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Table S1: Countries by region, based on regions used in the Global Burden of Disease Study (Institute

for Health Metrics Evaluation, 2010). All listed countries were used to calibrate the model and when

making projections, except: countries not included when calibrating the model are marked with a

hash (#), and, countries not used in projections are marked with an asterisk (*) [Countries were

excluded if data were not available]. Note that, when reporting mortality results at regional level, we

have aggregated Asia, Central into Europe, East; and, Latin America, Andean, - Southern, & -Tropical

into a single region named Latin America, South.

Asia Pacific, High Income

Europe, Central

Latin America, Andean

North Africa/Middle East

Brunei Darussalam

Albania

Ecuador

cont’d

Japan Bosnia and Herzegovina Peru Occupied Palestinian
Republic of Korea Bulgaria Latin America, Central Territory
Singapore Croatia Colombia Oman
Asia, Central Poland Costa Rica Qatar
Georgia Romania El Salvador Saudi Arabia
Asia, East Serbia* Guatemala Syrian Arab Republic
China Slovenia Honduras Tunisia
Dem P‘s Rep of Korea Europe, East Mexico Turkey
Hong Kong* Estonia Nicaragua United Arab Emirates
Macao* Latvia Panama Western Sahara
Taiwan* Lithuania Venezuela Yemen
Asia, South Russian Federation Latin America, South Oceania
Bangladesh Ukraine Argentina Fiji
India Europe, West Chile French Polynesia
Pakistan Belgium Uruguay Kiribati
Asia, South East Cyprus Latin America, Tropical Marshall Islands
Cambodia Denmark*” Brazil Micronesia (Federated
Indonesia Finland North America, High States of)
Malaysia France Income Nauru
Maldives Germany Canada New Caledonia
Myanmar Greece United States Palau
Philippines Iceland North Africa/Middle East | Papua New Guinea
Sri Lanka Ireland Algeria Samoa
Thailand Israel Bahrain Solomon Islands
Timor-Leste Italy Egypt Tonga
Viet Nam Malta Iran (Islamic Republic of) Tuvalu
Australasia Monaco Iraq Vanuatu
Australia Netherlands Jordan
New Zealand Norway Kuwait (continued over page)
Caribbean Portugal Lebanon
Caribbean cluster* Spain Libyan Arab Jamabhiriya

Sweden Morocco

United Kingdom




Table S1, continued.

Sub-Saharan Africa,

Sub-Saharan Africa, East

Sub-Saharan Africa,

Sub-Saharan Africa,

Central cont’d South West cont’d

Angola Kenya Namibia Ghana

Congo Madagascar South Africa Guinea

Dem Rep of the Congo Mauritius# Sub-Saharan Africa, Guinea-Bissau
Equatorial Guinea Mozambique West Liberia

Gabon Seychelles Benin Mauritania
Sub-Saharan Africa, East | Somalia Cameroon Nigeria

Comoros Sudan Cape Verde Sao Tome and Principe
Djibouti United Republic of Tanzania | Cote d'lvoire Senegal

Eritrea Gambia Sierra Leone

Togo

!caribbean countries were grouped into a single cluster for model calibration due to data availability.

Countries in the cluster are: Anguilla®, Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize,

Bermuda, Cayman Islands’, British Virgin Islands, Cuba, Dominica, Dominican Republic, French

Guiana®, Grenada, Guadeloupe®, Guyana, Haiti, Jamaica, Montserrat®, Martinique®, Netherlands

Antilles, Puerto Rico, Saint Kitts and Neuvis, St. Lucia, St Vincent and the Grenadines, Suriname,

Trinidad and Tobago, Turks and Caicos Islands®, US Virgin Islands. Countries were included

individually when making projections, except those marked with a plus sign (+), for which projections

were not made.

>Denmark was not included in projections due to inconsistencies in territorial definitions across

scenarios.

INSTITUTE FOR HEALTH METRICS EVALUATION. 2010. Global Burden of Disease Study: Operations
Manual 2009 [Online]. Available:

http://www.globalburden.org/GBD Study Operations Manual Jan 20 2009.pdf [Accessed

December 19th 2012].



http://www.globalburden.org/GBD_Study_Operations_Manual_Jan_20_2009.pdf

Table S2: Baseline (j=2000) average annual population at risk of storm surge exposure as modelled

by DIVA, average annual surge-specific mortality derived from EM-DAT (standardized to population

in the year 2000), and mortality risk per million at risk of exposure, at regional level.

Baseline average
annual risk of surge

Baseline average
annual killed by
surge, standardized
to population in

Baseline surge
mortality risk per
million at risk of

Region exposure 2000 exposure
Asia Pacific, High Income 2,896 52.1 17,998.4
Asia, Central 540 0.0 0.0
Asia, East 659,115 271.0 411.1
Asia, South 825,023 18,731.8 22,704.6
Asia, Southeast 1,464,261 4,052.1 2,767.4
Australasia 2,922 24 835.5
Caribbean 3,814 196.8 51,606.1
Europe, Central 1,136 0.7 592.7
Europe, Eastern 46,032 23 50.1
Europe, Western 13,941 234 1,679.4
Latin America, Andean 2,666 10.1 3,777.5
Latin America, Central 6,443 375.2 58,229.2
Latin America, Southern 4,705 0.0 0.0
Latin America, Tropical 10,572 0.3 23.9
North Africa / Middle East 65,438 3.7 55.9
North America, High Income 26,008 50.2 1,931.4
Oceania 845 16.7 19,738.2
Sub-Saharan Africa, Central 861 0.7 776.2
Sub-Saharan Africa, East 274,157 64.4 234.9
Sub-Saharan Africa, Southern 153 0.0 0.0
Sub-Saharan Africa, West 29,745 0.0 0.0
Global 3,441,274 23,853.8 6,931.7




Table S3: The 7 GCMs used in this paper.

MRI-CGCM2.3.2

IPSL-CM4

CSIRO-MK3

ECHAMS-MPI-OM

UKMO-HadCM3

UKMO-HadGEM

NCAR CCSM3

For details on individual models, see:

Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J.
Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007: Cilmate Models and Their
Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working
Group | to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller
(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA.

For details of the associated sea-level rise scenarios, see:

Brown, S., Nicholls, R. J., Lowe, J. A. & Hinkel, J. 2013. Spatial variations of sea-level rise and
impacts: An application of DIVA. Climatic Change, (forthcoming). DOI: 10.1007/s10584-013-
0925-y



Table S4: Regional level projections of population (thousands) and Human Development Index (HDI)

analogue (as population weighted average) for baseline, 2050 and 2080. (Note that data includes

only countries for which projections were made).

Population (000s) HDI
Region Baseline 2050 2080 | Baseline | 2050 | 2080
Asia Pacific, High
Income 177,782,421 185,109,174 175,139,847 0.88 1.00 1.00
Asia, Central 5,289,937 4,038,361 3,463,931 0.49 0.79 | 0.91
Asia, East 1,303,883,210 1,321,223,430 1,085,734,830 0.54 0.87 | 0.98
Asia, South 1,300,287,100 1,859,036,800 1,693,470,500 0.43 0.71 | 0.88
Asia, Southeast 530,834,036 723,985,173 653,067,977 0.52 0.84 | 0.95
Australasia 22,512,966 33,701,855 31,560,441 0.90 1.00 1.00
Caribbean 38,174,654 44,915,535 42,723,398 0.57 0.79 | 0.90
Europe, Central 82,918,029 75,669,709 64,794,812 0.70 0.96 1.00
Europe, Eastern 203,621,260 170,566,453 153,170,216 0.68 0.94 | 0.98
Europe, Western 374,630,959 410,883,024 407,621,269 0.83 1.00 1.00
Latin America,
Andean 37,833,520 57,604,010 59,056,170 0.63 0.91 | 0.99
Latin America,
Central 200,113,548 310,279,301 316,064,008 0.61 0.87 | 0.97
Latin America,
Southern 54,858,783 75,511,878 76,122,635 0.74 0.98 1.00
Latin America,
Tropical 169,385,000 223,467,300 210,984,300 0.57 0.90 1.00
North Africa /
Middle East 314,777,540 441,733,270 454,303,440 0.93 1.00 1.00
North America, High
Income 383,026,306 659,840,237 691,381,898 0.56 0.82 | 0.95
Oceania 7,643,246 15,543,614 16,190,872 0.45 0.70 | 0.84
Sub-Saharan Africa,
Central 69,005,974 166,715,574 193,315,935 0.27 0.53 | 0.73
Sub-Saharan Africa,
East 145,668,350 232,539,576 237,246,005 0.29 0.58 | 0.77
Sub-Saharan Africa,
Southern 46,016,828 30,536,239 26,414,898 0.58 0.84 | 0.94
Sub-Saharan Africa,
West 217,830,590 352,625,078 347,990,731 0.32 0.58 | 0.76

Global total

5,686,094,257

7,395,525,591

6,939,818,113




Appendix S1: The DIVA flood model

Abbreviations:

DIVA: Dynamic Interactive Vulnerability Model
GDPC: Gross domestic product per capita

GLOBE: Global Land One km Base Elevation project

HDI:  Human development index
Symbols:
Xij: Average annual people exposed to surges

A description of the DIVA model which estimates the average annual number of people potentially
exposed to surges (X;;), (i.e. expected number of people flooded per year) is detailed in the
supplementary material of Brown et al. (2013). This is reiterated, with additional context for the
health model.

To determine the average annual number of people exposed to surges due to rising sea-levels and
socio-economic change, a global vulnerability assessment — the Dynamic Interactive Vulnerability
Assessment (DIVA) model was used. DIVA is an integrated model of coastal systems that assesses
biophysical and socio-economic impacts of sea-level rise and socio-economic development (Vafeidis
et al. 2008; Hinkel and Klein 2009; Hinkel 2005). The model breaks the world’s coast (excluding
Antarctica) into 12,148 linear segments, each associated with over 100 pieces of physical, ecological
and socio-economic coastal characteristics (Vafeidis et al., 2008; Hinkel and Klein 2009). Land use is
categorised by 16 different types, based on the dominant land use within a 0.52 x 0.52 global grid
cell. The socio-economic scenarios are formed from land-use class, population growth (assumed at
national level growth, but with the base year representing coastal population density (from CIESIN et
al. 2000), thus taking into account the higher levels of population density often found in coastal
zones). The climate scenarios represent changes in mean surface temperatures and sea levels,
calculated on a 52 x 52 grid. For the climate scenarios, data is input every five years, from 1995 to
2100.

Flooding and submergence of coastal zones is caused by mean sea-level rise and extreme events,
and also vertical land movement. Extreme events are produced by a combination of storm surges
and astronomical tides. For each segment, relative sea-level rise is calculated by combining sea-level
change with vertical land movement. Vertical land movement is a combination of glacial-isostatic
adjustment according to the geophysical model of Peltier (20004, b) - assumed uniform natural
subsidence in deltas of 2 mm/yr — and that of eustatic sea-level rise. DIVA downscales the global sea-
level scenarios to segment level. As sea levels rise, the return period of an extreme event is reduced,
so that extreme water levels happen more often. This can be measured per segment of coast on an
exceedance curve. It is assumed that there is no increase in the frequency or intensity of coastal
storms, so present storm surge characteristics are simply displaced upwards with the rising sea level
on the exceedance curve. Surges represent return periods of the 1-in-1 to the 1-in-1000 year floods.
DIVA also considers flooding in the coastal part of rivers, known as the backwater effect. The total
relative sea-level rise per segment under extreme conditions was mapped against the low-lying



coastal zone (Vafeidis et al. 2008) based on the Global Land One km Base Elevation Project (GLOBE)
topographic dataset, with a resolution of 1km, and population density.

Taking account of flooding and erosion under a range of socio-economic and climate scenarios,
impacts are also dependant on the type of adaptation strategy applied and the level of protection
this affords. The model incorporates two engineered adaptation strategies (henceforth ‘sea-based
strategies’): Without upgrade to protection and with upgrade to protection. Sea dikes are already a
prominent form of defence, yet no global database of coastal defences exists. Hence, for the base
year (1995), these were modelled based on a demand for safety (Tol and Yohe, 2007): where there
are sufficiently high population densities (> 1 person / km?) plus capital, and the standard of
protection increases as population density increases. Initial protection levels are principally based on
population density and gross domestic product per capita (GDPC), and secondly agricultural land
values and a safety margin for nourishment. These protection levels are then kept constant
throughout the timeframe of the study. For the upgrade in protection, the same baseline protection
is assumed, but as population expands there is a higher demand for protection. Nourishment for
erosion would also be undertaken.

These adaptation strategies differ from the health model’s adaptation strategies, which are based on
a land-based response (henceforth ‘land-based strategies’), such as early warning systems or people
moving to shelters. This latter strategy is based on variables from the Human Development Index
(HDI), and is not linked to the DIVA model. However, both models do have common inputs of
population and gross domestic product, based on the SRES scenarios of Nakicenovic and Swart
(2000).

Brown S, Nicholls RJ, Lowe JA, Hinkel J (2013) Spatial variations of sea-level rise and impacts: An application
of DIVA. Climate Change. (forthcoming) DOI: 10.1007/s10584-013-0925-y

Center for International Earth Science Information Network (CIESIN), Columbia University, International Food
Policy Research Institute (IFPRI), World Resources Institute (WRI) (2000) Gridded Population of the
World (GPW), Version 2. Palisades. CIESIN, New York

Hinkel J (2005) DIVA: An iterative method for building modular integrated models. Adv in Geosci 4:45-50

Hinkel J, Klein RJT (2009) The DINAS-coast project: Developing a tool for the dynamic and interactive
assessment of coastal vulnerability. Glob Environ Change 19 (3):384-395

Nakicenovic N, Swart R (2000) Emissions scenarios. Special report of the Intergovernmental Panel on
Climate Change. Cambridge University Press, Cambridge, UK

Peltier WR (2000a) Global glacial isostatic adjustment and modern instrumental records of relative sea level
history. In: Douglas BC, Kearny MS, Leatherman SP (eds) Sea level rise; history and consequences.
Academic Press, San Diego, pp 65-95

Peltier WR (2000b) ICE4G (VM2) glacial isostatic adjustment corrections. In: Douglas BC, Kearny MS,
Leatherman SP (eds) Sea level rise; history and consequences. Academic Press, San Diego. On CD

Tol RSJ, Yohe GW (2007) The weakest link hypothesis for adaptive capacity: An empirical test. Glob Environ
Change 17:218-227

Vafeidis AT, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff PS, Boot G, Klein RJT (2008)
A new global coastal database for impact and vulnerability analysis to sea-level rise. J Coast Res 24 (917-
924)



Appendix S2: Implications of multiple uses of the same underlying data

Figure 1 in the main text shows how the underyling raw data was transformed and used to fit the
mortality risk model. As is shown is the figure, on a number of occasions, the same underlying data
enters the model in various places. For instance, population is used to standardize the mortality
data, as an input into DIVA for estimating exposure, and as indicator of coping capacity in the
mortality risk equation.

This problem has two origins; one general, and one particular to our mortality risk model. Firstly, this
type of problem is not uncommon when using integrated assessment methods (IAMs) where
outputs from one model (M;) are used as inputs to another model (M,). The underpinning
assumption in this approach is that M, does not depend on a variable which is used in model M.
This is violated in our model because population and GDP are elements of both My (DIVA) and M,
(the mortality risk model). As a result, they are present in both sides of Equation (1).

Secondly, data on which to base a model to estimate future surge mortality is extremely limited. For
example, as discussed in the paper, surge-specific mortality data is not available; data for
characterising vulnerability are limited to a handful of potential proxies. Consequently we put a
limited set of data to multiple uses when developing the mortality risk model.

The general implications of such data ‘re-use’ can be shown mathematically.

Equation (1) (i.e. the mortality risk model) can be written in the abstract form as:

flyx),u) = h(x,z)
(52.1)

where (i) x (e.g. population; GDP) is present on both the left and right hand sides of Equation(1), (ii) y
is meant to be an independent variable (e.g. DIVA output) but in this case it is a function of x, (iii) u
and z represent variables which are not shared by the two sides of the equation, (iv) f and h are non-
linear function of their arguments.

At issue is that y(x) (from the perspective of equation (1)) is unknown (i.e. a black—box).

Differentiating both sides of the Equation (1) by x gives

df dy oh
dydx Ox

(52.2)

From the left hand side of Equation (1) we have

ﬂw=mG)



Therefore
af B 1

ay y
From the right hand side of Equation (1) in the paper

h(x) = b + B3 x + Bux?

where b here is some constant (i.e. independent of x).

Differentiating Equation (S2.5) with respect to x gives

dh
I B3 + 2P4x

Substituting Equations (S2.4) and (S2.6) into Equation (S2.2) gives

1dy_ + 2
ydx_ﬁ3 Bax

The implicit assumption of our approach is that
d
dy _ .
dx
i.e.yis independent of x. If this is the case then

which strictly holds only when

Bs
2f4

(S2.3)

(S.24)

(S2.5)

(S2.6)

(5.2.7)

(S.2.8)

(S.2.9)

(S.2.10)
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From Table 1 in the main paper this means it holds for an HDI of 0.669. This suggests the model may
be expected to make reasonable predictions when HDI is in the ‘vicinity of this 0.669 but biases are
introduced as HDI deviates from this estimate.

This HDI corresponds to the turning point (i.e. the maximum) of the parabola described by equation
(1) (See Appendix S6, Figure S6.1). That is, the point at which ‘development’ shifts from increasing
risk to decreasing it, and at this point the model is least biased. As countries move closer to the
extremes (i.e. least or most ‘developed’), biases increase.

11



Appendix S3: Standardizing EM-DAT mortality data

We standardized deaths in any given event in our data set to population in the year 2000 using:

P
—(S)  _ (S i,2000
M; 2000,s = Mijs X

N (S3.1)

P
—L) (L) i,2000
M;i 20000 = Mijy X———— (S3.2)
ij
where:
e (S)

M; 5000, is all-cause cyclone mortality in ‘small’ event S in country i, standardized to the population

in the year 2000.

mi(j)s is all-cause cyclone mortality in ‘small’ event S, in country I, in year |

ﬁi(’%oo’, is all-cause cyclone mortality in ‘large’ event | in country i, standardized to the population
in the year 2000.
mi(,li?l is all-cause cyclone mortality in ‘large’ event | in country i, inyear j

We then used the standardized mortality estimates to find average annual, all-cause cyclone
mortality at the year 2000, standardized to population in the year 2000.

S L

m () Ay (L)
M; 2000, 121 Mi 2000,

y© + y® (S3.3)

_ s=1
Ci,2000 -

where:

Ci'2000 is average annual, all-cause cyclone mortality at the year 2000, standardized to population in
the year 2000.

y(s’ is number of years covered by the dataset of ‘small’ events

y(L) is number of years covered by the dataset of ‘large’ events

Table S3.1 shows event and standardized mortality data at the regional level.
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Table $3.1: Baseline (j=2000), regional average annual number of events and all-cause cyclone
mortality estimates (standardized to population in the year 2000), for ‘small’ (< 200 deaths) and
‘large’ (= 200 deaths) events, and for all events (i.e. small and large combined), derived from EM-
DAT. See main paper for details.

‘Small’ events ‘Large’ events All events

Region Events Killed Events Killed Events Killed
Asia Pacific, High Income 3.24 64.5 0.02 133 3.26 77.8
Asia, Central 0 0.0 0.00 0.0 0.00 0.0
Asia, East 7.67 224.0 0.20 113.5 7.86 337.5
Asia, South 2.95 157.5 0.80 20655.6 3.76 20813.1
Asia, Southeast 10.33 303.7 1.10 4311.3 11.43 4614.9
Australasia 1.43 3.6 0.00 0.0 1.43 3.6
Caribbean 8.29 53.5 0.15 173.8 8.43 227.3
Europe, Central 0.52 1.0 0.00 0.0 0.52 1.0
Europe, Eastern 0.90 3.1 0.00 0.0 0.90 3.1
Europe, Western 5.62 34.9 0.00 0.0 5.62 34.9
Latin America, Andean 0 0.0 0.02 13.2 0.02 13.2
Latin America, Central 5.48 71.1 0.34 991.8 5.82 449.1
Latin America, Southern 0 0.0 0.00 0.0 0.00 0.0
Latin America, Tropical 0.095 0.3 0.00 0.0 0.10 0.3
North Africa / Middle East 0.29 5.2 0.00 0.0 0.29 5.2
North America, High Income 2.95 323 0.02 42.7 2.98 75.0
Oceania 2.62 19.4 0.00 0.0 2.62 19.4
Sub-Saharan Africa, Central 0.048 0.7 0.00 0.0 0.05 0.7
Sub-Saharan Africa, East 2.24 50.9 0.07 20.6 2.31 71.6
Sub-Saharan Africa, Southern 0 0.0 0.00 0.0 0.00 0.0
Sub-Saharan Africa, West 0.048 0.0 0.00 0.0 0.05 0.0
Global total 54.72 1,025.7 2.7 26,335.8 57.4 26,747.7




Appendix S4: Estimating storm surge-attributable mortality

Based on the literature, it was assumed that in the least developed countries about 90% of cyclone
mortality is attributable to surge, whereas in more developed countries it is estimated to be to be
approximately 67%.

We assumed that in countries with an HDI-analogue in the lower and upper quartiles, surge
accounted for 90% and 67% of cyclone deaths respectively, and, in between these quartiles the
surge-attributable percent drops linearly from 90% to 67%.

Baseline storm surge-attributable mortality, M, 5., was estimated using the baseline Human
Development Index analogue, H i 2000 @nd average annual, all-cause cyclone mortality as at the year

2000, standardized to population in the year 2000, C; 54, -

0.9xC, 5000 if H, 00 < 0.449
M s000 = 4= 0.797 x H 000 +1.258xC, 00 if 0.449<H, <0742} (s4.1)
0.67 % C; 2000 it H, 00 > 0.742

14



Appendix S5: Calculating the analogue of the Human Development Index

The Human Development Index (HDI) is an indicator of development that combines data on Gross
Domestic Product per capita (GDP/capita), educational attainment, and life expectancy into a single
indicator of social and economic conditions. For details, see http://hdr.undp.org/en/statistics/hdi/
(accessed Nov 20", 2012)

Most existing climate-health impact assessment work that includes socioeconomic influences on
health uses GDP/capita as a proxy for social and economic conditions. Thus the use of the HDl is an
advance. As the education data conventionally used in the HDI was not available as projections
(‘mean years of education’ and ‘expected years of education’, for further details, see:
http://hdr.undp.org/en/media/HDR 2011 EN TechNotes.pdf (accessed Nov20th, 2012)), we used
years of education at 25 years of age. Further, the HDI conventionally includes GDP/capita as

Purchasing Power Parity (PPP); however, we used GDP/capita as Market Exchange Rate (MER) as this
was used in the DIVA model. Hence we used a modified version of the HDI which we refer to as the
HDI analogue.

The 2010 HDI report [ref] normalised each component variable using the range observed over 1980
to 2010, and we used a similar strategy to estimate baseline HDI for model fitting.

For GDP/capita as MER, we assessed the range over 1980 to 2009 (2010 data was not available at
that time) in the World Bank Development Indicators (WBDI) [ref]. We excluded ‘tax-haven’
countries that had low population but exceptionally high GDPs. The maximum was in Norway in
2008 (USS 42,143) and the minimum in Liberia in 1995 (USS$62) [in USS for the year 2000]. The HDI
uses In(GDP/capita) and we normalized country-level data for the year 2000 using:

__In(g;) - In(62)
' In(42143) - In(62)

(S5.1)

where:

Gi is the GDP is the normalized GDP index for the year 2000 in country i

0, is GDP/capita for the year 2000 in country |

For years of education, we used the range employed in the HDI 2010 report for the years 1980 to
2010; minimum=0 and maximum=13.2 years. While we used a different education variable than the
conventional HDI, we considered this to be a reasonable range over which to normalize our data,
which ranged from 0.824 to 12.25 years in the year 2000. We normalized country level data using
(where the minimum years of education is 0) :

(55.2)

15
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where:

Si is the normalized education index for the year 2000 in country i

S; is average years of education at the age of 25 for the year 2000 in country i

For life expectancy at birth, we used the range reported in the 2010 HDI report for the period 1980-
2010; minimum=20 years, maximum=83.2 years. Our data for the year 2000 ranged from 42.01 to
81.83 years. We normalized country-level data using:

_1,-20
' 83.2-20
(S5.3)
where:
Li is the normalized life expectancy index for the year 2000 in country i
|i is life expectancy at birth for the year 2000 in country i
We then calculated the HDI analogue using:
H, =3%/G, xS, x L,
(S5.4)

For projections, we normalized data for future years for each component index using the above
maximums and minimumes (i.e. consistently based on 1980 to 2000); this maintained a common
standard over time. We rounded future HDI analogues that were greater than 1 down to 1. No
future HDI analogues were equal to or less than 0.

16



Appendix S6: Model calibration

We based our model on the model developed by Patt et al (2010). Patt et al modelled log mortality
risk (referred to as ‘vulnerability’ in the original paper) as a function of ‘physical exposure’ and
‘sensitivity to exposure’. (Note that Patt et al also modelled number of people ‘affected’ by disasters
using a similar model)

‘Physical exposure’ was represented as the number of disaster events over a given time period and
national population. Conceptually, it was expected that as the number of events increases, coping
capacity decreases, and hence mortality risk increases. For population, it was ‘expected that larger
countries are likely to experience disasters over a smaller proportion of their territory or population,
and also benefit from potential economies of scale in their disaster management infrastructure’
(Patt et al., 2010); thus as population increases, it is expected that mortality risk will decrease.

‘Sensitivity to exposure’ was modelled using the Human Development Index (HDI) and the fertility
rate (Patt et al also tested other variables (the particular variables tested were not specified) but
found they did not improve model fit). Conceptually (based on previous observations), it was
expected that with ‘development’ mortality risk would initially increase before decreasing; thus HDI
was modelled in quadratic form. Fertility F; ; was included as an indicator of women's
empowerment, which was expected to reduce mortality risk.

To calibrate our model we tested various forms of Patt el al’s (2010) general model, a selection of
which are shown in Table S5.1.

All the models shown (1 to 7) had a reasonably good statistical fit (R? =~ 0.4). In all models, the
standardized regression coefficients for log (E;) and log (P; ;) were stable, and their significance (as
indicated by p-values) was high. Additionally, the signs of the coefficients were as expected
according to the underlying theory (positive for log (E;), and negative for log (P; ;)). As a result, we
could not decide on the final model by simply comparing R? values. We present below the rationale
for selecting the final model.

The variable log (F) was consistently found to have little explanatory power and was not included in
the final model.

Thus the choice of model hinged on the HDI analogue (H; ;). Model 1 corresponds to Patt et al’s final
mortality risk model. The sign of the parameter for the quadratic term is as expected. However, as
the relative importance of the HDI variables compared to that the other variables was low, and —
more so — because the form of the fit was inconsistent with theory (i.e. the location of the peak of
the parabola; not shown) we tested other forms.
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Table S6.1: Standardized regression coefficients®, p-values (in brackets), and adjusted R* obtained
during model calibration for a selection of models.

Variable® Model 1° Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
log(E) 0.24 0.23 0.24 0.25 0.24 0.25 0.25
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
log(P) -0.64 -0.64 -0.63 -0.62 -0.64 -0.65 -0.63
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) | (0.0001)
log(H) -0.20 0.22
(0.432) (0.001)
[log(H))? -0.44 -0.25
(0.055) (0.0001)
H 1.28 0.18 1.25
(0.001) (0.007) (0.001)
H? -1.10 0.15 -1.08
(0.004) (0.03) (0.003)
log(F) -0.004 0.027
(0.97) (0.803)
Adjusted R’ 0.42 0.41 0.42 0.42 0.39 0.38 0.43

® The standardized regression coefficients quantify the change in the LHS of the equation relative to its
standard deviation when a given RHS variable is changed by one standard deviation; the greater the absolute
value of the statistic, the more responsive the LHS is to the variable. For example, for model 1, 0.24 means that
a 1 standard deviation change in E;is associated with a 0.24 standard deviation change in log mortality risk.

® Variables are: E is average annual events; P is population; H is the Human Development Index analogoue, F is
Total Fertility Rate. See main text for details.

“ For all models, the LHS of the regression equation is the LHS of equation (1) in the main paper; i.e. log
mortality risk.

Model 2 suggests mortality risk monotonically increases as H; ; increases (i.e. as countries develop);
this does not seem plausible. Model 3 supports a quadratic fit; however, H; ; is again of relatively
low importance, and, as for model 1, the form of the fit is inconsistent with theory (i.e. location of
parabola peak).

Model 4 used H; j in unlogged form. This gave a good fit and the relative importance of H;; was
considerably higher. In models 5 and 6 we included either the linear or quadratic terms for the
unlogged form of H; ; but found the importance of H;; was greatly diminished in both. Thus we
retained both the linear and quadratic terms in Model 7.

In terms of the theoretical fit of model 7, the sign of the quadratic term is negative as expected.

Further, the form of the model in relation to the location of the peak of the parabola is as expected.
Figure S6.1 shows a plot of the Model 7 as a function of the HDI-analogue.
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Figure S6.1: Plot of ‘log mortality risk’ (y-axis) as a function of the HDI-analogue (x-axis) holding the
events and population variables constant, using Model 7.

‘log mortality risk'

HDI-analogue

The plot suggests the model matches the theory. ‘Log mortality’ risk initially increases with the HDI-
analogue, peaking when it is between 0.6 and 0.7, and then begins to decline. We note that the
location of the peak corresponds to the peak in Patt et al;s model (2010, see Figure 1 B), which peaks
when HDI = 0.65.

Further, also corresponding to Patt et al, the lowest mortality risk is in the least developed countries
rather than in the most developed. This may appear counterintuitive. However, the curve shows risk,
not actual mortality, and how that risk is translated into absolute mortality depends on how many
people are exposed and under what conditions.

Our interpretation of the curve is that in the ‘most developed’ countries (i.e. HDIl approaching 1), a
combination of sea- and land-based strategies of adaptation reduce the number of people actually
exposed to flooding, but this means when people are exposed, it is likely to be associated with a
severe event (as protection prevents exposure to milder events). In other words, if you are exposed,
the risk of death would be expected to be reasonably high.

In contrast, in ‘less developed’ countries, limited protection means people are likely to be exposed
to events of all intensities, meaning exposure is likely to be high, but the average risk of mortality

among the exposed is lower (as much exposure is due to milder events).

Thus we chose Model 7 as the mortality risk equation (equation 1).

Patt AG, Tadross M, Nussbaumer P, Asante K, Metzger M, Rafael J, Goujon A, Brundrit G (2010) Estimating least-
developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proceedings
of the National Academy of Sciences 107 (4):1333-1337. doi:10.1073/pnas.0910253107

19



Appendix S7: Model Goodness-of-Fit

As described in the paper, no independent data were available for model validation. Consequently,

we compared ‘observed’ (i.e. based on the data used to fit equation (1)) and predicted (i.e. as

estimated by equation (1)) log mortality risk and mortality. Although this method provides only a

weak from of validation (as the data used for validation were also used in the model fitting) it

nevertheless provides estimates of the expected errors in mortality risk and mortality estimates.

Figure S7.1 shows the correlation between ‘observed’ log mortality risk (x-axis) and fitted log

mortality risk (y-axis). The correlation co-efficient is 0.67, which suggests the model may predict log

mortality risk at baseline reasonably well. This does not, however, indicate whether or not it will
make reasonable predictions of future mortality.

Figure S7.1: Scatter plot of observed log mortality risk (x-axis) and predicted mortality risk (y-axis)
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For mortality, the correlation coefficient for ‘observed’ mortality versus predicted mortality was
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Observed log mortality risk

0.08, suggesting the model is an unreliable predictor of even the mortality data used to calibrate the

model. Table S7.1 shows observed and predicted mortality and quantifies the error in the prediction

for the countries with the five highest average annual mortalities at baseline. Clearly, mortality

predictions are very inaccurate, both relatively and absolutely.

Table S7.1 Observed and predicted average annual mortality for the countries with the five highest

average annual mortalities at baseline, and associated errors.

‘Observed’ Predicted Error ratio, as a
Country mortality mortality percent1 Absolute error’
Bangladesh 17,295 561 3 -16,734
Myanmar 2,906 77 3 -2,829
India 1,411 317 22 -1,094
Philippines 758 1,497 197 739
Vietnam 279 8,720 3125 8,441

1 . .
‘Error ratio’ is calculated as:

observed mortality
predicted mortality is 3% of observed mortality; 100% indicates perfect prediction.

predicted mortality

X 100. For example, an ‘error ratio’ of 3% indicates that
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? ‘Absolute error’ is calculated as: predicted mortality — observed mortality. Negative errors indicate
underestimates and positive errors indicate overestimates.

The poor prediction of mortality compared to the prediction of log risk mortality is however not
entirely unexpected. This is because the model was fitted in the logarithmic mortality space rather
than in the mortality space. Without loss of generality, and to ease algebraic processing, we will use
a simple conceptual logarithmic model to illustrate the relationship between the error in the log
mortality model and the resulting error in the mortality model.

Denote by ¢ the error in the fitted log mortality model:

(57.1)

where z and Z are respectively the ‘observed’ and estimated log. number killed. In general, this
error, which can be positive (overestimate) or negative (underestimate), is a function of z. The true
(v) and the estimated (¥) number killed are given respectively by:

v =exp(z)
(57.2)
and
U =exp(2)
(57.3)
From equations (S7.2) and (57.3),
P_ew®
- )—expz z
(57.4)

Using equation (S7.4), the error in estimating the actual number killed resulting from the error in the
model estimating log. number killed is:

§=v—-v=vexp(e) —v =v(exp(e) — 1)
(57.5)

We deduce from equation (S6.5) that for large positive errors €, § = v exp(¢) , i.e. the errors are
exponentiated and are unbounded. For large negative errors &, § = —v, i.e. the errors are bounded
by -100%.

Table S7.2 shows predicted and observed average annual mortality and the associated errors when

aggregated to the regional level. Again, it is clear that mortality predictions are naturally also very
poor.
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Table S7.2: Observed and predicted average annual mortality and associated errors, aggregated to

regional level.

‘Observed’ Predicted Error ratio, asa | Absolute
Region mortality mortality percent1 error’
Asia Pacific, High Income 52.1 14.4 28 -37.7
Asia, Central 0.0 4.1 - 4.1
Asia, East 270.9 2,001.5 739 1,730.6
Asia, South 18,731.8 879.9 5 -17,851.9
Asia, Southeast 4,052.1 10,441.5 258 6,389.3
Australasia 2.4 25.3 1,038 22.9
Caribbean 196.8 353.4 180 156.6
Europe, Central 0.7 12.5 1,855 11.8
Europe, Eastern 2.3 104.0 4,508 101.7
Europe, Western 234 143.0 611 119.6
Latin America, Andean 10.1 14.9 148 4.8
Latin America, Central 375.2 72.3 19 -302.9
Latin America, Southern 0.0 21.4 - 21.4
Latin America, Tropical 0.3 8.7 3,427 8.4
North Africa / Middle East 50.2 60.8 121 10.6
North America, High Income 3.7 161.4 4,410 157.7
Oceania 16.7 36.6 220 19.9
Sub-Saharan Africa, Central 0.7 2.1 315 1.4
Sub-Saharan Africa, East 64.4 232.5 361 168.1
Sub-Saharan Africa, Southern 0.0 0.9 - 0.9
Sub-Saharan Africa, West 0.0 48.2 - 48.2
Global total 23,853.8 14,639.2

1 . .
‘Error ratio’ is calculated as:

predicted mortality

observed mortality
predicted mortality is 28% of observed mortality; 100% indicates perfect prediction.

? ‘Absolute error’ is calculated as: predicted mortality — observed mortality. Negative errors indicate

underestimates and positive errors indicate overestimates.

X 100. For example, an ‘error ratio’ of 28% indicates that
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