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Abstract 

 

Diarrhoeal diseases remain a global health threat and are responsible for high levels 

of morbidity and mortality worldwide, with an estimated 1.7 billion cases every 

annum. Additionally, according to the World Health Organisation, diarrhoeal 

diseases are the second leading cause of death in children under 5 years old. 

Salmonella are one of the most common diarrhoeal pathogens [1] (WHO Accessed 

20 February  2015) with serovars Enteritidis, Typhimurium and Typhi playing a 

major role in outbreaks worldwide. However, Salmonella enterica serovar 

Weltevreden (S. Weltevreden) has recently attracted a great deal of interest due to 

increasing reports of its isolation by reference laboratories around the world, with a 

particular high incidence in South East Asia. However, relatively little is known 

about the genotypic or phenotypic properties of this understudied serovar. 

 

In this study, phylogenetics and comparative genomics based on whole genome 

sequences were used to define the genetic diversity within a sizeable collection of S. 

Weltevreden isolates collected from across the globe, with a focus in South East 

Asia. This phylogenetic analysis confirmed that the S. Weltevreden isolates belong to 

a monophyletic clade formed of several sub-clades presenting distinct geographical 

clustering and characteristics. Phenotypic characterisation was performed on selected 

isolates, with an aim to dissect aspects of host-pathogen interaction during infection, 

providing a foundation to compare S. Weltevreden with other serovars such as S. 

Typhimurium. Interestingly, an overall attenuated pathology was observed both in-

vitro (hep 2 cell line) and in-vivo (murine and zebrafish embryos) for S. Weltevreden 

compared to the S. Typhimurium reference strain. 

 

This is the first report of the phylogenetic analyses of S. Weltevreden and of a 

systematic in-vitro and in-vivo characterisation of the sub-species. 
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1 Introduction 

 

Infectious diseases are still one of the most common causes of morbidity and 

mortality in both humans and domestic animals. In regions of the world with poor 

economic development, many of the classical infections such as cholera and typhoid 

still persist and new diseases such as ebola are emerging [2-4]. In the more 

economically developed parts of the world, infections associated with zoonosis or 

health-care systems are an ever-present threat and given the increasing age 

demographic these threats are unlikely to recede [5, 6]. Further, the global 

emergence of multiple drug resistant microbes is challenging our ability to treat 

infections in a reliable manner and new antimicrobials are urgently required [7]. 

Thus, the ability to identify and understand pathogens and determine how they are 

spread will be central to our future success in combatting our old adversaries. 

The challenges presented by infections are considerable. It is clear that microbes 

have the ability to evolve rapidly to fill new ecological niches and to resist our 

attempts to kill them. Fortunately, these challenges coincide with an era where we 

are learning more about the epidemiology of disease and the molecular basis of 

infection. Modern molecular and immunological techniques, linked to the genomic 

sciences, are providing a rich source of tools for studying pathogen genetics, 

immunity and evolution [8-10]. Over the past decades a reductionist approach has 

yielded vital information on how microbial genes contribute to virulence and how 

their translated products contribute to pathogenesis [11, 12]. More recently, 

mammalian genetics is revealing the contribution of host genes to infection 

susceptibility [13-15]. The introduction of new generation sequencing technologies 

has revolutionised our ability to sequence the genomes of microbial populations, 

facilitating the analysis of whole genomes as a source of information on phylogeny, 

pathogen evolution and disease transmission [16-18]. As more human genomic data 

becomes available, similar progress can be anticipated in terms of identifying 

infection-susceptible individuals. It is hoped that many of these basic scientific 

advancements will begin to have impact in the form of improved treatments in the 

near future.  
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1.1 Diarrhoeal diseases  

Infections of the intestine associated with diarrhoea are still an important component 

of the global infectious disease burden with an estimated 1.7 billion cases of 

diarrhoeal disease every year [19]. In the developing world these impact 

disproportionately on new-borns and infants, particularly those that are poorly 

nourished or lack access to an effective public health infrastructure. According to the 

World Health Organisation (WHO), diarrhoeal diseases are the second leading cause 

of death in children under 5 years old and are accountable for ~760,000 deaths 

annually out of 2.2 million deaths overall [20]. 

A recent global study, known as the Global Enterics Multi-Center Study (GEMS), 

reported extensively on links between the incidence of severe diarrhoea and death 

[21]. GEMS was funded by the Bill and Melinda Gates Foundation (Gates) and 

managed from the University of Maryland, covering sites in sub-Saharan Africa 

(Kenya, Mali, Mozambique, and The Gambia), and South Asia (Bangladesh, India, 

and Pakistan). GEMS ran over a 3-year period involving children aged from 0 – 59 

months residing in high endemic areas. The GEMS study found that the risk of child 

mortality was 8.5 fold higher in infants with moderate to severe diarrhoea than in 

children without diarrhoea. GEMS also highlighted that rotaviruses, 

Cryptosporidium, Enterotoxigenic Escherichia coli producing heat- stable toxin (ST-

ETEC; with or without co-expression of heat-labile enterotoxin (LT)), and Shigella 

were important cases of severe to moderate diarrhoea in many of these sites. Other 

pathogens were frequently isolated from diarrhoea cases either at specific sites, 

within regions or were consistently present, but at lower incidence levels 

(Aeromonas, Vibrio cholerae O1, Campylobacter, Salmonella). Figure 1.1 shows the 

incidence of pathogen-specific diarrhoea per 100 children per year, in different age 

stratum from the GEMS data.   
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Figure 1.1: Incidence of pathogen-specific moderate-to-severe diarrhoea per 100 child-years  

Incidence of pathogen-specific moderate-to-severe diarrhoea per 100 child-years by age stratum in 

endemic areas (all sites combined). The bars show the incidence rates and the error bars show the 95% 

CIs [21]. Data taken from the GEMS study. 

GEMS and other related studies suggest that interventions specifically targeting the 

pathogens causing diarrhoea, potentially by identifying transmission pathways or 

reservoirs, could be a route towards significantly reducing the burden of diarrhoeal 

diseases. Understanding the microbial complexity of the diarrhoeal diseases could 

also facilitate the implementation of new prevention and treatment strategies that are 

urgently needed if we are to reduce infections and improve disease outcomes [21]. 

Salmonella were consistently isolated at the different GEMS sites, although they 

were clearly not the dominant cause of severe diarrhoea at any particular site. 

However, in addition to any role in causing diarrhoea in children, Salmonella can 

play a key role in bloodstream infection in Africa and Asia, adding to their overall 

disease burden. Bloodstream infection in Africa is a major healthcare threat 

associated with high mortality. A review on community-acquired bloodstream 
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infections in Africa, analysing 22 case-studies of infection, revealed that overall 

13.5% of adults and 8.2% of children had experienced some form of bloodstream 

infection [22]. Where recorded, patients with systemic infections had an overall case 

fatality of 18·1%. Although malaria accounted for a significant proportion of 

systemic infections, Salmonella was responsible of ~30% of non-malaria invasive 

diseases (~60% of these being nontyphoidal Salmonella (NTS)). Streptococcus 

pneumoniae was also a significant cause of invasive bacterial disease in the same 

regions and was the most commonly isolated bacterial species in children. HIV co-

infection was associated with an increased risk of invasive bacteraemia in general; 

particularly with Salmonella enterica and Mycobacterium tuberculosis [22]. A 

number of different serovars of Salmonella were associated with invasive disease 

(see below). 

The burden of infectious diarrhoea in developed countries is generally distinct from 

that in the developing world. In economically developed regions, many diarrhoeal 

diseases are acquired through contamination of the food chain, involving zoonotic 

sources such as meat, dairy products or indirectly contaminated produce such as 

lettuces exposed to sewage [23, 24]. At a global level, Salmonella has been reported 

as one of the most common foodborne pathogens by the WHO along with 

Campylobacter, E. coli, Shigella and Trichinella [1]. Diseases associated with 

Salmonella are frequently caused by clades/strains that are spreading internationally 

(see below). E. coli infections, particularly those involving Enteropathogenic or 

Enterohemorrhagic E. coli (EPEC/EHEC) are also relatively common, as are 

Shigella infections in children associated with Shigella sonnei [25, 26]. The spread of 

Shigella is likely to involve human to human transmission rather than a zoonotic 

source as Shigella is largely a human restricted pathogen. Other common causes of 

diarrhoeal disease in developed regions are viruses such as norovirus and rotaviruses 

that also usually spread directly between humans. Perhaps the most common cause 

of bacterial diarrhoea in many developed countries are specific Campylobacter 

species, especially C. jejuni [27]. These are frequently found associated with the 

handling and improper cooking of poultry. In addition, travellers to endemic regions 

of the world can bring back cases of disease (known as traveller’s diarrhoea). 

Another emerging form of diarrhoeal diseases is the so-called antibiotic-associated 
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diarrhoeas that can follow treatment with antibiotics. Such infections are particularly 

common in the elderly and the immunocompromised in health-care associated 

settings such as hospitals [28]. A common cause of antibiotic-associated diarrhoea is 

due to Clostridium difficile which has emerged to prominence over the past few 

decades [29]. C. difficile is a broad species from which highly infectious sub-clades 

emerge periodically to cause epidemics [30-32]. Many of these clades are now 

endemic within the hospital systems of countries. C. difficile can overgrow in the 

intestine following antibiotic treatment, releasing potent enterotoxins that cause 

significant local and systemic pathology [33]. Individuals treated with antibiotics 

frequently relapse with C. difficile infection and thus the clinical management of the 

disease is challenging. 

1.2 Salmonella enterica  

Salmonella are a common cause of infections in many parts of the world in both 

humans and animal species. Salmonella infection is associated with different disease 

syndromes ranging from acute gastroenteritis/diarrhoea to generally more chronic 

systemic diseases such as typhoid. Salmonella are rod shaped non-spore forming and 

Gram-negative bacteria. They are predominantly motile due to the expression of 

flagellae and individual cells can vary somewhat in size. They are also chemo-

organotrophs and facultative anaerobes. 

The genus Salmonella was named after Daniel Elmer Salmon, an American 

veterinary pathologist who discovered the pathogen while searching for the cause of 

common hog cholera. Salmonella are Gammaproteobacteria and belong in the 

family Enterobacteriaceae. It is generally acknowledged that there are two species of 

Salmonella; Salmonella bongori and S. enterica. S. bongori is commonly found in 

cold-blooded animals, including reptiles and snakes and likely evolved within such 

animals. S. bongori can occasionally cause diarrhoeal disease in humans, although 

this is relatively rare [34, 35]. S. enterica is an old, broad and complex species that is 

likely millions of years old [36]. It harbours a number of distinct sub-species but the 

most common causes of disease in humans and veterinary animals fall into S. 

enterica sub-species I (Figure 1). The six main sub-species are enterica (I), salamae 

(II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica (VI). 
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Figure 1.2: Phylogeny of selected members of the enterobacteriaceae based on sequence 

comparison of core genes within the respective genomes 

Connecting lines coloured according to species/subspecies: six subspecies of S. enterica in red, S. bongori 

in blue, E. coli in green, S. flexneri in purple, and Klebsiella pneumoniae in pink. Branch lengths are 

indicative of the estimated substitution rate per variable site. Taken from. [37] 
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Salmonella nomenclature is complex and has changed over time. Initially, isolates 

were designated or named according to clinical considerations or after the host 

species they were frequently isolated from, for example, S. Typhimurium (mouse 

typhoid fever), Salmonella Cholerasuis (hog cholera) etc. Later on, it was recognised 

that host specificity was not a property of all Salmonella; therefore new strains or 

serovar (short for serological variants) were named according to the location where 

they were isolated from; for instance Salmonella Newport, Salmonella Montevideo.  

The above nomenclature was developed without any specific consideration of the 

phylogeny of the isolates. Many thought that individual Salmonella serovars were 

actually separate species but DNA comparison studies proved that this was not the 

case. Since S. enterica can refer to either a species or subspecies a rethink on the 

nomenclature was required. Committees of the WHO and other esteemed bodies, 

alongside the recognition that S. enterica was a single species, developed a new 

nomenclature system for S. enterica based on DNA comparison studies linked to 

serological analysis. The complete description of a Salmonella now uses the 

following typical designation: S. enterica subspecies enterica serotype Typhimurium 

(or Dublin, Gallinarum etc. depending on the serovar) and this can be shorten to 

Salmonella typhimurium or now more commonly Salmonella Typhimurium [38]. 

The bacteria of the genus Salmonella are commonly classified using a serological 

scheme developed by Kauffmann and White (known accordingly as the Kauffmann-

White Scheme) [39]. Indeed, this is the approach used by most current reference 

microbiology laboratories. The scheme works by raising typing sera in rabbits 

against key antigens present on the surfaces of the Salmonella. These typing sera 

work as references. The typing antigens are diverse and facilitate discrimination and 

groupings simultaneously. O antigen, a component of bacterial lipopolysaccharide, is 

one of the key typing antigens. There is significant diversification in the somatic O 

typing antigen (repeat units of saccharide, which give the smooth appearance to 

colonies growing on agar). Another key typing antigen is the flagellin protein or H 

antigen (a heat labile antigen located in bacteria flagellae). H typing can be based on 

Salmonella phase 1 and phase 2 flagella antigens [39]. A third class of antigen is the 

surface component known as "Vi" (a capsular polysaccharide that contributes to the 

virulence of the bacterium in the host). Vi is a linear, acidic homopolymer of α-1,4-



22 
 

linked N-acetylgalactosaminuronate (D-GalNAcA), variably O-acetylated at C-3 [40, 

41] and is commonly found on isolates of S. Typhi, S. Paratyphi C and occasionally 

on isolates of S. Dublin.  

The Kauffmann-White scheme is significantly discriminating and has proved to be a 

robust, if not completely accurate approach to typing Salmonella. There are currently 

over 2400 reported Salmonella serovars and others are likely to emerge in the future. 

The frequency of isolation of Salmonella of a particular serovar varies over time and 

location with evidence of frequent epidemics and outbreaks. S. Typhimurium, S. 

Enteritidis and S. Dublin are commonly isolated serovars associated with human 

gastroenteritis. 

S. enterica can cause a range of different disease syndromes. Certain serovars are 

regarded as more likely to cause gastroenteritis in a particular host (for example, S. 

Enteritidis in humans), whereas others are more likely to cause systemic typhoid (for 

example, S. Typhi in humans). This is a useful, but not an absolute classification, and 

disease outcome can be influenced by a range of factors such as the host/isolate 

pairing, immune status and infectious dose. Nevertheless, Salmonella are often 

classified based on the most common clinical outcome and in this context are 

described as either typhoidal (typhoid fever and paratyphoid fever) or non-typhoidal 

Salmonella. 

1.2.1 Typhoidal Salmonella 

Originally isolated in 1880 by Karl J. Eberth, the causative organism of typhoid fever 

S. Typhi is a pathogen that can colonise the lymphatic tissues of the small intestine, 

liver, spleen, and bloodstream of infected humans. It does not cause disease in 

animals, other than higher primates under experimental conditions [42]. Most S. 

Typhi isolates from typhoid fever cases express the polysaccharide capsule Vi, which 

is associated with increased infectiousness and virulence [43]. Humans are the only 

natural host and reservoir for S. Typhi although the pathogen can survive for days in 

water and for months in contaminated food. Reported risk factors include a history of 

contact with other patients before illness, access to dirty water and past evidence of 

infection with Helicobacter pylori [44]. Work on typhoid fever patients in Vietnam 
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has suggested an important role of HLA-linked genes in governing susceptibility or 

resistance to this infection. HLADRB1* 0301/6/8, HLA-DQB1*0201-3, and the 

tumour necrosis factor A loci (TNFA*2-308) were associated with susceptibility to 

typhoid fever, while HLA-DRQB1*04, HLA-DQB1*0401/2 and TNFA*1(-308) 

were associated with lower risk [45, 46]. HLA-DRB1*12 is associated with 

protection against complicated typhoid fever [47]. 

The clinical presentation of typhoid fever is variable, ranging from fever with little 

morbidity to marked toxaemia and associated complications involving many 

systems. The commonest complications are gastrointestinal bleeding, intestinal 

perforation and typhoid encephalopathy [48, 49]. In endemic regions, diagnosis can 

be missed because of non-specific features like diarrhoea and vomiting, or 

predominant respiratory symptoms. In children younger than 5 years, typhoid fever 

can be milder and can mimic a viral syndrome. The rate of severe complications is 

lower than at later ages. Factors affecting severity could include duration of illness 

before therapy, choice of antimicrobial therapy, strain virulence, inoculum size, 

previous exposure or vaccination, and other host factors such as HLA type (see 

above), immune suppression or antacid consumption.  

Clinical features of paratyphoid fever are generally reported to be similar to those of 

typhoid fever but are usually thought to be milder with a shorter incubation period. S. 

Paratyphi A or Paratyphi B can manifest with jaundice, thrombosis, and systemic 

infections. S. Paratyphi B might occasionally have an onset similar to non-specific 

gastroenteritis [50]. Gastrointestinal symptoms are usually not present with S. 

Paratyphi C but there have been cases with systemic complications such as 

septicemia and arthritis [51]. 

Unlike many Salmonella infections, typhoid can be associated with a chronic, 

potentially asymptomatic carrier state involving systemic tissues such as the 

gallbladder. Chronic typhoid carriers are likely important for survival of the 

pathogen, and may be responsible of the contamination of water and food. Carriers 

can be notoriously difficult to identify because they are usually quite healthy, 

although elevated levels of anti-Vi antibodies can be present in the serum of carriers 

[52]. 
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1.2.2 Nontyphoidal Salmonella (NTS) 

The NTS are more frequently associated with localised acute gastroenteritis and 

diarrhoeal disease rather than typhoid. Acute gastroenteritis is the most common 

presentation of NTS infection. Typical symptoms include diarrhoea, nausea, 

headache, and sometimes vomiting. Fever and abdominal cramps are almost always 

present. Bloody diarrhoea and invasive disease may occur, particularly with certain 

serotypes. NTS can cause invasive disease, particularly in compromised hosts. 

Invasive infection may present as urinary tract infection, septicaemia, abscess, 

arthritis, cholecystitis and rarely as endocarditis, pericarditis, meningitis, or 

pneumonia. Asymptomatic carriage can occur in as many as 5% of healthy hosts 

[53].   

NTS bacteria are widely distributed in the animal kingdom, including humans, 

livestock, pets, wild mammals, poultry (and other birds), reptiles and amphibians as 

well as in seafood. Most NTS serovars are regarded as being more promiscuous in 

terms of their abilities to infect different hosts, compared to the typhoidal serovars 

that are often host-adapted or even host-restricted. As NTS are generally 

promiscuous they often have zoonotic potential, surviving in veterinary herds or 

companion animals, from which they can spread to humans via food consumption or 

environmental contamination. Although NTS may cause disease in one animal they 

may just colonise other species or older members of the same species. Thus, the 

status quo of the host/pathogen relationship can vary. Indeed, NTS that frequently 

cause gastroenteritis in humans, such as S. Typhimurium and S. Enteritidis, can cause 

invasive disease in the compromised [54-56]. Approximately 2 to 8 percent of NTS 

infections are associated with bacteraemia, and are not always preceded by 

gastroenteritis. Risk factors for NTS bacteraemia include being 

immunocompromised (including HIV, malignancy, chemotherapy, steroid therapy) 

and extremes of age (less than 3 month and greater than 50 years old). However, 

such risk factors are not apparent in up to one third of cases of NTS bacteraemia. 

Extra-intestinal focal infections such as arthritis, meningitis or pneumonia occur in 5-

10% of those with bacteraemia. Additionally, NTS can be more associated with 

invasive disease in particular settings, for example in sub-Saharan Africa where the 

epidemiology may be different and the genotype of the isolates may be specialised 
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[16]. Further, there may be significant differences on pathogenic potential even 

within a serovar. For example, DT2 isolates of S. Typhimurium are largely host 

restricted to pigeons and do not efficiently infect humans [57]. Common 

transmission routes for NTS include ingestion of contaminated water or food, direct 

exposure to infected animal or their waste as well as faecal-oral transmission. 

Infection can also occur in medical care settings where immunocompromised 

patients are at increased risk.  

1.3 Molecular approaches to identify and 

discriminate between S. enterica  

The ability to identify and discriminate between microbes associated with disease is 

important for epidemiological surveillance and facilitating public health policy 

decision-making. Many different methods have been developed to identify pathogens 

with relatively varying degrees of success. Microbial culture is the classical 

approach, although not all microbes can be readily cultured. Once, cultured, 

microbes can be subjected to different phenotypic and molecular tests. If the microbe 

cannot be cultured, then sensitive molecular or immunological assays may be more 

appropriate. The most common traditional phenotypic assays applied to cultured 

microbes include the use of serological and metabolic tests, although such assays 

may be challenging in terms of their specificity and discriminatory power. Multi-

Locus Enzyme Electrophoresis (MLEE) is a metabolic assay that measures different 

enzyme activities and this approach proved useful in the early days of defining S. 

enterica phylogeny [58]. The Kauffmann-White scheme has proved to be a robust 

methodology for serotyping S. enterica isolates, with over 2000 different serovars 

being defined to date. These serovars can be allocated to generalised typhoidal and 

non-typhoidal classes and into host adapted or host restricted types (Figure 1.3). 
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                                                     Figure 1.3: General overview of the current classification of S. enterica. Taken from [59] 
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Serotyping in S. enterica relies on specific reference sera that are generated by 

immunising rabbits or other animals. These reference sera are difficult to quality 

control and are usually generated in reference laboratories or by companies. Thus, 

serotyping can be challenging and expensive and is utilised predominantly in 

reference laboratories. Nevertheless, the Kauffmann-White scheme has proved to be 

of tremendous value in terms of defining S. enterica serovars over decades, 

facilitating diagnosis and outbreak analysis. However, serotyping does not readily 

discriminate below the serovar level and provides little or no phylogenetic 

information. 

Serotyping relies on detecting antigenic variation in a limited number of surface 

associated bacterial antigens. Another target for the identification and typing of 

microbes is the genome. Analysis targeting DNA can indirectly measure differences 

in genome organisation (chromosome, plasmids etc.) or can be directly DNA 

sequence based. Techniques that analyse genome organisation include plasmid 

profiling [60] and Pulsed Field Gel Electrophoresis (PFGE) [61]. Plasmid profiling 

has limited utility as plasmids represent only a small component of the genome and 

can transfer between isolates, compromising identification. PFGE works by targeting 

rare restriction sites on the chromosome and analysing large DNA fragments 

generated by restriction using pulse field electrophoresis. This approach has found 

broad utility in the area of S. enterica molecular epidemiology and has proved 

extremely useful for analysing global spread and local outbreaks [62, 63]. Specific 

software has been developed to image and compare the patterns of DNA fragments 

generated by PFGE and networks such as PulseNet have appeared to facilitate data 

exchange. Nevertheless, PFGE provides only limited genomic and phylogenetic 

information and lacks discriminatory power and methods based on whole genome 

analysis are likely to supersede them. Other sub-genomic methodologies have also 

been developed based on Polymerase Chain Reaction (PCR) methods, including 

Restriction Fragment Length Polymorphism (RFLP) [64]. These have proved useful 

for discrimination, but are also likely to be superseded by whole genome sequencing. 

DNA sequence based methodologies have the advantage of simplifying comparative 

analysis. Such typing methods exploit the unambiguous nature and electronic 

portability of nucleotide sequence data to classify microorganisms. Multi-Locus 
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Sequence Typing (MLST) was one of the first methodologies developed that was 

based on sequence reads and the approach has found broad utility for different 

pathogens, including S. enterica [59, 65]. Classical MLST is based on sequences 

derived from 7 housekeeping gene fragments (alleles) that represent the core genome 

of a microbe. The 7 sequences generated by different isolates can be compared at the 

nucleotide level and differences quantified. Isolates that possess identical alleles for 

all gene fragments are assigned to a common Sequence Type (ST), and STs that 

share all but 1 or 2 alleles can be grouped into ST-based clonal complexes on the 

basis of software such as eBurst [66, 67]. This scheme has also been used to survey 

the genetic properties of various S. enterica serovars, including antibiotic resistant 

clades. The results suggested that most of the time, the MLST type correlates with 

serovar, with some exceptions [59]. eBurst analysis provides some phylogenetic 

information and allows sub-serovar discrimination within many serovars. A recent 

study using MLST of the population structure of subspecies in S. enterica showed 

that many Salmonella STs cluster together in discrete groups called eBGs 

(eBurstGroups) [59]. Here, an eBG was defined by groups of 2 or more STs that 

were connected by pair-wise identity at 6 of the 7 gene fragments, thus sharing 6 of 

the 7 alleles that defined the ST. However, some serovars, such as S. Typhi, are 

significantly monophyletic and here the utility of MLST is somewhat limited. 

Nevertheless, it has been proposed that MLST analysis, or similar approaches, could 

replace serotyping. Variants of MLST have also been developed that target specific 

genetic loci (for example, O antigen loci) or genes (for example, fliC for flagellin) 

[68]. 

In general, bacterial taxonomy can exploit a top-down approach based on 

phylogenetics in order to elucidate a genealogical tree or a bottom up analysis 

exploiting population genetics in order to identify populations and networks. Trees 

are appropriate for clonal organisms. Population genetic analysis is arguably more 

appropriate for organisms with frequent homologous recombination such as S. 

pneumoniae [69].  S. enterica does exhibit recombination but not at the level of the 

more recombinogenic species. In reality, bacterial taxonomy benefits generally from 

a combined approach. Indeed, new approaches are in development, which explicitly 

include lateral gene transfer events in the genealogy. Considering that frequent 

recombination has the potential to alter classical phylogenetic data, definition of 
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eBurst groups based on allelic identity rather than sequence identity provide discrete 

clusters of related organisms even in presence of significant levels of homologous 

recombination [59]. 

1.4 Evolution of the genus Salmonella 

The genus Salmonella is thought to have evolved from a common ancestor within the 

Enterobacteriaceae over many millions years, with estimates of at least 100 million 

years of such evolution [70]. The two recognised Salmonella species S. bongori and 

S. enterica are thought to have diverged 40 - 65 million years ago although such 

lengths of time are very difficult to estimate. The evolutionary signatures that mark 

differentiation and those that track different branch points have been investigated by 

analysing factors including sequence variation, gene flux across the 

species/subspecies, the distribution of the different virulence-associated systems and 

metabolic traits.  
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Figure 1.4: Maximum likelihood phylogenetic tree of Salmonella based on concatenated MLST loci. 

Taken from [71] 
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A combination of MLST and whole genome analysis (see Section 1.3) can be used to 

provide an overview of the general organisation of the Salmonella. For example, 

Figure 1.4 displays a candidate phylogeny based on concatenated MLST analysis. 

Such analysis places S. bongori on a separate evolutionary branch from S. enterica, 

suggesting a common ancestor but no direct succession [71]. S. bongori is likely the 

older species that evolved largely, and remains predominantly, within cold blooded 

animals, including reptiles. The various S. enterica sub-species can be seen 

distributed along the phylogeny leading to sub-species I, which has undergone 

significant relatively recent expansion, likely within predominantly warm blooded 

animals, including humans. 

Gene flux and exchange can provide insight into the evolution of the Salmonella. For 

example, the analysis of the presence or absence of major virulence-associated 

systems is a useful approach to trace the evolution of S. bongori and S enterica.  

There are currently 22-reported Salmonella Pathogenicity Island (SPIs) and among 

those, only SPI-1, SPI-4 and SPI-9 are present in the reference genome S. bongori 

12419. These shared islands have a similar gene composition in each species, 

although there is significant sequence drift. However, the other S. enterica SPIs are 

either incomplete or absent. This indicates that there are significant differences in the 

pathogenic potential of the two species in different hosts. An important 

distinguishing feature of S. bongori is the absence of SPI- 2. The site occupied by 

SPI-2 at tRNA–valV in S. enterica is occupied by a 20 kb genomic island in S. 

bongori encoding a novel type VI secretion system called SPI-22, although the 

tetrathionate respiration (ttr) gene cluster present in SPI-2 is retained by S. bongori. 

Although S. bongori lacks the 4 distinct T6SSs described for Salmonella, encoded on 

SPI-6, SPI-19, SPI-20 and SPI-21 [71], the T6SS genes carried on SPI-22 share 

extensive similarity with the T6SS of other Enterobacteriaceae.  These include the 

recently identified CTS2 T6SS locus of Citrobacter rodentium ICC168 [72] and the 

HSI-III locus of Pseudomonas aeruginosa PA01 [73]. Thus, in this regard S. bongori 

broadly resembles the wider Enterobacteriaceae or ancestral state. In addition to the 

lack of SPI-2, S. bongori lacks part of SPI-6 (encoding a type VI secretion system), 

SPI-13 (necessary for survival in chicken macrophages), SPI-14 (involved in 

electron transport system) and SPI-16 (a bacteriophage remnant, carrying genes 
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associated with LPS modification). These and other potential virulence-associated 

factors absent from S. bongori may go some way to explaining the limited ability to 

cause disease in warm-blooded animals demonstrated by the introduction of SPI-2 

into S. bongori [74]
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         Figure 1.5: Diagram summarising selected aspects of the evolutionary history of S. bongori and S. Typhi, a comparative member of S. enterica. Taken from [71] 
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Metabolic functions have also been shown to exhibit significant evolutionary 

divergence between S. bongori and S. enterica. For example, S. bongori possess only 

fragments of the first and last gene of the cob-pdu gene cluster and therefore lacks 

the faculty to anaerobically synthesise vitamin B12 and to catabolise propanediol 

[74]. The cob-pdu gene cluster is also absent/lost from most Enterobacteriaceae and 

may have been independently acquired by S. enterica [75, 76] potentially as an 

adaptation to the tissues and cells (macrophages) of warm blooded animals [76], a 

niche where S. bongori is arguably poorly adapted [74]. Interestingly, some host 

restricted S. enterica, including S. Typhi, harbours inactivating mutations 

(pseudogenes) in the cob-pdu system and this may, in some way, facilitate host 

adaptation. 

Another example of metabolic differences includes the ability to ferment L-tartrate 

and citrate, which are postulated by others to differentiate high and low 

pathogenicity Salmonella strains [77]. Additionally, in K. pneumoniae, the ability to 

ferment citrate partially divides clinical isolates into two groups and may represent 

an adaptation to different nutrient conditions found within the host [78]. Interestingly 

S. bongori is able to utilise lactose and like E. coli is lactose-positive. In E. coli, the 

lactose system may facilitate the metabolism of milk sugar and adaptation to the 

mammalian gut but it is not clear what the advantage, if any, is for S. bongori. In 

contrast S. enterica are lactose-negative and it has been proposed that lacI expression 

can interfere with the function of SPI-2 and attenuates virulence in macrophage [79]. 

1.5 Major virulence-associated genes  

Salmonella are well adapted to their lifestyle of colonising their hosts through the 

intestinal and transmitting between hosts via the environment. They also are highly 

invasive in terms of their ability to enter both the local tissues associated with the 

intestine and the cells that make up these tissues. The ability to invade both tissues 

and cells is central to the pathogenesis of Salmonella infections and is fundamental 

for their ability to survive within their hosts and spread between them, Clearly 

Salmonella differ significantly in aspects of their pathogenicity, including their 

ability to invade their host tissues. Some of this has already been discussed in 

relation to typhoid and nontyphoidal isolates.  
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S. enterica harbour multiple genes that contribute to virulence and survival. Screens 

involving high throughput mutagenesis and gene tagging technologies such as 

Sequence Tagged Mutagenesis (STM) and Transposon Directed Insertion site 

Sequencing (TraDIS) have identified scores of virulence-associated genes in 

different Salmonella isolates [80]. Salmonella bacteria are believed to target a variety 

of phagocytic and non-phagocytic cells in vivo. Following ingestion, Salmonella can 

be either passively (opsonisation, phagocytosis) or actively (promoted by the 

bacteria) internalised within the host cells through different processes. One of the 

most common internalisation mechanisms is phagocytic uptake, particularly by 

monocytes or macrophages. The phagocytosis of Salmonella, and indeed other 

bacteria, is a complex series of steps involving multiple receptors and potentially 

antibodies and complement factors. Once phagocytosed, pattern-recognition 

receptors on or within the phagocytic cell can recognise pathogen-associated 

molecular patterns such as LPS or flagellin, which bind to their respective ligand, 

either on the cell surface or inside the Salmonella-associated phagosome [81]. 

Alternatively, Salmonella can also actively target both phagocytic and non-

phagocytic cells using a type III secretion system (T3SS), designated T3SS1 or 

Salmonella Pathogenicity Island 1 (SPI-1). T3SS1-mediated invasion by Salmonella 

is a very specific process depending on a highly regulated expression of a number of 

factors that mediate invasion [82, 83]. The T3SS1 apparatus can be visualised as a so 

called needle like complex that facilitates contact with this host cell and secretion of 

effector proteins that prepare the targeted host cell for invasion. The genes encoding 

the expression of the T3SS1 apparatus are largely encoded within the SPI-1 locus 

[84]. A number of effector proteins (for example, SipA, SipC, SopB/SigD, SopD, 

SopE2 and SptP) are actively secreted through the T3SS1 needle into the host cell. 

There they act in a coordinated manner to induce dramatic rearrangement of the actin 

cytoskeleton resulting in membrane ruffling and rapid internalisation of the bacteria 

in a highly engineered process [85-87]. The exact complement of T3SS1 effectors 

can vary between different Salmonella serovars. However, the T3SS1 system is 

present in S. bongori and S. enterica and is a fundamental virulence-associated factor 

of the Salmonella. 
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Of the effector proteins translocated by T3SS1 into the host cell, SopE/SopE2, SopB 

and SipA, are known to play a role in inducing the actin rearrangements required for 

invasion and ruffling [86, 87]. Most of the other effector proteins are implicated in 

multiple post-invasion processes such as modifying host cell survival, forming the 

Salmonella Containing Vacuole (SCV) and modulation of the inflammatory 

response. For instance, some evidence suggest that the inositol phosphatase SopB 

plays a role in Akt activation, fluid secretion and SCV formation during the invasion 

process [88-90]. SopB is localised within the SCV and its activity may be influenced 

by ubiquitination. Another T3SS1 effector AvrA, an ubiquitin-like 

acetyltransferases/cysteine protease, removes ubiquitin from IkBa and beta-catenin, 2 

inhibitors of the NF-kB pathway, thereby inhibiting the inflammatory response [91], 

activating beta-catenin signalling [92, 93] and preventing apoptosis in intestinal 

epithelial cells [91]. SopA, another invasion modulator, harbours a HECT-like E3 

ubiquitin-ligase activity [94]. The tyrosine phosphatase SptP another T3SS1 effector 

involved in SCV formation is required for switching off ruffle formation following 

invasion.  SipA has been shown to influence SCV morphology.  

Fimbriae, non-fimbrial adhesins and flagella on the surface of Salmonella may also 

mediate bacterial attachment and consequently contribute to internalisation via 

processes independent of phagocytosis or T3SS1-mediated invasion [95]. Again, the 

repertoire of fimbria and other adhesins show significant variation within S. enterica, 

as do the type of flagella so the mechanisms of attachment may vary significantly. S. 

Typhimurium and other serovars harbour multiple fimbrial loci, many of which are 

only induced in vivo. Fimbriae can have a role in biofilm formation, attachment to 

host cells and colonisation of the intestine [96].  

Motility has been associated with the invasiveness of Salmonella [97]. Indeed, 

different flagella types may significantly influence the attachment, invasion and 

activation of cells targeted by Salmonella, for example, in S. Typhi. Within 

macrophages, flagellin can be translocated into the cytosol by the T3SS1, resulting in 

activation of the inflammasome and caspase-1-mediated cell death (pyroptosis) [98, 

99]. In the intestinal epithelium flagellin induces inflammation while inhibiting 

apoptosis via TLR5 in basolateral epithelial cells. Flagella are generally down-
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regulated inside the host except in macrophages potentially limiting recognition by 

TLR5. 

Once internalised into the host, bacteria that successfully reach the sub-mucosa need 

to survive and replicate within different host cells in order to establish a sustainable 

infection. Dendritic cells may play a role in the initial penetration of bacteria across 

the mucosal surface involving a mechanism by which dendrites reach through the 

epithelial barrier and engulf Salmonella [100]. Activated dendritic cells may thus be 

a portal of entry into host tissues for the invading Salmonella. However, once within 

the tissues Salmonella are believed to rapidly enter macrophages by largely unknown 

mechanisms. Indeed, multiple data has highlighted a central role for macrophages in 

the survival and persistence of Salmonella in-vivo [101]. 

Non-fimbrial proteins have been associated with enhanced Salmonella adhesion and 

subsequent invasion into cells. These include BapA and SiiE; 2 surface-associated 

proteins secreted via the type I secretion systems BapBCD and SiiCDF respectively. 

SiiE is encoded on SPI-4, which is co-regulated with SPI-1 [102]. Other proteins 

including RatB, SivH and ShdA encoded on the CS54 pathogenicity island have 

been shown to contribute to the persistence and shedding of Salmonella in the 

intestine by targeted connective tissue proteins such as fibronectin [103]. 

T3SS2 or Salmonella Pathogenicity Island 2 (SPI-2) contributes to systemic 

virulence and survival/persistence within macrophages. Although the different roles 

of individual T3SS2 effectors are not fully characterised, some of them have been 

associated with SCV formation and positioning within the cell. For instance, SseF 

and SseG are required for maintenance of the SCV and facilitating intracellular 

replication [104-106]. SifA plays a role in SIF (Salmonella Induced Filaments, 

visible by microscopy) formation, a process linked to maintaining SCV membrane 

integrity [107]. Others T3SS2 effectors, such as PipB2 and SseJ, cooperate with 

SifA, further influencing SCV membrane integrity; PipB2 interacts with kinesin light 

chain, a subunit of the kinesin-1 motor complex by recruiting it to the surface of the 

SCV [108] while SseJ, promotes host membrane tubulation [109]. In epithelial cells 

infected with mutants lacking SseJ cholesterol accumulation is increased compared 

with cells infected with wild-type bacteria, and this is associated with a decrease in 
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intracellular replication. Here, it is worth noting that SseJ is a pseudogene in S. 

Typhi.  SseL, can also modulate NF-kB activation downstream of IkBa kinases 

although its specific role remain unclear. Again different S. enterica can harbour 

different combinations of SPI-2 associated effectors.  

1.5.1 Virulence-associated plasmid 

Isolates from a number of different serovars of S. enterica harbour a plasmid 

associated with systemic virulence in the mouse, known as the Salmonella Virulence 

Plasmid. This plasmid is absent in S. Typhi and S. Paratyphi A. The spvRABCD 

genes are located on these plasmids and are key plasmid-mediated virulence-

associated factors in some serovars. The virulence plasmid is present in many 

isolates of S. Typhimurium and other gastroenteritis-associated serovars such as S. 

Enteritidis [110, 111]. SpvB and C may be translocated into the host cells via T3SS2 

or plasmid encoded genes.  SpvB ADP-ribosylates actin destabilises the cytoskeleton 

and is associated with host cell cytotoxicity [112].  

1.5.2 Examples of other virulence-associated genes 

Many other genes have been associated with Salmonella virulence in different 

models and hosts and some of these will be considered here. For a more detailed 

analysis of Salmonella virulence-associated determinants please consider these 

reviews and screens [113-115]. Many host phagocytic cells produce reactive oxygen 

species through the phagosomal NADPH oxidase (NOX2) complex as a defence 

mechanism for killing intracellular pathogens. To counteract this activity, Salmonella 

can express superoxide dismutases such as SodCI for protection against extracellular 

reactive oxygen species. SodCI is tethered within the periplasm of the phagosome 

and is significantly protease resistant [116]. The level of iron in host tissues and cells 

is tightly regulated to control direct access for pathogens. In the host, free iron binds 

to iron-binding proteins such as transferrin where it is largely unavailable to bacteria 

without specialised acquisition systems. The host has other mechanisms to deny iron 

to pathogens such as Salmonella. For example, Nramp1 is a divalent metal-proton 

transporter found in key protective cells such as macrophages, neutrophils and 

dendritic cells [117] that creates a restricted availability of free iron for the bacteria 
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by limiting iron in the phagosome. This effectively limits the ability of bacteria and 

other pathogens to establish an infection. In response to iron deprivation, Salmonella 

produce siderophores, including enterobactin and salmochelin [118]. Salmochelin is 

a glucosylated derivative of enterobactin and this modification may be important for 

resistance to lipocalin-2, an antimicrobial protein that prevents bacterial iron 

acquisition in the inflamed intestinal epithelium [119]. A recent study using different 

S. Typhimurium mutants lacking iron transporters has shown that iron transporters 

encoded by feoB and sitABCD are required for optimal survival in Nramp1 -/- mice 

and replication in macrophages. Additionally, the Nramp1 homologue MntH, which 

prefers Mn(II) over Fe(II), is also required for optimal virulence [120].  

Salmonella has acquired various proteins for the uptake of Magnesium including 

CorA, MgtA and MgtB, which are essential for virulence in different models [121].  

Mg2+ transporters are required for intra-macrophage survival and growth in 

magnesium-depleted medium. K+ and Zn2+ are also implicated in intracellular 

survival; ZnuABC S. Typhimurium mutant derivatives are defective for virulence in 

both susceptible and resistant mouse strains [122]; ZnuABC is a high-affinity Zn2+ 

transporter in low- zinc conditions. The Trk system functions as a low-affinity K+ 

transporter and may be involved in resistance to antimicrobial peptides [123]. 

1.6 Signatures of adaptation in S. enterica 

Most S. enterica serovars are classically associated with a broad host range. 

However, a few serovars are significantly host-restricted. For example, S. Typhi and 

S. Paratyphi A are highly human adapted, whereas S. Gallinarum isolates are poultry 

(bird) adapted. Even within serovars such as S. Typhimurium there is evidence of 

isolates or clades being adapted or restricted to particular hosts. For example, within 

S. Typhimurium DT2 phage type isolates display avian (for example, pigeon) 

adaptation and ST313 isolate may be adapted to humans [124].  

In recent years, comparative genomic studies of broad-host-range serovars, which are 

believed to be the ancestor-state of host-restricted serotypes, have provided insights 

into the genomic signature of bacterial host adaptation and evolution. These studies 

have identified a number of genome signatures that may represent evidence of host 
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adaptation leading to restriction. These adaptive/restrictive signatures include both 

gene acquisition and inactivation. 

Horizontal gene transfer has been broadly implicated in the evolution of virulence 

and indeed resistance to antimicrobials through plasmids and transposons. In 

bacteria, horizontal gene transfer is recognised as a general mechanism driving 

evolution. The key role of mobile genetic elements in the acquisition of virulence 

traits in bacteria has been extensively studied and several reports have associated 

mobile virulence-associated determinants with host adaptation or the occupation of a 

new niche within the host [125]. Within the E. coli, horizontal transfer events have 

facilitated the transition from a commensal to a pathogenic lifestyle. Examples 

include the acquisition of the heat-labile and stable toxin genes on plasmids and the 

LEE (Locus for Enteric Effacement) and intimin genes of EPEC lineages [126].  

In Salmonella, the evolution of virulence has been driven by the incorporation of 

distinct genetic elements into the genome including pathogenicity islands, T3SSs and 

the Salmonella virulence plasmid. The virulence genes acquired by horizontal 

transfer have to be incorporated into existing gene expression regulatory circuits to 

ensure coordinate expression of virulence-associated genes in a manner that does not 

compromise fitness and competitiveness. Horizontal gene transfer in Salmonella can 

involve phages which are frequently exchanged even within clades or serovars [127]. 

Indeed, S.  Typhimurium phages Gifsy-1, Gifsy-2 and Gifsy-3 have successfully 

lysogenised a range of serovars and different lineages of S. Typhimurium [128].  

Within S. Typhimurium a potentially mobilisable element known as SPI-7 is 

associated with the acquisition of the locus encoding Vi capsule that is directly 

linked to virulence in humans and hence host adaptation [129]. Vi makes S. Typhi 

more resistant to antibody directed killing and complement mediated phagocytosis. 

Vi is also immunomodulatory and may facilitate the ability of S. Typhi to invade 

tissue without inducing inflammation, potentially by enhancing interleukin 10 

production [130]. SPI-7 also encodes a SopE phage and a Type IV pilin that have 

also been associated with virulence. Hence, the acquisition of SPI-7 is a clear 

example of horizontal gene transfer influencing host adaptation. S. Typhi and S. 

Paratyphi A have also recently been shown to encode a novel toxin named typhoid 
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toxin that may also influence human infectivity [131]. The distribution of the genes 

encoding this toxin is limited only a few S. enterica serovars. 

Within Salmonella lateral gene transfer through conjugation can also transfer 

antibiotic resistance determinants [132]. Acquisition of plasmids encoding resistance 

and virulence properties has been known to influence bacterial evolution. Thus, 

plasmids can be acquired by horizon gene transfer from other serovars, or even other 

species or genuses.  For example, S. Typhi CT18 possesses a 218,150-bp multiple-

drug-resistance incH1 plasmid (pHCM1) and a 106,516-bp cryptic plasmid 

(pHCM2), which shows recent common ancestry with a virulence plasmid of 

Yersinia pestis [133]. In S. enterica, many high molecular weight plasmids encode 

virulence-associated genes or are responsible for antibiotic resistance. As discussed, 

the classical Salmonella virulence plasmid encodes the spvRABCD genes involved in 

intra-macrophage survival of Salmonella but this plasmid has also been shown to be 

able to acquire antibiotic resistance genes that have the potential to spread in 

bacterial populations [16]. Many low molecular weight plasmids have been found in 

S. enterica but in general little is known about their function, although some studies 

have suggested a role in increasing resistance to phage infection due to the presence 

of restriction modification systems [134]. Despite limited knowledge on their 

function, their presence or absence is frequently used for strain differentiation in 

epidemiological studies.  

There is now extensive evidence, gathered from genetic and genomic analysis, that 

bacteriophages are drivers of evolution in the enteric bacteria, including within S. 

enterica. Many intestinal commensals and enteric pathogens harbour prophages or 

phage remnants integrated within their genomes, often at multiple sites [128]. 

Additionally, prophages can encode so called ‘cargo’ genes that are not required for 

phage growth but can encode virulence-associated factors that can influence 

pathogenicity [135]. The diversity of prophage within a bacterial population is 

influenced by transduction and recombination involving superinfecting phages, 

resident prophages, or occasional acquisition of other mobile DNA elements. 

Prophages also play a part in the diversification of the genome architecture and 

represent strategic points for genome insertions and inversions [135].  
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1.6.1 Genome degradation/decay 

Genome decay or reductive evolution is a process by which bacteria lose some 

functions by gene deletion or degradation (for example, the acquisition of frame 

shifts or stop codons). Such potentially inactivated genes are often referred to as so 

called pseudogenes. This process has been reported in obligate intracellular parasites, 

such as Rickettsia prowazekii, Mycobacterium leprae and Chlamydia spp. [136-138] 

as well as in Yersinia pestis [139]. As genes become inactivated they may restrict 

bacteria to specialist hosts or novel niches within their hosts. Thus genome 

degradation is a signature of host restriction and niche change. In Y. pestis and S. 

Typhi the host is humans and the niche change is from the intestine into the systemic 

system. Extensive genome degradation has been observed in R. prowazekii, the 

typhus agent, with only 76% of the potential coding genes being likely fully 

functional [140]. Another example of genome reduction was documented in M. 

leprae, which may originally have had a genome similar in size to 

other Mycobacteria (around 4.4 Mb) but this has been downsized during evolution 

through rearrangement. M. leprae may have lost more than 2,000 genes [136] and 

this might explain its extremely slow replication rate, lack of acute disease and 

targeting of neurones.  

Genome degradation has also been documented in S. Paratyphi A and S. Typhi where 

both share components of their genomes and have similar phenotypes (human-

restricted and systemic disease). Around 170 pseudogenes are present in S. Paratyphi 

A, whereas S. Typhi can harbour over 200 [141]. Several of these pseudogenes 

correspond to genes known to contribute to virulence in S. Typhimurium and other 

more promiscuous Salmonella serovars.  About 30 genes are degraded in both S. 

Typhi and S. Paratyphi, although the inactivation of different genes in common 

pathways is more common (for example, in chemotaxis, vitamin B12 acquisition and 

in the production of fimbriae) [142]. Amongst these 30 genes, several genes, such as 

sopA and shdA are known to be important in gastroenteritis and diarrhoea, which is 

uncommon in infections associated with these serovars. 
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1.7 Methods for phenotyping  

A central aim of biomedical research is to fully understand the mechanisms of 

human disease and develop new and improved therapies or diagnostics. In order to 

achieve this, different disease models have been developed, although many of these 

fail to faithfully recapitulate the human condition. For this reason, researchers exploit 

different models in a complementary way to build a more informed picture of the 

human condition. 

1.7.1 In-vitro models 

While whole animal models have been tremendously useful for the current 

understanding of many human infectious diseases, it can be difficult to identify 

critical cellular and molecular contributors to disease using in vivo models. In order 

to address the role of specific host genes involved in the early host-pathogens 

interactions, many cell lines, have been successfully used as powerful tools to 

understand the mechanistic of infection. Non-polarised cell lines, such as HeLa and 

Hep-2 cells, although quite different from polarised cells of the intestinal epithelium, 

have been used extensively to study the cellular basis of the host-pathogen 

interaction. These cell lines have been used to unravel the molecular mechanisms of 

actin re-organisation [143, 144] and the elucidation of the bacterial and host proteins 

that contribute to this [145]. In addition, non-polarised cells had been used to 

elucidate the process of T3SS-dependent protein translocation into host cells as well 

as functional analyses of the injected effectors [146]. Taking advantage of their ease 

to grow and manipulate, tissue culture cells have successfully been used to analyse 

the biochemical activity of effectors such as Tir, in E. coli [147].  

Non-polarised cells are not appropriate to study intestinal barrier function or 

maintenance of the brush border. Therefore, specific cells lines that mimic intestinal 

cells polarisation have been generated, such as MDCK, Caco-2, T84, and HT29 

cells. These cell lines provide in-vitro models for investigating how bacteria disrupt 

epithelial barrier function during infection [148, 149] and for identifying effectors 

specifically required in the process. As with the non-polarised cell lines, these cell 



44 
 

lines offer the advantages of convenience, rapid growth, uniformity and availability 

of genetic tools for insertion of mutations. In addition to interactions with 

enterocytes, enteric pathogens also interact with phagocytic cells and dendritic cells. 

The use of macrophage-like cell lines such as J774 and U937 to model these specific 

immune cells has been essential for the identification of different effector functions 

and for targeting independent aspects of the phagocytic function of mammalian 

macrophages [150]. 

More complex models such as the IVOC (in-vitro organ culture) have been 

developed. IVOC exploits freshly obtained human (or other species such as cattle) 

intestinal biopsies, which are kept in tissue culture media under oxygen to delay cell 

death. The advantage of IVOC is that the infected tissue is close to native live tissue. 

However, compared with other in-vitro models, the use of IVOC for experimental 

infection is technically challenging and requires coordination with a clinic to obtain 

fresh tissue. In addition to the technical challenges, the variability in sampling 

methodologies between donors can result in differences in experimental outcome. 

The IVOC system has been used successfully to study host specificity and tissue 

tropism, including Tir/intimin-dependent colonisation and lesion formation by EHEC 

[151]. Human IVOC has also been used to study S. Typhimurium [152]. 

1.7.2 In-vivo model: The mouse 

It is arguable that biomedical research has benefited significantly from the use of 

animal models to understand the pathogenesis of disease at a whole organism level. 

Additional, insight can be gained into biology at the cellular and molecular level. In- 

vivo models also provide systems for developing and testing new therapies in a 

preclinical setting. Mammalian models, such as the mouse, have been pre-eminent in 

modelling human diseases, mainly because of the significant homology between 

mammalian genomes and the many other similarities in physiology and immune 

components. Moreover, mice are susceptible to an overlapping range of microbes 

infectious to humans. However, it is important to keep in sight the important 

differences between humans and other animals and no in-vivo model can fully 

replace investigations in humans or on human materials. 
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The genetic tools are available for manipulating the mouse [153] (for example, gene 

knock out technologies and homologous recombination), and the strategies available 

to control the expression of microbial genes in-vivo, make the mouse an excellent 

experimental model to study the genetic basis of infections. Some of the above-

mentioned advantages apply to other mammals, but mice are small and relatively 

easy to maintain in the laboratory; their short breeding cycle (about 2 months) and 

their high reproductive capability (5 to 10 offspring per litter and approximately one 

litter every month) make them suitable for genetic analysis. Mutants mouse lines are 

becoming available from open sources and new mutations can be introduced using 

different approaches: irradiation, feeding with chemical mutagens or inserting DNA 

fragments into the genome using, for example, novel CRISPR/Cas9 type 

technologies [154]. Further, murine heterologous gene transfer technology is highly 

advanced in such a way that sophisticated transgenic mice, carrying 

foreign/heterologous genes of interest (transgenes), have allowed the creation of 

experimental animal models that further recapitulate aspects of the pathology of 

human diseases. It is arguably faster to map a mouse disease gene and use its 

sequence and location to find the position of the ortholog in the human genome, than 

it is to map the human gene directly.  

As a result of recent advances in breeding strategies it is now possible to make 

congenic mice, which are genetically identical with the exception of being 

polymorphic in one particular nucleotide, gene or regulatory sequence. In addition, in 

the mouse, selected genes can be deliberately mutated by swapping the functional 

copy of the gene for a mutated version in mouse embryonic stem cells (ES cells). 

This means it is possible to create exact or highly related replicas of the genetic 

defects that cause diseases in humans [155]. 

The mouse has proved to be an invaluable model for study many infections, 

including those caused by Salmonella. Many Salmonella and host genes that 

influence the outcome of infection have been identified, including immune genes and 

some of these have also been shown to influence infection in humans [13]. Some 

Salmonella are highly virulent in the mouse, for example isolates of S. Typhimurium 

and S. Enteritidis and murine salmonellosis models have been a cornerstone of 

studies on pathogenicity and immunity [156]. S. Typhimurium can cause an invasive, 
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systemic disease in mice that resembles aspects of typhoid in humans. S. Typhi is 

relatively avirulent in mice and consequently the S. Typhimurium murine infection 

model has been used as a surrogate for human typhoid. Inbred mice can vary 

significantly in terms of their susceptibility to Salmonella and single gene loci can 

greatly influence this susceptibility. For example, mice harbouring a protective 

Nramp1 allele, (for example, 129 lines), are several logs more resistant to Salmonella 

compared to those harbouring equivalent susceptible alleles (for example, C57 Black 

6 lines) [157, 158]. Many immune genes also play a key role in protection against 

Salmonella infections; for example, genes encoding TNF-α and Interferon-γ (see 

[159] for a comprehensive review of this area). 

1.7.2.1 The streptomycin-pretreated mouse model for colitis 

The most common disease associated with non-typhoidal Salmonella in humans is 

enterocolitis. However in mice, certain serovars including S. Typhimurium do not 

cause gastroenteritis but rather targets the gut-associated lymphatic tissues and cause 

a systemic typhoid-like infection. To increase the knowledge of the pathogenic 

mechanisms of intestinal salmonellosis, a streptomycin-pretreated mouse model was 

established to provide a mouse model for serovar Typhimurium-mediated colitis 

[160]. Pre-treatment of mice with streptomycin disrupts the natural microbiota, 

which can limit colonisation by an incoming pathogen [160]. However, mice pre-

treated with streptomycin can develop colitis soon after oral infection with S. 

Typhimurium and they present with characteristic symptoms of a human enteric 

salmonellosis including epithelial ulceration, oedema and infiltration of CD18-

positive cells [160]. This pathology is significantly dependent on protein 

translocation via the S Typhimurium SPI-1 secretion system. In addition to colitis, 

the S. Typhimurium can still become systemic in susceptible mice, colonising the 

liver and spleen.  

1.7.3 In-vivo model: The zebrafish 

Although the mouse is a key model for studying Salmonella disease, several aspects 

of murine biology limit its utility therefore comparative in-vivo models are 

potentially interesting. The zebrafish, Danio rerio, has attracted a great deal of 
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interest as a model of general physiology and infection. Despite the obvious 

differences in the physiology of fish and humans that could affect the outcome of 

diseases in the model, the zebrafish offers several features that make it an important 

complement to mouse models of disease. Among these, the zebrafish provides 

excellent possibilities for real time in-vivo imaging of host-pathogen interactions, 

given the optical clarity of embryos and larvae. Imaging can be exploited in 

association with the sophisticated tools for genomic and large-scale mutant analysis 

available in this species. The small size of the fish, their high reproductive rate 

(hundreds of offspring per week from a pair), the external development of the 

embryos along with the low maintenance costs and the establishment of methods to 

rear embryos under gnotobiotic conditions have contributed to the uniqueness of 

zebrafish as a model of human diseases. In addition, zebrafish embryos and larvae 

are highly suitable for screening chemical libraries given their small size and 

CRISPR/Cas9 technologies have now been applied to this species [161] 

A number of reports have already established infection models in the zebrafish using 

bacterial and viral pathogens including those exploiting Mycobacteria marinum [162, 

163] and S. enterica [164] involving the systemic infection of early embryos. 

Therefore, the zebrafish model has already been validated to some degree. Zebrafish 

are also susceptible to parasitic infections and recently, fungal infection models have 

also been established [164] 

The zebrafish, mouse and human share components of both innate and acquired 

immune systems. Indeed, equivalents of many mammalian immune cells have been 

identified in zebrafish. Zebrafish embryos possess functional macrophages at day 

one of development and are capable of sensing and responding to microbial 

infections. However, innate immune functions can be studied with some degree of 

separation from adaptive functions in zebrafish embryos, since acquired immune 

cells develop only later during larval stages and are not fully matured until 

approximately 4 weeks post fertilisation as depicted in Figure 1.6. However, all 

major organs are present by 5 days post fertilisation facilitating infection tracking at 

the tissue level. 
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Figure 1.6: Overview of the development of the zebrafish immune system. Taken from [165].  
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The availability of a zebrafish full genome sequence, efficient tools for forward and 

reverse genetics and sophisticated mutagenesis and screening strategies on a large 

scale, and low cost that is not possible in other vertebrate systems also contribute to 

the usefulness of the model. For forward genetic screens, germ-line mutations were 

commonly introduced by ethylnitrosourea (ENU) treatment of male zebrafish [166], 

which yields relatively random point mutations that can be identified by positional 

cloning and DNA sequencing. Retroviral or transposon-mediated insertion 

mutagenesis strategies can also be used [167]. Until recently, reverse genetics in 

zebrafish predominantly relied to an approach known as TILLING (Targeting 

Induced Local Lesions in Genomes) [168, 169], which compensated for the then lack 

of conventional knockout technology available for zebrafish. The use of new Zinc-

Finger Nuclease (ZFNs) [170] and Transcription Activator-Like Effector Nucleases 

(TALENs) [170, 171] technologies was introduced as a useful addition to TILLING 

approaches. Exposure to morpholinos, synthetic oligonucleotides that can be 

designed to block translation or pre-mRNA splicing, can induce a transient 

knockdown of gene expression in zebrafish [172]. 

A more recent approach exploits an old bacterial defence mechanism in which 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR); together with 

CRISPR- associated (Cas) [173] proteins provide acquired resistance to invading 

viruses and plasmids. The type II CRISPR/Cas system involves the uptake of foreign 

DNA fragments into CRISPR loci and subsequent transcription and processing into 

short CRISPR RNAs (crRNAs), which in turn become a trans-activating crRNA 

(tracrRNA) and direct sequence-specific silencing of foreign nucleic acid by Cas 

proteins. Based on previous in vitro studies that had shown that a single synthetic 

guide RNA (gRNA), consisting of a fusion of crRNA and tracrRNA, can direct 

Cas9-mediated cleavage of target DNA, a platform exploiting customised RNA-

guided Cas9 nucleases has been developed to efficiently induce site-specific 

modifications in vivo in the zebrafish [155] and this approach represent to date the 

easiest and most efficient way to generate genetic modification of zebrafish. Indeed, 

the CRISPR/Cas9 and equivalent systems are finding broad utility in mammalian cell 

genetic manipulation experiments [174]. In terms of genome-based phenotyping, 

transcriptional responses of zebrafish to infection can be studied by exploiting 

reverse transcriptase PCR, microarrays and next generation sequencing studies. 



50 
 

However, as this is a relatively new model for infection studies, there is a general 

lack of immunological reagents for detecting proteins and immune signatures. 

However, commercial ventures in antibody production for zebrafish such as 

ANASPEC are increasing. In addition, sometimes, antibodies to the mammalian 

orthologs of some zebrafish proteins show cross-reactivity. The readily available 

zebrafish mutant library at the WTSI, which now covers more than a third of the total 

protein coding genes of the genome, is potentially available to explore pathogen-host 

interaction in specific infection models. Potential infection challenges include M. 

marinum and S. Typhimurium, which can efficiently infect zebrafish and can be a 

resource to characterise novel infection susceptibility loci. 

1.7.4 The mouse genetic screening 

The WTSI is conducting a large phenotypic screen on novel mice harbouring defined 

and conditional ready mutations in different genes. The mice are of the C57/B6 

lineage. To generate these mice, heterozygous ES cells harbouring specific mutations 

are selected for microinjection from a library of over 15,000 mutant stem cells [175]. 

At the time of writing this thesis, over 1,250 mice lines have been screened for a 

range of phenotypes, including plasma chemistry and infection susceptibility. 

Particular mutant lines are selected on the basis of a number of criteria including 

novelty, whether they are a hit in previous GWAS studies or exome sequencing, or 

through recommendation. Currently for infection susceptibility, mice are challenged 

independently with S. Typhimurium M525, influenza virus X31, the worm 

Trichurius muris and DSS (Dextran Sodium Sulphate). The responses of pathogen 

challenged mutant mice are compared to similarly infected wild type mice to assess 

the influence of the murine mutation on phenotype. The combined data can be 

presented as a heat map, which summarises phenotypic differences found in any 

mutant mouse line (http://www.mousephenotype.com).  

1.7.5 The zebrafish genetic screening 

The Zebrafish Mutation Project (ZMP) at the WTSI has an ultimate goal to create a 

mutant allele in every protein-coding gene in the zebrafish genome, using a 

combination of whole exome enrichment and Illumina next generation sequencing. 
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To date, over 26000 alleles have been generated. To exploit the mutant library 

generated, a high-throughput, systematic phenotypic analysis has been developed to 

assess the phenotype associated with any given mutation with a particular attention 

to nonsense and essential splice mutations.  

Secondly, correlations between the predicted disruptive mutations and phenotype are 

established by crossing heterozygous adult fish then examining the embryos for 

morphological and behavioural phenotypes at 5 days post fertilisation (dpf). 

Phenotypes can be linked to genotyped my successive rounds of sequencing and 

genetic crossing. After a particular mutation has been described further phenotyping 

or genome re-engineering can be attempted. Transcript counting or RNA-seq can 

also be performed as part of the primary or secondary phenotyping 

(http://sanger.ac.uk/resources/zebrafish/zmp/).  

1.8 The use of whole genome sequencing for studying 

bacterial genomes and phylogeny 

During the last century combined studies began to highlight the huge genetic 

diversity within the bacterial world and leading scientists started to develop 

phylogenetic schemes in an attempt to explain how life on Earth may have 

developed. An application of phylogenetic analysis is to predict ancestral structures 

that can help to understand the evolutionary path of organisms. The first 

phylogenetic trees of prokaryotes were largely based on morphological, 

physiological and biochemical analysis. The prokaryote-eukaryote dichotomy was 

already well established but did very little to clarify phylogenetic relationships. In 

1970, Carl Woese used a molecular approach to phylogenetics, arguably 

transforming our understanding of evolution in the microbial world by introducing 

the Archaeal domain [176, 177].  

With the advancements in DNA sequencing technologies and the associated increase 

in nucleic acid sequence information, the application of phylogenetic analysis has 

rapidly expanded. It has now been applied broadly to multiple bacterial species as 

well as serovars or clades within the same species [178-181].  Comparative genomics 
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and phylogenomics have been exploited to trace the emergence of new drug-resistant 

bacterial clades [181], tracked the global spread of infectious pathogens [181, 182] as 

well as identify the pandemic source of some infectious threats [183-185]. The use of 

phylogeny also enables a clearer understanding of how bacterial genomes evolve and 

adapt to novel selective pressures. For example, studies have shown that patterns of 

antibiotic usage influences bacteria genome evolution and the patterns of 

recombinant signatures maintained within the genome [186].  

Modern phylogenetic analysis relies on the availability of high quality genome 

sequence information. In order to meet such needs, several new nucleic acid 

sequencing technologies have been developed over the past few years. The Sanger 

sequencing method was the first widely used sequencing technology to be exploited 

for bacterial genome sequencing [187, 188]. The first complete bacterial genome to 

be fully sequenced by this approach was that of Haemophilus influenze but many 

more followed in the following decade [189]. The Sanger sequencing system exploits 

the addition of terminating dideoxyribonucleotides (ddNTPs) by DNA polymerase, 

preventing the incorporation of further nucleotides. 

Although the Sanger method found wide utility, it was not particularly high 

throughput and was a relatively expensive approach. Next generation sequencing 

platforms were invented that exploit the immobilisation of DNA samples onto solid 

supports, incorporate automated cyclic sequencing reactions mediated by fluidics 

devices and exploit sensitive detection of molecular events by imaging. These 

revolutionary technologies are capable of producing an enormous amount of 

sequence data in a relatively short period of time while keeping cost relatively low 

[190]. They can also now generate relatively long DNA sequences facilitating 

genome assemblies [191].  

Two new generation sequencing platforms based on the Illumina/ Solexa and Pacific 

Biosciences technology, were utilised in the studies described in this thesis.  The 

Illumina sequencing platform exploits sequencing by synthesis method in which 

modified dNTPs containing a fluorescently labeled reversible terminator blocks 

further polymerisation so that only a single base can be added by a polymerase 

enzyme to the DNA copy strand. The terminator is imaged then cleaved off to allow 
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incorporation of the next base. The sequencing reaction is conducted simultaneously 

on a large number of different templates spread onto a solid surface, forming 

clusters. The natural competition between all 4 modified dNTPs present during each 

sequencing cycle minimises incorporation bias. Illumina sequencing platforms 

provide multiple applications from whole genome sequencing, SNP (single 

nucleotide polymorphism) detection to transcriptomics and metagenomics analysis. 

The HiSeq, Nextseq and GAIIx platforms are suited for studying larger genomes 

(animal or plant) while the MiSeq platform is ideal for small genomes or targeted 

regions within a genome. The HiSeq X Ten platform (2014 release) is limited to 

sequencing only whole genome human samples.  Illumina platform limitations 

include inadequacies in analysing low diversity samples and they have relatively 

short reads compare to other platforms, although this is improving with longer reads 

now achievable (https://www.illumina.com/). 

The Pacific Bioscience sequencing system, also known as PacBio RS/RS II (latest 

release, 2014) exploits a Single Molecule Real Time (SMRT) method in which an 

optical waveguide (the zero-mode wave guide) is attached to the DNA polymerase, 

generating an illuminated observation volume, small enough to observe the addition 

of only one single nucleotide. Each nucleotide is attached to a different fluorescent 

dye and when incorporated through the DNA polymerase, the fluorescent tag of the 

nucleotide is cleaved off and is no longer observable within the optical waveguide 

area. The fluorescent signal of the nucleotide is detected and the corresponding base 

call is made according to the fluorescence of the specific dye. The major benefits of 

using PacBio sequencing technologies have been attributed to the production of 

reads significantly longer than other sequencing platforms making it ideal for 

sequencing small genomes (such as bacteria or viruses) and assembling larger 

genomes. Also, the system can facilitate the sequencing of regions of high G/C 

content and can identify some modified bases (methylation, hydroxymethylation) 

without necessitating the need for chemical conversion during library preparation 

(http://www.pacificbiosciences.com/).  
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1.9 The focus of this thesis, S. Weltevreden 

Salmonella enterica serovar Weltevreden has recently attracted a great deal of 

interest due to increasing reports of its isolation by reference laboratories and other 

microbiological centres world-wide, particularly in Asia. S. Weltevreden has been 

associated with potential marine sources and it plays a significant role in food 

poisoning. Indeed, a global Salmonella survey conducted by WHO revealed that this 

organism is the most common cause of non-typhoidal salmonellosis in the South East 

Asian Region (SEAR) and Western Pacific region [192]. It is frequently isolated 

from seafood, meat, poultry products and water. Prevalence of S. Weltevreden was 

detected in domestic animals like pigs, chicken and ducks in Vietnam and it is also 

the most common serovar isolated from humans in Thailand and Malaysia. 

According to the Salmonella food poisoning database during 1989-99, S. 

Weltevreden was the second common pathogen encountered, next to S. Enteritidis 

[193]. 

Despite the emergence of S. Weltervreden as a significant health problem relatively 

little has been reported about the genotypic or phenotypic properties of this 

understudied serovar. Reports have been emerging providing the first genome 

sequence data of individual isolates (see chapter 3) but to date these have not been 

placed in a phylogenetic or evolutionary context.  

1.10 Aims and objectives of thesis 

In this study, whole genome sequencing technologies linked to phylogenetics and 

comparative genomics were used to define the genetic diversity within a large 

collection of S. Weltevreden isolates collected worldwide from diverse sources, with 

a focus in Vietnam where such infections are common. This focus on isolates from 

South East Asia and Western Pacific region provide an opportunity to explore the 

relationships between S. Weltevreden predominance in this region. Phenotypic 

characterisation was performed on selected isolates, with an aim to dissect aspects of 

host-pathogen interaction during infection, providing a foundation to compare S. 

Weltevreden with more commons enterics. Thus, the aims of this thesis were to:- 
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• Define the phylogenetic structure of the S. Weltevreden serovar, define the 

core and accessory genomes and provide a high quality reference genome.  

• To assess the pathogenic and metabolic potential of S. Weltevreden using 

simple laboratory assays, including both in-vitro (cellular) and in-vivo 

(mouse, zebrafish models) virulence assays. 
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2 Materials and methods 

 

2.1 Phylogenetic analysis of S. Weltevreden  

2.1.1 Illumina sequencing 

All DNA samples were processed and sequenced by the core sequencing facilities at 

the WTSI. Multiplex libraries were generated using DNA insert of ~200 to 300bp 

with each isolate uniquely tagged. Samples were sequenced using the Illumina Hiseq 

platform (Illumina, Inc., San Diego, California USA) to produce ~100bp reads. The 

first stage of the library preparation involved DNA fragmentation by focused 

ultrasonication using a Covaris E-series ultrasonicator (Covaris, Inc., Woburn 

Massachussett, USA). This was followed by DNA purification using the magnetic 

bead-based technology solid Phase Reversible Immobilisation (SPRI) from 

Agencourt Bioscience (Agencourt Bioscience Corporation, Beverly, Massachussett, 

USA). After this stage, small fragments were removed and the remaining DNA 

consisting of a mixture of blunt end fragments, were repaired. A single “A” 

nucleotide moiety was added to the 3’ ends of the fragments followed by successive 

adaptor ligation. This step, called A-Tailing, deters concatemerisation of templates 

and increased the efficiency of adaptor ligation. Specific adaptors were ligated to the 

3’ and 5’ ends of the DNA templates. 

The DNA molecules that were correctly attached to the adaptors were amplified 

using the DNA polymerase Kapa HiFi enzyme (Kapa Biosystems, Woburn 

Massachusetts, USA) and primers that targeted the unique library index tag. 

Amplification completed the construction of the adaptor ends to produce a fully 

double stranded template. This PCR-amplified library was then denatured using 

sodium hydroxide in hybridisation buffer at a concentration of 3.5pM in order to 

create single stranded DNA, which was loaded onto a single lane of the flowcell on 

the Illumina Hiseq platform. Protocols for cluster formation, primers hybridisation 
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and paired-end sequencing reaction were performed according to the manufacturer’s 

recommendations. 

2.1.2 Sequence assembly from Illumina reads  

The Illumina-generated sequences were assembled using a pipeline 

(https://github.com/sanger-pathogens/vr-codebase) developed at the WTSI. For each 

genome, the de novo short-read assembler Velvet [194] (version 1.2.09) was used to 

generate multiple assemblies by varying the k-mer size between 66% and 90% of the 

read length using Velvet Optimiser (https://github.com/tseemann/VelvetOptimiser). 

From these assemblies, the assembly with the highest N50 was chosen. Contigs were 

excluded from the assembly if they were shorter than the target fragment size (400 

bases).   

An assembly improvement step (https://github.com/sanger-pathogens/assembly_improvement) 

was then run. The raw reads were mapped to the assembly and reads which mapped 

in perfect pairs to the same contig, were excluded (since these have already been 

successfully used). The remaining unmapped and mapped reads were used in an 

improvement step to try and reduce the fragmentation of the assembly. A scaffold 

assembly of the contigs was built by iteratively running SSPACE [195] (version 2.0) 

beginning with the contigs which were predicted to map next to each other. The 

reads were then mapped again to the scaffold assembly and perfect pairs were 

excluded. Next, gaps identified as one or more N’s, were targeted for closure by 

running 120 iterations of GapFiller [196] (version 1.11), using a decreasing read 

evidence threshold. Finally, the reads were aligned back to the improved assembly 

using SMALT (https://www.sanger.ac.uk/resources/software/smalt/) and a set of 

statistics was produced for assessing the quality of the assembly. All the assemblies 

produced were created in a standardised manner and required no input from the user 

so all the results are reproducible. The median number of contigs for the sample set 

was 68. 
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2.1.3 Pacific Biosciences (PacBio) assembly 

 The PacBio raw read data for each sample was manually assembled by Dr. Martin 

Hunt (WTSI Pathogen Informatics team) using the PacBio SMRT analysis pipeline 

(https://github.com/PacificBiosciences/SMRT-Analysis) (version 2.2) utilising the 

HGAP assembler [197]. The raw unfinished assemblies all produced a single 

uncircularised chromosome plus some other small contigs, some of which were 

plasmids or unresolved assembly variants. If the ends of a contig overlapped, they 

were identified as candidates for circularisation using a protocol recommended by 

PacBio (https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Circularizing-and-

trimming). Figures 2.1.a and 2.1.b illustrate this process. A virtual break was manually 

introduced into the chromosome sequence at the thrA gene, to match the starting 

point of other published S. enterica references. Plasmids were also artificially broken 

at the replication gene. The sequences were then circularised using the genome 

assembler, Minimus [198] (version 2 part of AMOS version 3.1), which removed the 

overlapping sequence. Quiver was then used by the circularised sequence and the 

raw reads to correct errors in the circularised region. As high quality short read data 

from Illumina were available, ICORN2 (Otto et al. 2010) (version 0.97) was used to 

correct minor errors in the assembly, providing a very high quality reference 

sequence, as assessed by REAPR [199] assembly was subsequently annotated with 

Prokka [200]. 
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                                                                                                                                                             b. 

 

Figure 2.1: a. graphic representation of S. Weltevreden genome assembly before manual fixing. b. Graphic representation of S. Weltevreden assembly before and after 

manual fixing. 
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2.1.4 Annotation  

Each de novo assembly was annotated using Prokka in an automated pipeline 

(https://github.com/sanger-pathogens/Bio-AutomatedAnnotation). Coding regions 

were first predicted using Prodigal [201] and tRNA/tmRNA genes using ARAGORN 

[202]. These were then annotated using a number of databases involving a 

combination of protein blast [203] and HMMER. To provide community specific 

gene names and annotation, a Salmonella database of amino acids was generated 

from all of the annotated Salmonella genomes in RefSeq 

(http://www.ncbi.nlm.nih.gov/refseq/). Prokka is bundled with prebuilt databases from 

UniprotKB (SwissProt), clusters, CDD, TIGRFAMs, PFAM (A) and RFAM which 

provide more general high quality annotation at the family level.  

As S. Weltevreden 10259 was sequenced on both PacBio and Illumina we could 

perform further analysis using a short read assembly versus a longer read finished 

assembly. The Illumina assembly contained 5034 coding regions and the PacBio 

assembly contained 5110, giving an under prediction of 1.4%. For the whole dataset 

the median number of genes predicted from the short reads assemblies was 4902. 

2.1.5 MLST from de novo assemblies 

The MLST results were verified from the de novo assemblies using MLST check 

(https://github.com/sanger-pathogens/mlst_check/) (version 2.0.1510612). All of the 

assemblies were blasted against the S. enterica MLST database (Achtman et al. 

2012) and were verified as being ST 365. These data were also checked for the 

presence of novel alleles (there should only be 1 copy), a process which can also 

highlight contamination from a closely related serovar, but no obvious contamination 

was detected. 

2.1.6 Checking for S. Weltevrden in sequencing reads 

A Kraken [204] database (version 0.10.6) was created containing the reference 

genomes for Homo sapiens (GRCh38), Mus Musculus (GRCm10), and all 
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archea/viruses/plasmids/bacteria in RefSeq (http://www.ncbi.nlm.nih.gov/refseq/). 

For every sample, each read was categorised to a taxonomic identifier, with the 

results collated into a single report for manual inspection. Any contaminated samples 

were excluded from further analysis. This check highlighted one isolate, which was 

contaminated with E. coli DNA and another which was a mixture of Salmonella 

serovars. No host contamination was identified. 

2.1.7 Detecting regions likely to be erroneous with short 

read sequencing 

The median fragment size was 400 bases for the isolates sequenced on Illumina.  

Repeats larger than this size cannot be reliably resolved, thus any variants which fall 

into these regions cannot be trusted. This is a fundamental limitation of short read 

sequencing technologies and cannot be resolved used bioninformatics. Consequently, 

the reference genome was blasted against itself [203] (version 2.2.31) and the 

coordinates of matches (query and reference), which were over 400 bases in length 

and had greater than 99% identity were noted. All bases falling within these regions 

were then replaced with ‘N’ in the multi-FASTA alignment file. 

2.1.8 Recombination mapping 

The filtered multi-FASTA alignment was then checked for recombination using 

Gubbins [205] (version 1.3.4). Five iterations of Gubbins were run and in each 

iteration a phylogenetic tree was constructed with RAxML [206] (version 7.8.6) with 

the GAMMA GTR model, internal ancestral sequences were inferred using FastML 

[207] (version 3.1). Recombinant sequences were detected and a multi-FASTA 

alignment with the recombinant regions was masked out. This data was then used as 

the input to the next iteration. RAxML with 100 bootstraps was then run over the 

final multi-FASTA alignment to provide a high quality phylogenetic tree in newick 

format. 
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2.1.9 General mapping 

All of the Illumina sequencing short read data was aligned to the complete reference 

genome generated from S. Weltevreden 10259. The reads, in FASTQ format, were 

first split into chunks of one million reads. Each chunk of reads was individually 

aligned using SMALT (https://www.sanger.ac.uk/resources/software/smalt/) (version 

0.7.4), a hashing based read aligner. The aligned reads are then merged together 

using samtools [208] (version 0.1.19), coordinate sorted, and outputted as a BAM 

file. Optical duplicates were identified using Picard 

(http://broadinstitute.github.io/picard/) (version 1.9.2).  Statistics about each mapping 

were generated using BamCheck [208] (version 0.1.19, but since renamed as 

‘samtools stats’) including read coverage of the reference genome, reads aligned, 

perfect pairs, unmapped reads, actual insert size, etc. and these results were evaluated 

manually to identify poor quality sequencing data. 

2.1.10   SNP calling 

 SNPs were called on each set of aligned reads using mpileup with the parameters 

‘samtools mpileup -d 1000 -DSugBf ref bam’. The raw SNPs were then passed into 

BCFtools and were filtered into a higher quality set. A virtual pseudo-genome was 

then constructed by substituting the base call at each site (variant and non-variant) 

into the reference genome. For a SNP to be called the depth had to be greater than 4 

reads, and be present on both strands, with at least 75% of reads containing the SNP 

at that position. The mapping quality had to be greater than 30 (less than 1 in 1000 

probability that the mapping was incorrect). If a SNP failed to meet these criteria it is 

substituted with an ‘N’. Insertions with respect to the reference genome were 

ignored. Deletions with respect to the reference genome were filled up with ‘N’ 

characters in the pseudo-genome in order to keep it aligned and at the same length 

relative to the reference genome. Heterozygous sites were turned into homozygous 

alleles by selecting the first allele in the BCF file. However, if the first allele was an 

insertion or deletion (indel), the second allele in the BCF file was taken. If the 

second allele was also an indel, a single ‘N’ character was used. All of the pseudo-
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genomes were then merged into a single multi-FASTA alignment file, including the 

reference sequence. 

2.1.11  Clusters and defining SNPs 

The population structure of the phylogenetic tree was validated using a Bayesian 

statistical approach. Hierarchical BAPS [209] (version 6.0 of BAPS) was used to 

perform a hierarchical clustering of the multi-FASTA alignment (after 

recombination’s had been removed) to reveal a nested genetic population structure. 

Two distinct S. Weltevreden clusters were identified by BAPS. SNPs, which 

uniquely (in 100% of isolates in a cluster), defined each of the clusters were 

extracted using BioPericles (https://github.com/sanger-pathogens/BioPericles) 

(version 0.1.0). Exploiting the multi-FASTA alignment with recombination removed, 

a consensus sequence was generated for each cluster and any bases which varied or 

contained missing data were replaced by ‘N’. The consensus sequences were merged 

into a single multi-FASTA alignment file and SNP locations were identified using 

SNP sites (https://github.com/sanger-pathogens/snp_sites) (version 2.0.1). Each SNP 

was then annotated using the reference annotation (10259) GFF3 file. An annotated 

VCF file was produced with VEP syntax [210] listing the type of change (intergenic/ 

synonymous/ nonsynonymous), the amino acid (before and after) and the amino acid 

position in the gene, along with the coordinates of each SNP relative to the reference 

genome, the reference base, the allele base and the presence and absence of the 

variant in each cluster. These cluster defining SNPs were then further annotated with 

the functional annotation of the gene they occurred in. 

2.1.12   Predicting antibiotic resistance 

Antibiotic resistance was predicted from each sample’s raw sequencing reads using 

ARIBA [211] (version 0.4.1), which performs antibiotic resistance identification by 

assembly and alignment. A manually curated input database of known resistance 

genes in FASTA format was used as input along with the paired end sequencing 

reads in FASTQ format. The resistance sequences were first clustered using CD-hit 

[212] (version 4.6). The raw reads were then aligned to a representative sequence for 

each resistance cluster. Reads which mapped and their complimentary strand 
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equivalents (even if unmapped) were extracted. A local assembly was performed on 

the reads for each cluster using [213] (version 3.5), where the resistance genes for the 

cluster were used as ‘untrusted contigs’. This generates a candidate gene along with 

sequence on either side if the gene is present in the reads. Algorithms which only use 

alignment suffer from a coverage drop off at either end of the gene, making 

identification less reliable, such as was found with SRST2 [214]. MUMmer [215] 

(version 3.23) was then used to identify differences between the assembled contig 

and the known resistance gene and the results were reported along with any variation 

found and quality flags. These were manually inspected and samples with 100% 

matches to resistance genes and with a complete open reading frame were flagged as 

being potentially candidates for visual inspection. 

2.1.13  Pan genome analysis 

 A pan genome was constructed using Roary [216] (version 3.2.5) from the annotated 

assemblies of the sample set with a percentage protein identity of 95%. This first step 

identified both the candidate core genes, conserved across all isolates and the 

accessory genes, which vary across isolates. The protein sequences were first 

extracted and iteratively pre-clustered with cd-hit (version 4.6) down to 98% 

identity. An all against all blast (version 2.2.31) was performed on the remaining 

unclustered sequences and a single representative sequence from each cd-hit cluster 

was selected. The data were used by MCL [217] (version 11-294) to cluster the 

sequences. The preclusters and the MCL clusters were merged and paralogs were 

split by inspecting the conserved gene neighbourhood [218] around each sequence (5 

genes on either side). Each sequence for each cluster was independently aligned 

using PRANK (Löytynoja 2014) (version 0.140603) and combined to form a multi-

FASTA alignment of the core genes.  
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2.2 Phenotypic characterisation of S. Weltevreden 

2.2.1 Bacterial strains culture conditions 

All bacteria were routinely grown on Luria-Bertani agar (LB agar) plates and broth 

(LB medium) at 37°C. For in vitro assays, genetically transformed isolates 

harbouring the plasmid pSsaG (pSsaG directs the expression of green fluorescent 

protein (GFP) from the ssaG promoter) [219, 220] were used. LB agar and broth 

were supplemented with ampicillin at a concentration of 100 µg/ml. For zebrafish 

infection challenges, bacteria harbouring the plasmid pRTZ3, which drives the 

constitutive expression of the red fluorescent protein dsRed, were used. For these 

experiments, LB agar and broth were supplemented with tetracycline at a 

concentration of 30 µg/ml. 

S. Weltevreden isolates C2346, 10259, 98 11262 and 99 3134 were used throughout 

for phenotyping. S. Typhimurium, used as a control, SL1344 was provided by Dr. 

Derek Pickard from the Wellcome Trust Sanger Institute. S. Weltevreden C2346 and 

10259 were obtained from OUCRU Ho Chi Minh City Vietnam. S.Weltevreden 98 

11262 and 99 3134 were supplied by the Centre National de Référence E. 

coli/Shigella/Salmonella, Unité de Recherche et d'Expertise des Bactéries, Pasteur 

Institute, France.  

2.2.2 Serological identification 

The identification and confirmation of the serotype of each S. Weltevreden isolate 

was performed by a standard agglutination test using O, H or Vi antisera. S. 

Weltevreden is classified as O3, O10 or O15 positive; R and Z6 positive and Vi 

negative based on the Kauffman-White scheme [221]. Anti-Salmonella O3 mouse 

antibody, anti-Salmonella O4 mouse antibody (negative control), anti-Salmonella 

O10mouse antibody, anti-Salmonella O15mouse antibody, anti-Salmonella Hr 

mouse antibody, anti-Salmonella Hz6 mouse antibody and anti-Salmonella Vi mouse 

antibody were obtained from Sifin and rabbit anti-Salmonella O1,3,19 from Statens 

Serum Institute (Copenhagen, Denmark) were used for agglutination tests. A single 
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colony was mixed independently with each of the 7 antibodies and visible clumping 

(agglutination) was observed within 2 minutes for a positive reaction.– was used to 

designate no agglutination through to ++++ for a strong agglutination. 

2.2.3 Bacterial growth assessment 

An isolated colony of S. Typhimurium SL1344 or S. Weltevreden C2346, 10259, 

98_11262 and 99_3134 was grown overnight in 10 ml of LB broth at 37°C. The 

following day, 50 ml of a secondary culture was started from the overnight at an 

OD600 of 0.05. Experiments were performed at 37°C and 28°C and the OD600 was 

measured each hour for the first 2 hours then each 30 minutes for the rest of the 

assay. At each time point 1 ml of culture was used in serial dilution for subsequent 

plating on LB plates to assess bacterial growth.  

2.2.4 Microarray assay (Biolog) 

Phenotype microarrays (PM) to assess the metabolism of individual carbon sources 

(PM 1 to 2), nitrogen sources (PM 3), phosphorus and sulphur sources (PM 4), 

biosynthetic pathway substrates (PM 5), osmotic/ionic response (PM 9) and pH 

response (PM 10) were performed according to the manufacturer’s instructions. 

(Biolog Inc. Hayward, California, USA). The bacteria were grown up to OD600 0.667 

and the cell suspensions were made up to a transmittance of 42%. For S. 

Typhimurium SL1344 the cell suspension was supplemented with histidine and the 

carbon source used was succinate. For S. Weltevreden C2346 the cell suspension was 

supplemented with adenosine and the carbon source used was succinate while for the 

isolates 10259, 98_11262 and 99_3134 the carbon source used was pyruvate with no 

added supplement. PM micro titter plates were incubated at 37°C for 48 hours in the 

Omnilog (Biolog Inc.) and each well was monitored for redox indictor change 

representing kinetic respiration. Tests were performed in duplicate and the kinetic 

data analysed using Omnilog PM software (Biolog Inc.). Data was exported from the 

Biolog File Manager, and further analysis was conducted in R.  
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2.2.5 Gentamicin killing assays using Hep2 cells 

To facilitate the analysis of invasion assays, S. Typhimurium SL1344 and S. 

Weltevreden C2346, 10259, 98_11262 and 99_3134 were transformed with the 

plasmid pSsaG that directs the expression of GFP from the ssaG promoter [219, 

220]. Hep 2 cells were cultured in Glasgow’s minimal essential medium (GMEM, 

Sigma) supplemented with 2 mM L-Glutamate and 10% (volume/volume) heat- 

inactivated fetal bovine serum (FBS). Cells were seeded into 24-well plates (105 

cells per well) and cultured overnight. Salmonella were initially cultured at 37°C 

with shaking (250 rpm) in 5 ml LB broth for 4.5 h. An aliquot was then diluted 1:50 

in L broth and grown at 37°C overnight as a static culture to optimise Salmonella 

pathogenicity island 1 (SPI1) gene expression. For infection, the bacterial cultures 

were re-suspended in fresh GMEM supplemented with 2 mM L-Glutamate and 10% 

(volume/volume) heat-inactivated FBS, in order to obtain a multiplicity of infection 

(MOI) of 50. The MOI was confirmed by plating 10 µl spots of 10-fold serial 

dilutions of the bacterial solution onto agar plates. After 30 min of incubation (to 

allow Salmonella invasion), cells were washed with phosphate-buffered saline before 

adding GMEM supplemented with gentamicin (50 µg/ml). Cells were incubated for 

the appropriate length of time and then washed and lysed with 0.1% Triton X-100. 

Dilutions of the cell lysates were plated onto agar plates to determine the number of 

intracellular bacteria. Alternatively, cells were washed and fixed onto 13mm 

coverslips with 4% formaldehyde then stored in PBS for confocal or electron 

microscopy. This protocol was adapted from [222] 

2.2.6 Confocal microscopy 

 Salmonella infected cells were washed twice with the wash buffer from the 

Cytotoxicity 3 kit after fixation and permeabilised with the permeability buffer from 

the same kit for 10 minutes. The cells were then blocked with the block buffer for 20 

min at room temperature and stained with goat anti-Salmonella CSA-1 antibody 

followed by tagged secondary antibody. Glass coverslips were mounted onto a 

microscopic slide along with ProLong Gold antifade reagent DAPI (Invitrogen). The 

preparations were observed with an LSM510 META confocal microscope (Zeiss). 
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2.2.7 Scanning Electron Microscopy 

After infection with S. Typhimurium SL1344 or S. Weltevreden C2346, 10259, 

98_11262 or 99_3134 for 30 minutes (MOI=100), cells were fixed directly on glass 

coverslips with 2.5% glutaraldehyde and 4% paraformaldehyde in 0.01 M PBS at 

4°C for 1 hour, rinsed thoroughly in 0.1 M sodium cacodylate buffer 3 times, and 

fixed again in 1% buffered osmium tetroxide for 2 hours at room temperature. To 

improve conductivity, using the OTOTO protocol devised by Malick and Wilson 

[223], the samples were then impregnated with 1% aqueous thiocarbohydrazide and 

osmium tetroxide layers, with the steps separated by sodium cacodylate washes. The 

coverslip preparations were dehydrated 3 times using an ethanol series (30, 50, 70, 

90, and 100% ethanol, 20 minutes each) before they were critical point dried in a 

Leica CPD300 and mounted on aluminium stubs with conducting silver. Before a 

specimen had completely set, the coverslip was broken by applying pressure with a 

sharp point to the centre, which caused radial fragmentation of the glass, in order to 

obtain better conductivity between the stub and the cells. The coverslip was then 

sputter coated with a 2-nm gold layer in a Leica ACE600 and examined with a 

Hitachi SU-8030 SEM.  

2.2.8 Transmission Electron Microscopy 

Cells were infected as described for the scanning electron microscopy and fixed on 

ice in their culture wells with a mixture of 2.5% glutaraldehyde and 4% 

formaldehyde in PBS for 1 hour. The cells were rinsed 3 times with 0.1 M sodium 

cacodylate buffer (pH 7.42), carefully removed from the plate with a Teflon scraper, 

and centrifuged at 10,000 rpm for 5 minutes. The pellet was post fixed in buffered 

1% osmium tetroxide at room temperature for 1 hour, followed by 1% buffered 

tannic acid for 30 minutes and then a 1% aqueous sodium sulphate rinse for 10 

minutes. The sample was then dehydrated using an ethanol-propylene oxide series 

(with 2% uranyl acetate added at the 30% step) and embedded in Epon- araldite for 

24 hour at 60°C. Ultrathin sections (60 nm) were cut with a Leica EMUC6 

ultramicrotome, contrasted with uranyl acetate and lead citrate, and viewed with an 

FEI 120-kV Spirit Biotwin TEM. Images were obtained with a Tietz F415 digital 
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TemCam. 

2.2.9 Murine intravenous challenge 

Three groups of five C57BL/6 mice were challenged intravenously with 2 x 103 

colony forming units of respectively S. Typhimurium SL1344, S. Weltevreden 

C2346, and 10259 as described in [224] . The mice were followed for 4 days 

checking for survival. They were all subsequently culled at day 4, or earlier if they 

were critically moribund.   

2.2.10  Colitis infection challenges 

Six groups of five C57BL/6 mice each were pre-treated with 10 mg of streptomycin 

(200 µl of a stock solution of 50 mg/ml of streptomycin) 24 hours before challenge. 

The first group (naïve) was injected with PBS; the second, the third and the fourth 

groups were infected with approximately 5,5x 105 CFUs of respectively S. 

Typhimurium SL1344, S. Weltevreden C2346, S. Weltevreden 10259, S. 

Weltevreden 98_11262 or S. Weltevreden 99_3134. The mice were sacrificed 4 days 

post challenge and caecum and liver were removed from all mice for further analysis. 

This protocol was adapted from [160]. The liver was plated on LB plate for CFU 

counts in order to check for systemic disease. Part of the caecum was used for 

histology to look for inflammation and the remaining part was plated on LB agar in 

order to check for bacterial colonisation of the colon. 

2.2.11  Histology 

Mice caecum segments were fixed in 4% paraformaldehyde; 5 µm-thick paraffin 

sections were stained in haematoxylin and eosin according to standard protocols. 

Stained section were analysed under microscopy to look for sign of intestinal 

inflammation. 
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2.2.12  The zebrafish challenge model 

Groups of 30 to 50 embryos of AB wildtype zebrafish were challenged intravenously 

(blood island) with 250 to 300 colony-forming units of S. Typhimurium SL1344, S. 

Weltevreden C2346 or mock injected with PBS and phenol red solution. The 

embryos were followed for 70 hours post infection removing any dead bacteria at 

each time points. The results were subsequently reported in a survival graph. The 

same set up was used in a secondary experiment were 10 embryos per time point 

were first homogenised using a stomacher then plated on LB-tetracycline plate for 

CFU counts to check for bacterial replication within the host. For experiments 

involving zebrafish harbouring mutations in Irf8_st95 [225], groups of 30 to 50 

embryos from a cross of heterozygous Irf8_st95  and wild type zebrafish parents were 

challenged intravenously (blood island) with 250 to 300 colony forming units of S. 

Typhimurium SL1344, S. Weltevreden C2346 or mock injected with PBS and phenol 

red solution. 70 hours post infection, the surviving embryos were genotyped and the 

results were reported and compared to the expected ratio of a quarter wild type, a 

quarter homozygous and a half heterozygous.   
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3 Phylogenetic diversity within S. 

Weltevreden 

 

3.1 Introduction  

The recent advancements in genome sequencing technologies have enabled a better 

understanding of the basis of bacterial evolution and adaptation to selective 

pressures. Such sophisticated technologies have facilitated outbreak tracking and the 

identification of transmission events in clinical settings as well as in the community. 

These techniques have been successfully used to address the evolution of various 

Salmonella serovars such as S. Typhimurium [226], S. Enteritidis [227] and S. Typhi 

[133].  Despite a global effort to study and tackle these pathogens, salmonellosis still 

represent an important health concern globally as new strains emerge over time. For 

example, S. Weltevreden has emerged as a significant foodborne pathogen 

particularly in South-East Asian countries and the Pacific region. S. Weltevreden has 

increasingly been reported to be associated with different sources including 

vegetables, poultry, meat, animal feed and seafood. Indeed, in a study conducted on 

over 12,000 Salmonella isolates, S. Weltevreden was the most frequently isolated 

serovar from seafood in Vietnam and was amongst the highest Salmonella 

contaminant in fish and seafood samples in the world [228, 229]. Various reports of 

food poisoning due to S. Weltevreden have come from India [230], Reunion Island 

[231], Thailand, Vietnam [232], Fiji [233] and more recently from Norway, 

Denmark and Finland  [234]. 

In recent years, multiple cases and outbreaks of S. Weltevreden have been reported 

to be associated with different disease outcomes. The clinical outcomes in patients 

range from asymptomatic carriage, moderate to severe diarrhoea, invasiveness in 

immunocompromised individuals [235], ulcerative skin lesions [236], through to rare 

cases of fatality [237]. Antibacterial resistance is not currently commonly reported 

for S. Weltevreden isolates and current therapy includes the use of fluoroquinolones. 
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Some of the earliest attempts to genetically characterise S. Weltevreden involved the 

generation of draft genomes and preliminary comparative genome analysis. Draft 

genomes have been generated for the scallop-associated isolate SL484, the 

Scandinavian outbreak associated isolate S. Weltevreden 2007-60-3289-1 from 

alfalfa sprouts [238] and a multidrug resistant isolate S. Weltevreden “9” isolated 

from seafood [239]. Preliminary comparative genomic studies performed against 

representative isolates of S. Dublin, S. Newport, Salmonella Cholereasius, S. 

Enteritidis, Salmonella Gallinarium, Salmonella Heidelberg, Salmonella Agona, S. 

Paratyphi (A, B and C), Salmonella Schwarzegrund, and S. Typhi [238] were used to 

generate a phylogenetic tree showing their comparative relationships to S. 

Weltevreden (Figure 3.1).  
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                            Figure 3.1: Phylogenetic tree generated using the core genes (~2650 coding sequences) of various Salmonella. Taken from [238] 
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S. Agona was found to be genetically the closest serovar to S. Weltevreden. The 

analysis of S. Weltevreden 2007-60-3289-1 revealed the presence of additional 

cluster of genes likely associated with carbohydrate metabolism, suggesting the 

possibility of survival in alternative habitats [238]. Indeed, the average S. 

Weltevreden genome is slightly bigger than the average Salmonella genome. The 

presence of many of the major Salmonella SPIs was confirmed in the Scandinavian 

isolate. Interestingly comparative analysis between SL484 and 2007-60-3289-1 

showed high genetic similarity despite the different source and geographic location 

of the isolates [238]. 
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Figure 3.2: Mauve progressive alignment of the draft genomes of S. Weltevreden  2007-60-3289-1, S. Dublin CT_02021853 and S. Weltevreden SL484   

S. Dublin was used as a comparator as this serovar has a similar genome size and shares many features with S. Weltevreden 2007-60-3289-1. Black numbered arrows indicate 

selected features; 1: 1- T6SS1  (Spi 6); 2- T6SS2 (Spi 19); 3- Genomic island 1 (Spi 13); 4- Genomic island II (Spi 13); 5- Genomic island III; 6- Genomic island IV; 7- Genomic 

island V; 8- Genomic island VI; 9- Myo-inositol utilisation loci; 10- Carbohydrate utilisation cluster; 11- Restriction/modification cluster; 12- Phosphonate metabolism. Regions 

containing phage-related genes are indicated with a black arrow without a number. Taken from [238] 
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In this chapter, Illumina and PacBio sequencing technology were used to sequence 

the genomes of a globally distributed collection of 115 S. Weltevreden isolates. 

Subsequently, phylogenetic approaches were exploited to generate a detailed 

population structure and highlight interesting genetic features of these S. 

Weltevreden. 

3.2 Results 

3.2.1 The S. Weltevreden collection 

A collection of 115 S. Weltevreden isolates from 18 countries was compiled through 

collaborative efforts involving Dr. Stephen Baker (Ho Chi Minh City, Vietnam) and 

Dr. Francois-Xavier Weill (Pasteur Institute, France). The isolates were 

predominantly collected from S. Weltevreden endemic area of the South–East Asian 

region and some West Pacific countries, as well as the Pasteur Institute isolates that 

represented Francophile countries and travellers. These isolates were from different 

sources including the environment, food, animal waste, animals, human faeces and 

blood and they covered a period from 1940 to 2013. The map depicted below shows 

the geographical distribution of the isolates included in this study. 
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       Figure 3.3: Geographical distribution of S. Weltevreden isolates included in the study  

       Colours (red and yellows) represent the phylogenetic clusters and the number of the isolates from each location and will be discussed later in the chapter. 
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3.2.2 Generation of a S. Weltevreden reference genome 

In order to gain a better understanding of the genetic architecture of S. Weltevreden, 

DNA from the isolate 10259 obtained from a stool of a diseased Vietnamese child, 

was sequenced using both the Illumina and PacBio RSII long read sequence 

platforms. For a full description of the approaches see the Methods section. After 

manual fixes, a new high quality reference genome for S. Weltevrden 10259 was 

generated which revealed a single contig for the main bacterial chromosome and an 

additional contig for a large plasmid that is present in many isolates. The 

chromosome of S. Weltevreden 10259 is a single circular molecule of 5,062,936 

bases that harbours a 4723 predicted coding DNA sequences (CDSs). The single 

plasmid is 98,756 bases in length with 98 predicted CDSs. The genome has a G+C 

content of 52.1%. Putative functions of coding genes were assigned using the Sanger 

automatic annotation pipeline (Accession number to be provided post submission). 

Figure 3.4 below represents a map of the genome generated using DNA plotter. 

 



79 
 

 

Figure 3.4: DNA plotter diagram of S. Weltevreden 10259 genome   

The outer black circle designates the genome base positions around the chromosome. The next 2 outer 

blue circles depict predicted CDSs on both strands. The predominantly orange circle represents the main 

chromosome with likely horizontally acquired DNA elements. On this circle, grey areas represent non-

coding RNA (ncRNA) and the green areas represent tRNA. The inner circle represents the % of GC plot. 
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3.2.3 Phylogenetic analysis 

3.2.3.1 Confirmation of sequence type 

DNA from all 115 S. Weltevreden isolates were sequenced on the Illumina 

sequencing platform with an average coverage of ~70 times the genome size. A 

statistical and logistical analysis of the runs can be found in Appendix 4. To correlate 

their serovar identity, all 115 sequences together with the other published sequences 

isolates were run on the reference database 

http://mlst.warwick.ac.uk/mlst/dbs/Senterica to determine their MLST. The data 

confirmed all of the isolates were Weltevreden Sequence Type 365 and Table 3.1 

below summarises the MLST of 10259 as well as the alleles numbers for each 

housekeeping gene used to compile the MLST profile.   

Isolate ST Contamination aroC dnaN hemD hisD purE sucA thrA 

10259 365 none 130 97 25 125 84 9 101 

Table 3.1: MLST data for S. Weltevreden 10259 reporting alleles numbers. 

 

 

3.2.3.2 S. Weltevreden in the context of other S. enterica 

S. Weltevrden is a relatively under studied serovar. Indeed, the exact placement of 

the S. Weltevrden serovar in a comprehensive phylogenetic tree based on whole 

genome sequences inclusive of other Salmonella serovars has not been available. 

Previous limited phylogenetic analysis placed S. Weltevrden close to S. Agona [240] 

and S. Enteritidis [241] in a separate eburst group [59]. The earlier analysis was 

compromised by the poor quality of the published reference genome (accession 

JPIO01) used for those analysis, which included only 1,744 predicted CDSs, a third 

of the expected number.    

To clear up this confusion, the new reference generated in this study was used to 

compare S. Weltevreden with 57 other isolates representative of different S. enterica 
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serovars. A single high quality assembly was chosen for each serovar. Twenty two 

were high quality finished assemblies and thirty six were fragmented assemblies (see 

Table 3.2). A pan genome was constructed with S. Weltevrden and the 57 other 

serovars using Roary and a core genome of 2,572 genes was identified, representing 

2,382,319 bps, with SNPs at 150,074 positions. The size of the core genome is in line 

with previously published work. This data was used to create a phylogenetic tree 

using RAxML with 100 bootstraps. The nearest serovar phylogenetically is S. 

Elizabethville with a difference of 11,989 bases in the core genes of the 

representative isolates with 0.5% variation. This observation is also supported by the 

similarities in their serology (S. Weltevreden is O:3, O:10 or 15 and r, z6 positive and 

S. Elizabethville is O:3, O:10 and r, 1,7 positive). S. Agona, which has already been 

reported to be genetically close to S. Weltevreden, also mapped closely to S. 

Weltevreden in this independent analysis with 20,916 bp differences in the core 

genes representing a variation of 0.877%. 
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Figure 3.5: Maximum likelihood tree comparing S. Weltevreden with selected S. enterica serovars  

2,572 core genes representing 2,382,319 bps were used to build the tree with SNPs at 150,074 

positions. 

 

Below is a table listing the different serovars used to build the global tree. 
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Serovar Accession Type 
Aberdeen ERS179732 Illumina 
Abortusequi ERS179705 Illumina 
Abortusovis ERS179728 Illumina 
Agama ERS037945 Illumina 
Agona CP006876 Complete Reference 
Anatum ERS179686 Illumina 
Arechavaleta ERS016018 Illumina 
Bareilly ERS218079 Illumina 
Brandenburg ERS179748 Illumina 
Chester ERS015989 Illumina 
Choleraesuis CM001062 Complete Reference 
Coeln ERS218091 Illumina 
Cubana CP006055 Complete Reference 
Derby ERS179704 Illumina 
Dublin CM001151 Complete Reference 
Eastbourne ERS179718 Illumina 
Elizabethville ERS394435 Illumina 
Enteritidis Unpublished PacBio 
Gallinarum CM001153 Complete Reference 
Goldcoast ERS530430 PacBio 
Hadar ERS004922 Illumina 
Heidelberg CP003416 Complete Reference 
Hvittingfoss ERS179726 Illumina 
Infantis CM001274 Complete Reference 
Java ERS207735 Illumina 
Javiana CP004026 Complete Reference 
Johannesburg ERS015996 Illumina 
London ERS179679 Illumina 
Madelia ERS743095 PacBio 
Minnesota ERS015985 Illumina 
Montevideo ERS016005 Illumina 
Moscow ERS179753 Illumina 
Muenchen ERS218081 Illumina 
Muenster ERS016008 Illumina 
Naestved ERS400249 Illumina 
Newport CP001113 Complete Reference 
Oranienburg ERS743094 PacBio 
Oslo ERS179729 Illumina 
Panama ERS016015 Illumina 
Paratyphi_A FM200053 Complete Reference 
Paratyphi_B CP000886 Complete Reference 
Paratyphi_C CP000857 Complete Reference 
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Poona ERS668408 Illumina 
Potsdam ERS179673 Illumina 
Pullorum Unpublished Complete 
Reading ERS179721 Illumina 
Rubislaw ERS218070 Illumina 
Schwarzengrund CP001125 Complete Reference 
Sendai ERS179752 Illumina 
Senftenberg ERS451416 PacBio 
Stanley ERS179745 Illumina 
Tennessee ERS218098 Illumina 
Thompson ERS179680 Illumina 
Typhi AL513382 Complete Reference 
Typhimurium FQ312003 Complete Reference 
Urbana ERS015987 Illumina 
Virchow ERS668352 Illumina 
Weltevreden Unpublished PacBio 

 

Table 3.2: List of S. enterica serovars and Isolates used for comparison and their accession numbers 

where available  

Assemblies fall into 3 general categories, fragmented short read assemblies using Illumina, high quality 

long read assemblies using PacBio and high quality complete assemblies using a variety of technologies 

and manual finishing. 

 

A simpler tree was subsequently generated that included S. Weltevreden isolates 

SW10259 and SWC2346, S. Elizabethville and several other reference Salmonella 

genomes deposited on the NTCT database (Figure 3.6). Here, S. Goldcoast is one of 

the closest related serovars to S. Weltevreden. S Goldcoast is mostly associated with 

zoonosis and rarely infects human with exception of a few reported outbreaks. 
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Figure 3.6: Simplified phylogeny of selected S. enterica serovars deposited on the NCTC database 

compared to S. Weltevreden. 

 

3.2.4 Genetic diversity of S. Weltevreden  

To investigate the population structure of S. Weltevreden in more detail the genomes 

of the sequenced S. Weltevreden isolates were mapped against the S. Weltevreden 

10259 reference genome. 
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3.2.4.1 Chromosome analysis 

A multi-FASTA alignment was generated from the aligned samples for the 

chromosome. SNPs were present at 22,569 positions, but these were subsequently 

filtered before the generation of the final tree. As the samples were sequenced using 

Illumina short read technology, repeats longer than the target fragment size (~400 

bases) were detected by blasting the reference chromosome against itself and the 

plasmid sequence against the chromosome. For this analysis, 63 regions greater than 

400 bases with a percentage identity of more than 99% were excluded in the multi-

FASTA alignment, which resulted in 42 SNPs being excluded. After removal of 

these long repeats units, Gubbins (a software designed to identify regions of potential 

recombination that exploits SNP density) was used to limit the effects of 

recombination on the phylogeny. A total of 218 recombination blocks were identified 

in the sample set, which reduced the number of core SNPs to 2601. The outcome of 

this Gubbins-based analysis is shown in Figure 3.7, where the red blocks represent 

recombination events identified in comparison to the ancestral node and the blue 

blocks recombination events only present in one isolate.  
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Figure 3.7: Gubbins-based analysis representing the recombination events across the tree  

The red blocks represent recombination events identified in comparison to the ancestral node and the blue 

block recombination events only present in one isolate. Recombination regions across the genome are 

highlighted in green on the reference genome on top.  

 

From this refined set of SNPs, a phylogenetic tree was generated with RAxML using 

100 bootstraps. The isolates were clustered using BAPS (see methods) identifying 2 

primary clusters, which we refer to as the ‘Islands Cluster’ and the ‘Continental 

Cluster’ correlating closely in most cases with where the samples were collected. S. 

Weltevreden was definable as a monophyletic serovar sub-dividable into 5 sub-

clusters, again correlating closely to where the samples were collected, or their 

suspected origin (figure 3.8). The Islands Cluster contains 2 distinct sub-clusters, one 

is drawn primarily from islands in the Indian Ocean (Indian Ocean subcluster) and 

the other from islands in Oceania or from nearby South East Asian countries 

(Oceania subcluster). The Islands Cluster had a different profile to the Continental 

Cluster. The phylogeny suggests there were independent introductions into different 

islands and that these subsequently evolved independently. Thus, the phylogeny 

provides evidence of significant levels of geographical clustering from regional to 

national. Overall, these data suggest that S. Weltevreden slowly evolves within a 

specific geographical region rather than spreading from one location to another on a 

frequent basis. 

The Continental Cluster is dominated by isolates from Vietnam, which reflects the 

sample bias but this cluster also includes a few isolates from the ‘French’ islands of 

the West Indies. There are 3 distinct sub-clusters which capture the circulating 

lineages, Vietnam 1, Vietnam 2 and Vietnam resistance. The Vietnam resistance sub-

cluster is interesting because out of 14 isolates, 4 have genes linked to antimicrobial 

resistance and this may be a worrying emerging trend that has not thus far affected S. 

Weltevreden as a whole. 

S. Weltevreden isolates obtained from France were scattered throughout the tree 

without showing any particular clustering. These are likely to be associated, at least 

in some instances, with international travel. Interestingly, no particular clustering 

was observed based on the environmental/human source of the isolates. Indeed, 
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isolates from animal, food, environment and humans were distributed throughout the 

tree. No evidence of significant temporal clustering was observed.  

There are 112 SNPs that can be used to discriminate between the 2 main clusters. 

These SNPs are the same bases in all isolates of one clusters and different from all 

isolates outside the cluster (Appendix 3). For instance, in the aminopeptidase gene 

pepN, encoding an aminopeptidase, the SNP in position 1,202,670 within the gene is 

a T in all isolates from the Continental cluster and an A in all isolates from the 

Island cluster. These 112 defining SNPs are dispersed evenly throughout the genome 

with no high density clusters. None of these changes introduce stop codons, so 

pseudogene formation is not evident. 
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Figure 3.8: Population Structure of S. Weltevreden isolates with key metadata information  

Maximum likelihood tree build on 2601 SNPs showing A: geographic origin (region), cluster and  sub 

cluster. B: antimicrobial profile (laboratory confirmed and predicted); in blue resistant and in red 

susceptible. 

3.2.4.2 Plasmids 

A single major plasmid with 98,756 bases in the reference S. Weltevreden 10259 is 

present in 90% of the isolates. It is possible that more of the isolates originally 

contained this plasmid but it may have been lost from some isolates on storage and 

culturing as it is missing in a relatively random manner across the tree, particularly 

from older isolates. There is relatively little variation in the plasmids with only 970 

SNPs discriminating plasmids on the tree. If a single potential recombinatorial region 

is excluded from 7 isolates originating in La Reunion the number of SNPs drops to 

just 48, which is a variation of 0.048%, indicating a very stable plasmid structure. 

The plasmid tree structure matches that of the main chromosome, with nearly all the 

clusters matching identically, indicating that it has evolved with the chromosome.  

Two of the sub-clusters are interleaved, due to insufficient variation (Figure 3.9). 

This plasmid shares 99% of similarity with the plasmid pSW82 found in S. 

Weltevreden 2007-60-3289-1 published earlier and contains many classical plasmid 

genes including toxin and anti-toxin genes, integrase and plasmid maintenance genes 

(see also Chapter 6). Many isolates contain more than one plasmid, but these are 

usually medium to small plasmids, which are scattered across the tree. 
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Figure 3.9: Maximum likelihood plasmid tree build on 48 SNPs. 
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3.2.4.3 Resistome 

Antimicrobial resistance has not been frequently reported for S. Weltevreden. 

Indeed, there is very little evident of resistance in the sample set, either 

phenotypically or through predicted resistance from the genomic data. Known 

resistance genes were detected in 7 isolates using ARIBA [211], where antimicrobial 

resistance was conservatively inferred using strict conditions; genes had to be 

matched throughout the full open reading frame, with 98% identity to the genes 

known to confer resistance. Isolate 2013_2776, originating from contaminated food 

in France (potentially imported from South East Asia) was found to have 6 AMR 

genes, located on a plasmid very similar to the S. Heidelberg plasmid pSH111_227 

(accession JN983042). 

Gene Accession 
1034
7 

38_NTM
D 

94_VNQ
N 

iNT_63
5 

2011_0227
9 

2013_277
6 

03_198
6 

qnrD FJ228229 R    R         

tetA AJ517790   R   R     R 

qnrS1 AB187515   R   R       
blaTEM3
0 

AJ437107         R     

dfrA1 JQ690541             R 

sul3 AJ459418             R 

aph3 V00359           R   

oqxA EU370913           R   

oqxB EU370913           R   

strA 
NC_00338
4 

          R   

strB M96392           R   

tetB AF326777           R   

 

Table 3.3: Genes known to confer antimicrobial resistance found in S. Weltevreden and the isolates 

in which they were detected.  

 

3.2.4.3.1 Additional plasmids present in the samples flagged as antimicrobial 

resistant 

A Kraken database was created using all plasmids from RefSeq as well as the S. 

Weltevreden 10259. All of the de novo assemblies for the samples which were 

flagged as having, or potentially having antimicrobial resistance were compared to 
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the  Kraken database, which categorised each contig as a novel plasmid or as related 

to the S. Weltevreden reference chromosome plus plasmid. The novel potential 

plasmid contigs were extracted for further analysis. This pre-filtering step reduced 

the size of the input data set by 98%. As the de novo assemblies originate from short 

reads, plasmids are fragmented into multiple pieces. To overcome this issue a 

nucleotide blast approach was exploited to accurately assign contigs to plasmids and 

a database was created of all the plasmid sequences in RefSeq. All of the candidate 

sequences from the de novo assemblies were then blasted against these reference 

plasmid sequences and the novel plasmids were conservatively called (more >95% 

identity, hits over 10,000 bases in length). Where there were matches to multiple 

plasmids, a combination of the high values and percentage coverage of the reference 

plasmid were used.  

Table 3.4 lists the 7 isolates with predicted additional plasmids. The equivalents of 

these plasmids are found in a diverse range of other species and genus. Of the 8 

samples with predicted or laboratory confirmed antimicrobial resistance, 7 harboured 

additional predicted plasmids, equivalents of which have been linked to 

antimicrobial resistance previously [242-245]. The one phenotypically resistant 

isolate absent from the list, iNT_635, had too much fragmentation to confidently call 

a plasmid. However a plasmid related to pEBG1 is likely present in this isolate 

(accession NC_025182.1). 
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Sample AMR Predicted 
AMR 

Additional Plasmids Accession 

03_1986 Resistant Resistant S. Heidelberg plasmid 
pSH1148_107 

NC_019123.1 

2013_2776 Resistant Resistant Serratia marcescens 
plasmid R478 

NC_005211.1 

2011_02279 Resistant Resistant E. coli HUSEC2011 
plasmid pHUSEC2011-1 

NC_022742.1 

38_NTMD Susceptible Resistant E. coli strain 09/22a 
plasmid pEBG1 

NC_025182.1 

10347 Susceptible Resistant Klebsiella oxytoca 
CAV1099 
pKPC_CAV1099 

NZ_CP011615.1 

94_VNQN Susceptible Resistant K. oxytoca CAV1099 
pKPC_CAV1099 

NZ_CP011615.1 

2013_2912 Resistant Susceptible Citrobacter freundii 
CAV1321 plasmid 
pCAV1321-135 

NZ_CP011610.1 

 

Table 3.4: Isolates likely to harbour antimicrobial resistance-associated plasmids. 

3.2.4.4 Accessory genome analysis 

The predicted pan genome of the S. Weltevreden isolates was created using Roary 

from annotated de novo assemblies. This reference free approach captures much of 

the sequence diversity, unlike alignment-based approaches, which miss sequences 

absent in the reference genome. S. Weltevreden genomes have ~4500-5000 predicted 

CDSs, depending on the mobile elements present. A core of 4046 CDSs present in 

each isolate was identified using this approach against 2572 core CDSs identified 

early using an alignment based approach on a wider set of serovars. The total 

accessory genome consisted of 7923 CDSs as show in Figure 3.10.  

 “Get homologues software” was used to estimate core and pan genome sizes and 

generate a parse-pan-genome matrix in order to compute and graph the core, cloud, 

and shell genome compartments [246]. GET_HOMOLOGUES defines these 

compartments empirically, as follows: core, genes contained in all genomes analysed 

considered; soft core, genes contained in 95% of the genomes analysed, as described 

in the study described in [246]; cloud, genes present only in a few of genomes 

analysed and shell, the remaining genes, present in several genomes.  

An average of 15 new predicted CDSs was added to the pan genome with every new 

isolate (Figure 3.11) and there are an underlying number of unique genes that are 

only found in one isolate. Some of these gene calls are theoretically due to DNA 
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contamination and/or mis-assemblies; however the majority appear to be attributable 

to mobile elements or gene islands. Given the rate of new gene acquisition and the 

increasing size of the pan genome as seen in Figure 3.12, S. Weltevreden appears to 

have a relatively open pan genome.  

Consequently, the size of the potential gene pool from Salmonella and in particular 

S. enterica, along with the commonality of a variety of mobile elements, indicates 

that more sequencing will be required to fully capture the total pan genome of this 

serovar. 
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Figure 3.10: Breakdown of the frequency of gene in isolates and in the overall collection of S. 

Weltevreden  

Here, the core genome is defined by genes present in 99-100% of isolates, the soft-core by 95-99%, the 

shell by 15-95% and the cloud by 1-15% as defined in (Contreras-Moreira and Vinuesa, 2013) [246]. 
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Figure 3.11: Plot showing variance in the number of unique genes found in one isolate only and the 

number of new genes as genomes are added to the pan genome. 
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Figure 3.12: Variance in the total number of predicted CDSs (genes) in the pan genome and the of 

conserved CDSs (99% of isolates) in the core genome as samples are added. 
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3.2.4.5 Phylogeny of the distribution of phage-like elements 

In order to address the phylogeny of genetic elements with phage-like signatures on 

the tree, the genome sequences of the isolates 10259, C2346, 98_11262 and 

99_3134, representing some of the diversity within the tree, were investigated using 

the website “PHAST”. Several relatively complete phages were identified on each 

isolates, with an average of 12 phage elements per isolates. Figure 3.13 illustrates the 

distribution of such phages within the genome of S. Weltevreden 10259.  
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Figure 3.13: Predicted phage distribution across the genome of the S. Weltevreden 10259  

The outer circle defines the position in the genome; the red blocks represent the larger phage elements 

found across the genome while the green blocks represent partial phage sequences. Picture generated 

using Phast 
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Most phages identified on PHAST were shared by all isolates; these include classical 

Salmonella phages such as Gifsy 1 and 2, Fels 1, as well as entero PsP3 [247]. Figure 

3.14 below shows ACT snapshots comparing the 4 genomes at the DNA level. The 

spaces apparent in each genome likely represent recently acquired DNA. Indeed, 

more detailed analysis revealed many had signatures of phage or mobile elements 

and corresponded to regions identified in the PHAST search (Appendix 4). 
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       Figure 3.14: Comparative analysis of the genome sequence of S. Weltevreden (1) 10259 (2) 98_11262 (3) 99_3134 and (4) C2346  

            Red, blue and yellow areas represent core genetic elements and the white areas represent potential mobile genetics elements. Analysis performed in ACT 
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3.3 Discussion  

In this study we analysed the genomes of 115 S. Weltevreden isolates collected from 

18 countries representing the most comprehensive genomic study on S. Weltevreden 

to date involving whole genome sequencing technologies. These analyses revealed 

that the average S. Weltevreden genome is relatively large compare to most S. 

enterica serovars. Indeed, the genomes of all the S. Weltevreden isolates were above 

5,000000 bps. S. Elizabethville was phylogenetically the closest S. enterica serovar 

to S. Weltevreden, nicely linking the genotype to the serological phenotype. Indeed, 

serological test confirmed the high similarities between the 2 serovars with S. 

Weltevreden being O:3, O:10 or 15 and r, z6 positive and S. Elizabethville being O:3, 

O:10 and r, 1,7 positive. This population structure analysis revealed that S. 

Weltevreden is a monophyletic serovar organised into 2 major clusters of largely 

continental and island isolates, displaying high level of geographical clustering. 

There was some evidence of geographical clustering within the sub-phylogeny, 

suggesting that the S. Weltervreden serovar continues to evolve within a specific 

geographical region rather than frequently spreading from one location to another. 

There was no obvious temporal clustering within the phylogeny, although this could 

be because most of our isolates were of relatively recent origin. Importantly, the 

phylogeny did not correlate with disease type or source of the isolate. For example, it 

was not possible to distinguish phylogenetically between isolates from diseased 

patients or controls or even for a specific disease types. Thus, it was not possible to 

link specific genotype to any disease syndrome. 

The two main clusters can be discriminated between using the 112 SNPs (Appendix 

3). These SNPs will enable the design of specific probes that could be used in SNP 

or PCR analysis to discriminate between isolates and allocate novel S. Weltevreden 

to the appropriate cluster. For example, primers flanking selected regions containing 

the defining SNPs could be used in diagnostic and epidemiology analysis to assign 

isolates to particular phylogenetic clusters or even to likely country/region of origin. 

This could be especially useful for travellers returning from multiple destinations to 

trace down the region of contamination and to further understand the burden of S. 

Weltevreden infection across the globe. 
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Interestingly, despite the diversity of geographical origin 104 isolates out of 115 

possessed a highly related plasmid to that in the reference S. Weltevreden 10259, as 

illustrated by a plasmid tree built with 48 SNPs. Indeed, removal of a single 

recombination region found in 7 isolates from the same area brought the number of 

plasmid-associated SNPs down from 970 to 48. This plasmid is more than 99% 

identical to the plasmid pSW82 found in S. Weltevreden 2007-60-3289-1.  

Antibiotic resistance was not a very common phenotype within our S. Weltevreden 

collection and genome analysis for the presence of antibiotic resistance signatures 

within the genomes of our collection confirmed the laboratory findings, with just 7 

isolates out of the whole set displaying antimicrobial resistance genes. Further 

analysis suggested that these resistant isolates harboured novel plasmids of types 

previously described in other bacteria. Thus, S. Weltevreden, although largely still 

susceptible to antibiotics, has the potential to acquire multiple antibiotic resistance 

and any trends in this direction should be carefully monitored in the future. 

A total of 4046 core predicted genes present in each isolate were identified using 

reference free accessory genome analysis. S. Weltevreden appears to have a 

relatively open pan genome based on the rate of new gene acquisition and the size of 

the pan genome. However, further analysis will be required for a comprehensive 

description of the S. Weltevreden accessory genome. Initial work showed that phages 

and mobile elements varied depending on the isolate. Well characterised Salmonella 

phages were present as well as more novel phage types. Thus, in common with other 

S. enterica, phage and other mobile elements are a key driver of diversity, suggesting 

that the serovar is undergoing rapid and continuous evolution.  

The ability to generate DNA sequence and to construct accurate phylogeny will 

facilitate further epidemiological analyses and functional genomic work designed to 

link phenotype to genotype. The initial steps in this direction described in this 

Chapter benefited greatly from the generation of an accurate reference genome S. 

Weltevreden 10259 that will be made available to the community. This genome can 

provide a basis for further functional genomic work, including mutagenesis, RNA-

seq and proteomics. 
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4 Phenotypic characterisation of S. 

Weltevreden 

 

4.1 Introduction 

The Kauffman-White scheme has been used for decades to classify Salmonella into 

serovars based upon serological analysis. This phenotypic approach has proved to be 

invaluable in public health terms for epidemiological and clinical work, although the 

level of resolution limits its utility. Work described in the previous chapter defined 

the levels of genetic diversity within a collection of S. Weltevreden isolates at a 

whole genome level using phylogenomic approaches. These studies defined S. 

Weltevreden as a monophylectic group that could be divided into sub-clades with 

distinct genetic structures. Our interest in this serovar was stimulated in part by 

increasing reports of an association of S. Weltevreden with clinical disease in 

different geographical regions. For example, our collaborators working at the Oxford 

University Clinical Centre in Ho Chi Minh City, Vietnam were isolating S. 

Weltevreden from both diseased and control individuals (see Appendix 1). Most of 

the clinical disease was associated with gastroenteritis and there was an indirect link 

with marine food sources (Dr. S. Baker, personal communication). Additionally, S. 

Weltevreden is emerging as one of the most frequently isolated serovars in clinical 

salmonellosis cases from other regions. 

Despite an increasing effort to genetically characterise S. Weltevreden, little to no 

phenotypic data is currently available in the published literature Thus, there is a lack 

of knowledge and a clear understanding of the mechanisms of microbial 

pathogenesis associated with this serovar. Such information would be of value for 

designing approaches to prevent and tackle disease. Thus with an aim to gain more 

insights into the pathogenesis and host response to infection stimulated by S. 

Weltevreden, we embarked on a series of experiments designed to phenotype 

selected isolates representing the diversity of the phylogenetic tree. These isolates 
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were tested in various experimental settings to define characteristics using isolates 

representative of specific genetic clusters (where isolates were available) with the 

overarching goal of linking the genotype to the phenotype. A comparative analysis of 

isolates of the S. Weltevreden and S. Typhimurium serovars was performed in each 

experiment in order to capture the key differing features between these 2 groupings. 

For the experiments described in this chapter, S. Typhimurium SL1344 was used as a 

control as this isolate has been used extensively in laboratories around the world and 

in various in-vitro and in-vivo models of infection [248, 249]. For example, as a 

mouse pathogen, S. Typhimurium SL1344 has been used in both the typhoid [250] 

and streptomycin treated gastroenteritis (colitis) mouse model [160]. Thus, here we 

exploit the extensive genetic and phenotypic data already available on S. 

Typhimurium SL1344 to characterise and compare S. Weltevreden isolates to this 

more common nontyphoidal Salmonella. 

4.2 Results 

4.2.1 Microbial characterisation and confirmation of 

serotype 

S. Weltervreden isolates SW C2346, SW 10259, SW98_11262 and SW99_3134 

were selected for use in phenotypic assays. Their positions within the S. 

Weldervreden phylogeny are shown in Figure 3.8.  As a step towards validating that 

the isolates were phenotypically S. Typhimurium or S. Weltervreden they were 

propagated on L-agar and characterised for microbial growth and serotyped using 

reference serotyping sera. Initially, an agglutination test was performed on S. 

Typhimurium SL1344 using O4 and 05 sera, according to the Kauffman-White 

classification for S. Typhimurium. O10 typing sera were used as a negative control. 

The agglutination data for S. Typhimurium SL1344 were consistent with the 

Kauffman-White serological classification. In order to further validate that this 

isolate was SL1344 and not the aroA mutant derivative SL3261, which is also 

frequently used in the laboratory, the presence of the aroA gene was confirmed by 

colony PCR by amplifying the aroA region using primers specific for S. 
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Typhimurium. The isolate was also able to grow on media lacking aromatic 

supplements. These assays confirmed that the isolate did not harbour an aroA 

mutation. 

Similarly, to validate the serotype of the S. Weltevreden isolates, agglutination tests 

were performed on all isolates. Based on the Kauffman-White classification, S. 

Weltevreden is O3 positive, O10 or O15 positive for O antigen and, R and Z6 

Positive for phase 1 and 2 H antigens respectively. Here, O4 typing sera was used as 

a negative control and the tests were performed as described in the methods section. 

Additionally, all isolates were Vi-negative. Table 4.1 below summarise the results.  

Strain Somatic antigen Flagella antigen Virulence 
antigen 

03 04 010 015 
R Z6 Vi 

SW C2346  +++ - +++ - + +++ - 

SW 10259 ++ - - +++ ++ - - 

SW 98_11262  ++++ - ++++ - + + - 

SW 99_3134   +++ - ++++ - + + - 

Table 4.1: Sera agglutination results summary  

 -: no agglutination observed, +: low agglutination, ++: mild agglutination, +++: strong agglutination, 

++++: very strong agglutination. 

 

All isolates were strongly positive for the core-typing antigen O3 whereas isolates 

SW C2346, SW98_11262 and SW99_3134 were additionally positive for O10. 

Isolate SW 10259 was positive for O15 but not O10. All isolates were negative for 

the control O4 typing sera. All 4 isolates were positive for HR and isolates SW 

C2346, SW98_11262 and SW99_3134 were positive for the Phase 2 antigen Z6. 

Again, SW 10259 was distinct in that it did not react with Z6 sera. This may be 

expected as Phase 2 antigens are not always expressed. The data retrieved from the 
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tests were generally consistent with the Kauffman-White scheme and taken together 

with the phylogenetic data the isolate fall into the S. Weltervreden serovar grouping.  

4.2.2  Bacterial growth in-vitro 

To ensure that any further phenotypic difference observed between the isolates was 

not due to any general differences in their growth rate this was assessed in LB 

medium over the course of 24 hours at 37° C. The results are shown in Figure 4.1. 

All isolates grew with a similar doubling time in this medium.  

 

Figure 4.1: Standarisation curve reporting the number of colony forming units (CFUs) per OD600 

in LB medium for each bacterial isolate  

Biological triplicates were used while performing this experiment.  
 

4.2.3 Metabolic profiling using the Biolog Phenotype 

Microarray system 

To gain more insight into the phenotypic diversity of S. Weltevreden compared to S. 

Typhimurium, 2 of the S. Weltevreden isolates, SW C2346 and SW 10259 were 

tested alongside S. Typhimurium SL1344 for metabolic activities using Biolog 

Phenotype Microarray™ plates and any metabolic differences were scored and 

analysed using the Biolog OPM data analysis platform [251]. Plates PM1 and PM2 
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(covering different carbon sources), plate PM3 (Nitrogen sources), plate PM4 

(phosphorus and sulfur sources), plate PM9 (osmolytes) and plate PM10 (pH) were 

used in the assays, which were repeated several times. Overall the different isolates 

had a consistent metabolic profile with most individual assays reporting similar 

results. Both S. Weltervreden gave indistinguishable metabolic profiles. The key 

metabolic differences between S. Weltervreden and S. Typhimurium are shown in 

Figure 4.2.  

 

Figure 4.2:Carbon source utilisation microarray  

The carbon sources differentially utilised by S. Weltevreden (SW) and S. Typhimurium SL1344 (ST). 

The green circles represent the dominantly utilised energy sources and red circles represent the less 

favoured sources for each serovars. This data is representative of multiple biological replicates. 

 

The results confirmed that both S. Weltevreden isolates have the capacity to exploit 

similar carbon sources (Appendix 5). In contrast, notable difference in carbon 

choices was observed between S. Typhimurium SL1344 and the S. Weltevreden 

isolates. D–xylose has been associated with amino sugar and nucleotide sugar 
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metabolism, pentose and glucoronate inter-conversion as well as starch and sucrose 

metabolism [252, 253]. Glyoxylic acid is associated with purine and amino acid 

metabolism, carbon fixation pathways, biosynthesis of secondary metabolites and 

microbial metabolism in diverse environments. 

4.2.4 Invasion into Hep 2 cells 

Eukaryotic host cells growing in culture have been used extensively to monitor 

cellular interactions between host and microbe. A classical method involves the 

exposure of cell lines growing in-vitro to different numbers of either wild type or 

mutant pathogens followed by microscopic or microbiological observations. 

Salmonella have the ability to both adhere to and invade cultured cells, including 

macrophage and epithelial cell lines. Exposure to the antibiotic gentamicin, which is 

a poor killer of intracellular bacteria, has been routinely used as a method for 

estimating invasion levels. Consequently, cultured Hep 2 cells were exposed 

independently to either S. Typhimurium SL1344(pSsaG) or one of S. Weltevreden 

SW C2346(pSsaG), SW 10259(pSsaG), SW98_11262(pSsaG) or SW 

99_3134(pSsaG) at a multiplicity of infection (MOI) of ~50 bacteria per cell. 

Plasmid pSsaG directs the expression of GFP from the SPI-2-associated ssaG 

promoter. Thus, host bacteria only become green when they have established a SCV 

(Figure 4.3).  
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Figure 4.3: Confocal microscopy of S. Typhimurium SL1344 and S. Weltevreden in Hep 2 cells, 2 

and 6 hours post exposure  

Cell nuclei were stained with DAPI (blue), common surface antigens (CSA) on the Salmonella bacteria 

are stained in red and the Salmonella (pSsaG) where GFP expressing and are visible in green (GFP). This 

data is representative of biological replicates of different S. Weltevreden isolates. 

 

All  S. Typhimurium and S. Weltevreden were able to invade Hep 2 epithelial cells to 

some extent as monitored using fluorescent microscopy. Green intracellular 

Salmonella bacteria were observed in all cases by monitoring for the expression of 

GFP. S. Typhimurium SL1344 (pSsaG) exhibited a consistently stronger fluorescent 

signal at both the 2 and 6 h observation windows, compared to all S. Weltevreden. 

However, no significant difference in bacterial burden was obvious using this 

approach between the all S. Weltevreden isolates. Importantly, there were 

consistently lower levels of GFP-positive S. Weltevreden in the microscope imaging 

field than S. Typhimurium, indicating that they may be generally less invasive in this 

assay. 

To assess the bacterial burden using an alternative and more quantitative approach, a 

gentamicin-killing assay, in which predominantly internalised bacteria should 

survive, was performed. For S. Typhimurium SL1344, there was a consistent 

increase in the number of viable internalised bacteria between 2 and 6 h post 

infection. At 6 h post infection, there was a statistically significant difference 

(SL1344: P= 0.0001) in the number of viable bacteria recovered compared to the 2 h 

time point (Figure 4.4). However no significant differences in recovered numbers 

were observed between 2 h and 6 h for the S. Weltevreden isolates. Additionally, 

there was a consistently lower level of invasion by all S. Weltevreden isolates 

compared to S. Typhimurium SL1344. Thus, these data support the observations 

made using microscopy. 
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Figure 4.4: Number of viable Salmonella recovered in gentamicin killing assay  

The solid bars indicate the numbers of intracellular CFU recovered 2 h (black) and 6 h (Grey) post 

infection from Hep 2 cells infected with S. Typhimurium SL1344, S. Weltevreden SW C2346, SW 10259 

SW98_11262 or SW99_3134 (MOI, 50); the error bars indicate standard deviations. The 2-way ANOVA 

multiple comparisons statistics shows that S. Weltevreden isolates did not differ significantly between 2 h 

and 6 h. In contrast S. Typhimurium SL1344 numbers recovered increased significantly between 2 h and 

6 h. S. Typhimurium SL1344 was also generally more invasive than the S. Weltevreden. Biological 

triplicates were used while performing this experiment.. (Symbols: ns: p > 0.05, *: p ≤ 0.05, **: P ≤ 0.01, 

***: P ≤ 0.001, ****: P ≤ 0.0001). 

4.2.4.1 Electron microscopy 

Electron microscopy was utilised to further investigate the interactions between Hep 

2 cells and S. Weltevreden. Upon contacting host cells S. enterica can induce host 

cell membrane extensions called ruffles, which are particularly obvious upon entry 

into non-phagocytic cells. The appearance of such ruffles has been linked to the 

expression of the SPI-1 TTSS [254]. Initially Salmonella-Hep 2 cell interactions 

were investigated using Scanning Electron Microscopy (SEM). One hour post 

exposure of Hep 2 cells to S. Typhimurium SL1344 or the different S. Weltervreden, 

thin, long filopodia were observed in contact with the bacteria. These were readily 

visible on the Hep 2 cell surface associated with all bacteria and in the surrounding 

areas (Figure 4.5). These cell membrane ruffles were more obvious on the surface of 

S. Typhimurium SL1344 infected cells (Figure 4.5, middle panels). In contrast, Hep 

2 cells infected with all S. Weltevreden isolates showed less obvious ruffling on the 

cell surface, particularly in contact with adherent or invading bacteria (Figure 4.5, 

right panels). However, no obvious differences in this phenotype were observed 

between the different S. Weltevreden isolates.  
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Figure 4.5: SEM of Hep 2 cells infected with S. Typhimurium SL1344 or S. Weltevreden C2346 

Red arrows show Salmonella and blue arrows show structures observed in S. Weltevreden infected cells 

suggestive of reduced levels of ruffling. This data is typical of replicate assays performed over 3 times 

with different S. Weltevreden isolates. 

 
 
This data suggests that S. Weltevreden is generally less efficient at invading Hep 2 

cells. 

To further investigate the intracellular aspects of the infection, Hep 2 cells 

challenged with S. Typhimurum SL1344 or S. Weltevreden 10259 (only one 

representative of S. Weltevreden was used as no major differences between the 

isolates were observed in the previous experiments) were investigated using 

Transmission Electron Miscoscopy (TEM). Two hours post exposure to S. 

Typhimurum SL1344 and S. Weltevreden 10259, bacteria were routinely observed, 

many of which were residing within membrane-bound vacuoles (Figure 4.6). For S. 

Typhimurum SL1344 the SCV was well defined, and an enclosing membrane was 

clearly present. The S. Typhimurium had a generally healthy rod shape (Figure 4.6, 

panel A). Several cells with more than one bacterium within the vacuole were also 

observed, indicating that intracellular replication could be occurring (Figure 4.6, 

panel C). In contrast, cells infected with S. Weltevreden 10259 displayed a generally 

less distinct SCV, with a host membrane apparently very close to the bacterium 

resident within the vacuole. The bacterial cell also often exhibited an elongated form, 

potentially reflecting a more stressed state (Fig. 4.6, panel B). Fewer S. Weltervreden 

10259 were observed within vacuoles or indeed within challenged Hep 2 cells. 
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                   Figure 4.6: Typical TEM ultrastructures visualised within Hep 2 cells infected with S. Typhimurium (panel A) or S. Weltevreden  (panel B)  

                  A; black arrow indicating potential SCV membrane. Replication of S. Typhimurium Sl1344 within the SCV is represented in sub-panel C. This data is typical of        

replicate assays. 

 

 



122 
 

The observations are consistent with the concept that S. Weltevreden is less adapted 

to invasion and growth within Hep 2 cells compared to the typical S. Typhimurium 

SL1344.  

4.2.5 S. Weltevreden in the murine model  

As discussed previously there are a number of different murine models of Salmonella 

infection including the classical systemic typhoid model and the streptomycin pre-

treatment model more related to gastroenteritis. Consequently, S. Weltervreden was 

evaluated in both of these murine infection models. 

4.2.5.1 Systemic challenge 

To determine the systemic virulence of S. Weltevreden, C57bl/6 (Salmonella 

susceptible, Nramp-1 negative) mice were infected intravenously with either S. 

Typhimurium SL1344, S. Weltevreden SW C2346 or S. Weltervreden SW 10259 

using a dose of 2000 CFU/mice.  Mice were subsequently followed over a course of 

4 days to monitor clinical symptoms using an approved humane scoring method. 

Mice infected with the S. Weltevreden isolates were able to survive 4 days post 

infection and remained well thereafter until sacrificed. In contrast some of the 

C57bl/6 mice infected with S. Typhimurium SL1344 mice were deemed to be at the 

clinical endpoint in terms of severity by day 2 post infection and the others reached 

this state by day 4 and were sacrificed (Figure 4.7). 
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Figure 4.7: Percentage of survival of C57bl/6 mice challenged with S. Typhimurium SL1344,  

S. Weltevreden C2346 and S. Weltevreden 10259 following intravenous infection  

This data is typical of replicate assays performed in triplicate. 

 

4.2.5.2 Evaluation of S. Weltevreden in the streptomycin pre-treated 

colitis model 

S. Weltevreden is an emerging cause of colitis in humans. In order to model aspects 

of this disease and to unravel details of the potential mechanism of infection, 

streptomycin pre-treated C57bl/6 mice were orally challenged to investigate the 

ability of S. Weltevreden isolates to induce an inflammatory response and cause 

infection in the caecum. Four days post infection, a histopathological analysis of 

caecum revealed pronounced inflammation characterised by oedema in the 

submucosa, with distinct cellular inflammatory infiltrates in the submucosa, the 

lamina propria, and the epithelial layer, as well as the presence of immune cells in 

the intestinal lumen. Crypts elongation and erosive changes in the surface epithelium 

were also observed. These features were present in the caecum of mice infected with 

either S. Weltevreden and S. Typhimurium were as the caecum of PBS challenged 

mice displayed no noticeable oedema or neutrophil infiltration (Figure 4.8). 
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Figure 4.8: Histopathological analysis of caecum sections of mice infected with S. Typhimurium 

SL1344, S. Weltevreden C2346 or mock-injected with PBS 4 days post infection  

The top panels (a, b and c) show a representative section for each infection at magnification 10X. The 

mid panels (d. e and f) show details of the submucosa with infiltrates at magnification 40X. The bottom 

panels (g. h and i) show the structure of the crypts for each infection at magnification 40X. 

Abbreviations: sm: submucosa, oe: oedema, ns: normal structure, er: erosion of the membrane and pmd: 

polymorphonuclear leukocytes infiltrates. This data is representative of biological replicates  

 

Thus, in contrast to the attenuated phenotype displayed by S. Weltevrden in the 

systemic murine model, similar pattern in intestinal pathology were observed 

between the 2 serovars in the caecum after challenge of streptomycin-treated mice. 

Additionally, the levels of colonisation by the different S. enterica isolates was 

monitored by plating outweighed sections of the caecum and counting the number of 

surviving Salmonella per milligram of tissue (Figure 4.9). Plating weighed lobes of 

the liver also provided insights into the ability of these serovars to cause systemic 

infection post oral gavage in streptomycin pre-treated murine model (Figure 4.10). 
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Figure 4.9: Analysis of the impact of colonisation of the ceacum by S. Typhimurium SL1344,  

S. Weltevreden C2346 or S. Weltevreden 10259 in C57bl/6 mice 4 days post infection  

The Mann Whitney U T-Test shows a significant higher burden in ceaca infected with S. Typhimurium 

SL1344 compared to caecum infected with S. Weltevreden (p = 0.0317 and p = 0.0075). No significant 

difference between the different S. Weltevreden isolates was noted. This data is representative of 

biological replicates 

 

Interestingly, S. Typhimurium SL1344 exhibited a consistently higher level of 

caecum colonisation compare to the S. Weltevreden isolates and these differences 

reached statistical significance. In contrast, there was no significant difference in 

caecal colonisation between the two S. Weltevreden isolates studied.  
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Figure 4.10: Analysis of the levels of liver colonisation of S. Typhimurium SL1344, S. Weltevreden 

C2346  or  S. Weltevreden 10259 in C57bl/6 mice 4 days post infection  

A significantly higher bacterial burden was detected in the livers infected with S. Typhimurium SL1344 

compared to S. Weltevreden isolates as determined by the Mann Whitney U T-Test (p = 0.0001 and p < 

0.0001). No significant difference was observed between the colonisation levels of the livers by the S. 

Weltevreden isolates. This data is representative of biological replicates 

 

Thus, similarly to the data determined for colonisation in the caecum, S. 

Typhimurium SL1344 displayed a significantly higher colonisation level in murine 

liver compare to the S. Weltevreden isolates. Similarly, there was no significant 

difference in liver colonisation between the S. Weltevreden isolates. 

4.3 Discussion 

Phylogenetic analysis confirmed that the sequenced S. Weltevreden isolates fell into 

a monophyletic clade formed of several sub-clades. As S. Welterveden is an 

emerging cause of gastroenteritis in certain parts of the world, particularly South 

East Asia, it is important to link the genotype of isolates to classical phenotypic 

properties associated with pathogenesis. However, relatively little is known about the 

phenotypic properties of this serovar. Here, by comparing several S. Weltervreden 

isolates with the well-characterised S. Typhimurium SL1344, which was originally 
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isolated from a case of cattle enteritis, we were able to initiate a phenotypic 

characterisation of this serovar. 

The initial serology confirmed the serotype of all isolates according to the Kauffman-

White scheme. S. Weltevreden has an unusual (O10, O15) LPS antigen and r flagella 

type, falling into Salmonella Group E1. Other serovars with a similar antigenic 

composition include S. Ughelli, S. Elizabethville and S. Simi, all relatively rare in 

terms of their frequency of isolation. Indeed, there are virtually no reports on 

infections by these 3 serovars in the recent literature apart from the isolation of S. 

Simi in the Congo. 

Although the S. Weltervreden grew well on laboratory medium and were 

metabolically similar to S. Typhimurium SL1344, they exhibited defects in their 

ability to interact with eukaryotic cells and in their relative virulence for mice. 

Indeed, the S. Weltevreden isolates were significantly less invasive in terms of their 

ability to enter Hep 2 cells compare to S. Typhimurium SL1344. Furthermore, 

membranes ruffles on the cell surface were less likely to be observed in cells infected 

with S. Weltevreden. In contrast, less robust structures were observed in the surface 

of the Hep 2 cells exposed to S. Weltervreden, usually directly associated with 

attached bacteria. Interestingly, S. Weltervreden appears to have a normal SPI-1 

invasion system as far as can be deduced from simple comparative DNA analysis so 

it is not clear how the different invasive phenotypes are moderated genetically. S. 

Weltervreden may encode unknown effector proteins that have not yet been 

identified. Additionally different regulatory pathways may be in operation that 

impact on the expression of the SPI-1 system, although this was not investigated. 

Whatever, it is interesting that S. Weltervren does interact differently with Hep 2 

cells and this could impact directly on the virulence potential of this serovar. 

Similar to what was observed in-vitro in the Hep 2 invasion assays, the S. 

Weltevreden isolates were moderately attenuated in the mouse in both intravenous 

and oral streptomycin treated infection models, compare to S. Typhimurium SL1344. 

In fact, mice intravenously infected with S. Weltevreden were able to survive 4 days 

post infection while by day 2 post infection, some S. Typhimurium SL1344 infected 

mice were clinically moribund and had to be sacrificed according to the humane 
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protocols. Although similar levels of inflammation was observed in streptomycin 

treated mice infected with both serovars, there were higher systemic colony counts in 

the S. Typhimurium SL1344 infected animals. Indeed, the S. Weltevreden isolates 

displayed reduced growth and replication within the caecum and the liver of infected 

mice. Again, it is not clear why the S. Weltervreden were so attenuated in mice 

compared to S. Typhimuirum SL1344. Clearly, the reduced ability to exploit the SPI-

1 invasion system could be a factor, although this system is known not to be 

absolutely required for mouse virulence. There was no obvious mutation, for 

example in a known virulence factors that could explain the attenuation, as 

determined from the initial interrogations of genome sequence. Clearly, this is an 

area worthy of further investigation in alternative systems (see next Chapter). 

Some of the S. Weltervreden isolates under study were from cases of clinical disease 

and this serovar is now recognised as an emerging cause of gastroenteritis in a 

number of distinct geographical settings. It is interesting that even though S. 

Weltervreden shows some characteristics of attenuation on these models the isolates 

of this serovar are able to still cause disease in humans. Clearly, it is well established 

that host adaptation or even restriction is a relatively common property of Salmonella 

isolates and this may be to some degree what is being revealed by these studies. 

Derivatives of other Salmonella serovars that lack a fully functional SPI-1 or SPI-2 

system can cause disease in humans. For example, S. bongori lacks SPI-2 but is able 

to cause sporadic human gastroenteritis. Thus, clearly alternative host specific 

mechanisms of pathogenesis occur and not all have been defined to date. 

This first insight into the phenotypic characteristics of S. Weltevreden revealed an 

overall attenuated pathology compare to S. Typhimurium SL1344. Further studies 

addressing the metabolic choice of carbon sources as well as the mechanistic of 

epithelial cells invasion would provide a better understanding of S. Weltevreden 

interactions with the host. 
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5 S. Weltevreden in the zebrafish infection 

model 

 

5.1 Introduction 

In the previous chapters a phylogeny and phenotypic analysis of S. Weltevreden 

isolates was performed in an attempt to build up a database of information on this 

understudied serovar. S. Weltevreden has now been reported as a commonly isolated 

serovar both from the environment and from clinical cases in different parts of the 

world. Although the potential source of these S. Weltevreden isolates is varied, 

seafood products have been frequently implicated, implying a potential aquatic 

source, both fresh and salt water. These reports indicate that aquatic food sources 

may be an important transmission route of S. Weltevreden into the human population 

[229, 255] suggesting possibilities for marine and freshwater ecosystems as natural 

niches.  

This link with aquatic sources indicated that S. Weltevreden could potentially be a 

coloniser of fish. Thus, it was postulated that S. Weltevreden could potentially infect 

the zebrafish, which is frequently used as an infection model [256]. Additionally, 

many reports of S. Weltevreden are specifically linked to South East Asia, a native 

environment of the zebrafish. The zebrafish embryo has been extensively validated 

as a tool for investigations into many aspects of biology ranging from development 

to infection and immunity. A number of different bacteria can infect zebrafish 

embryos and indeed adult fish [257-265], for example. M. marinum has been used 

extensively as a model both for tuberculosis and for granuloma formation studies 

[163, 266]. Moreover, the zebrafish has been used to explore the pathogenesis of 

Salmonella infections, in particular to analyse the early host response to infection. 

The availability of zebrafish lines harbouring mutations in individual genes has 

extended the value of such studies. A particular focus has been on the role of 

macrophage in the dissemination and control of Salmonella infection. 
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                 Figure 5.1: Transgenic zebrafish embryos infected with S. Typhimurium SL1027 48 hpi. Taken from [164] 
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Here, the zebrafish infection model has been utilised to investigate the ability of S. 

Weltevreden to colonise or cause significant infection in a fish species. To this end, 

embryos were microinjected with either S. Typhimurium or S. Weltevreden using 

wild type or mutant zebrafish lines and the course of infection was followed over 

several days. 

5.2 Results 

5.2.1 Bacterial growth in-vitro at 28°C 

Since the optimal growth temperature for zebrafish is 28°C, S. Typhimurium 

SL1344, S. Weltevreden C2346 and 10259 were grown independently in LB broth at 

28°C and their respective growth was assessed over a time course of 24 hours. The 

results, shown in Figure 5.2, indicated that all isolates grew at a similar growth rate 

in this medium. The number of bacteria per OD is similar to what observed at 37°C 

in the same media (see Chapter 4) but the time of replication was longer (Figure 5.2).  

 

Figure 5.2: Growth curve showing the duplication time of S. Typhimurium SL1344 , S. 

Weltevreden C2346 and S. Weltevreden 10259 in LB medium at 28°C. 
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5.2.2 Infection challenge 

To determine the ability of S. Weltevreden isolates to infect zebrafish, 48 hour old 

embryos were systemically challenged using microinjection with ~250 CFU of either 

S. Typhimurium SL1344 or S. Weltevreden SW C2346 or they were mock infected 

using microinjection alone.  The embryos were subsequently monitored for up to 70 

hours post infection, scoring for survival (Figure 5.3). No deaths were recorded in S. 

Weltevreden infected embryos or those mock infected.  In contrast, ~50% of the 

embryos infected with S. Typhimurium were dead by 40 hours post infection (Figure 

5.3). 

 

 

Figure 5.3: Percentage of survival of zebrafish embryos microinjected with S. Typhimurium 

SL1344 (ST), S. Weltevreden C2346 (SW) or mock injected  

 (P < 0.0001 between S. Typhimurium SL1344 and S. Weltevreden C2346). 
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survived despite the use of a higher challenge dose. These data confirms a significant 

level of attenuation of S. Weltevreden C2346 in the zebrafish embryo challenge 

model. 

5.2.3 Salmonella viability in the zebrafish embryo model 

The numbers of S. Weltevreden C2346 and S. Typhimurium SL1344 surviving at 

different time points after microinjection into embryos was assessed using viable 

counts. This involved plating out whole embryos and counting the number of 

surviving Salmonella at different time points after challenge (Figure 5.4). The 

number of viable Salmonella recovered from the embryos was similar to the number 

microinjected at 6 hours post infection (data not shown in the Figure) suggesting 

limited growth had occurred at this time point.  

 

Figure 5.4: Analysis of Salmonella survival within zebrafish embryos microinjected with 250 - 

300CFUs of S. Typhimurium SL1344 or S. Weltevreden C2346  
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Time points were 20 hpi, 39 hpi, 48 hpi. All S. Typhimurium challenged embryos were dead by 48 hours 

post challenge whereas S. Weltevreden C2346 was cleared at this point. The purple samples represent 

severely moribund fish in each group. 

 

Because the mortality between the 2 groups was not substantially different at 20 

hours post infection, statistical analysis were conducted at that time point to assess 

the replication of each bacterial strain within the embryos (figure 5.5). As observed 

earlier in the murine model, S. Typhimurium SL1344 displayed a significantly higher 

replication level in larvae compare to S. Weltevreden C2346. 

 

Figure 5.5: Analysis of the replication level within zebrafish embryos microinjected with 250 - 300 

CFUs of S. Typhimurium SL 1344 (ST SL1344) and S. Weltevreden C2346 (SW C2346) 20 hours 

post infection - P value < 0.0001. 

 

By 48 hours post challenge, no S. Typhimurium SL1344 infected embryos were left 

alive, whereas most S. Weltevreden C2346 infected embryos were viable (only 5 

were plated for CFU counts). Interestingly, S. Weltevreden C2346 infected embryos 
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were subsequently cleared around 2 days post infection as shown in Figure 5.6 

below. 

 

 

 

 

Figure 5.6: Kinetics of S. Weltevreden C2346 survival within zebrafish embryos over the course of 

the infection following challenge with 250 - 300 CFUs. 
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codons [225]. irf8 -/- zebrafish mutants are characterized by a complete lost of 

macrophages but an over production of neutrophils. Heterozygous mutant (irf8 +/-) 

fish harbour normal levels of macrophages and neutrophils [225]. 

irf8 +/- heterozygous parents were crossed and the resulting offspring was infected 

with a low dose (~100 CFU) of S. Typhimurium SL1344, S. Weltevreden C2346 or 

mock injected. The infection was followed over a course of 70 hours and the 

surviving fish were genotyped. The expected distribution of genotypes in each clutch 

is 50% irf8 +/-, 25% irf8 -/- and 25% of wild-type. Figure 5.7 summarises a 

compilation of the genotyping and viability data obtained in a typical experiment. 

 

Figure 5.7:Percentage of survival of wild-type irf8+/+, heterozygous mutants irf8st95/+ and 

homozygous mutants irf8 st95/st95 challenged with S. Typhimurium SL 1344 (ST), S. Weltevreden 

C2346 (SW) or mock-injected 70 hours post infection  
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It is evident that irf8 st95/st95 embryos infected with S. Weltevreden C2346 or mock 

injected have a higher survival rate than similar embryos challenged with S. 

Typhimurium SL1344. Thus, the attenuated phenotype of S. Weltevreden C2346 is 

significantly independent of the presence of macrophages. This indicates that the 

mechanism of attenuation is not macrophage dependent or associated. 

5.3 Discussion 

The initial phenotypic characterisation of S. Weltevreden described in the previous 

chapter revealed an overall attenuated phenotype in different models of disease 

compare to S. Typhimurium SL1344. S. Weltevreden was significantly attenuated in 

mouse models and in the ability to infect Hep 2 cells in an invasion assay. At this 

point, the mechanism of attenuation remains unknown. Interestingly, in the face of 

this ‘attenuated’ phenotype many reports are linking this serovar to serious cases of 

illness in humans. Thus, the correlation between these model systems and human 

infectivity is not absolute. Indeed, others have reported significant levels of 

attenuation in mouse-virulence and invasiveness with other Salmonella, for example 

the ST313 S. Typhimurium associated with invasive disease in sub-Saharan Africa 

[16, 267]. Again, in these cases the mechanisms of attenuation remain unknown, 

although genome degradation similar to S. Typhi has been reported [16]. However, 

we found no evidence for significant levels out of the norm for S. Weltevreden (see 

Chapter 3). 

Seafood and water based products have been implicated a potential source and/or 

transmission route for infection with S. Weltevreden. This association prompted in 

part this investigation into the ability of S. Weltevreden to infect zebrafish embryos.  

A comparative analysis of infectivity was undertaken by setting up simultaneous 

infections with either S. Typhimurium SL1344 to S. Weltevreden C2346. S. 

Typhimurium SL1344 is known to be significantly virulent for zebrafish embryos 

and this strain and similar S. Typhimurium have been extensively characterised by 

others in this model [257]. 

S. Weltevreden C2346 exhibited a significant level of attenuation following 

microinjection into young embryos even if different doses were used. Whereas 
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embryos infected with S. Typhimurium SL1344 routinely succumbed to infection 

embryos similarly challenged with S. Weltevreden C2346 normally survived and 

were even able to clear the infection challenge within 48-72 hours post challenge. 

Importantly, this lack of virulence of S. Weltevreden C2346 was even present when 

embryos defective in macrophage production (irf8 +/- mutant) were challenged. This 

indicates that the mechanism of attenuation is significantly independent of 

macrophages, which are known to be key cells involved in the pathogenesis and 

control of Salmonella infections in fish and other animals [268]. The ability of 

macrophage-deficient (irf8 -/- mutants) to clear the infection suggests a potential 

involvement of neutrophils in controlling S. Weltevreden infection. Whatever, S. 

Weltevreden C2346 displays significant levels of attenuation in multiple classical 

virulence models yet the serovar can still cause significant disease in humans.  

In a natural setting, infection may occur in adult fishes with fully developed immune 

systems, likely via the oral route. Thus, it would be interesting to explore the 

virulence of S. Weltevreden in adult zebrafish but this would require an animal 

licence not available during this study. Further studies in adult fish populations could 

help unravel the true relationship between S. Weltevreden and fish confirming 

whether the serovar is a natural commensal or pathogenic or simply attenuated in this 

particular host.   

The attenuated phenotype of S. Weltevreden in zebrafish embryos remains of interest 

and further experiments are planned beyond the immediate scope and time-frame of 

this thesis. RNA-seq analysis will be used to explore the nature of the host response 

to S. Weltevreden compared to S. Typhimurium infection and other isolates of S. 

Weltevreden should be used in this model to assess how broadly the attenuated 

phenotype is present in the serovar. Additionally, other mutant zebrafish lines could 

be used to explore further the mechanisms of attenuation, for example to identify 

mutant lines that succumb to S. Weltevreden challenge. 
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6 Summary and future directions 

 

In this study, a combination of whole genome sequencing, phylogenomics and in-

vitro/in-vivo phenotyping were used to characterise the serovar S. Weltevreden.  

Additionally, a complete reference genome was generated that will prove of value 

for further genetic work on this serovar. This analysis revealed that the average S. 

Weltevreden genome is larger than those of many other S. enterica serovars, with an 

average size above 5,000,000 base pairs. Much of this additional DNA can be 

accounted for in the accessory genome, where whole prophage and additional phage-

related elements are common. S. Elizabethville and S. Goldcrest were 

phylogenetically the closest S. enterica serovars to S. Weltevreden amongst the 

serovars for which other whole genome sequences are available. Interestingly, S. 

Elizabethville shares common core serological properties with S. Weltevreden but 

this serovar is not a common pathogen in humans. However, it will be interesting to 

see if these related serovars increase in their association with human diseases in the 

future. 

S. Weltevreden appears to be a monophyletic serovar assignable to 2 major 

phylogenetic clusters of largely ‘Continental cluster’ and ‘Island cluster’ isolates. 

Thus, there is evidence of a significant level of geographical clustering within S. 

Weltevreden. Some geographical clustering is also detectable within the sub-

phylogeny, suggesting that the S. Weltervreden serovar continues to evolve within a 

specific geographical region rather than frequently spreading from one location to 

another. Geographical subclustering has been detected in other serovars, including 

the S. Typhimurium ST313 clades within sub-Saharan Africa [269]. This suggests 

that Salmonella clades can become established in an environment or a population 

where they persist and evolve.  

One hundred and twelve SNPs were found to be cluster-specific and these could be 

of value in epidemiological tracking. For example, it will be interesting to determine 

if this type of data can be used to map potential transmission routes within 

populations. Can solid phylogenetic links be identified between seafood and S. 
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Weltevreden in human diseases? Is there evidence of human-to-human transmission? 

Here, some of the cluster-associated or even private SNPs will be exploitable in 

simple SNP-based assays for the rapid identification of S. Weltevreden isolates in the 

field. Such approaches have been developed for other Salmonella serovars, including 

S. Typhi [270, 271].  

It is significant that the phylogeny of S Weltevreden does not correlate with date of 

isolation, disease type or source (environment, animal, human) of the isolate, making 

it impossible to link particular genotypes to any disease syndrome. The inability to 

link genotype to human disease is intriguing and suggests that factors such as 

infectious dose, host susceptibility or environment could be influencing the patterns 

of disease. Here, more thorough epidemiological studies will be required to try to 

link isolates either in environment to human, animal to human or human to human 

transmission routes. Such studies could be performed in countries with significant 

levels of endemic S. Weltevreden disease or by analysing transmission within 

outbreaks, should they be identified. We are planning to perform such studies in 

Vietnam, where the incidence of S. Weltevreden is currently comparatively high. 

Here SNP-based assays will be applied. 

The analysis of S. Weltevreden plasmids revealed the presence of a large and highly 

conserved plasmid among the isolates, despite the diversity of geographical origin. 

More detailed recent analysis identified a number of candidate genes that could 

influence the phenotype of S. Weltevreden and possibly persistence in the 

environment and host (Figure 6.1). For example, 2 large tandem non-ribosomal 

peptide synthetases (NRPSs) of respectively 8381 and 13304 bp were found on the 

plasmid adjacent to a transporter, a rare scenario in the Salmonella genus. Tandem 

NRPSs, in combination with polyketide synthases (PKs) are commonly involved in 

small antimicrobial peptide synthesis [272]. The latter are usually implicated in a 

wide range of bioactivities including antibiotic production [273, 274], toxins, 

immuno-suppressants [275], anti-cancer molecules [276] and anti-fungals [277, 278]. 

The use of small antimicrobial peptide by the bacteria remains unclear; previous 

studies have speculated their potential use in fighting rival microorganism [279].  

Nevertheless, the fact that this plasmid is retained in the population suggests that it 

may offer a selective advantage to S. Weltevreden in some environments. The 
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generation if plasmid-less derivatives or even site-directed mutations in specific 

genes would facilitate studies on metabolism and virulence and it would be 

interesting to see if any plasmid-associated mutations were picked up in any future 

virulence screens.  
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Figure 6.1: Circular map of S. Weltevreden 10259 plasmid  

The restriction sites are marked on the plasmid. The purple and blue arrows represent the non-ribosomal peptide synthetase found on the plasmid adjacent to a putative transporter 

(orange arrow). 
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Antibiotic resistance is currently not commonly associated with S. Weltevreden. In 

fact, only a few antibiotic resistance genes were found in a few isolates. These very 

rare antibiotic resistant isolates harboured novel plasmids of types previously 

described in other bacteria. Thus, S. Weltevreden clearly has the capacity to acquire 

resistance and to evolve multiple antibiotic resistance. It will, thus, be important to 

maintain surveillance on the serovar in order to detect early any trend to increasing 

resistance.  

Phenotypic characterisation of S. Weltevreden in comparative analysis showed an 

overall attenuated pathology in in different models of disease compare to S. 

Typhimurium SL1344. S. Weltevreden isolates were significantly less invasive in 

terms of their ability to enter and replicates in Hep 2 cells. Indeed, membranes 

ruffles, key hallmark of Salmonella infection on the cell surface were less likely to 

be observed in cells infected with S. Weltevreden. In contrast, less robust structures 

were observed in the surface of the Hep 2 cells exposed to S. Weltervreden. Similarly 

to what observed in vitro in the Hep 2 cells, S. Weltevreden isolates were moderately 

attenuated in the mouse in both intravenous and oral streptomycin treated infection 

models, compare to S. Typhimurium SL1344. In fact, mice intravenously infected 

with S. Weltevreden were able to survive 4 days post infection while by day 2 post 

infection, some S. Typhimurium SL1344 infected mice were clinically moribund. 

Infection challenges of S. Weltevreden in zebrafish embryos also revealed an 

extremely attenuated phenotype and lack of virulence even in macrophage deficient 

zebrafish larvae. Considering that in a natural setting, infection is more likely to 

occur in adult fishes with fully developed immune systems via oral gavage, this 

exceptionally attenuated phenotype in laboratory setting suggests that the serovar is 

likely to be non-pathogenic for adult zebrafish. Unfortunately, we were unable to 

assess the virulence of S. Weltevreden in adult fish due to constraints on our animal 

licence but this work will be progressed in the future. Further studies in fish will be 

required to explain the prevalence of S. Weltevreden in marine products. In addition 

to the lack of virulence observed with this serovar in the fish, the ability of 

macrophage-deficient mutants to clear the infection suggest a critical involvement of 

neutrophils in controlling S. Weltevreden infection. 
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Despite the lack of antimicrobial resistance reported and the high level of attenuation 

reported in all diseased models explored in this study, more reports are linking S. 

Weltevreden to serious cases of foodborne illness and its predominance as a 

foodborne pathogen, particularly in the South-East Asian region. These data support 

the case for additional studies must be undertaken on the pathogenicity of S. 

Weltevreden. However, the options for studies on human disease are limited. One 

option might be to exploit human models based on differentiated human stem cell. 

New advances have facilitated the generation of different cell types and organoids 

from human induced pluripotent stem cells [280-284]. These include human 

macrophages and intestinal organoids that have both been used previously to explore 

Salmonella pathogenicity [285-287]. It would be interesting to evaluate the 

interaction of S. Weltevreden in such systems and studies of this type are planned. 

Alternatively human challenge studies similar to those undertaken with S. Typhi 

could be performed with S. Weltevreden [288]. 

A number of other questions remain to be answered including: 

Does the accessory genome impact on S. Weltevreden infection and regional 

spread? Despite the low level of antibiotic resistance reported in S. Weltevreden, the 

serovar is successful in colonising, causing disease and spreading, as observed 

throughout South-East Asia. It is not clear yet how this has been driven but this is 

unlikely to be only associated with the core genome, which is broadly shared across 

S. enterica. Phage and other mobile elements are known to be key drivers of 

diversity and evolution within S. enterica [128] and such elements might be worth 

interrogating experimentally in order to get a better answer on the geographical 

predominance of this serovar. However, additional sequencing coupled with a larger 

sample collection will be required to better characterise the accessory genome. The 

work presented here might be the foundation for further functional genomic work, 

including mutagenesis, RNA-seq and proteomics aiming to link the genotype to 

different phenotypes. 

Does S. Weltevreden exploit alternative regulatory pathway to invade and cause 

disease? S Weltevreden appears to have normal SPI-1 locus as determined by DNA 

sequencing and comparative DNA analysis. However, defects in invasion and/or 
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intracellular colonisation were observed in both in-vitro and in-vivo systems. In 

addition, the utilisation of alternative carbon sources commonly associated with soil 

and plant organism might suggest that S. Weltervreden inhabits different host 

environments compared to other Salmonella. For example, the accessory genome 

may encode novel effector proteins that could either exploit alternative survival 

pathways. Alternatively S. Weltevreden might have evolved novel regulatory 

systems that impact on the expression of the SPI-1 and other virulence-associated 

system. Experiments manipulating different pathways alongside RNA-seq analysis 

might begin to unravel the mechanisms of S. Weltevreden interaction with the host. 

Are neutrophils key in controlling S. Weltevreden infection? In our zebrafish 

infection studies, S. Weltevreden control appeared to coincide with the peak of the 

emergency granulopoiesis, previously reported after Salmonella infection in larvae 

by others [289].  We found that macrophage-deficient zebrafish larvae survived S. 

Weltevreden infection, suggesting that neutrophils might be essential in controlling 

such infections.  Future experiments addressing the role of neutrophils in S. 

Weltevreden infection might include using mutations that block neutrophil 

development in zebrafish embryos, such as Csf3r [290] or Runx1 [291]. Here, 

morpholinos could also be used to inhibit neutrophil effector mechanisms like 

reactive oxidase production [291]. Other approaches could involve depleting 

neutrophils in mice with antibody.  

Is S. Weltevreden a commensal in zebrafish and potentially other marine 

animals? Initial experiments presented here on S. Weltevreden infections in 

zebrafish embryos suggest an extremely attenuated phenotype. Monitored 

experiment in adult population replication the natural scenario in the wild could 

provide insight in the relationship between S. Weltevreden and marine animals. 

Indeed, it is possible that S. Weltevreden is a commensal in such populations, able to 

colonise without causing disease. This would potentiate any threat to humans who 

consumed contaminated food. Thus, it might be worth performing extensive 

environmental studies, particularly in potentially contaminated environments, to try 

to capture the true habitat of S. Weltevreden. Finally, it is clear that S. Weltevreden is 

emerging as a potential threat to human health in many parts of the world and that we 

know very little about the epidemiology of disease and the pathogenicity of the 
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serovar. Clearly there is a need for continuing studies in this serovar, some as 

outlined here. 
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Appendix 1: Samples’ information (metadata) 

 

The table below summarises key information of all samples used in the phylogenetic 

analysis. This includes the origin (country and region) of the isolates, year and 

source of isolation and antibiotic resistance profile. 
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Lane Name Country Region Year Source AMR Predicted 
AMR 

Cluster Sub-
Cluster 

12227_3#4 2011_00503 Guadeloupe Latin America 2011 Human Susceptible Susceptible 1 3 

12227_3#10 2011_11351 Guadeloupe Latin America 2011 Human Susceptible Susceptible 1 3 

12216_4#54 09_5462 Guadeloupe Latin America 2009 Human Susceptible Susceptible 1 2 

12227_3#57 2013_1467 France Europe 2013 Food (meat and vegetables) Susceptible Susceptible 2 4 

12227_3#56 2013_1418 France Europe 2013 Seafood and fish Susceptible Susceptible 1 1 

12227_3#55 2013_1051 France Europe 2013 Food (meat and vegetables) Susceptible Susceptible 2 4 

12227_3#54 2013_1032 France Europe 2013 Food (meat and vegetables) Susceptible Susceptible 1 3 

12227_3#53 2013_1005 France Europe 2013 Food (meat and vegetables) Susceptible Susceptible 1 3 

12227_3#51 2013_101 France Europe 2013 Seafood and fish Susceptible Susceptible 1 3 

12227_3#50 2013_71 France Europe 2013 Food (meat and vegetables) Susceptible Susceptible 1 3 

12227_3#44 2013_2776 France Europe 2013 Food (meat and vegetables) MDR Resistant 1 2 

12227_3#35 2013_4066 France Europe 2013 Seafood and fish Susceptible Susceptible 2 4 

12227_3#28 2006_3866 France Europe 2006 Seafood and fish Susceptible Susceptible 1 3 

12227_3#27 2006_3740 France Europe 2006 Seafood and fish Susceptible Susceptible 1 3 

12227_3#6 2011_02279 Mayotte Island Indian Ocean 2011 Human Ampicillin Resistant 2 5 
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12227_3#46 2013_2847 La Reunion Island Indian Ocean 2013 Animal Susceptible Susceptible 2 5 

12227_3#41 2012_4716 La Reunion Island Indian Ocean 2012 Environment Susceptible Susceptible 2 5 

12227_3#40 2012_4538 La Reunion Island Indian Ocean 2012 Food (meat and vegetables) Susceptible Susceptible 2 5 

12227_3#37 2012_2981 La Reunion Island Indian Ocean 2012 Environment Susceptible Susceptible 2 5 

12227_3#36 2012_2474 La Reunion Island Indian Ocean 2012 Animal Susceptible Susceptible 2 5 

12227_3#34 2013_3667 La Reunion Island Indian Ocean 2013 Animal Susceptible Susceptible 2 5 

12227_3#32 2013_3456 La Reunion Island Indian Ocean 2013 Food (meat and vegetables) Susceptible Susceptible 2 5 

12227_3#30 2013_3736 La Reunion Island Indian Ocean 2013 Animal Susceptible Susceptible 2 5 

12227_3#29 2013_3452 La Reunion Island Indian Ocean 2013 Food (meat and vegetables) Susceptible Susceptible 2 5 

12227_3#25 2013_05036 La Reunion Island Indian Ocean 2013 Human Susceptible Susceptible 2 5 

12227_3#2 2011_00200 La Reunion Island Indian Ocean 2011 Human Susceptible Susceptible 2 5 

12227_3#18 2013_00011 La Reunion Island Indian Ocean 2013 Human Susceptible Susceptible 2 5 

12227_3#17 2012_01076 La Reunion Island Indian Ocean 2012 Human Susceptible Susceptible 2 5 

12227_3#16 2012_02882 La Reunion Island Indian Ocean 2012 Human Susceptible Susceptible 2 5 

12227_3#14 2012_02227 La Reunion Island Indian Ocean 2012 Human Susceptible Susceptible 2 5 

12227_3#1 2010_06598 La Reunion Island Indian Ocean 2010 Human Susceptible Susceptible 2 5 
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12216_4#61 2010_09035 Mayotte Island Indian Ocean 2010 Human Susceptible Susceptible 2 5 

12216_4#55 09_8500 Mauritius Indian Ocean 2009 Human Susceptible Susceptible 2 5 

12216_4#51 08_2437 Maldives Indian Ocean 2008 Human Susceptible Susceptible 2 4 

12216_4#45 00_9879 Madagascar Indian Ocean 2000 Human Susceptible Susceptible 2 5 

12216_4#43 99_3134 La Reunion Island Indian Ocean 1999 Human Susceptible Susceptible 2 5 

12227_3#21 2013_02479 Algeria North Africa 2013 Human Susceptible Susceptible 1 1 

12227_3#7 2011_03604 Tahiti Island Oceania 2011 Human Susceptible Susceptible 2 4 

12227_3#49 2013_69 New Caledonia Oceania 2013 Animal Susceptible Susceptible 2 4 

12227_3#48 2013_2912 New Caledonia Oceania 2013 Industrial (porcine feed) MDR Susceptible 2 4 

12227_3#47 2013_2908 New Caledonia Oceania 2013 Industrial (porcine feed) Susceptible Susceptible 2 4 

12227_3#45 2013_2778 New Caledonia Oceania 2013 Seafood and fish Susceptible Susceptible 2 4 

12227_3#33 2013_3102 New Caledonia Oceania 2013 Food (meat and vegetables) Susceptible Susceptible 2 4 

12227_3#31 2013_3101 New Caledonia Oceania 2013 Food (meat and vegetables) Susceptible Susceptible 2 4 

12227_3#3 2011_00324 Tahiti Island Oceania 2011 Human Susceptible Susceptible 2 4 

12227_3#23 2013_104810 New Caledonia Oceania 2013 Human Susceptible Susceptible 2 4 

12227_3#20 2013_02134 Tahiti Island Oceania 2013 Human Susceptible Susceptible 2 4 
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12227_3#19 2013_00482 Tahiti Island Oceania 2013 Human Susceptible Susceptible 2 4 

12227_3#13 2012_08537 New Caledonia Oceania 2012 Human Susceptible Susceptible 2 4 

12227_3#12 2012_01335 Tahiti Island Oceania 2012 Human Susceptible Susceptible 2 4 

12227_3#11 2012_05005 Tahiti Island Oceania 2012 Human Susceptible Susceptible 2 4 

12216_4#62 2010_08341 Tahiti Island Oceania 2010 Human Susceptible Susceptible 2 4 

12216_4#47 03_1986 New Caledonia Oceania 2003 Human MDR Resistant 2 4 

12216_4#42 98_11262 New Caledonia Oceania 1998 Human Susceptible Susceptible 2 4 

12227_3#8 2011_07037 French Guyana Latin America 2011 Human Susceptible Susceptible 1 2 

12227_3#24 2013_04851 French Guyana Latin America 2013 Human Susceptible Susceptible 1 3 

12216_4#49 03_5461 French Guyana Latin America 2003 Human Susceptible Susceptible 1 2 

12216_4#48 03_4395 French Guyana Latin America 2003 Human Susceptible Susceptible 1 2 

12227_3#9 2011_09395 India South and South-
East Asia 

2011 Human Susceptible Susceptible 1 1 

12227_3#43 2013_2518 India South and South-
East Asia 

2013 Environment Susceptible Susceptible 1 2 

12227_3#42 2013_2515 India South and South-
East Asia 

2013 Food (meat and vegetables) Susceptible Susceptible 2 4 
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12227_3#39 2012_3614 India South and South-
East Asia 

2012 Seafood and fish Susceptible Susceptible 1 1 

12227_3#38 2012_3395 India South and South-
East Asia 

2012 Seafood and fish Susceptible Susceptible 2 4 

12227_3#15 2012_01497 Thailand South and South-
East Asia 

2012 Human Susceptible Susceptible 1 3 

12216_4#60 2010_08132 India South and South-
East Asia 

2010 Human Susceptible Susceptible 1 2 

12216_4#59 2010_07622 Sri Lanka South and South-
East Asia 

2010 Human Susceptible Susceptible 2 4 

12216_4#41 840K Sri Lanka South and South-
East Asia 

1956 Human Susceptible Susceptible 2 4 

Pacbio_10259_v
0.2 

10259 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 3 

9472_3#9 30291 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 3 

9472_3#8 20510 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 3 

9472_3#7 20372 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 2 
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9472_3#6 20069 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 3 

9472_3#5 10347 Vietnam South and South-
East Asia 

2009 Human Susceptible Resistant 1 2 

9472_3#4 10290 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 3 

9472_3#34 003_D14 Vietnam South and South-
East Asia 

2005 Human Susceptible Susceptible 1 1 

9472_3#33 C2512 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 2 

9472_3#32 C2511 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 1 

9472_3#31 C2471 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 3 

9472_3#30 C2377 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 3 

9472_3#28 C2346 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 1 

9472_3#27 C2248 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 3 
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9472_3#25 C2036 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 3 

9472_3#24 C2142 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 1 

9472_3#23 170_NVTN Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#22 008_PNTL Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#21 179_LTKT Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 1 

9472_3#20 194_SL Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 1 

9472_3#2 10162 Vietnam South and South-
East Asia 

2009 Human Susceptible Susceptible 1 2 

9472_3#19 184_VTHT Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 2 4 

9472_3#18 46_DNBH Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#17 38_NTMD Vietnam South and South-
East Asia 

2007 Human Susceptible Resistant 1 2 
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9472_3#16 8_LTPO Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#15 132_NTNK Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#14 94_VNQN Vietnam South and South-
East Asia 

2007 Human Susceptible Resistant 1 3 

9472_3#13 106_MR Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 1 

9472_3#12 63_AYSA Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 1 

9472_3#11 72_LNPT Vietnam South and South-
East Asia 

2007 Human Susceptible Susceptible 1 3 

9472_3#10 30438 Vietnam South and South-
East Asia 

2010 Human Susceptible Susceptible 1 1 

9472_3#1 iNT_635 Vietnam South and South-
East Asia 

2009 Human Susceptible Resistant 1 2 

12227_3#5 2011_00823 Indonesia South and South-
East Asia 

2011 Human Susceptible Susceptible 1 1 

12227_3#26 2013_05421 Thailand South and South-
East Asia 

2013 Human Susceptible Susceptible 1 3 



181 
 

12227_3#22 2013_03357 Thailand South and South-
East Asia 

2013 Human Susceptible Susceptible 2 4 

12216_4#58 2010_08825 Malaysia South and South-
East Asia 

2010 Human Susceptible Susceptible 1 2 

12216_4#57 2010_09500 Laos South and South-
East Asia 

2010 Human Susceptible Susceptible 1 3 

12216_4#56 2010_05280 Indonesia South and South-
East Asia 

2010 Human Susceptible Susceptible 1 1 

12216_4#53 09_4703 Indonesia South and South-
East Asia 

2009 Human Susceptible Susceptible 1 1 

12216_4#46 02_1171 Thailand South and South-
East Asia 

2002 Human Susceptible Susceptible 2 4 

12216_4#44 00_9824 Thailand South and South-
East Asia 

2000 Human Susceptible Susceptible 1 3 

12216_4#40 139K Indonesia South and South-
East Asia 

1940 Human Susceptible Susceptible 1 1 

10900_1#32 SR046 Vietnam South and South-
East Asia 

NA Animal Susceptible Susceptible 1 3 

10900_1#31 SR134 Vietnam South and South-
East Asia 

NA Animal Susceptible Susceptible 1 1 
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10868_1#91 74_V_379 Vietnam South and South-
East Asia 

NA Animal Susceptible Susceptible 1 3 

10868_1#90 7_H_437 Vietnam South and South-
East Asia 

NA Animal Susceptible Susceptible 1 3 

10868_1#89 71_V_366 Vietnam South and South-
East Asia 

NA Animal Susceptible Susceptible 1 3 

12227_3#52 2013_690 Unknown Unknown 2013 Seafood and fish Susceptible Susceptible 2 4 
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Appendix 2: Illumina HiSeq output 

 

The table below summarises the outcome of the Illumina HiSeq runs of all samples 

included in the study.  

  Mapping De novo assembly 

Name Reads Mapped 
% 

Coverage Length Contigs N50 Genes 

10868_1#89 3889532 98.1 73.94 5044941 97 112822 4949 

10868_1#90 4688928 98.7 89.64 5006424 78 144704 4905 

10868_1#91 4260526 93.1 76.88 5044922 177 147001 4919 

10900_1#31 2801512 95.5 51.83 5151860 80 143020 5053 

10900_1#32 3599042 99.4 69.34 5045168 76 149123 4951 

12216_4#40 5144766 99 98.65 4868524 71 134434 4748 

12216_4#41 4699890 98.4 89.61 4859440 65 144627 4757 

12216_4#42 4363564 98.5 83.26 4906994 64 133432 4769 

12216_4#43 4341900 94.4 79.43 5007548 57 214657 4946 

12216_4#44 4519078 99.5 87.12 5004210 78 149409 4894 

12216_4#45 4708460 97.7 89.15 5011241 63 164965 4917 

12216_4#46 4592746 98.2 87.41 4944440 74 139950 4871 

12216_4#47 4703734 84.5 76.97 5005467 62 172717 4948 

12216_4#48 4753954 99.2 91.38 4952303 72 161583 4828 

12216_4#49 4917208 99.2 94.49 4842349 69 175797 4722 

12216_4#51 4428042 97.9 84 4966191 60 195013 4857 

12216_4#53 4566100 98.4 87.07 4895076 72 162400 4784 

12216_4#54 5162754 97.9 97.93 5020258 67 195411 4933 

12216_4#55 4871450 95.8 90.43 5072792 52 284108 4980 
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12216_4#56 5284370 97.4 99.69 5052883 88 146745 4960 

12216_4#57 4568892 94.5 83.68 5090761 83 149007 4987 

12216_4#58 3952184 98.4 75.33 4976493 67 161403 4871 

12216_4#59 4459446 98.5 85.1 4921713 50 195414 4790 

12216_4#60 4151724 98.9 79.58 4960208 57 195403 4831 

12216_4#61 4393012 97.5 83 5007607 55 195318 4916 

12216_4#62 4618592 94.3 84.36 4945027 49 251959 4840 

12227_3#1 5194158 98.5 99.12 4962601 50 215020 4842 

12227_3#10 4570594 98.1 86.89 5042864 79 146957 4934 

12227_3#11 4926752 99.1 94.61 4751595 47 238100 4605 

12227_3#12 4813016 98.3 91.62 4924337 50 251914 4795 

12227_3#13 5236316 98.9 100.31 4915900 55 159187 4771 

12227_3#14 5412332 95.8 100.44 5101676 58 214999 4997 

12227_3#15 5730108 99.2 110.09 5042706 76 189557 4943 

12227_3#16 6052146 97.8 114.67 4996706 56 261708 4900 

12227_3#17 5260846 97.4 99.3 5008621 58 143289 4908 

12227_3#18 5372556 97.4 101.37 4988534 71 195207 4869 

12227_3#19 5187148 98 98.48 4883424 50 212167 4755 

12227_3#2 5011300 98.3 95.47 4965443 54 214985 4852 

12227_3#20 4480874 98.5 85.54 4923384 48 195388 4780 

12227_3#21 4586082 98.1 87.16 4978574 83 146469 4857 

12227_3#22 5036370 95.5 93.18 5035718 69 195212 4909 

12227_3#23 5827672 98.6 111.31 4944434 57 159186 4818 

12227_3#24 5502848 99.6 106.16 5023404 81 149196 4907 

12227_3#25 5068292 95.7 94.01 5101214 59 296488 5009 

12227_3#26 4538930 99.1 87.17 5038836 67 167656 4945 

12227_3#27 5409458 99.5 104.31 5047209 73 149174 4959 
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12227_3#28 5104036 99.5 98.35 5048510 76 146959 4953 

12227_3#29 5053162 97.7 95.65 4976937 55 195293 4860 

12227_3#3 5867244 98 111.44 4851166 52 251953 4690 

12227_3#30 4883262 98.5 93.17 4965221 48 214747 4847 

12227_3#31 5537958 98.3 105.48 4946827 58 159194 4816 

12227_3#32 5310382 97.8 100.65 4865035 47 195395 4764 

12227_3#33 4583850 98.3 87.29 4947501 64 159222 4819 

12227_3#34 4717704 96 87.75 5068657 56 255910 4958 

12227_3#35 5417350 99.1 104 4891302 56 162271 4755 

12227_3#36 5565292 97.7 105.32 5019360 58 214869 4915 

12227_3#37 5349784 97.8 101.4 4995518 59 255919 4890 

12227_3#38 4578170 98.4 87.26 4917439 44 282900 4786 

12227_3#39 5412292 97.9 102.62 4955321 69 162412 4847 

12227_3#4 5644922 98 107.2 5045161 69 175809 4929 

12227_3#40 5413274 97.6 102.32 5010535 58 195289 4924 

12227_3#41 4807198 90.9 84.64 5226277 59 195402 5169 

12227_3#42 5387826 97.8 102.04 4905900 47 236046 4774 

12227_3#43 5302882 98.4 101.13 4920067 60 175603 4792 

12227_3#44 5684572 97.2 107.07 5089435 79 176985 4997 

12227_3#45 5291962 98.2 100.69 4946756 58 227814 4822 

12227_3#46 5332544 97.6 100.78 5007769 56 205697 4919 

12227_3#47 5327502 98.7 101.85 4926290 52 206554 4775 

12227_3#48 4881750 98.6 93.29 4926529 53 236317 4780 

12227_3#49 4881894 98.1 92.82 4986584 56 160361 4868 

12227_3#5 6169240 98.7 117.95 4954924 75 162452 4808 

12227_3#50 4635114 99.5 89.37 5007888 72 149266 4887 

12227_3#51 4746446 99.5 91.5 5048359 76 149111 4955 
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12227_3#52 5429082 98.2 103.28 4965012 51 201132 4850 

12227_3#53 4376474 97.3 82.47 5133374 83 192470 5036 

12227_3#54 4530426 97.2 85.3 5130868 87 146957 5022 

12227_3#55 5260556 97.3 99.17 4927651 50 256825 4811 

12227_3#56 5363480 96.6 100.36 5132332 79 181687 5031 

12227_3#57 4621298 96.2 86.09 4977137 55 251917 4858 

12227_3#6 5679188 94.4 103.83 5098879 66 195247 5018 

12227_3#7 6293382 98.3 119.83 4841149 57 176642 4704 

12227_3#8 6262826 97.2 117.96 5001905 60 195413 4902 

12227_3#9 5228332 98.4 99.63 4991840 87 146861 4875 

9472_3#1 12568808 96.3 234.35 4935559 66 195369 4858 

9472_3#10 9411182 96.6 176.06 5135834 80 146736 5055 

9472_3#11 10538574 99.5 203.19 5052882 76 175982 4976 

9472_3#12 9721890 96.9 182.41 5165454 81 146725 5088 

9472_3#13 10502146 97.4 198.08 5161880 86 198510 5095 

9472_3#14 9740586 99 186.89 5066549 74 175906 4997 

9472_3#15 9668256 99.7 186.76 5012030 78 147037 4921 

9472_3#16 9882038 98.8 189.1 5058896 74 150539 4991 

9472_3#17 9964280 96.3 185.89 5029157 74 175836 4934 

9472_3#18 8627588 99.5 166.34 5045229 92 175630 4957 

9472_3#19 9728464 97.6 183.97 4934937 54 215006 4818 

9472_3#2 9987104 97.9 189.32 4988511 70 162584 4888 

9472_3#20 10661266 98.7 203.89 5015618 85 143410 4919 

9472_3#21 10592012 96.9 198.87 5169321 86 145882 5086 

9472_3#22 9617680 99.3 185.04 5014284 75 162533 4920 

9472_3#23 9213008 99.4 177.34 5064218 87 146103 4996 

9472_3#24 10013626 97 188.12 5166931 92 134459 5079 
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9472_3#25 11974942 99.4 230.49 5020379 70 147031 4938 

9472_3#27 9596238 99.8 185.5 5005406 72 146959 4899 

9472_3#28 8842562 96.9 166.04 5148340 87 146762 5056 

9472_3#30 8930070 89.8 154.96 5010158 73 175874 4916 

9472_3#31 8948484 98.3 170.44 5085083 65 195350 4995 

9472_3#32 10228588 94.4 187.04 5197912 101 134125 5125 

9472_3#33 11191750 90.5 195.31 5039988 69 243732 4975 

9472_3#34 7232246 87.2 121.62 5160889 79 146730 5074 

9472_3#4 8464880 98.6 161.76 5003613 73 146959 4963 

9472_3#5 10708366 97.8 202.92 5042617 75 195368 4974 

9472_3#6 8478962 98.2 161.31 5087212 67 175850 5003 

9472_3#7 9953400 97.4 187.83 4939069 70 162515 4850 

9472_3#8 9396910 99.3 180.81 5044982 77 147011 4959 

9472_3#9 11845904 99.5 228.27 4998331 75 162227 4890 
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Appendix 3: SNPs defining the major 

phylogenetic clusters 

 

A hundred and twelve SNPs were found to enable to discriminate between the 2 

major clusters. The table below provides a comprehensive description of each SNP, 

their position in the genome and putative functions of the genes they were found in. 
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Coordinates Continental Islands Type Change Name Function 

38110 T G Nonsynonymous M1I yhcR secreted 5'-nucleotidase 

53518 C G Nonsynonymous V1M ribF riboflavin biosynthesis protein RibF 

150218 T C Synonymous 287R murD UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase 

159866 G A Intergenic 
   

165171 A G Synonymous 48V lysR_1 LysR family transcriptional regulator 

171185 G C Nonsynonymous Y110H hofB protein transport protein HofB 

186542 A G Intergenic 
   

455296 A G Intergenic 
   

482321 T C Nonsynonymous T116A yajI lipoprotein 

493751 G A Intergenic 
   

551959 T A Nonsynonymous D132N ybaN Inner membrane protein YbaN 

553182 G T Intergenic 
   

555948 G A Nonsynonymous R136C SBOV4431 chaperone protein HtpG 

623261 A G Intergenic 
   

666014 A G Intergenic 
   

667137 A G Intergenic 
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694039 C A Nonsynonymous A14V entF enterobactin synthetase component F 

731339 G A Nonsynonymous N142K citF_2 citrate lyase subunit alpha 

877723 A G Nonsynonymous L16P sdcS_1 cation transporter 

882274 C T Nonsynonymous N160T 
10259_0084
6 

membrane protein 

885476 T C Synonymous 245N gpmA phosphoglyceromutase 

928510 C T Synonymous 217L ybhL_1 membrane protein 

969008 A G Intergenic 
   

1087552 T C Synonymous 94D cydD 
cysteine/glutathione ABC transporter membrane/ATP-
binding component 

1102354 C T Nonsynonymous L171F dmsB_2 anaerobic dimethyl sulfoxide reductase subunit B 

1151458 C T Synonymous 268T 
10259_0111
1 

amino acid:proton symporter 

1202670 T A Nonsynonymous S177P pepN aminopeptidase N 

1283933 T C Synonymous 70P 
10259_0125
7 

hypothetical protein 

1461980 A T Intergenic 
   

1539870 A G Intergenic 
   

1560429 T C Intergenic 
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1625658 G A Intergenic 
   

1669118 G A Intergenic 
   

1694992 A C Intergenic 
   

1697445 G A Nonsynonymous P186L SBOV16411 putative inner membrane protein 

1703784 G C Nonsynonymous L19R 
10259_0169
5 

protein ydcJ 

1720617 T C Synonymous 76N gatC_1 phosphotransferase enzyme 

1735902 C A Nonsynonymous V190I ydcR_1 GntR family transcriptional regulator 

1743929 A G Synonymous 37R 
10259_0173
4 

ssrAB activated gene 

1782320 G A Intergenic 
   

1792507 C T Synonymous 243Y galS_1 transcriptional regulator 

1827483 T G Intergenic 
   

1842679 C T Nonsynonymous P191L 
10259_0182
7 

lipoprotein 

1904277 G A Synonymous 33P ydhJ multidrug resistance efflux pump 

1938526 G T Nonsynonymous Y191H sseC pathogenicity island 2 effector protein SseC 

1945318 G C Nonsynonymous A206T ssrA sensor kinase 
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1948148 C T Nonsynonymous P212A ycgE_1 MerR family transcriptional regulator 

1952986 T C Nonsynonymous N234H ttrB tetrathionate reductase subunit B 

1955378 C T Synonymous 391L ttrA tetrathionate reductase subunit A 

2072991 C T Synonymous 395H dosC diguanylate cylase 

2104434 A T Intergenic 
   

2155215 T C Synonymous 29G mnmA tRNA-specific 2-thiouridylase MnmA 

2179555 A C Nonsynonymous I24T ycfS LD-transpeptidase YcfS 

2306947 T G Nonsynonymous I253V ackA_1 propionate kinase 

2312418 C T Nonsynonymous V262L dacD penicillin-binding protein 

2327448 G A Synonymous 20L hisC histidinol-phosphate aminotransferase 

2349279 C T Nonsynonymous G266D rfbD_2 dTDP-4-dehydrorhamnose reductase 

2368620 T C Nonsynonymous P271H wcaC glycosyltransferase 

2388569 G A Nonsynonymous G3R yegN RND family transporter protein 

2397768 A G Intergenic 
   

2487266 C T Nonsynonymous N31H yeiO sugar efflux transporter 

2571886 C A Synonymous 233G arnB 
UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate 
aminotransferase 

2644752 C T Nonsynonymous A315V folC folylpolyglutamate synthase 
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2655437 C A Intergenic 
   

2745065 A G Synonymous 152R xapA purine nucleoside phosphorylase 

2751842 T C Intergenic 
   

2806294 A C Nonsynonymous T319I dapE succinyl-diaminopimelate desuccinylase 

2830342 A G Nonsynonymous I331S ppx exopolyphosphatase 

2918022 A C Nonsynonymous H332D dmsA_4 putative anaerobic dimethylsulfoxide reductase 

2939599 T C Nonsynonymous L349Q 
10259_0293
9 

reductase 

3029090 G A Nonsynonymous L36P nadB L-aspartate oxidase 

3044150 G A Synonymous 372K kgtP alpha-ketoglutarate transporter 

3165103 G T Nonsynonymous G366S gabR DeoR family transcriptional regulator 

3192557 G A Synonymous 87L srlA Glucitol/sorbitol permease IIC component 

3247227 A G Synonymous 216Q spaR virulence associated secretory protein 

3250702 G A Synonymous 12Q spaI 
secretory apparatus ATP synthase (associated with 
virulence) 

3258960 A C Intergenic 
   

3323082 G A Nonsynonymous W394C SBOV30001 conserved hypothetical protein 

3469564 A G Synonymous 84Q yqgD inner membrane protein 
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3502405 T C Nonsynonymous R422L 
10259_0350
9 

FIC domain-containing protein 

3559237 G T Nonsynonymous E431Q STY3343 putative exported protein 

3638294 T C Nonsynonymous R451L tdcD propionate/acetate kinase 

3710463 G A Synonymous 122L mtgA 
monofunctional biosynthetic peptidoglycan 
transglycosylase 

3715222 T G Intergenic 
   

3734518 G A Intergenic 
   

3784257 T C Synonymous 260V acrF acriflavin resistance protein F 

3798695 G A Synonymous 51P fmt methionyl-tRNA formyltransferase 

3844549 C T Intergenic 
   

3861654 A G Synonymous 68* aroB 3-dehydroquinate synthase 

3933453 A G Intergenic 
   

3935103 G A Synonymous 226S php phosphotriesterase 

4022010 T A Nonsynonymous A49V 
10259_0402
3 

putative inner membrane protein 

4054900 G A Nonsynonymous D498G xylR xylose operon regulatory protein 

4087478 C A Intergenic 
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4151451 A G Intergenic 
   

4179949 T C Synonymous 81N 
10259_0417
1 

putative secreted protein 

4183764 C A Intergenic 
   

4202714 G A Nonsynonymous A51T dsdX permease 

4231325 T G Nonsynonymous M5118T 
10259_0422
3 

2-oxo-3-deoxygalactonate kinase 

4343874 A G Nonsynonymous S55R hemC porphobilinogen deaminase 

4464873 G A Nonsynonymous L550Q siaT_2 integral membrane transport protein 

4469553 A C Nonsynonymous A561E cpxA two-component sensor kinase protein 

4478528 G A Synonymous 175K yicJ_2 sodium:galactoside symporter 

4525097 G A Intergenic 
   

4528083 T C Intergenic 
   

4537997 A G Intergenic 
   

4613302 A G Nonsynonymous T68A 
10259_0459
7 

histidine biosynthesis protein 

4651837 A T Intergenic 
   

4659202 C T Synonymous 224N bepC type-I secretion protein 
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4676493 T C Nonsynonymous N697H 
10259_0464
1 

Ig domain-containing protein 

4740492 T C Intergenic 
   

4783210 C T Nonsynonymous P7S sugE SugE protein 

4785518 A C Nonsynonymous H71Y frdB fumarate reductase, iron-sulfur protein 

4794271 C T Nonsynonymous S75T psd phosphatidylserine decarboxylase proenzyme 

4863047 C T Intergenic 
   

4865401 G A Nonsynonymous F78I iolB 5-deoxyglucuronate isomerase 

4867756 G T Intergenic 
   

4867800 G A Intergenic 
   

4872126 T C Synonymous 359D 
10259_0482
6 

lysosomal glucosyl ceramidase 

4883973 G A Synonymous 37E pmbA peptidase PmbA 

4901727 G A Nonsynonymous G84D mgtA magnesium-transporting ATPase MgtA 

4982215 C G Nonsynonymous R88Q mdtM sugar transport protein 
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Appendix 4: MLST data 

 

The table below summarises the sequence type (ST) and the alleles numbers for the 

house keeping genes used to compile the MLST profile of all samples used in the 

study and the ones that were discarded.  
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Isolate-LANE ID  ST aroC dnaN hemD hisD purE sucA thrA  

10868_1#89.contigs_velvet 1500 130 97 25 125 422 9 101 

10868_1#90.contigs_velvet 1500 130 97 25 125 422 9 101 

10868_1#91.contigs_velvet 1500 130 97 25 125 422 9 101 

10900_1#31.contigs_velvet 1500 130 97 25 125 422 9 101 

10900_1#32.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#40.contigs_velvet 559 130 97 25 125 U 9 101 

12216_4#41.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#42.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#43.contigs_velvet 559 U 97 25 125 U 9 101 

12216_4#44.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#45.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#46.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#47.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#48.contigs_velvet 1500 130 97 25 125 422 9 101 
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12216_4#50.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#49.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#51.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#52.contigs_velvet 518 101 41 40 184 76 90 3 

12216_4#53.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#54.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#55.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#56.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#57.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#58.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#59.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#60.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#61.contigs_velvet 1500 130 97 25 125 422 9 101 

12216_4#62.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#10.contigs_velvet 1500 130 97 25 125 422 9 101 
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12227_3#11.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#12.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#13.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#14.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#15.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#16.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#17.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#18.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#19.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#1.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#20.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#22.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#21.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#24.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#23.contigs_velvet 1500 130 97 25 125 422 9 101 
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12227_3#26.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#25.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#28.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#27.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#29.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#2.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#30.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#31.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#32.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#33.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#34.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#35.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#36.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#37.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#38.contigs_velvet 559 130 97 25 125 422 9 U 
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12227_3#39.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#3.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#40.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#41.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#42.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#43.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#44.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#45.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#46.contigs_velvet 559 U 97 25 125 422 9 101 

12227_3#47.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#48.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#49.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#4.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#50.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#51.contigs_velvet 1500 130 97 25 125 422 9 101 
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12227_3#52.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#53.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#54.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#55.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#56.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#57.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#5.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#6.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#7.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#8.contigs_velvet 1500 130 97 25 125 422 9 101 

12227_3#9.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#10.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#11.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#12.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#13.contigs_velvet 1500 130 97 25 125 422 9 101 
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9472_3#14.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#15.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#16.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#17.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#18.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#19.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#1.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#20.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#21.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#22.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#23.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#24.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#25.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#26.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#28.contigs_velvet 1500 130 97 25 125 422 9 101 
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9472_3#27.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#2.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#29.contigs_velvet 1684 U U U U 281 U 
 

9472_3#30.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#31.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#32.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#33.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#3.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#34.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#4.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#5.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#6.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#7.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#8.contigs_velvet 1500 130 97 25 125 422 9 101 

9472_3#9.contigs_velvet 1500 130 97 25 125 422 9 101 
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Appendix 5: Phage search in Phast   

 

The table below shows an the outcome of the phage search performed on Phast for 4 

S. Weltevreden isolates.  
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S. Weltevreden 10259 contig 1 undefined product 1:5062936 forward .5062936, GC%: 52.16%, length = 5062936 bps 
 
Total : 13 prophage regions have been identified, of which 9 regions are intact, 3 regions are incomplete, 1 regions are questionable.  

REGION REGION_LENGTH COMPLETENESS SCORE #CDS REGION_POSITION POSSIBLE PHAGE GC % 
DET
AIL 

1  41Kb  intact  150  53  624585-665599  
PHAGE_Salmon_Fels_1_N
C_010391, ......  

51.97%
  

Detail 

2  43.8Kb  intact  150  52  1014619-1058492  
PHAGE_Salmon_ST64B_
NC_004313, ......  

49.45%
  

Detail 

3  32.9Kb  questionable  70  9  1057625-1090615  
PHAGE_Cronob_vB_Csa
M_GAP32_NC_019401, 
......  

53.59%
  

Detail 

4  47.3Kb  intact  150  57  1153517-1200901  
PHAGE_Gifsy_2_NC_010
393, ......  

51.04%
  

Detail 

5  11.8Kb  incomplete  40  12  1431061-1442946  
PHAGE_Entero_HK106_
NC_019768, ......  

51.78%
  

Detail 

6  47.8Kb  intact  150  63  2107247-2155075  
PHAGE_Gifsy_1_NC_010
392, ......  

51.83%
  

Detail 

7  40.7Kb  intact  105  58  2674176-2714885  
PHAGE_Salmon_c341_N
C_013059, ......  

47.29%
  

Detail 

8  58.5Kb  intact  105  57  2822899-2881489  
PHAGE_Escher_TL_2011
b_NC_019445, ......  

51.06%
  

Detail 

9  18.4Kb  incomplete  50  21  2980916-2999341  
PHAGE_Aggreg_S1249_
NC_013597, ......  

50.88%
  

Detail 

10  37.6Kb  intact  100  30  2987821-3025476  
PHAGE_Salmon_SPN3U
B_NC_019545, ......  

51.98%
  

Detail 

11  34.8Kb  intact  128  45  3060402-3095234  
PHAGE_Entero_PsP3_NC
_005340, ......  

51.90%
  

Detail 

12  24.8Kb  incomplete  30  14  4930004-4954832  
PHAGE_Entero_P4_NC_0
01609, ......  

49.57%
  

Detail 

13  7.5Kb  intact  110  15  4943648-4951226  
PHAGE_Shigel_SfIV_NC
_022749, ......  

49.24%
  

Detail 
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S. Weltevreden C2346 Contig 1 5129845 forward .5129845, GC%: 52.18%, length = 5129845 bps 
 
Total: 11 prophage regions have been identified, of which 8 regions are intact, 3 regions are incomplete, 0 regions are questionable.  

REGION REGION_LENGTH COMPLETENESS SCORE #CDS REGION_POSITION 
POSSIBLE 
PHAGE 

GC % DETAIL 

1  41Kb  intact  150  54  634260-675274  
PHAGE_Salmon_
Fels_1_NC_0103
91, ......  

51.97%  Detail 

2  26.8Kb  incomplete  60  9  1022187-1049025  

PHAGE_Cronob_
vB_CsaM_GAP3
2_NC_019401, 
......  

53.51%  Detail 

3  48.7Kb  intact  150  60  1121849-1170548  
PHAGE_Gifsy_2
_NC_010393, 
......  

51.04%  Detail 

4  48.1Kb  intact  150  61  1459559-1507668  
PHAGE_Gifsy_1
_NC_010392, 
......  

51.80%  Detail 

5  19.3Kb  incomplete  40  12  2157246-2176555  
PHAGE_Entero_
HK106_NC_0197
68, ......  

45.84%  Detail 

6  54.4Kb  intact  110  56  2762040-2816527  
PHAGE_Entero_
phiV10_NC_0078
04, ......  

51.36%  Detail 

7  44.5Kb  intact  150  54  2910719-2955279  
PHAGE_Salmon_
SPN3UB_NC_01
9545, ......  

51.18%  Detail 

8  34.8Kb  intact  128  43  2990205-3025037  
PHAGE_Entero_
PsP3_NC_005340
, ......  

51.90%  Detail 

9  64.6Kb  intact  150  58  4650120-4714751  
PHAGE_Salmon_
ST64B_NC_0043
13, ......  

51.83%  Detail 

10  24.8Kb  incomplete  30  14  4996913-5021741  PHAGE_Entero_ 49.57%  Detail 
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P4_NC_001609, 
......  

11  7.5Kb  intact  110  15  5010557-5018135  
PHAGE_Shigel_S
fIV_NC_022749, 
......  

49.24%  Detail 

 
S. Weltevreden 98_11262 Contig 1 4897142, GC%: 52.18%, length = 4897142 bps 
 
Total : 8 prophage regions have been identified, of which 4 regions are intact, 3 regions are incomplete, 1 regions are questionable.  

REGION REGION_LENGTH COMPLETENESS SCORE #CDS REGION_POSITION 
POSSIBLE 
PHAGE 

GC % DETAIL 

1  51.6Kb  intact  120  79  940-52580  
PHAGE_Entero_
ST64T_NC_0043
48, ......  

47.13%  Detail 

2  6.3Kb  questionable  90  13  792695-799011  
PHAGE_Ralsto_p
hiRSA1_NC_009
382, ......  

48.41%  Detail 

3  12.1Kb  incomplete  40  17  801306-813443  
PHAGE_Entero_
P4_NC_001609, 
......  

50.81%  Detail 

4  34.1Kb  intact  110  41  2133831-2168020  
PHAGE_Vibrio_
8_NC_022747, 
......  

50.01%  Detail 

5  48.1Kb  intact  150  62  3446723-3494831  
PHAGE_Gifsy_1
_NC_010392, 
......  

51.80%  Detail 

6  19.3Kb  incomplete  40  12  4142117-4161426  
PHAGE_Entero_
HK106_NC_0197
68, ......  

45.84%  Detail 

7  48.3Kb  intact  150  58  4391859-4440190  
PHAGE_Gifsy_2
_NC_010393, 
......  

51.09%  Detail 

8  18.9Kb  incomplete  60  9  4513062-4532052  PHAGE_Cronob_ 53.58%  Detail 
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vB_CsaM_GAP3
2_NC_019401, 
......  

 
S. Weltevreden 99_3134 Contig 1 4977779, GC%: 52.15%, length = 4977779 bps 
 
Total : 11 prophage regions have been identified, of which 7 regions are intact, 3 regions are incomplete, 1 regions are questionable.  

REGION REGION_LENGTH COMPLETENESS SCORE #CDS REGION_POSITION 
POSSIBLE 
PHAGE 

GC % DETAIL 

1  34.9Kb  intact  150  48  309-35286  
PHAGE_Salmon_
Fels_1_NC_0103
91, ......  

47.34%  Detail 

2  51.5Kb  intact  100  54  370802-422363  
PHAGE_Entero_
P22_NC_002371, 
......  

48.13%  Detail 

3  6.3Kb  questionable  80  12  1162475-1168791  
PHAGE_Ralsto_p
hiRSA1_NC_009
382, ......  

48.41%  Detail 

4  23.5Kb  incomplete  30  14  1158855-1182435  
PHAGE_Entero_
P4_NC_001609, 
......  

49.37%  Detail 

5  34.3Kb  intact  100  39  2503660-2537985  
PHAGE_Vibrio_
8_NC_022747, 
......  

50.01%  Detail 

6  34.7Kb  intact  125  48  3050986-3085752  
PHAGE_Entero_
PsP3_NC_005340
, ......  

52.60%  Detail 

7  61.9Kb  intact  150  56  3861593-3923505  
PHAGE_Gifsy_1
_NC_010392, 
......  

51.81%  Detail 

8  24.8Kb  incomplete  50  8  3911226-3936104  

PHAGE_Cronob_
vB_CsaM_GAP3
2_NC_019401, 
......  

51.64%  Detail 
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9  46.1Kb  intact  150  57  4009349-4055531  
PHAGE_Gifsy_2
_NC_010393, 
......  

50.73%  Detail 

10  11.8Kb  incomplete  40  12  4279868-4291753  
PHAGE_Entero_
HK106_NC_0197
68, ......  

51.79%  Detail 

11  26.8Kb  intact  150  41  4950836-4977691  
PHAGE_Gifsy_1
_NC_010392, 
......  

49.80%  Detail 

Legend: 
REGION : the number assigned to the region 
REGION_LENGTH : the length of the sequence of that region (in bp) 
COMPLETENESS: a prediction of whether the region contains a intact or incomplete prophage based on the above criteria 
SCORE: the score of the region based on the above criteria 
#CDS: the number of coding sequnce 
REGION_POSITION : the start and end positions of the region on the bacterial chromosome 
PHAGE: the phage with the highest number of proteins most similar to those in the region  
GC_PERCENTAGE: the percentage of gc nucleotides of the region 
DETAIL : detail info of the region
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Appendix 5: Microarray (Biolog) data  

 

The graphs below show the results of the metabolic assay for each Phenotype 

Microarray (PM) plates used. Each data set contains the template of the PM with the 

respective graph of the results. 

 

Each well displays the kinetics of the utilisation of a specific metabolite (see 

template). The blue lines represent the metabolite utilisation by S. Typhimurium 

SL1344, the green lines represent the metabolite’s utilisation by S. Weltevreden 

C2346 and the red lines represent the metabolite’s utilisation by S. Weltevreden 

10259. Each experiment was conducted in duplicates therefore each well display 2 

line per isolates. 
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PM 1 dataset 
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PM 2 dataset 
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PM 3 dataset 
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PM 4 dataset 
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PM 9 dataset 
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PM 10 dataset 

 

 

 


