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Abstract

Background: The influence of donor and recipient factors on outcomes following kidney transplantation is
commonly analysed using Cox regression models, but this approach is not useful for predicting long-term
survival beyond observed data. We demonstrate the application of a flexible parametric approach to fit a
model that can be extrapolated for the purpose of predicting mean patient survival. The primary motivation
for this analysis is to develop a predictive model to estimate post-transplant survival based on individual
patient characteristics to inform the design of alternative approaches to allocating deceased donor kidneys
to those on the transplant waiting list in the United Kingdom.

Methods: We analysed data from over 12,000 recipients of deceased donor kidney or combined kidney and
pancreas transplants between 2003 and 2012. We fitted a flexible parametric model incorporating restricted cubic
splines to characterise the baseline hazard function and explored a range of covariates including recipient, donor and
transplant-related factors.

Results: Multivariable analysis showed the risk of death increased with recipient and donor age, diabetic nephropathy
as the recipient’s primary renal diagnosis and donor hypertension. The risk of death was lower in female
recipients, patients with polycystic kidney disease and recipients of pre-emptive transplants. The final model
was used to extrapolate survival curves in order to calculate mean survival times for patients with specific
characteristics.

Conclusion: The use of flexible parametric modelling techniques allowed us to address some of the
limitations of both the Cox regression approach and of standard parametric models when the goal is
to predict long-term survival.
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Background
Outcomes following kidney transplantation are com-
monly analysed using Cox regression models. Such ana-
lyses have been instrumental for understanding the
influence of both donor and recipient factors on post-
transplant events, such as graft failure and patient

mortality [1–5]. However, the Cox regression approach
places emphasis on estimating relative risk and does not
make any distributional assumptions about the absolute
risk of an event. Therefore, its usefulness in predicting
survival beyond the period of observed data is limited
[6]. Following kidney transplantation, the risk of death is
highest in the period immediately after surgery, but
decreases sharply and then changes direction when the
risk of death starts to gradually increase over time.
While a number of standard parametric models (such as
the exponential, Weibull or loglogistic) are available and
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could facilitate extrapolation of survival data, they are
not flexible enough to accommodate hazard functions
that change direction.
In some situations, we not only want to understand

what factors influence relative survival, but we also want
to predict long-term survival for patients with given
characteristics. Estimates of life expectancy following
transplant are important as a basis for having informed
discussions with individual patients and their relatives.
For decision-making at a population level, estimates of
mean survival are needed to inform cost-effectiveness
evaluations that compare two or more treatment alter-
natives in terms of both lifetime health gains and costs.
There has also been considerable interest in the develop-
ment of survival prediction models and scoring tools for
use in kidney allocation systems. A number of predictive
models have been proposed, such as the Recipient Risk
Score (RRS), Life Years From Transplant (LYFT) and the
Expected Post Transplant Survival (EPTS) score, the
latter which was adopted as a measure alongside the
Kidney Donor Profile Index (KDPI) to facilitate longevity
matching in the revised kidney allocation system ap-
proved by the Organ Procurement and Transplantation
Network in the United States in 2013 [7–11]. The pri-
mary motivation for the current analysis is to develop a
predictive model to estimate post-transplant survival as
a potential approach to inform the design alternative
allocation schemes for deceased donor kidneys in the
United Kingdom.
In order to estimate mean patient survival from ob-

served data, it is desirable to have complete information
about when most or all patients have died. If the data
are not complete, estimates of mean survival will not
reflect the full distribution of survival times and will
likely underestimate true survival [12]. For recipients of
kidney transplants, waiting to observe post-transplant
mortality for a complete cohort of patients would
require several decades of follow-up. To circumvent this
problem, predictive models such as the aforementioned
LYFT approach used estimates of median rather than
mean survival times [8]. In contrast to the mean, median
survival only requires sufficient follow-up to observe
when 50 % of patients have died. However, with gradual
improvements in post-transplant survival, even median
survival can exceed 15 years. The survival models for
LYFT were developed based on transplant recipient data
spanning the period 1987 to 2006, thus highlighting an-
other dilemma: predicting survival times based on data
from patients who received transplants as many as
20 years ago may not accurately reflect the current clin-
ical situation and the data often need to be further
adjusted to reflect improvements in survival over time.
For example, advances in surgical technique, organ pres-
ervation technology, immunosuppressive therapy and

changes in the age and comorbidity profiles of both
donors and recipients all have the potential to influence
post-transplant outcomes.
Unlike the Cox regression approach, flexible parametric

models characterise the baseline hazard directly and can
therefore provide smooth estimates of the hazard and sur-
vival functions for any combination of covariates and can
be used to extrapolate survival beyond the observed data
[6]. The ability to extrapolate also means that it is not ne-
cessary to rely on older historical data simply to have suffi-
cient long-term follow-up to observe enough deaths. By
choosing to focus on data from transplants that have been
carried out more recently, a parametric modelling ap-
proach offers the advantage of allowing us to generate pre-
dictions of mean patient survival that are more reflective
of the characteristics of the current transplant population
and of current clinical practice.
In this analysis, we demonstrate the application of the

flexible parametric modelling approach proposed by
Royston and Parmar [6, 13] to predict mean patient sur-
vival among recipients of kidney transplants from
deceased donors in the United Kingdom. We begin by
describing the dataset and explaining the approach we
took to determine how many years of historical data we
should use to inform model development. We then
present the fitted flexible parametric model and demon-
strate agreement between observed and predicted sur-
vival. Finally, we use the model to extrapolate beyond
the observed data in order to predict mean survival for
patients with a given set of characteristics.

Methods
Data source
NHS Blood and Transplant is the central authority re-
sponsible for managing the UK Transplant Registry, which
records mandatory data for kidney transplants performed
in all transplant centres across the UK [3]. Anonymised
data on all first-time kidney and combined kidney and
pancreas transplants performed between 1993 and 2012
were obtained from the registry. Patients <18 years old at
the time of transplant, recipients of kidneys from living
donors, en bloc and double transplants were excluded
from the analysis, as were recipients of kidneys trans-
planted with organs other than the pancreas.

Determining how many years of transplant data to
include in model development
Kaplan-Meier curves and log-rank tests were used to ex-
plore if there was any evidence of notable shifts in mortality
rates over the 20-year period that would justify controlling
for change over time or potentially restricting the analysis
to more recent years of data. Several approaches for divid-
ing the dataset into cohorts based on year of transplant
were explored, including 5-year intervals, 10-year intervals
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and intervals that coincided with changes to the UK na-
tional kidney allocation scheme in 1998 and 2006. The list
of variables that were routinely recorded in the UK Trans-
plant Registry changed between 1993 and 2012 and so the
availability of key variables was also an important consider-
ation in deciding whether to model survival using all of the
data or to limit the analysis to a more recent subset. Based
on a combination of the above factors, a decision was made
to restrict the development of the flexible parametric model
to patients who received transplants between 2003 and
2012; however, longer-term data from transplants performed
between 1993 and 2002 were used to check the plausibility
of extrapolated survival based on the fitted model.

Explanatory variables
Previous published analyses and prognostic models were
reviewed to identify potential factors for inclusion in the
development of the model to predict post-transplant patient
survival [3, 8, 9]. Recipient factors of interest included age,
gender, ethnicity, primary renal diagnosis, pre-emptive
transplant, waiting time, kidney only versus combined
kidney and pancreas transplant and the calculated reaction
frequency of antibodies to human leukocyte antigen (HLA).
Calculated reaction frequency (cRF) is a measure of the
sensitisation level for each patient and is calculated as the
percentage of donors in a pool of 10,000 UK donors with
whom the patient is HLA antibody incompatible, similar to
the concept of calculated panel reactive antibody [2].
Patients with a cRF between 0 and 9 % were considered non-
sensitised, whereas patients with a cRF ≥ 85 % were classed
as highly sensitised [14]. Donor factors of interest included
age, ethnicity, weight, history of hypertension, diabetes,
circulatory-death versus brain-death donor and cause of
death. Cold ischaemia time and the level of HLA mismatch
were also included. HLA mismatch was graded from level 1
(000-mismatched) to level 4 (poorly matched) as described in
the UK 2006 National Kidney Allocation Scheme [15].
Categorical variables were created for each of these

factors and the univariate effect of each factor on sur-
vival was explored using log-rank tests [16]. After mak-
ing the decision to restrict model development to
patients who received transplants between 2003 and
2012, most variables had either complete or only a small
amount of missing data (<2 %) and therefore we did not
perform imputation in order to facilitate the model fit-
ting process. However, data for two donor factors, hyper-
tension and diabetes, were missing in approximately 8 %
of cases. For these variables, two approaches to handling
missing data were explored. First, in order to retain
these cases during model fitting, additional categories
for missing donor hypertension and donor diabetes
status were created. Second, multiple imputation using
chained equations was performed and results were com-
pared for consistency with the non-imputed dataset.

Fitting the multivariable flexible parametric model
We followed the Royston-Parmar approach to fitting a
flexible parametric model, in which the baseline distribu-
tion is modelled as a restricted cubic spline function of log
time [6, 17]. The first step in the development of the prog-
nostic model was to determine the appropriate complexity
or number of knots to characterise the baseline spline
function and choose a suitable scale (proportional hazards,
proportional odds or probit) [6]. We initially fitted models
on each of the three scales while varying the number of
interior knots from 0 to 4 and inspected the Akaike infor-
mation criterion (AIC) to determine the optimal fit.
For the multivariable model, the data were then split 2:1

into derivation and validation subsets and variable selection
was performed on the derivation dataset using backward
elimination and a p-value threshold of 0.10. We tested select-
ively for clinically plausible interactions and explored the
possibility of time-dependent effects for specific covariates if
log-log plots suggested any departures from proportionality
of hazards over time. We used the model fitted to the
derivation subset to predict survival curves in the validation
subset and compared these graphically. The final model was
then refitted to the combined derivation and validation
dataset and results are reported with the index of concord-
ance (c index) as a measure of discrimination. The c index es-
timates the probability of concordance between predicted and
observed outcomes with a value of 0.5 indicating no predictive
discrimination and a value of 1.0 indicating perfect separation
of patients with different outcomes [18]. The fitted model was
then used to extrapolate survival curves for patients with
given characteristics in order to generate predictions
of mean survival by calculating the area under the curve.
All analyses were conducted in Stata (Version 13, Stata

Corp, College Station, Texas, USA). The flexible para-
metric model was fitted using the stpm2 command [17].

Results
Restricting model development to transplants carried out
between 2003 and 2012
The initial dataset included 23,729 patients who received
a transplant between 1993 and 2012. Kaplan-Meier curves
were plotted for groups defined by year of transplant to
explore if there have been any notable shifts in mortality
rates over the 20-year period of available data. Visual
inspection showed clear separation of survival curves for
patients who received a transplant between 1993 and 2002
versus patients who received a transplant between 2003
and 2012, and this difference was confirmed by a log-rank
test (Fig. 1a). Alternative approaches to dividing the time
period into 5-year intervals (Fig. 1b) or intervals that
coincided with changes to the national kidney allocation
scheme (Fig. 1c) confirmed that mortality rates did not
differ significantly within the last 10 years (between 2003
and 2012) of the dataset; however, improvements in
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survival were seen when comparing mortality rates within
the first 10 years (between 1993 and 2002). In addition to
shifts in survival curves, another important consideration
for the multivariable analysis was the availability of data for
key covariates of interest. For example, data on cold ischae-
mia time has only been consistently recorded in the registry
since 2000 and there were considerable differences in the
proportion of circulatory-death donors between the years
1993 and 2002 (3.7 %) and the years 2003 and 2012
(28.4 %). Therefore based on the observed improvements
in survival and availability of data, a decision was made to
restrict the development of the survival model to those
patients who received transplants between 2003 and 2012.

Univariate analysis
Table 1 summarises the results of univariate survival
analyses by recipient, donor and transplant factors. At a
p-value threshold of 0.05, only three of the factors inves-
tigated did not yield statistically significant differences in
patient survival: cRF, cold ischaemia time and whether
the patient received a kidney only or combined kidney
and pancreas transplant.

Shape of the hazard function and choice of spline
function
Based on AIC, the preliminary flexible parametric model
with the optimal fit was found to be on a proportional

Fig. 1 Kaplan-Meier curves and log-rank tests to explore changes in patient survival between different cohorts based on year of transplant:
(a) 10-year intervals (b) 5-year intervals and (c) intervals that coincide with changes to the national kidney allocation scheme
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Table 1 Univariate survival analysis by recipient, donor and transplant factors for transplants carried out between 2003 and
2012 (N = 12,307)

n % Observed deaths Crude mortality rate % p-value (log-rank test)

Recipient age

18-29 997 8.1 43 4.3 <0.001*

30-39 2034 16.5 115 5.7

40-49 3185 25.9 256 8.0

50-59 3110 25.3 407 13.1

> 60 2981 24.2 682 22.9

Recipient gender

Male 7628 62.0 984 12.9 0.002

Female 4673 38.0 517 11.1

Not reported 6 0.1 - -

Recipient ethnicity

White 9871 80.2 1248 12.6 0.033

Asian 1376 11.2 164 11.9

Other 1049 8.5 90 8.6

Not reported 11 0.1 - -

Transplanted organs

Kidney only 11013 89.5 1368 12.4 0.253

Kidney and pancreas 1294 10.5 135 10.4

Pre-emptive transplant

No 11019 89.5 1406 12.8 <0.001

Yes 1270 10.3 92 7.2

Not reported 18 0.2 - -

cRF

0-9 % 10026 81.5 1229 12.3 0.356

10-29 % 523 4.3 55 10.5

30-84 % 1357 11.0 171 12.6

85-100 % 401 3.3 48 12.0

Waiting time

< 6 months 1941 15.8 243 12.5 0.003*

6 months to <2 years 4129 33.6 538 13.0

> 2 years 6237 50.7 722 11.6

Primary renal disease

Glomerulonephritis 1849 15.0 186 10.1 <0.001

Diabetic nephropathy (type 1) 1705 13.9 230 13.5

Diabetic nephropathy (type 2) 380 3.1 71 18.7

Renal vascular disease 545 4.4 78 14.3

Polycystic kidney disease 1513 12.3 147 9.7

Pyelonephritis 804 6.5 95 11.8

Other 1573 12.8 181 11.5

Not reported 3938 32.0 515 13.1

Donor age

< 40 3650 29.7 306 8.4 <0.001*

40-49 2754 22.4 324 11.8
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hazards scale with 2 interior knots for the spline func-
tion. Before fitting the multivariable model, we com-
pared the preliminary model based on the chosen scale
and number of knots without covariates to the observed
data by examining the shape of the hazard and survival
functions.
The risk of death is highest in the period immedi-

ately following surgery, then drops sharply before it

starts to gradually increase at approximately 2 years
post-transplant. Figure 2 demonstrates the ability of
the flexible parametric model to accommodate a haz-
ard function that is consistent with the shape of the
observed data. This provides reassurance of the
improved fit that can be obtained when using splines
instead of standard parametric models such as the
Weibull or loglogistic shown in Fig. 2 for comparison.

Table 1 Univariate survival analysis by recipient, donor and transplant factors for transplants carried out between 2003 and
2012 (N = 12,307) (Continued)

50-59 3200 26.0 416 13.0

> 60 2703 22.0 457 16.9

Donor type

Brain-death donor 8812 71.6 1117 12.7 0.003

Circulatory-death donor 3495 28.4 386 11.0

Donor hypertension

No 8688 70.6 938 10.8 <0.001

Yes 2525 20.5 386 15.3

Not reported 1094 8.9 179 16.4

Donor diabetes

Negative 10790 87.7 1268 11.8 0.021

Positive 541 4.4 69 12.8

Not reported 976 7.9 166 17.0

Donor weight

< 55 kg 3150 25.6 380 12.1 0.036

55-65 kg 723 5.9 62 8.6

65-75 kg 1721 14.0 215 12.5

75-85 kg 3234 26.3 411 12.7

85-95 kg 1973 16.0 226 11.5

> 95 kg 1342 10.9 168 12.5

Not reported 164 1.3 - -

Donor cause of death

Trauma 1510 12.3 158 10.5 <0.001

Intracranial 7954 64.6 1059 13.3

Other 2843 23.1 286 10.1

HLA mismatch

Level 1 [000] 1485 12.1 193 13.0 0.001*

Level 2 [0 DR + 0/1 B] 4002 32.5 467 11.7

Level 3 [0 DR + 2 B] or [1 DR + 0/1 B] 5192 42.2 624 12.0

Level 4 [1 DR + 2 B] or [2 DR] 1628 13.2 219 13.5

Cold ischaemia time

< 12 hrs 2061 16.8 177 8.6 0.310*

12 to <18 hrs 5859 47.6 691 11.8

18 to <24 hrs 2930 23.8 427 14.6

> = 24 hrs 1264 10.3 186 14.7

Not reported 193 1.6 - -

*log-rank test for trend

Li et al. BMC Nephrology  (2016) 17:51 Page 6 of 11



Fitting the multivariable flexible parametric model
The variable selection process to identify significant pre-
dictors of post-transplant survival resulted in the model
shown in Table 2. The results in Table 2 reflect the final
model fitted to the combined derivation and validation
subsets. The risk of death increased with increasing age
of both the recipient and the donor, with a primary renal
diagnosis of diabetic nephropathy (type 1 or type 2 dia-
betes) in the recipient and with the presence of hyper-
tension in the donor. The risk of death was lower for
female transplant recipients, patients with polycystic
kidney disease and patients who received a pre-emptive
transplant. Excluding age, type 1 diabetic nephropathy
was associated with the highest increase in the risk of
death among transplant recipients.
Interaction terms for recipient age and gender, recipi-

ent age and diabetic nephropathy as the primary renal
diagnosis, and donor age and hypertension history were
tested, but none were found to be significant. To allow
for the possibility of time-dependent effects for any of
the covariates in the model, we first examined log-log
plots for any potential departures from the proportional
hazards assumption and identified pre-emptive trans-
plant, type of transplant (kidney only versus combined
kidney and pancreas transplant) and cold ischaemia time
as potentially varying over time. We tested time-
dependent effects for these variables in the flexible para-
metric model, but again none were found to improve
the fit of the model.

Agreement between observed and predicted survival
The c index for the final model was 0.70, comparable to
the value reported in the development of the LYFT

model (0.68) [19]. To assess the predictive performance
of the model, we created five prognostic groups and
used the final flexible parametric model to generate a
mean survival curve for each group and compared this
to the Kaplan-Meier survival curves based on the ob-
served data. Figure 3 shows broad agreement between
predicted mean survival curves and the observed
Kaplan-Meier curves, although there is less agreement
in later years when heavier censoring occurs. The separ-
ation of the curves in Fig. 3 also provides insight into
the magnitude of survival differences among transplant
recipients across the risk spectrum.

Extrapolation beyond the observed time period to predict
mean survival
To demonstrate the value of flexible parametric models
for extrapolation beyond the period of observed data, we
created three hypothetical patient profiles and generated
complete survival curves for each of them. Figure 4
shows the differences in survival curves and predicted
mean survival by calculating the area under the curve
for each patient profile.

Discussion
There are many examples in the transplant literature of
analyses that have examined the influence of various
factors on patient survival following kidney transplant-
ation, most of which are based on Cox regression
models [3–5]. The objective of the current analysis was
to revisit post-transplant mortality using a different
modelling technique that facilitates extrapolation of
survival curves beyond the period of observed data and
allows us to predict mean patient survival times.

Fig. 2 Comparison of smoothed hazard function based on observed data and preliminary flexible parametric model (no covariates) fitted with
spline function (2 interior knots); Weibull and loglogistic models in the accelerated-failure time (AFT) metric are also shown for comparison
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Before fitting a flexible parametric model, we felt it
was important to first consider how much historical data
to include in the development of our model. A conven-
tional approach might be to try and maximise sample
size and number of years of follow-up in order to cap-
ture any changes in the hazard rate over as long a period

as possible; however, we felt that this needed to be
balanced with the objective of developing a predictive
model that reflects current expectations of post-transplant
survival. Although 20 years of historical data on trans-
plants were available for analysis, we chose to restrict
model development to the most recent 10 years for two
main reasons. First, our exploratory analysis of Kaplan-
Meier curves indicated that there had been significant
improvements in survival for patients who received trans-
plants between 2003 and 2012 in comparison to patients
who received transplants between 1993 and 2002. Second,
a wider number of variables that were of potential interest
as predictors in the survival model were only available in
the more recent subset of the data, including sufficient
sample sizes to facilitate a comparison between recipients
of organs from circulatory-death donors and brain-death
donors. Although restricting model development to trans-
plants performed between 2003 and 2012 reduced the
overall sample size and limited the maximum duration of
follow-up to 10 years, it was judged that on balance, an
analysis based on the more recent subset of data would be
a better reflection of current clinical practice and more
appropriate given the intended use of the model for pre-
dicting survival. Quite often the decision about how much
historical data to include in model development is deter-
mined primarily by availability of and access to informa-
tion sources. While the decision that we took to only use
the most recent 10 years of transplant data is not widely
generalisable beyond our analysis, we advocate consider-
ing changes in the clinical context that might influence
survival and using exploratory analysis to provide empir-
ical guidance to inform this decision prior to model
fitting.
A range of potential explanatory variables were consid-

ered during the model development process, but the
final model was reduced to just four recipient factors
(age, gender, primary renal diagnosis and pre-emptive
transplant) and two donor factors (age and hyperten-
sion). Notably, we found no difference in death rates
between recipients of kidneys from circulatory-death
donors in comparison to brain-death donors. In addition,
controlling for type 1 diabetic nephropathy as the primary
renal diagnosis, we found no difference in death rates for
recipients of kidney only transplants compared to recipi-
ents of combined kidney and pancreas transplants. These
findings are broadly consistent with previous UK analyses
based on Cox regression models. For example, Johnson et
al identified recipient age, donor age and diabetes to be
significant predictors of 5-year patient survival [3]. How-
ever, Johnson et al. found that a waiting time of 2 years or
more and hypertension as the primary renal diagnosis in
transplant recipients also significantly increased the risk of
death at 5 years. In the present analysis, hypertension was
grouped with other forms of renal vascular disease as a

Table 2 Final flexible parametric model fitted to combined
derivation and validation dataset showing coefficients for each
of the 3 spline terms for the baseline hazard function and
hazard ratios for significant predictors of post-transplant patient
survival (N = 12,283)

Baseline hazard (log hazard scale) Coefficient p-value 95 % CI

Restricted cubic spline 1 1.03 <0.001 0.97 - 1.09

Restricted cubic spline 2 -0.08 0.001 -0.12 - -0.03

Restricted cubic spline 3 -0.14 <0.001 -0.16 - -0.12

Constant -3.97 <0.001 -4.31 - -3.63

Hazard ratio p-value 95 % CI

Recipient age

18-29 Baseline

30-39 1.15 0.423 0.81 - 1.64

40-49 1.79 <0.001 1.29 - 2.48

50-59 3.22 <0.001 2.35 - 4.43

> = 60 6.56 <0.001 4.79 - 8.98

Recipient gender

Male Baseline

Female 0.89 0.028 0.80 - 0.99

Pre-emptive transplant

No Baseline

Yes 0.66 <0.001 0.53 - 0.82

Primary renal diagnosis

Glomerulonephritis Baseline

Diabetic nephropathy
(type 1)

2.24 <0.001 1.84 - 2.73

Diabetic nephropathy
(type 2)

1.59 0.001 1.21 - 2.09

Polycystic kidney disease 0.81 0.056 0.65 - 1.01

Other 1.28 0.007 1.07 - 1.53

Not reported 1.28 0.004 1.08 - 1.52

Donor hypertension

No Baseline

Yes 1.27 <0.001 1.12 - 1.44

Not reported 1.20 0.023 1.03 - 1.42

Donor age

< 40 Baseline

40-49 1.26 0.004 1.08 - 1.48

50-59 1.26 0.003 1.08 - 1.47

> = 60 1.48 <0.001 1.26 - 1.74
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primary diagnosis, the latter which was also not found
to be a significant predictor of survival by Johnson et al.
The analysis by Johnson et al. was based on a slightly
earlier time period and included patients who received
transplants in the UK between 1995 and 2001; it did not
include recipients of combined kidney and pancreas

transplants or recipients of organs from circulatory-
death donors. With respect to donor factors, the current
analysis reaches similar conclusions to the findings of
Watson et al. in the development of the UK Kidney
Donor Risk Index (KDRI), which identified donor age
group and donor hypertension as the two most

Fig. 3 Comparison of Kaplan-Meier curves based on observed data (solid lines) and predicted mean survival curves based on final flexible
parametric model (dotted lines) by prognostic group

Fig. 4 Extrapolated survival curves with mean predicted survival for three different patient profiles
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important variables with the largest influence on trans-
plant outcomes [20].
The UK Transplant Registry is a rich source of histor-

ical data and among patients who received transplants
after 2002, many of the variables that we explored in our
model had either complete or only small amounts of
missing data. However, the amount of missing data for
variables such as recipient primary renal diagnosis and
donor hypertension potentially introduce an additional
source of uncertainty into our final predictive model.
For donor hypertension, we performed multiple imput-
ation and confirmed that this did not change the effect
of this variable on post-transplant survival estimates.
Nonetheless, information on donor hypertension in the
registry is obtained from various sources, ranging from
medical records to family members, and we were unable
to control for consistency with respect to the definition
of donor hypertension in the dataset. The prominence of
donor hypertension in post-transplant survival models
highlights the importance of improving the completeness
and consistency with which this variable is recorded. In
addition, the registry does not contain information on
other factors such as comorbidities or dialysis history for
transplant recipients, so we were unable to explore the
potential effect of these variables on patient survival in the
current analysis.

Conclusion
The flexible parametric approach to modelling survival
offers several advantageous features. In comparison to
semi-parametric approaches such as the Cox regression
model, fully parametric models characterise the baseline
hazard, which facilitates extrapolation beyond the period
of observed data. In comparison to standard parametric
models such as the Weibull, the use of restricted cubic
splines allows for greater flexibility to accommodate
more complex hazard functions that increase and de-
crease over time and are commonly encountered in
medical research. The objective of this analysis was to
demonstrate the application of a flexible parametric
modelling approach to predict mean survival times for
recipients of kidney transplants. The application of flexible
parametric techniques to estimate mean survival in
patients who are receiving dialysis would facilitate compar-
isons of survival differences between alternative treatment
modalities. In addition to informing cost-effectiveness
analyses, this approach may have a variety of applications,
from the development of prognostic models for informing
discussions with patients about treatment outcomes to the
use of scoring tools as part of organ allocation schemes.
Given the advantages of flexible parametric models, we
feel that it is a particularly useful approach for conducting
multivariable analysis of patient-level observational data
when the goal is to predict long-term survival.
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