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Abstract 

Background:  Wasting is a major public health issue throughout the developing world. Out of the 6.9 million esti-
mated deaths among children under five annually, over 800,000 deaths (11.6 %) are attributed to wasting. Wasting 
is quantified as low Weight-For-Height (WFH) and/or low Mid-Upper Arm Circumference (MUAC) (since 2005). Many 
statistical procedures are based on the assumption that the data used are normally distributed. Analyses have been 
conducted on the distribution of WFH but there are no equivalent studies on the distribution of MUAC.

Methods:  This secondary data analysis assesses the normality of the MUAC distributions of 852 nutrition cross-
sectional survey datasets of children from 6 to 59 months old and examines different approaches to normalise “non-
normal” distributions.

Results:  The distribution of MUAC showed no departure from a normal distribution in 319 (37.7 %) distributions 
using the Shapiro–Wilk test. Out of the 533 surveys showing departure from a normal distribution, 183 (34.3 %) were 
skewed (D’Agostino test) and 196 (36.8 %) had a kurtosis different to the one observed in the normal distribution 
(Anscombe–Glynn test). Testing for normality can be sensitive to data quality, design effect and sample size. Out 
of the 533 surveys showing departure from a normal distribution, 294 (55.2 %) showed high digit preference, 164 
(30.8 %) had a large design effect, and 204 (38.3 %) a large sample size. Spline and LOESS smoothing techniques were 
explored and both techniques work well. After Spline smoothing, 56.7 % of the MUAC distributions showing depar-
ture from normality were “normalised” and 59.7 % after LOESS. Box-Cox power transformation had similar results on 
distributions showing departure from normality with 57 % of distributions approximating “normal” after transforma-
tion. Applying Box-Cox transformation after Spline or Loess smoothing techniques increased that proportion to 82.4 
and 82.7 % respectively.

Conclusion:  This suggests that statistical approaches relying on the normal distribution assumption can be success-
fully applied to MUAC. In light of this promising finding, further research is ongoing to evaluate the performance of a 
normal distribution based approach to estimating the prevalence of wasting using MUAC.
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Background
Wasting is a major public health issue throughout the 
developing world. The United Nations Children’s Fund’s 
(UNICEF) latest report on the State of the World’s Chil-
dren [1] estimates that 10  % of children under 5  years 

old in least developed countries are wasted. Out of the 
6.9 million estimated deaths among children under five 
annually, over 800,000 deaths (12.6  %) are attributed to 
wasting [2]. Wasting is quantified as Weight-For-Height 
(WFH)  < −2 standard deviations (SD) from the World 
Health Organization (WHO) reference median and/or 
Mid-Upper Arm Circumference (MUAC)  <  125  mm. 
MUAC has been adopted by the World Health Organisa-
tion (WHO) as a measure of wasting and is increasingly 
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recognised as a very useful measure of anthropometric 
status [3, 4].

Many statistical procedures are based on the assump-
tion that the data follow a normal distribution. The 
shape of the normal distribution (the characteristic “bell 
curve”) is quantified by two parameters: the mean and 
the standard deviation, and follows important proper-
ties: (1) it is always symmetrical with equal areas on both 
sides of the curve; (2) the highest point on the curve cor-
responds to the mean which equals the median and the 
mode; (3) the spread of the curve is determined by the 
standard deviation; and (4) as with all probability density 
functions the area under the curve must sum to the total 
probability of 1 [5]. The distribution of many characteris-
tics in nature is normal or follows some form that can be 
derived from the normal distribution and specific statisti-
cal approaches are based on the properties of a normal 
distribution. For example, the probit approach [5, 6] esti-
mates the prevalence of wasting as the cumulative prob-
ability of lying below the relevant MUAC cut-point based 
on the mean and standard deviation (SD) of the observed 
data [5, 6].

There are graphical and statistical methods for evalu-
ating normality. Graphical methods include histograms 
and normality plots. Statistical methods include diag-
nostic hypothesis tests for normality, and a normal dis-
tribution has a skewness of 0 and kurtosis of 3 [7, 8]. 
Skewness  is a measure of the asymmetry of a distribu-
tion around its mean while Kurtosis indicates heavy tails 
and “peakedness” relative to a normal distribution [9, 10]. 
The ability to detect departure from a normal distribu-
tion can be sensitive to local peaks and troughs in the 
distribution. A way to deal successfully with this issue is 
to apply smoothing techniques (fit a smooth curve to a 
set of noisy observations) using different methods such 
Spline function or Locally Weighted Scatterplot Smooth-
ing (LOESS) [11–13]. For distribution originating from 
cluster surveys, it may be expected that high clustering in 
observations (large design effect) lead to asymmetric dis-
tributions, e.g. featuring a long tail of low MUAC obser-
vations. When a variable is not normally distributed for 
a reason other than the ones above, it can often be trans-
formed and tested for normality using power transforma-
tions such as the Box-Cox transformation [14, 15].

Although the violation of the normal distribution 
assumption often increases chances of committing either 
a type I or II error, very few researchers test whether the 
assumption does indeed hold before carrying out statisti-
cal analyses [16, 17]. Previous studies have assessed the 
distribution of WFH [18–20] but there are no equivalent 
studies on the distribution of MUAC. This paper assesses 
the normality of the MUAC distribution graphically and 
statistically, and explores different transformations and 

smoothing techniques in order to reach normality. Find-
ings presented pertain to a broader project to develop 
a more efficient method for estimating the prevalence 
of wasting using MUAC as the primary index, which 
relies heavily on MUAC distributions meeting normality 
criteria.

Methods
Study design and inclusion criteria
A total of 1068 cross-sectional survey datasets from vari-
ous settings were shared by six organisations (UNICEF, 
Food Security and Nutrition Analysis Unit, Epicentre/
Médecins Sans Frontières, Action Against Hunger, Con-
cern Worldwide and Goal). The study size depended on 
availability of surveys and on specific inclusion criteria. 
Eligible datasets had to: (1) include MUAC, oedema, age, 
weight and height as well as meta-data on country, live-
lihood, residence, cluster (if cluster surveys) and date; 
(2) have a minimum of 25 clusters if cluster surveys [21, 
22]. The last criteria aimed to minimise selection bias, as 
surveys with a small number of clusters may not be rep-
resentative of the population. The surveys were exhaus-
tive or clustered surveys. The datasets were cleaned and 
records with extreme or missing values were excluded: 
Children were excluded if any of the following data 
were missing: age; sex; height; weight; MUAC; oedema. 
Those with highly improbable extreme values (‘flags’) 
were also excluded from analysis: MUAC  <  85  mm or 
MUAC > 200 mm, age < 6 months or age > 59 months, 
Weight-For-Age (WFA)  < −6.0 SD or WFA  > +5.0 SD, 
Height-For-Age (HFA)  <  −6.0 SD or HFA  >  +6.0 SD, 
WFH < −5.0 SD or WFH > +5.0 SD (WHO “flags” were 
applied on SD for WFH, WFA and HFA [23]).

Database
Out of the 1068 surveys collected, 852 surveys were 
included in the secondary data analysis (55 exhaustive 
surveys and 797 clustered surveys). The 852 surveys 
contained 668,975 children of which 25,134 (3.76  %) 
presented highly improbable values and were excluded 
from the analysis. The database included six variables for 
anthropometry (sex, MUAC, oedema, age, weight and 
height), six meta-data variables (organisation, country, 
livelihood, residence, cluster (when cluster surveys) and 
date). Other variables were computed for the purpose of 
this analysis: (1) the normality of the distribution (binary: 
1 =  yes/0 = no using Shapiro–Wilk test), (2) the skew-
ness and Kurtosis of MUAC as continuous and binary 
(binary: 1 =  yes/0 =  no whether the data was skewed 
or peaked using D’Agostino and Anscombe–Glynn tests 
respectively), (3) the design effect of surveys (large over 
3) (4) digit preference of MUAC. The digit preference 
variable was equal to 1—absolute (0.1-proportion of 
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each digit preference). Assuming that the proportion of 
measurements ending with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 should 
equal 10 % and therefore that the highest score was 1, the 
lesser the digit preference, the higher the score. A score 
equal or over 0.75 corresponded to a low digit preference, 
and under 0.75 to a high digit preference, and (5) survey 
size category (large size over 900).

Data analysis
The normality of the MUAC distributions was assessed 
graphically looking at histograms of MUAC distributions 
and Q–Q plots (probability plot, “Q” stands for quantile). 
Q–Q plots show sorted values from the data set against 
the expected values of the corresponding quantiles from 
the standard normal distribution. The measure of depar-
ture from normality was also investigated statistically 
through Shapiro–Wilk test as well as the D’Agostino test 
to assess the skewedness and Anscombe–Glynn test to 
assess the peakedness of MUAC distributions. For each 
statistical test, a p value less than 0.05 indicates evidence 
for departure from a normal distribution.

Different methods were explored to transform non-
normal distributions into normal: (1) Spline smoothing 
(using a spline function) and LOESS (locally weighted 
scatterplot smoothing using local polynomial regres-
sion fitting) techniques were applied to all distribution 
showing departure from a normal distribution (Shapiro–
Wilk test). While smoothing the data, three criteria were 
applied: the mean MUAC and MUAC SD, after back-
transformation of the smoothed data must be almost 
unchanged from the non-smoothed mean and SD (prop-
erties of a normal distribution is defined by the mean and 
the SD), and the Shapiro–Wilk test p value has to exceed 
0.05. (2) Box-Cox power transformation was applied to 
all survey showing departure from a normal distribu-
tion, and (3) Box-Cox power transformation was applied 
on surveys showing departure from “normality” after 
smoothing techniques had been applied.

Spline smoothing fits a spline with knots at every data 
point (x) by estimating its parameters minimizing the 
usual sum of squares plus a roughness penalty (λ). If 
λ → 0 imposes no penalty (very close fit), but the result-
ing curve could be very noisy as it follows every detail in 
the data. As λ → ∞ the penalty dominates and the solu-
tion converges to the ordinary least square line. LOESS 
is a fairly direct generalization of traditional least-squares 
methods for data analysis. It fits a polynomial surface 
determined by one or more numerical predictors, using 
local fitting. That is, for the fit at point x, the fit is made 
using points in a neighbourhood of x, weighted by their 
distance from x (with differences in ‘parametric’ variables 
being ignored when computing the distance). The size of 
the neighbourhood is controlled by α (set by span).

The Box-Cox method transforms data into a “nor-
mal” shape using parameter λ corresponding to different 
transformations (i.e. λ = 1.00: no transformation needed; 
λ = 0.50: square root transformation λ = 0.29: for a trans-
forming power between cube and fourth root λ =  0.33: 
cube root transformation λ = 0.25: fourth root transfor-
mation λ = 0.00: natural log transformation λ = −0.50: 
reciprocal square root transformation λ = −1.00: recip-
rocal (inverse) transformation and so forth). The most 
appropriate value of λ was identified as that which mini-
mised the departure from a normal distribution on the 
Shapiro–Wilk test.

R studio and STATA 13 were used for all analyses [24, 
25].

Ethics approval for the project was sought and obtained 
from the Ethics Committee of the London School of 
Hygiene and Tropical Medicine (LSHTM Ethics refer-
ence 6158).

Results
The distribution of MUAC showed no departure from 
a normal distribution in 37.4  % (319 out of 852) of the 
MUAC distributions using the Shapiro–Wilk test. Out of 
the 533 surveys showing departure from a normal distri-
bution, 183 (34.3 %) were skewed (D’Agostino test), 196 
(36.8  %) had a kurtosis different to the one observed in 
the normal distribution (Anscombe–Glynn test) and 
70 (13.1  %) showed both features. The sensitivity of the 
Shapiro–Wilk test to departure from normality is influ-
enced by the presence of local peaks and troughs in the 
distribution such as those caused by digit preference 
(poor data quality), the design effect (high design effect 
may lead to asymmetric distributions), and sample size 
(large sample size results in greater power to detect small 
departures from a normal distribution). Out of the 533 
surveys showing departure from normal distribution, 
294 (55.2 %) showed high digit preference (score < 0.75) 
164 (30.8  %) had a large design effect (over 3), and 204 
(38.3 %) a large sample size (>900) (Table 1). The skew-
ness and kurtosis of surveys showing departure from 
normality included values above and below the value for 
a normal distribution (0 for skewedness and 3 for kurto-
sis) indicating surveys skewed to right as well as to the 
left and survey with a distribution flatter or more peaked 
than the normal distribution (Table 2).

Figure  1 shows examples of distributions of MUAC 
and their respective Q–Q plots for two surveys with 
very “non-normal” distribution (very low p-value Shap-
iro–Wilk test) but skewness and kurtosis close to those 
observed in a normal distribution. Visually neither of the 
distribution seemed skewed or peaked but digit prefer-
ences were visible in both cases which suggest this might 
be the reason behind the low p-value (Shapiro–Wilk test).
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Figure 2 shows examples of distributions of MUAC and 
their respective Q–Q plots for two surveys with “non-
normal” distribution (low p-value Shapiro–Wilk test) 
and also skew or kurtosis different to that observed in 
the normal distribution. The distribution and Q–Q-Plot 
for the survey shown in panel A has skewed distribution 
(D’Agostino test) and that shown in panel B has peaked 
distribution (Anscombe–Glynn test). The distribution 
in panel A was slightly skewed to the left and there were 
very visible digit preferences. Peaks are visible in the dis-
tribution in panel B as well as digit preferences.

Table 1 as well as Figs. 1 and 2 suggest the main reason 
for departure from a normal distribution is due to local 
peaks and troughs.

Smoothing techniques
Spline and LOESS smoothing techniques were explored 
and both techniques work well. After applying Spline 
smoothing to the distributions showing departure from 
normality, 301 (56.5  %) of the MUAC distributions 
showed no departure from normality and 318 (59.7  %) 
after LOESS (Table 3).

The average mean MUAC change after Spline smooth-
ing was 0.1 and the mean SD MUAC change was 0.8. All 
surveys had an average mean MUAC change under 10 and 
90 % had a SD change under 10 %. After LOESS smoothing, 
the average mean MUAC change was 0.2 and the average 
SD MUAC change was 0.9. All surveys had a mean MUAC 
change under 10 and 84 % had a SD change under 10 %.

The effect of Spline and Loess smoothing on “non-
normal” distributions with large design effect, high digit 

preference, large sample size as well as on skewed distri-
butions and distributions with a kurtosis different from 
a normal distribution (flat or peaked) was considerable. 
Approximately half of surveys with large design effect 
were normalised after Spline and LOESS (49.4 and 56.1 % 
respectively), about two-third of surveys with high digit 
preference had a distribution approximating normal 
after Spline and LOESS (60.6 and 57.8  % respectively), 
half of surveys with large sample size (46.6 and 49.54 % 
respectively) as well as half of skewed distributions (49.4 
and 48.6  % respectively) and over two-third of surveys 
with kurtosis different from normal were approximating 
a normal distribution after Spline and Loess smoothing 
(69.9 and 70.9 % respectively) (Table 3).

Box‑Cox power transformation
Power transformations are typically used to “normalise” 
skewed distributions. Common power transformations 
include log, reciprocal, square and square root transfor-
mations. After applying the Box-Cox transformation to 
the 533 distributions showing departure from normality, 
304 (57 %) of the distribution were converted to “normal” 
(Table 3).

The summary statistics of the Box-Cox transformation 
coefficient [Lambda (λ)] suggest that a variety of different 
power transformations were required for different sur-
veys and few Lambda values corresponded to common 
power transformations (Table 4).

The effect of Box-Cox transformation on skewed distri-
butions was sizable with almost two-third of skewed distri-
bution approximation a normal distribution after Bo-Cox 

Table 1  Characteristics of surveys showing departure from a normal distribution (Shapiro–Wilk test, p < 0.05) and effect 
of transformation and smoothing on specific characteristics (N = 533)

a  Shapiro–Wilk test (p < 0.05); b D’Agostino test (p < 0.05); c Anscombe–Glynn test (p < 0.05)

Surveys failing Shapiro–Wilk test  
(p < 0.05) N = 533 (62.6 %)

N (%) N (%) with “normal” distribution after transformation or 
smoothing

Box-Cox Spline Loess

All surveysa 533 (100) 301 (56.5) 318 (59.7) 304 (57.0)

By key survey characteristics

Skewedb 183 (34.3) 113 (61.7) 81 (49.4) 89 (48.6)

Non-normal kurtosisc 196 (36.8) 62 (31.6) 137 (69.9) 139 (70.9)

Skewed and non-normal kurtosisb, c 70 (13.1) 23(32.9) 41 (58.6) 43 (61.4)

Large design effect (>3) 164 (30.8) 86 (52.4) 81 (49.4) 92 (56.1)

High digit preference (score < 0.75) 294 (55.2) 143 (48.6) 170 (57.8) 178 (60.6)

Large sample size (n > 900) 204 (38.3) 122 (59.8) 95 (46.6) 101 (49.5)

Table 2  Skewness and kurtosis of survey showing departure from a normal distribution (n = 533)

Minimum Lower quartile Median Mean Upper quartile Maximum

Skewness −0.61 −0.15 −0.01 −0.01 0.11 0.91

Kurtosis 2.26 2.3 3.2 3.24 3.45 5.27
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transformation (61.7  %). About half of surveys with large 
design effect, high digit preference and large sample size 
distribution were approximating a normal distribution after 
Box-Cox (52.4, 48.6 and 59.8 % respectively). The effect on 
distributions with a kurtosis different from normal was less 
marked with a third (31.6 %) approximation a normal dis-
tribution after Box-Cox transformation (Table 3).

Smoothing and Box‑Cox transformation
Applying Box-Cox transformation on surveys show-
ing departure from a normal distribution after Loess or 
smoothing techniques increased further the number of 
“normal” distributions with 401 distributions (82.7  %) 

after Loess and Box-Cox and 439 (82.4  %) after Spline 
and Box-Cox (Table 3).

Discussion
Over a third of MUAC distributions showed no depar-
ture from normality without any transformation and 
three quarters showed no departure once the data were 
smoothed or after Box-cox transformation. Applying 
Box-Cox transformation on surveys showing departure 
from normality after smoothing resulted in over 80 % of 
surveys approximating a normal distribution.

Loess smoothing had slightly better outcome then 
Spline smoothing or Box-Cox transformation alone 

Fig. 1  Examples of non-normal (Shapiro–Wilk test) MUAC distributions and their respective Q–Q plot
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in terms of number of distributions approximating a 
normal distribution but had a change in mean and SD 
slightly higher (but acceptable) than Spline smoothing. 
Although Box-Cox transformation performed well, data 
transformations change the nature of the variable, and 
any Lambda (λ) less than 0.00 has the effect of reversing 
the order of the data. Even though back transformation 
restores the data, care should be taken when applying 
this function [15].

The normality of MUAC distributions is affected by 
sample size, high digit preference, kurtosis different than 

Fig. 2  Examples of a skewed and a peaked distribution and their respective Q–Q plots (D’Agostino and Anscombe–Glynn tests respectively)

Table 3  Smoothing and  transformation of  surveys show-
ing departure from a normal distribution (n = 533)

Type of transformation or smoothing technique 
applied to “non-normal” distributions (n = 533)

N (%) “normal” 
distributions

Smoothing Spline 301 (56.5)

Loess 318 (59.7)

Box-Cox transformation Power transforma-
tions

304 (57.0)

Smoothing and Box-Cox  
transformation

Box-Cox after Spline 439 (82.4)

Box-Cox after Loess 441 (82.7)
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a normal distribution and skewness. Datasets with larger 
sample size increase the power of the test to detect small 
differences when applying normality tests. Digit prefer-
ence reflects the quality of the data. Training measurers 
to increase accuracy and precision would decrease digit 
preference. Both effects were lessened (two-third for digit 
preference and half for sample size) applying smooth-
ing techniques to the distributions as well as applying 
Box-Cox transformation (half for both high digit prefer-
ence and large sample size surveys). Although a third of 
surveys showing departure from a normal distribution 
were skewed or had a kurtosis different from a normal 
distribution, half and over two-thirds (respectively) of 
these were “normalised” after smoothing. Box-Cox trans-
formation was effective on skewed distributions (almost 
two-third of skewed distribution “normalised”) but didn’t 
perform as well on distributions with a kurtosis differ-
ent from normal (a third of distributions approximated a 
normal distribution after Box-Cox).

Few studies have assessed the distribution of WFH. 
Two looked at the standard deviations of the WFH dis-
tributions. In 1977, Waterlow et  al. [19]. showed that 
the WFH distributions were skewed at the upper cen-
tiles. Their analysis was performed on data from surveil-
lance or surveys involving nutrition and anthropometry 
in young children up to the age of 10 years. In 2006, Mei 
et al. [18] analysed data from 51 DHS surveys represent-
ing 34 developing Countries. They found a mean WFH 
and SD WFH (z-scores) of 0.06 and 1.40 respectively. The 
mean ranged from −0.91 to 0.83 and the SD range from 
1.03 to 1.55. They concluded that their analysis confirms 
the WHO assertion that the SD remains in a relatively 
small range (i.e. close to SD from a standard normal 
distribution), no matter the Z-score mean although the 
observed range of SD for was consistently wider. Finally, 
in 2013, Blanton and Bilukha showed that based on the 
Shapiro–Wilk test for normality, 6 surveys out of the 10 
surveys included in their analysis were “non-normal”. All 
of the surveys had a small amount of skewness ranging 
from −0.17 and 0.31 as well as a relatively small amount 
of kurtosis ranging from 0.15 to 0.75.

Regarding the assessment of MUAC distributions, no 
equivalent studies were conducted. In 2013, data analy-
sis from 560 cross sectional surveys conducted by Dale 
et al. [26]. mention the use of Box-Cox transformation to 
normalise MUAC and WFH data but do not give further 
details.

There is one main limitation to this study. The database 
was built based on available small scale surveys that were 
mainly conducted in areas where there was suspicion 
of a problem (i.e. high wasting prevalence) compared 
to national DHS and MICS surveys that are conducted 
every 3–5 years and show long term trends. However, we 
do not believe this affects the generalisability of the study. 
Future research might explore similar analysis on differ-
ent datasets.

Conclusions
Over a third of the MUAC distributions of our database 
were normally distributed. MUAC distributions can eas-
ily be normalised applying simple smoothing techniques 
if the distribution is noisy or displays digit preference and 
then Box-Cox transformation if indicated (i.e. if data is 
skewed). This suggests that statistical approaches relying 
on the normal distribution assumption can be success-
fully applied to MUAC. In light of this promising finding, 
further research is ongoing to evaluate the performance 
of a normal distribution based approach to estimating 
the prevalence of wasting using MUAC.
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