignorability, balance across a large number of covariates can be 
achieved by weighting or matching on the propensity score alone, so substituting a potentially large vector 
of discrete covariates with a one-dimensional probability. This ability to incorporate complete auxiliary 
information without incurring high dimensionality explains the appeal of propensity score methods in their 
traditional evaluation application (Rosenbaum and Rubin 1983, Heckman et al 1998, Rivers 2007; Vavreck 
and Rivers 2008; Hainmueller 2012).  
 
The extension of propensity score methods to adjust for coverage error is similarly motivated by the 
theoretical appeal of applying a one-dimensional measure to balance a large number of covariates. In 
common with traditional survey weighting techniques, the expectation is that estimates for unknown 
characteristics of the target population (represented by the reference sample) can be improved through 
the introduction of auxiliary information about the target population’s known characteristics. In traditional 
sample weighting schemes the set of auxiliary information is usually – in practice – limited to a small 
number of known totals, since weighting on a large number of discrete variables often leads to small or 
zero cell counts (Heckman et al 1998). This can be a shortcoming in cases where the plausibility of strong 
ignorability demands the inclusion of many confounders. Where propensity score adjustment differs from 
traditional weighting schemes is in its ability to incorporate complete auxiliary information without 
incurring high dimensionality.  
 
The application of PSA to the sample-reweighting setting relies on the availability of probability-sampled 
survey data representative of the target population and gathered reasonably contemporaneously with the 
non-random sample data (Lee 2006). This, the reference sample, provides the benchmark covariate 
distributions for the non-random sample. Typically the reference sample includes extensive auxiliary data 
for the population of interest and variables related to participation in / selection into the non-random 
sample, but lacks the key variable(s) of interest included in the non-random sample. The two samples are 
merged to form a single dataset. In applied settings, propensity scores are typically calculated via a logistic 
or probit regression model of selection into the non-random sample based on a set of observable 
characteristics common to both datasets. The inverse of an observation’s probability of selection is then 
applied as a weight to adjust for differences in the sample distributions to reduce bias on observed (and 
associated unobserved) characteristics. Ideally, the application of the PSA weights balances the covariate 
distributions in the non-probability sample to match those of the reference sample. However, while 
theoretically appealing, attempts to utilise PSA to adjust for coverage error have tended to produce 
disappointing results (see for example: Isakson and Forsman 2003; Yoshimura 2004; Duffy et al. 2005; 
Stuart et al. 2011). 
 
In practice, PSA’s theoretical promise has proven difficult to translate to applied settings. While certain 
limitations are acknowledged in the literature, others have tended to be overlooked. The estimation of 
propensity scores may itself be a source of difficulty. Where the propensity score is estimated non-
parametrically the problem of high dimensionality is in fact incurred. Where estimated parametrically, the 
sensitivity of the estimated treatment effects to the specifications of the propensity score becomes an 
issue. A further issue is that practical applications of the PSA method have tended to depart from classical 
sample weighting techniques in their use of representative survey data in place of census-based known 
population totals. This departure is commonly motivated by an absence of key auxiliary data, or of variables 



 3 

thought indicative of selection into the non-random sample, in available census data. While unavoidable in 
many applications, the use of weighted representative survey data necessarily increases the variance 
associated with the estimates. This risks undermining any gains from improved balance and associated 
bias-reduction, a point we return to below. As Zhao (2005) points out the impact on variance, and the 
sensitivity of results to estimation procedures, are rarely acknowledged in the applied literature on PSA 
weighting.  
 
As its applications have extended, another practical limitation of PSA have also gained attention. Whereas 
traditional weighting methods directly adjust sampling weights to exactly reproduce known population 
totals, PSA involves the researcher in a time consuming back-and-forwards process of propensity score 
estimation, matching, and balance checking in an attempt to identify the algorithm that results in the most 
balanced covariate distribution. This rarely succeeds in simultaneously balancing all of the covariates, with 
improved balance on one covariate often only achieved at the expense of another (Ho et al. 2007; Stuart et 
al. 2011; Hainmueller 2012).  
 
Entropy balancing provides a means to overcome the practical limitations of PSA, so realising the latter’s 
(theoretical) ability to incorporate complete auxiliary information without incurring high dimensionality. In 
the remainder of the article, we outline the advantages of the entropy balancing approach to sample 
weighting relative to PSA, and demonstrate its utility in a worked example. 
 
2. Entropy balance reweighting as an alternative to propensity score adjustment 
 
Hainmueller and Xu (2012, 2013) describe entropy balancing as a generalization of the propensity score 
adjustment approach, though in practice the procedures are the inverse of one another (Heinmueller and 
Xu 2013). Whereas propensity scores are typically calculated via a series of logistic or probit regressions, 
entropy balancing, in common with many traditional survey weighting schemes, directly calculates weights 
to adjust for known sample distributions, so integrating covariate balance directly into the weights and 
avoiding the tedious back-and-forwards algorithm-checking required by PSA. Although Heinmueller’s 
interest is in the “evaluation problem”, he acknowledges, without elaborating further that it is possible that 
a modified entropy balancing procedure could be used to reweight a single sample to some known features 
of the target population (Heinmueller 2012) and this is what we investigate in this paper. 
 
The entropy balance method employs a maximum-entropy reweighting scheme whereby covariate balance 
is directly incorporated into the weight function used to adjust the non-random samples units in line with 
the reference sample. A condensed version of the theoretical framework is presented in appendix one1.  
Weights are estimated directly from pre-specified balance constraints as a log-linear function of the known 
target sample moment conditions. This entails that the adjusted sample moments of the non-random 
sample exactly match the corresponding moments in the reference sample. The entropy balancing solution 
seeks a set of scalar unit weights that simultaneously satisfy the pre-assigned balance constraints while 
minimising the distance from uniform (or sample-design based) base weights, so retaining maximum 
information. The distance between the distribution of the estimated balance weights and the distribution 
of the pre-set uniform base weights is measured by the loss function (employing a directed entropy 
divergence distance metric). The loss function is non-negative and decreases as the estimated balance 
weights approach the base weights. The procedure accommodates high dimensionality to assign one 
weight to each control unit by reducing the balancing scheme to a sequence of non-linear equations in R 
Lagrange multipliers. The solution therefore allows that, by adjusting the unit weights in line with known 
sample moments, exact matching is obtained for finite samples. 
 
The method’s principal advantage over the logistic / probit algorithms typically used to calculate propensity 
scores is its ability to directly implement exact balance. By calculating weights to be as similar as possible to 
base weights, the entropy balance weighting procedure optimising the twin goals of improved balance in 
covariate distribution and maximum retention of information (the latter is enhanced by the entropy 

                                                           
1 See Hainmueller (2012) for a comprehensive presentation of the theoretical framework.  
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approach’s ability to vary weights smoothly across units). A further advantage of the entropy balancing 
method is that it allows for survey weights pre-assigned to the reference sample to be easily incorporated 
into the calculation of all moment conditions for reweighting.  
 
Where traditional survey weighting techniques usually necessarily limit the size of the vector of auxiliary 
information to evade the “curse of dimensionality” (Heckman et al 1998), the entropy balance reweighting 
procedure (potentially) permits all available data from the reference sample to be incorporated (including 
higher moments and co-moments as interaction effects), generating an inclusive vector of moment 
conditions. This permits the density of X in the reweighted non-probability sample to mirror very closely 
that of the reference sample. In contrast to the PSA method, however, entropy balancing precludes and 
balance decreases on the specified moments by directly adjusting weights to known sample moments. 
Application of the entropy balance weights to the non-probability sample results in more weight being 
given to under-represented groups and less weight to over-represented groups, adjusting for unequal 
probability of sample selection and creating a ‘pseudo-population’ with characteristics in line with the 
reference sample2.  
 
The remainder of the article illustrates the application of the entropy balancing procedure to reweight a 
non-probabilistically sampled survey to a reference sample representative of its target population, before 
evaluating the methods effectiveness in adjusting for coverage bias relative to the better-known PSA 
technique3. 
 
3. Example problem 
 
We draw on two independent sample datasets. The Young Lives Project sample (n0) is a non-
probabilistically sampled survey separately undertaken in Ethiopia, Peru, Vietnam, and Andhra Pradesh 
(AP), South India in four planned rounds of data collection4. The dataset that we are using is the second 
round for rural AP - collected in 2005/6. The dataset includes information for 2,196 households and 14,110 
individuals5. The data are primarily intended to provide a means to study the changing dynamics of 
childhood and household wellbeing. The population of interest is families with young children. The YLP 
provides a rich source of data on household demographics and individual characteristics, assets, market 
and non-market labour activities, and attitudes.  The substantive purpose of our own study was to use this 
dataset to analyse the relationships among rural women’s participation in poverty amelioration schemes, 
gender norms, and labour profiles at the individual, household, and community levels.  
 
The YLP survey’s sampling procedure is described in Wilson et al (2006). The use of non-probabilistic 
sampling was prompted by the absence of “effective, accessible and accurate sampling frames of 
households with qualifying children in [the] study countries” (Wilson et al. 2006: 356). Consequently, the 
study adopted a sentinel site surveillance system (Galeb et al 2003; Kumra 2008)6. In AP, 20 study sites (5 
urban and 15 rural), each an administrative zone, or mandal, were selected across the State’s three agro-
climactic regions. Here we limit analysis to the 15 rural sites. Sites were selected on the basis of relative 
wealth, in line with the study’s aim to oversample income poor households, while enabling comparisons to 
be made between poor and non-poor (Wilson et al. 2006).  
 

                                                           
2 In cases where only marginal population probabilities are available (from summarised census data for example) the 
ebalance procedure allows for values to be manually specified to reweight the non-probability sample covariates in 
line with available known population targets.  
3 All analysis is conducted in STATA 13 software; Hainmueller’s “ebalance” suite of commands to perform the entropy 
balance procedure can be imported to STATA in the usual manner, i.e. “ssc install ebalance, all replace”. 
4 The survey was sponsored by the UK Department for International Development (DFID), and is led by the Oxford 
Department of International Development at the University of Oxford, in collaboration with academic institutions in 
each of the four project countries. 
5 In the second round of data collection all individuals resident in a selected household were included in the survey.  
6Andersson (1996) discusses the general method of sentinel site sampling in some detail. 
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The reference sample is drawn from the All India National Sample Survey (n1). The NSS is a weighted, 
probabilistically sampled survey representative of the national population. The survey is designed and 
collected by the National Sample Survey Organisation (NSSO), a department of the Ministry of Statistics and 
Programme Implementation (MSPI). The NSS has been conducted annually since 1950. Here we utilise the 
employment and unemployment schedule (schedule ten) as, importantly for our purposes, it contains 
information relevant to the selection mechanisms informing inclusion in the YLP sample. Schedule 10 is 
incorporated quinquennially. We use round 61 of the NSS. Data for this survey year was collected in 2004 - 
2005, overlapping with data collection for round two of the YLP. The NSS dataset includes information for 
5,550 households and 22,591 individuals in rural Andhra Pradesh7. The survey employs a probabilistic 
stratified, multi-stage sample design. Briefly, the NSS stratifies by geographic region, urban-rural area, 
population density, and household affluence; with each stratum designed to be non-overlapping and 
proportional (based on projected population figures from the 2001 national census taking into account 
decadal growth rated between 1991 and 2001) (MSPI 2006: 82). Full details of the sampling methodology 
can be found in the NSSO’s documentation for the 61st round (NSSO 2004). The NSSO, in line with the 
practice of most nationally representative sample survey organisations uses adjustment weights at the 
household level based on extrapolations of the 2001 census to account for unequal sampling rates in the 
strata. Samples are selected from each stratum independently. Unequal sampling rates in the strata are 
corrected for (in order to produce an unbiased mean estimator). In this example, the appropriate sampling 
weights are drawn from probabilities of selection (MSPI 2008). The weights are uniform within households, 
with all individuals resident in a household included in the survey. 
 
4. The application of entropy balancing 
 
As a first step, we define a subpopulation comparable with the YLP’s target population within the NSS 
sample to include only households in AP with children in the target population age range. Next, covariates 
common to both datasets are identified and operationalised. Table one presents the covariates common to 
the two datasets and their values across the two datasets. The entropy balancing scheme permits the 
inclusion of both continuous and categorical data, taking advantage of all available common information.  
 
>>>>>Table 1: Sample characteristics prior to entropy balance procedure<<<<< 
 
Table one demonstrates that the densities of characteristics recorded in the YLP sample deviate 
substantially from those of the target population. The YLP sample has selected a roughly even number of 
households from each of the State’s three agro-climactic regions, with households in Rayalaseema 
oversampled relative to those in Coastal Andhra and Telangana. “Forward” caste households are 
significantly under-represented, likely as a result of the oversampling of poor households, Adivasi 
households are significantly over-represented. Over-sampling is practiced inconsistently, however, with 
religious minorities substantially under-sampled. Casual daily wage labour households are very under-
represented, while marginal and mid-size farming households are over-represented8. Households are 
generally larger in the YLP sample than the target population. Heads of household are younger, 
disproportionately male, and more literate in the YLP sample than the target population.  
 
In order to apply the entropy reweighting scheme, a single indicator variable is generated in both the 
reference and non-probability datasets, coded 1 for all observations in the NSS and 0 for all those in the 
YLP. The two datasets are then merged to form a single dataset, necessary for the calculation of entropy 
balance weights across higher moments. As detailed above, a set of balance constraints can now be 
specified for each of the covariates, equating the moments of the covariate distribution between the 
reference and target samples. Recall that possible moment constraints include the mean (the first 
moment), variance (the second moment), and skewness (the third moment). In the case of binary variables 
(for example, gender of household head) adjustment of the first moment is, in practice, sufficient to match 

                                                           
7At the all India level a total of 124,680 households and 602,833 individuals took part in the survey for schedule 10 of 
the 61st round of the NSS. 
8 Household class is calculated on the basis of household landholding and dominant labour relations. 
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higher moments. Moment constraints may be separately defined for each covariate. The specification of 
interaction terms allows covariates to be balanced across key subsample groups (in this case, we balance 
across the subsample caste).  
 
The “ebalance” algorithm computes the values of the specified moments in the reference sample (n1), in 
this case the NSS, and seeks a set of entropy weights that can adjust the YLP sample to match. Convergence 
occurs once all the specified moments are matched across the data sources, within the specified number of 
iterations and tolerance level9. Though rare in practice, the inclusion of too many collinear moment 
constraints may in theory prevent convergence (Hainmueller 2012). Specifying fewer moment constraints, 
either via the removal of implicated covariates or a reduction in their specified moment constraints (mean, 
variance, skewness), can remedy this. Alternatively (or additionally), the tolerance level can be relaxed. 
Tables 2a and 2b present the results of the entropy balance procedure.  
 
>>>>>>Table 2a: Variable moment conditions prior to entropy balance procedure<<<<<< 
 
>>>>>>Table 2b: Variable moment conditions after entropy balance procedure<<<<<< 
 
Figure one presents measures of the standardised differences in means for the two data samples before 
and after entropy balance reweighting.  
 
>>>Figure 1: Covariate balance for all moment conditions before and after entropy balance reweighting<<< 
 
The results demonstrate that the adjustment has a dramatic effect. The entropy balance derived weights 
have adjusted the YLP sample’s distribution such that it now reflects rural AP’s population densities as 
reported in the weighted reference sample. Following the reweighting procedure, differences between the 
non-probability and reference samples, across all moment conditions (mean, variance, skewness) for all 
matching variables are now effectively zero and are non-significant.  
 
Figure three compares the results obtained through the entropy balance reweighting procedure with those 
obtained via the PSA method, demonstrating the superior results achieved with the former. The reported 
PSA results are the best obtained through an extensive back-and-forwards process of estimation, matching, 
and balance checking. The weights derived through the PSA procedure improve balance on some covariates 
(specifically religion, head of household literacy rates, and some categories of household class), but – in line 
with the tendency widely reported in the literature on applied PSA methods - this comes at the expense of 
balance on other covariates. Notably the PSA derived weight exacerbates the extent and / or significance of 
the original differences in some cases. In contrast, the entropy balance derived weights result in 
simultaneous balance across all of the specified covariates. 
 
>Figure 2: Comparison of equivalent results obtained by entropy balance and PSA weighting< 
 
Table three presents the effects of the ebalance weighting procedure on key outcome variables in the pre-
adjusted and adjusted non-random sample data. The results demonstrate that the application of the 
ebalance derived weights modifies the distribution of key outcome mean estimates. There is, however, a 
trade-off between bias reduction and variance increase. The weighted estimates have increased standard 
errors and substantially increased confidence errors in comparison with the unweighted data.  
 
>Table 3: Comparison of equivalent results obtained by entropy balance and PSA weighting< 
 
5. Discussion 
 

                                                           
9 The default iteration number is 20, the default tolerance level 0.015, and both can be increased if convergence fails. 
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In this article we have introduced, and applied in modified form, an innovative means to adjust for 
selection bias in non-probabilistically selected samples. We have demonstrated its benefits in relation to 
the more widely known and applied propensity score adjustment method. 
 
The entropy balance reweighting scheme permits many of the difficulties encountered with PSA-based 
reweighting to be overcome, negating the need for the time consuming and often unsatisfactory iterative 
process of propensity score adjustment. Whereas the PSA reweighting procedure rarely succeeds in 
simultaneously balancing all of the covariates, entropy balancing directly calculates weights to adjust for 
known sample distributions, integrating covariate balance directly into the weights. The entropy balance 
reweighting procedure (potentially) permits all available parallel data from a reference sample to be 
incorporated in calculating the non-probability sample’s population weights. This enables the density of X 
in the reweighted non-probability sample to be made to mirror that of the reference sample very closely. 
The ability to include a large set of moment conditions results in a covariate density for the reweighted 
sample consistent with the population of interest (as defined by the reference sample). However, the 
extent of the trade-off exacted between bias reduction and variance increase remains an important 
consideration. By incorporating design weights for the reference sample we introduce a source of variance 
that, though shared by the PSA approach, is absent in traditional calibration procedures utilising census 
counts. We should not, however, discount the possibility that some of the increase in variance in fact 
corrects for bias present in the unweighted non-random sample. Since we are balancing on the second 
moment condition it may be that the increased standard errors represent less a loss of precision than a 
correction for inaccurate estimates of precision in the original data. Further research is needed to assess 
the trade-off exacted between bias reduction and variance increase in different settings.  
 
As with all reweighting schemes, the effectiveness of the process will depend ultimately on the quality and 
applicability of the reference sample. Similarly, the entropy balance scheme can only correct for bias 
resulting from unobserved confounders to the extent that they are associated with the recorded balance 
constraints. The extent (and degree) of covariate equivalence across the reference and non-probability 
samples needs to be assessed on a case by case basis, and a sufficient number of units must be available in 
each to permit adequate overlap in the covariate distributions. Whilst it is possible to increase the iteration 
number and tolerance level in the pursuit of convergence, it is important the balance constraints are 
realistic and consistent. Bearing in mind these caveats, the example application demonstrates that 
remarkable results can be obtained through the entropy balance reweighting scheme. Following the 
reweighting procedure, differences between the non-probability and reference samples, across all moment 
conditions for all matching variables are reduced to effectively zero. It is anticipated that similar results can 
be obtained for any sample dataset where coverage error is known or suspected and an appropriate 
reference sample is available.  
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Appendix 1: A condensed version of the theoretical framework for entropy balancing 
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