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Summary 

Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. 

Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, 

pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi 

infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used 

this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, 

C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary 

site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in 

the gut and was followed by widespread dissemination. These data indicate that differential immune 

control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide 

permissive niches for active infection. The end-point frequency of heart-specific infections ranged 

from 0% in TcVI-CLBR-infected C57BL/6 to 87% in TcI-JR-infected C3H/HeN mice. Nevertheless, 

infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with 

the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-

specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of 

parasites into the heart, occurring at a frequency determined by host and parasite genetics.   
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Introduction 

 

Host-pathogen interactions constitute many discrete outcomes between sites and over time, which 

cumulatively determine disease severity, treatment efficacy and development of immunity 

(Bumann, 2015). However, tissue-specific pathogen dynamics are often poorly accounted for in 

experimental models, especially for chronic infections. A case in point is Chagas disease, caused by 

the protozoan parasite Trypanosoma cruzi. Human infections are life-long and often asymptomatic. 

Cardiomyopathy develops in around one third of individuals and ~10% develop digestive tract 

megasyndromes (Rassi Jr et al., 2010, WHO, 2015), though there is high underlying variability of 

morbidity rates between geographical regions (Coura et al., 2012). Host and parasite diversity is 

assumed to underpin these diverse outcomes, but mechanistic explanations have yet to be 

developed. Recent data indicate T. cruzi infections are more spatially and temporally dynamic than 

previously thought (Lewis et al., 2014), raising questions about the relationship between local 

infection and cardiac pathogenesis. The potential for genetic factors to influence disease pathology 

means the broader significance of these findings is yet to be established. 

 

There are six major T. cruzi lineages, at least four of which derive from inter-lineage hybridization 

events (Machado et al., 2001, Westenberger et al., 2005, Lewis et al., 2011). Their geographic 

distribution maps broadly onto some epidemiological features of Chagas disease (Miles et al., 2009). 

Most human infections in southern South America, where both cardiac and digestive forms of 

disease occur, are associated with lineages TcI, TcII, TcV and TcVI. In areas of northern South 

America and North America, where only cardiac disease is seen, TcI and occasionally TcIV are 

involved. Nevertheless, asymptomatic cases and heart disease of all severities occur widely, so 

virulence is unlikely to be a strictly lineage-specific phenotype. From the host perspective, 

characteristics of immune responses that protect against acute mortality are relatively well 

established (Tarleton, 2007, Junqueira et al., 2010). In contrast, factors that determine the 
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progression and severity of chronic cardiomyopathy are poorly understood. Several candidate 

human genetic variants have been identified e.g. (Ramasawmy et al., 2007, del Puerto et al., 2012), 

but larger study sizes are considered necessary to establish their significance (Cunha-Neto et al., 

2014). 

  

The role of the parasite as a driver of heart pathology has been controversial (Gironès et al., 2003, 

Tarleton, 2003, Marin-Neto et al., 2007, Dutra et al., 2008, Gutierrez et al., 2009, Bonney et al., 

2015). T. cruzi is challenging to investigate in both clinical and experimental settings, largely due to 

the difficulty of detecting scarce intracellular tissue parasites. This aspect of chronic infections and 

the presence of auto-reactive T cells and antibodies in heart tissue, led to an autoimmune 

hypothesis of pathogenesis (reviewed in (Bonney et al., 2015)). Molecular detection methods have 

since established that parasites do persist in symptomatic hosts as shown, for example, by the 

presence of parasite DNA or antigen in heart tissue (Higuchi et al., 1993, Jones et al., 1993, Añez et 

al., 1999). It has also become clear that autoimmune phenomena require ongoing T. cruzi infection 

(Hyland et al., 2007). Such data have been taken to support the idea that continual low-grade 

parasitism of heart tissue sustains pathological inflammatory responses. However, support for this 

conjecture is surprisingly weak: No quantitative association between heart-specific parasite loads 

and disease severity has been demonstrated; tissue sampling is strongly biased; molecular methods 

do not directly detect live organisms; histopathological analyses are often qualitative; and, the 

majority of animal studies focus on acute infections, with unclear relevance for the chronic phase.  

 

We developed a highly sensitive T. cruzi infection imaging model, based on the red-shifted firefly 

luciferase variant PpyRE9h (Branchini et al., 2010). We used this model to define the tissue-specific 

infection dynamics of the T. cruzi CL Brener (CLBR) strain in BALB/c mice (Lewis et al., 2014). In acute 

infections, parasites were pan-tropic, but in chronically infected mice they were not detectable in 

the myocardium and almost entirely restricted to the GI tract. However, gut-tropism could simply be 
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a phenotype associated with this strain, lineage, or the parasite-mouse strain pairing. Here, we use 

in vivo imaging models for seven host-parasite strain combinations to show that the GI tract is the 

main reservoir site for T. cruzi persistence, irrespective of parasite or host genetic differences. We 

furthermore identify model-dependent patterns in the frequency of infection outside the gut niche 

that implicate periodic parasitism of the heart, rather than continuous persistence, as a key 

determinant of heart pathology. 

 

Results 

 

Chronic gastrointestinal tract persistence of diverse T. cruzi strains in BALB/c mice  

 

Bioluminescent T. cruzi clones were selected for the highly divergent T. cruzi lineages TcI and TcVI. 

These are estimated to have last shared a common ancestor ~2 million years ago (Lewis et al., 2011). 

Bioluminescent TcVI-CLBR and TcI-X10/6 were described previously (Lewis et al., 2014, Taylor et al., 

2015). They exhibit stable, constitutive PpyRE9h expression and cause fulminant infections in SCID 

mice. These features were also observed for the TcI-JR bioluminescent clone, which was developed 

for this study (Supplementary Figure 1). Serial in vivo imaging allows the course of infection to be 

monitored with greater precision and sensitivity than blood microscopy or PCR-based approaches 

(Lewis et al., 2014, Fortes Francisco et al., 2015). We thus aimed to apply bioluminescence imaging 

to investigate the dynamics of infections with these diverse strains in a series of mouse models. 

 

Our standard imaging model of TcVI-CLBR infection in female BALB/c mice is sufficiently sensitive to 

detect as few as 100 free parasites inside the peritoneal cavity (Lewis et al., 2014). This enabled 

serial quantification of parasite burdens for >12 months, using bioluminescence as a proxy (Lewis et 

al., 2015). This mouse-parasite combination is characterised by a peak parasite burden at two weeks 

post-infection (p.i.), which resolves to a chronic phase over the next 4-6 weeks. Long-term infections 
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persist as an approximate dynamic equilibrium, as shown by bioluminescence intensity fluctuating 

between 2 and 3 orders of magnitude below the acute peak (Figure 1A). Infection foci are normally 

associated with the abdominal region, but also localise to highly diverse additional anatomical 

positions in a temporally dynamic mode (Figure 1A). There was no deviation from this course of 

infection in male BALB/c mice, demonstrating that host sex is not a critical factor in this model 

(Figure 1B).  

 

To gain a more accurate assessment of infection in defined tissues, we employed an integrated 

necropsy and ex vivo bioluminescence imaging protocol (Lewis et al., 2014). Because of the size 

differences between tissue types, we analysed bioluminescence as fold change in radiance 

compared to matching tissues from uninfected controls. The data are therefore representative of 

parasite density in a particular tissue sample, rather than total parasite load. We found the GI tract 

to be the only consistently infected organ, with parasites restricted to the large intestine and/or 

stomach (Figure 1C, Supplementary Table 1). Approximately one third of these animals also had live 

parasites in the gut mesenteric tissue (Figure 1C, Supplementary Table 1). Occasional 

bioluminescence signals localised to other tissues besides the gut (median additional sites n = 1 [IQR 

0 – 2.5]), but without any apparent tissue preference (Figure 1C, Supplementary Table 1). Imaging of 

the post-necropsy carcass identified residual bioluminescence foci in some cases; notably these 

were often in the skin (Supplementary Figure 2). Carcass foci were not quantified because signals 

could not always be unambiguously assigned to precise anatomical sites. Similar tissue-specific 

infection distributions were observed in the male BALB/c – TcVI-CLBR chronic model (Figure 1D, 

Supplementary Table 1). We conclude firstly, that the GI tract is likely to be the only site 

continuously infected by TcVI-CLBR; secondly, that active infection in diverse non-GI sites is sporadic 

and transient; and thirdly, that TcVI-CLBR infection dynamics in BALB/c mice are not influenced by 

host sex. 
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To investigate whether chronic GI persistence is a TcVI-CLBR-specific phenotype or likely to be a 

general feature of T. cruzi biology, we next evaluated TcI infections in BALB/c mice. A high inoculum 

(2 x 105 tissue culture parasites) is required to reliably obtain productive infections using the TcI-

X10/6 strain (Taylor et al., 2015). This was associated with a distinctive acute bioluminescence 

profile lacking an expansion phase (Figure 2A). Nevertheless, the acute dissemination pattern, and 

the inferred chronic parasite burden profile, as well as its focal, dynamic distribution, were found to 

resemble that seen for TcVI-CLBR (cf. Figures 1 and 2). The tissue-specific distribution, assessed by ex 

vivo imaging, also closely replicated the TcVI-CLBR data – bioluminescence was observed in GI 

tissues in all animals chronically infected with TcI-X10 (Figure 2C, Supplementary Table 1). 

Bioluminescence was detected in other sites in a subset of animals, including, skeletal muscle (67%), 

heart (17%), spleen (17%) and adipose (33%).  

 

Chronic BALB/c infections were also generated with TcI-JR parasites, using 1 x 103 blood 

trypomastigotes. The bioluminescence profile resembled a classic acute infection that resolves to a 

dynamic, continuously detectable chronic equilibrium, with the majority of reporter signal localized 

to the abdominal region (Figure 2B). Ex vivo imaging again identified GI tract infections in all animals, 

with bioluminescence associated with 100% of stomachs, 80% of large intestines and 50% of gut 

mesenteries (Figure 2D, Supplementary Table 1). An average of two additional bioluminescence 

positive non-GI sites were detected per animal (median additional sites n = 2 [IQR 1 – 3]), including 

heart (50%), skeletal muscle (60%) and lung (60%) (Figure 2D, Supplementary Table 1), as well as skin 

in some cases (Supplementary Figure 2). Thus, the GI tract is the primary site of persistence for all 

three T. cruzi strains tested in BALB/c mice. 
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Restriction of active infection to the GI niche is mediated by the host 

 

Long-term restriction, whether relative or absolute, of T. cruzi to a gut niche could be a consequence 

of parasite tropism or differential immune responses between sites. The TcVI-CLBR strain infects 

virtually all tissues during the acute phase in BALB/c mice (Lewis et al., 2014), favouring the host 

response as the critical mediator. Tissue tropism may not be a fixed property of T. cruzi in different 

phases though, and previous data do not provide evidence directly relevant to the chronic phase. To 

address whether host immunity is required for the tissue-specific distribution of chronic infection, 

we used cyclophosphamide to immunosuppress BALB/c mice with established TcVI-CLBR infections. 

This treatment has cytotoxic effects on both B and T lymphocytes, and leads to a rapid increase in 

total bioluminescence (Fortes Francisco et al., 2015). Ex vivo imaging revealed that after six days 

immunosuppression, there was increased bioluminescence intensity in the large intestine and gut 

mesenteries (Figure 3). By day 14, parasite loads were significantly increased in all tissues sampled 

(Figure 3). These data are indicative that the relative restriction of active T. cruzi infection to the gut 

in chronically infected mice is explained by tissue-specific host responses, rather than tissue tropism 

of the parasite. 

 

Broadly conserved GI parasite persistence and model-dependent systemic distributions 

 

To investigate the influence of host genetic diversity on T. cruzi infection dynamics, we compared 

TcI-JR and TcVI-CLBR parasites in BALB/c, C57BL/6 (B6) and C3H/HeN (C3H) mice. All B6 mice 

developed chronic infections with both parasite strains that could be tracked by in vivo imaging 

(Figure 4A, 4B). The bioluminescence intensity profile for TcVI-CLBR infections indicated a more 

gradual acute-chronic transition than for TcI-JR. Otherwise, there were no major differences in the 

spatiotemporal distributions of bioluminescence foci between strains. We refrained from making 

quantitative comparisons between mouse types, because coat colour influences bioluminescence 
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detection. Post-mortem organ imaging showed that parasite distributions in B6 were remarkably 

similar to those seen in BALB/c hosts: The large intestines of all B6 mice infected with either parasite 

strain were bioluminescence positive, and most had concomitant signals in stomach (TcI-JR 90%, 

TcVI-CLBR 80%) and/or gut mesentery (TcI 70%, TcVI 80%) (Figure 4C, 4D, Supplementary Table 1). 

As in BALB/c mice, the frequency of non-GI infected sites was higher for TcI-JR than TcVI-CLBR: 

Median additional sites n = 1 [IQR 0.75 – 2.25] vs. 0.5 [IQR 0 – 2] respectively. Of those sites, TcI-JR 

was most often detected in skeletal muscle (70%) and heart (40%), whereas TcVI-CLBR was never 

detected in these sites and instead favoured lung (40%) and spleen (40%). Some residual carcasses 

from both TcI-JR and TcVI-CLBR infected B6 contained minor additional bioluminescence foci, often 

localized to the skin, but these were not quantified (Supplementary Figure 2). 

 

C3H mice inoculated with TcI-JR or TcVI-CLBR had an extended acute phase, with bioluminescence 

reaching chronic equilibrium 2-3 weeks later than equivalently infected BALB/c (Figure 5A, 5B). 

Much of the acute parasite burdens localised to the abdomen. Predominance of spatiotemporally 

dynamic abdominal foci was observed for both strains in the chronic phase (Figure 5A, 5B). These 

findings were not confounded by the i.p. route of inoculation because dorsal subcutaneous (s.c.) 

inoculations generated similar results (Supplementary Figure 3), as was previously shown for TcVI-

CLBR in BALB/c (Lewis et al., 2014). Additional foci were frequently observed at diverse (non-

abdominal) anatomical sites, but without any apparent parasite strain-specific quantitative or spatial 

trend (Figure 5). Post-mortem imaging again identified the GI tract as the predominant site of 

parasite persistence for both TcI-JR and TcVI-CLBR (100% and 90% large intestine or stomach 

positive, respectively) (Figure 5C, 5D, Supplementary Table 1). TcI-JR was present in non-GI samples 

at a significantly higher frequency than TcVI-CLBR: median additional sites n = 4 [IQR 3.25 – 4] vs. n = 

1 [0.75 – 2] respectively, Mann-Whitney test, U = 6.5, p = 0.0013; Figure 5E). Heart, lung and skeletal 

muscle were bioluminescence positive in a large subset of animals and the inferred relative infection 

intensities were in the same range as that seen for the gut (Figure 5, Supplementary Table 1). 
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Conversely, for TcVI-CLBR, the differential between GI and non-GI tissue infection frequencies was 

similar to BALB/c and B6 – parasites were detected sporadically in diverse sites ranging from lung 

(60% of mice) to skeletal muscle (30%) to heart and adipose (both 10%) (Figure 5, Supplementary 

Table 1). 

 

In summary, we have identified key similarities and differences in T. cruzi infection dynamics for 

different host-parasite strain combinations. The GI tract, primarily the large intestine and 

secondarily the stomach, was the only consistent site of active chronic T. cruzi infection in all models 

tested. Restriction to the gut was not absolute in any strain pairing, as shown by the presence of 

bioluminescence foci in diverse additional sites. There was a trend towards a higher frequency of 

infection in ‘systemic’ sites outside the gut for TcI-JR compared with TcVI-CLBR, significantly so in 

C3H mice. Heart-specific infection was detected in ≤50% of mice in all cases, with the exception of 

TcI-JR – C3H, in which the rate was 88%. However, lung and skeletal muscle had similar and often 

higher infection rates compared to the heart. We conclude that while none of the strains tested has 

any intrinsic tissue tropism in established infections, host-parasite genotype combinations do shape 

frequencies of transient infection in sites outside the gut, including the heart.  

 

Model-dependent cardiac disease pathology 

 

To assess chronic heart disease development, we evaluated myocardial tissue inflammation and 

fibrosis as markers of pathology. Quantitative histopathological analysis revealed mild but significant 

diffuse cellular infiltration in the TcI-JR – BALB/c, TcI-JR – C57BL/6 and TcVI-CLBR – C57BL/6 infection 

models (Figure 6A, 6B). Inflammatory infiltrates were diffuse and comprised predominantly 

mononuclear cells with lymphocytic morphology. No parasites were seen in any of the tissue 

sections used for analysis. Nevertheless, there were highly significant increases in the collagen 

content – indicative of pathological fibrosis – in all six host-parasite genotype combinations (Figure 
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6C, 6D). When present, fibrosis was diffusely distributed within the myocardium in all cases. In C3H 

mice infected with either strain, fibrosis was also present as focal deposits and was more extensively 

distributed between the muscle fibres than in BALB/c and B6 models. No differences in inflammation 

or fibrosis between atrial and ventricular regions were apparent. 

  

There was no support for an association between cardiac fibrosis severity and either end-point 

inflammation or local tissue infection intensities in individual animals (Figure 7A). However, at the 

group average level, which should better represent the dynamics of ongoing infections, there was a 

trend towards a negative association with myocarditis and a significant positive association with 

heart-specific parasite loads (Figure 7B). The latter finding was dependent on the TcI-JR-C3H data, 

which exhibited the most severe fibrosis and the highest average heart bioluminescence intensities. 

Together these data indicate that heart-specific damage accumulates according to the frequency of 

transiently active parasitism in this organ, rather than developing as a result of continuous local 

infection. Consistent with this, we also identified a significant correlation between heart fibrosis 

severity and the overall number of actively infected organs outside the gut, used as a measure of 

dissemination (Figure 7B).  

 

To compare the relative influence of the parasite strain and host background on heart pathology, a 

two-way ANOVA analysis of the cardiac fibrosis scores for each model was performed. Both parasite 

genotype (p = 0.024) and mouse genotype (p = 0.0004) were significant sources of variation in the 

data, but the latter parameter explained a greater proportion of fibrosis variability: 7.3% vs. 25.0%, 

respectively. There was no support for interaction between the two factors (1.5%, p = 0.57). 

 

Several conclusions can be drawn from these data. T. cruzi caused chronic cardiomyopathy 

resembling human Chagas disease, irrespective of parasite or host genetic background. The severity 

of cardiac fibrosis was dependent on the host-parasite strain combination and was significantly 
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greater in pairings associated with a higher mean local infection intensity, as well as low levels of 

inflammation. A lesser capacity to restrict active infection to the gut in a host-parasite genotype 

combination had predictive value for heart disease severity. 

 

Discussion 

The aim of this study was to evaluate the interaction between T. cruzi infection dynamics and the 

pathogenesis of experimental chagasic cardiomyopathy. To address this, we applied sensitive, 

minimally biased, real-time imaging tools and quantitative histopathological analysis. Our approach 

was designed to assess host and pathogen genetic diversity, which are extensive in nature, and to 

test whether these factors affect the course and outcome of infection. The limit of detection of our 

bioluminescence imaging system is close to 100 parasites when they are freely dispersed in the 

peritoneal cavity (Lewis et al., 2014). Thus, the interpretation that we outline below cannot 

completely exclude the possibility that extremely low numbers of parasites remain in 

bioluminescence negative samples. Furthermore, quiescent T. cruzi (akin to Plasmodium 

hypnozoites) though never described, would not generate bioluminescence if they were present, so 

we restrict ourselves to discussion of active as opposed to latent infection. Previously, we observed 

an excellent correlation between ex vivo bioluminescence intensity and quantitative PCR (qPCR) 

targeting T. cruzi DNA (Lewis et al., 2014), which was consistent between tissue types, indicating that 

signal intensity is not site-dependent. However, we have also shown that despite its high sensitivity 

(approximately one parasite per 106 host cells), the reliability of qPCR as a detection method in 

chronic infections is limited by the highly focal nature of parasite distribution (Fortes Francisco et al., 

2015). 
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The gut is the primary reservoir of chronic T. cruzi infection in mice 

 

We previously found that TcVI-CLBR infections are initially widely disseminated in BALB/c mice, but 

become confined almost exclusively to GI tissue during the chronic phase (Lewis et al., 2014). In this 

current study, we conducted long-term infection tracking studies for TcVI-CLBR and two strains from 

the diverse TcI lineage. The range of TcI extends from the United States to Argentina and it is the 

predominant cause of human infection in Ecuador, Colombia, Venezuela and North America, where 

digestive pathologies are absent (Miles et al., 1981). Nevertheless, in BALB/c, B6 and C3H mice, the 

large intestine and stomach were the primary reservoir sites of active infection for both TcI strains 

and for TcVI-CLBR. Thus, GI tissues are a permissive niche for active T. cruzi infection, irrespective of 

the host or parasite genetic diversity represented in our models. The TcI and TcVI strains are highly 

divergent, ~7% at the mitochondrial nucleotide sequence level (Lewis et al., 2011), so features 

conserved between them, in this case GI persistence, are probably intrinsic to T. cruzi biology.  

 

Data on the presence of T. cruzi in the human gut is limited. Histological studies identified 

persistence in GI tissue in 20-50% of megaesophagus cases (Adad et al., 1991, de Castro Côbo et al., 

2012), but using PCR others found parasite DNA in 100% of such samples (da Silveira et al., 2005). 

Nevertheless, anti-parasitic chemotherapy is not considered justifiable for seropositive individuals 

with digestive symptoms but normal heart function (Bern, 2011). This is largely due to lack of 

evidence for treatment efficacy against digestive disease, but is also influenced by the prevailing 

view that megasyndromes are the result of denervation during the acute phase (Köberle, 1970, de 

Oliveira et al., 1998). Counter to this, our finding of long-term parasite persistence suggests local 

infection could potentially influence the development of digestive disease into the chronic phase.  

 

The relative restriction of T. cruzi to the gut is mediated by ongoing host responses, as shown by 

dramatic expansion of disseminated parasite loads under immunosuppressive conditions. This 
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indicates important differences between systemic and GI immune responses, which could variously 

affect parasite survival, replication or migratory potential. The hypo-inflammatory 

microenvironment necessary for preservation of gut barrier integrity (Macpherson et al., 2006, 

Murai et al., 2009) may help form a permissive niche for parasite persistence. The early increase in 

GI tissue infection intensity following initiation of immunosuppression shows that the host actively 

suppresses T. cruzi below a certain threshold. Yet there is clearly regional variation in 

permissiveness, because T. cruzi was always found in the large intestine and/or stomach, but only 

occasionally in the small intestine. This could be a result of regional differences in lymphocyte 

phenotypes (Mowat et al., 2014), or in the availability of permissive host cell subsets, such as 

specialized enteric myocytes or mononuclear phagocytes. 

 

Transient heart infection and pathology 

 

Containment to the gut was not absolute in any strain pairing and this is consistent with the 

requirement to maintain vector transmission potential. We often observed parasite foci in the skin 

and other non-GI tissues, but importantly the frequency of active infection in any one tissue type did 

not approach the consistency seen for the large intestine or stomach. The scarcity and apparent 

non-persistence of these systemic foci suggests mice of all types tested can mount effective anti-

parasite responses outside the gut. Indeed, T. cruzi-specific CD8+ T cells, with unimpaired cytotoxic 

function have been described in B6 mice with long-term established infections (Bustamante et al., 

2008). Nevertheless, their effectiveness may still decline in decades-long human infections (Albareda 

et al., 2013). The use of xenodiagnosis and transmission by organ transplantation or blood 

transfusion (Schmunis et al., 2005), show that parasites can, at least temporarily, access the blood 

and peripheral tissues in chronic human infections. We propose that a second equilibrium occurs in 

the periphery, including the heart, which only permits discrete and transient episodes of replicative 
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infection. Our data suggests that host-parasite genotype combinations influence the frequency of 

these episodes and hence local pathogenesis.  

 

Chronic T. cruzi infection was associated with fibrotic heart disease in all our models. A high degree 

of variation in fibrosis severity was observed between individual mice, but this did not correlate with 

end-point cardiac parasite loads or myocarditis intensity. This is understandable if active heart 

parasitism is episodic, rather than continuous. Indeed, when we examined group-level correlates, 

which should better reflect intermittent processes compared to end-point measures, there was a 

clear association between fibrosis severity and both the relative capacity to restrict active infection 

to the GI tissues and the frequency of heart-specific infection.  

 

We found that parasite genotype had a small but significant impact on disease severity: in all hosts 

TcI-JR infection resulted in more severe cardiac fibrosis than infection with TcVI-CLBR. The extent of 

intra-lineage genetic diversity, particularly within TcI, means these differences should not be 

extrapolated to suggest TcI is in general more virulent than TcVI. The potential for strain-dependent 

variation in chronic cardiomyopathy presentation and severity is known to exist, even between 

closely related parasites (Schlemper Jr et al., 1983, Andrade, 1990). In this study, the infection 

dynamics of TcI-JR and TcI-X10 varied in some respects and other TcI-X10 clones are known to differ 

in virulence (Postan et al., 1983). We detected live TcVI-CLBR in heart tissue in only ~10% of 

chronically infected BALB/c. Quantitative PCR data from other studies support the presence of DNA 

of other TcVI strains in heart samples in similar experiments, at least at the group mean level (Cencig 

et al., 2011, Rodriguez et al., 2014). Some heterogeneity may therefore also exist within the hybrid 

TcVI lineage, despite its very low genetic diversity (Lewis et al., 2011). 

 

In this study, host genotype was found to have a stronger influence on pathogenesis than that of the 

parasite. The finding that heart infection frequencies are coupled to pathogenesis was largely 
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dependent on the major difference between C3H mice infected with TcI-JR and other strain pairings. 

These mice exhibited the most disseminated active infection foci, mortality rate and cardiac fibrosis 

scores, whereas, for example, TcVI-infected B6 displayed comparatively efficient gut restriction (or 

systemic control), 100% survival and more moderate fibrosis. The C3H background has previously 

been associated with relatively severe pathology, which resembles several features of human 

Chagas disease (Postan et al., 1987, Marinho et al., 2009, Daliry et al., 2014) This has not proven fully 

reproducible between laboratories (Eickhoff et al., 2010), perhaps due to the use of different C3H 

sub-strains. Comparative studies with mice considered relatively resistant (e.g. B6) have implicated 

several factors in survival of acute infection, such as IgG isotype profile (Rowland et al., 1992) and 

production of IL-10 (Roffê et al., 2012). However, the significance of such findings for chronic 

pathogenesis is yet to be demonstrated. In any case, defining cause and effect relationships between 

parasite loads, immunological markers and disease severity will be an ongoing challenge. A 

contributory factor has been the lack of sensitive, unbiased methods to determine tissue parasite 

loads. As shown here, application of bioluminescence imaging approaches to quantify living 

parasites in tissues should now substantially improve our ability to investigate the mechanism of 

chronic pathogenesis.  

 

It is important to note that analysis of myocarditis and cardiac fibrosis in chronically infected mice 

does not comprehensively model human disease. For example, cardiac arrhythmias are typical in 

cardiac cases, and blood clot formation accounts for 10-15% of all Chagas disease deaths (Rassi Jr et 

al., 2001). Digestive megasyndromes are not reproduced in mice. It was not an aim of this study to 

address these aspects of pathology and we focussed on inflammation and fibrosis, which are readily 

quantifiable. Although these phenomena are considered to be proximal drivers of arrthymias and 

microvascular alterations (Marin-Neto et al., 2007, Healy et al., 2015), further studies will be 

necessary to establish a direct contribution of genetics and infection dynamics to these other 

aspects of Chagas disease. 
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Coupling parasite dynamics to cardiac pathogenesis 

 

The framework described above for a link between the frequency of active heart infection episodes 

and pathogenesis suggests two non-exclusive underlying scenarios for parasite dynamics. In the 

chronic phase, there may be parasites that are very few in number or in a quiescent form, 

continuously present in cardiac tissue, that sporadically undergo expansion or activation to generate 

detectable bioluminescence. Our original observations of TcVI-CLBR in BALB/c, in which heart 

parasites are rarely detected but disease is still evident, led us to propose an alternative model 

whereby sporadic trafficking of parasites into the heart could explain the pathology in the absence 

of local persistence (Lewis et al., 2014). There are several reasons to conclude that this latter 

scenario is on balance the more likely. Firstly, highly sensitive qPCR fails to detect T. cruzi DNA in 

bioluminescence negative cardiac tissue such that latent parasite loads would need to be below the 

qPCR limit of detection of ~1 parasite per 10 mg (Fortes Francisco et al., 2015). Second, we could 

find no histological evidence in multiple sections of cardiac tissue in any of these mice and reports of 

such observations by others are extremely rare. Third, peripheral infection foci in the TcVI-CLBR – 

BALB/c model typically appear and disappear over the course of a single day, consistent with 

trafficking of infected host cells (Lewis et al., 2014). Fourth, in a fatal acute infection model, parasite 

burdens in the heart depended on the ability of T. cruzi to replicate specifically in myeloid cells 

expressing Slamf1 (Calderón et al., 2012), which has a pro-migratory function (van Driel et al., 2012, 

Wang et al., 2015). Our new observations on the timing of immunosuppression-induced 

dissemination indicate that systemic tissue infections may be seeded from the parasite reservoir in 

the GI tissues. However, our approach did not allow direct tracking of individual foci, so we cannot 

completely exclude the possibility that cyclophosphamide treatment led to local reactivation of 

quiescent parasites in systemic sites that required >6 days to exceed the detection threshold. 

Further studies will be required to establish whether T. cruzi latency within or trafficking into the 

heart is the dominant mode of infection driving local pathogenesis. Nevertheless, the insight that 
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cardiac pathology could be caused by repeatedly transient infection, rather than by continuous local 

persistence, has the potential to reconcile many of the controversies surrounding the role of T. cruzi 

in cardiac pathogenesis. It may also help to explain the clinical heterogeneity associated with human 

infections. 

 

Interestingly the heart was not preferentially infected compared to other tissues, such as lung and 

skeletal muscle. Explanations for the heart being particularly susceptible to progressive, life-

threatening disease include the low regenerative capacity of adult myocardium (Porrello et al., 

2011), molecular mimicry between T. cruzi and heart autoantigens (Cunha-Neto et al., 1996), and 

the unique importance of neurological homeostasis in the heart. Irrespective of the downstream 

pathogenic mechanism(s), our data indicate that T. cruzi is the ultimate driver of chronic myocardial 

fibrosis, but one that does not have to be continually present in the heart. This reinforces the validity 

of pursuing new anti-parasitic drugs and should contribute to a better informed assessment of their 

efficacy and PKPD requirements. Finally, the possibility that the gut is an immunologically privileged 

site for T. cruzi in humans has important implications for Chagas disease vaccine and 

immunotherapy development.  

 

Experimental Procedures 

Ethics Statement 

All animal work was carried out under UK Home Office project licence (PPLs 70/6997 and 70/8207) 

and was approved by the London School of Hygiene and Tropical Medicine Animal Welfare and 

Ethical Review Board. All protocols and procedures were conducted in accordance with the UK 

Animals (Scientific Procedures) Act 1986 (ASPA). 
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Parasites 

T. cruzi strains CL Brener (CLBR), Silvio X10/6 (X10), JR cl4 (JR), were grown as epimastigotes at 28°C 

in RPMI-1640 medium supplemented with 0.5% (w/v) tryptone, 20 mM HEPES pH 7.2, 30 mM 

haemin, 10% heat-inactivated fetal bovine serum, 2 mM sodium glutamate, 2 mM sodium pyruvate, 

100 μg/mL streptomycin and 100 U/mL penicillin. Metacyclic trypomastigotes (MTs) were obtained 

by transfer to Graces-IH transformation medium (Isola et al., 1986). MTs were harvested after 4 - 7 

days, when typically 70 - 90% of parasites had differentiated. Tissue culture trypomastigotes (TCTs) 

were obtained from infected L6 rat skeletal myoblasts grown at 37°C and 5% CO2 in RPMI-1640 

medium supplemented with 20 mM HEPES pH 7.2, 10% heat-inactivated fetal bovine serum, 2 mM 

sodium glutamate, 2 mM sodium pyruvate, 100 μg/mL streptomycin and 100 U/mL penicillin. 

Bioluminescent CLBR and X10 parasites constitutively expressing the firefly luciferase PpyRE9h 

(Branchini et al., 2010) were described previously (Lewis et al., 2014; Taylor et al., 2015). The TcI-JR 

cell line expressing PpyRE9h was generated by genomic integration into the rRNA locus (Lewis et al., 

2014). Genotypes of wild type and bioluminescent lines were confirmed at three independent loci 

(Lewis et al., 2009). 

 

In vitro assays 

The Luciferase Assay System (Promega) was used to screen transfected T. cruzi clones for luciferase 

expression (Lewis et al., 2014). Parasite lysates were mixed with the assay substrate and 

luminescence was measured immediately using a SpectraMax® M3 microplate reader (Molecular 

Devices). To assess luciferase expression in individual amastigotes, L6 myoblasts grown on glass 

coverslips were processed for immunofluorescence analysis 5 days after infection. Coverslips were 

fixed in 2% paraformaldehyde in PBS, permeabilized using 0.1% Triton X-100, then stained with 

1:500 goat anti-luciferase pAb (Promega) followed by 1:1000 Alexa488 conjugated donkey anti-goat 

IgG (Invitrogen). DNA was labelled using 1 µM Hoechst 33342, before mounting with FluorPreserve 

(Calbiochem). Images were acquired on an LSM 510 confocal microscope (Zeiss). 
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Mice and infections 

BALB/c, C57BL/6 and C3H/HeN mice were purchased from Charles River (UK) and CB17 SCID mice 

were bred in-house. Animals were maintained under specific pathogen-free conditions in 

individually ventilated cages. They experienced a 12 hour light/dark cycle and had access to food and 

water ad libitum. Female mice aged 8 – 12 weeks were used, except where otherwise stated. SCID 

mice were infected with 1 x 104 in vitro derived TCTs in 0.2 mL PBS via i.p. injection. Unless otherwise 

stated, all other mice were infected by i.p injection of 1 x 103 BTs derived from parasitaemic SCID 

mouse blood. All infected SCID mice developed fulminant infections and were euthanized at or 

before humane end-points. At experimental end-points, mice were sacrificed by ex-sanguination 

under terminal anaesthesia. In some experiments chronically infected mice (>150 days post 

infection) were immunosuppressed with cyclophosphamide (200 mg/kg/day) by i.p. injection at 3 – 4 

day intervals, for a maximum of 3 doses (Fortes Francisco et al., 2015). 

 

Bioluminescence imaging 

Mice were injected with 150 mg/kg d-luciferin i.p., then anaesthetized using 2.5% (v/v) gaseous 

isoflurane in oxygen. To measure bioluminescence, mice were placed in an IVIS Lumina II system 

(Caliper Life Science) and images were acquired 10 – 20 minutes after d-luciferin administration 

using LivingImage 4.3. Exposure times varied between 30 seconds and 5 minutes, depending on 

signal intensity. After imaging, mice were revived and returned to cages. For ex vivo imaging, mice 

were injected with 150 mg/kg d-luciferin i.p., then sacrificed by ex-sanguination under terminal 

anaesthesia 7 minutes later. Mice were perfused with 10 mL 0.3 mg/mL d-luciferin in PBS via the 

heart. Organs and tissues were imaged in two stages. Firstly, heart, lungs, spleen, liver, 

gastrointestinal tract, gastrointestinal mesenteric tissue, a skeletal muscle sample (quadriceps) and a 

visceral fat sample were transferred to a Petri dish in a standardized arrangement, soaked in 0.3 

mg/mL d-luciferin in PBS, and then imaged using maximum detection settings (5 minutes exposure, 
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large binning). Then the remaining animal parts were checked for residual bioluminescence foci in 

the second stage of ex vivo imaging, also using maximum detection settings.  

 

To estimate parasite burden in live mice, regions of interest (ROIs) were drawn using LivingImage 

v.4.3 to quantify bioluminescence expressed as total flux (photons/second) summed from dorsal and 

ventral images. The detection threshold for in vivo imaging was determined using control uninfected 

mice. To quantify infection intensities in ex vivo tissues, individual ROIs were drawn to quantify 

bioluminescence expressed as radiance (photons/second/cm2/sr). Because different tissue types 

from uninfected control mice have different background radiances, we normalized the data from 

infected mice using matching tissues from uninfected controls and used the fold-change in radiance, 

compared to these tissue-specific controls, as the final measure of ex vivo bioluminescence. The 

detection threshold for ex vivo imaging was estimated using the fold-change in radiance for empty 

ROIs in images obtained for infected mice compared with matching empty ROIs in images for 

uninfected control mice. 

 

Histopathology 

Tissue samples were fixed in GlyoFixx (Thermo Scientific) for 24 – 72 hours, dehydrated, cleared, and 

embedded in paraffin. Three µm heart sections were stained with hematoxylin and eosin (H&E) or 

Masson’s trichrome and 15 400X magnification images of randomly selected fields covering the 

ventricular and atrial regions were taken on a Leica DM3000 microscope (40X objective) for 

quantitative histomorphometric analysis. The base of the heart and major vessels were excluded due 

to high inherent collagen content. The number of images required for accurate quantification 

representative of the whole section of myocardium was determined by a stability analysis of 

measurements based on a range of fields from a minimum of 5 to a maxiumum of 20. An index of 

cellular infiltration was derived by quantifying the number of nuclei in images of H&E stained 

sections. An increase in the number of nuclei compared to uninfected controls was considered 
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indicative of myocarditis. A fibrosis index was derived by quantifying the area of collagen (blue 

pixels) in images of trichrome stained sections. An increase in collagen content compared to 

uninfected controls was considered indicative of cardiac fibrosis. All images were analysed using 

Leica Application Suite v4.5.0.  

 

Statistics 

Individual animals were used as the unit of analysis, except where otherwise stated. No blinding or 

randomisation protocols were used. Statistical differences between groups were evaluated using the 

Mann-Whitney U test, one-way or two-way ANOVA with Bonferroni post-hoc correction, or the 

Kruskal-Wallis test with Dunn’s post-hoc correction. Pearson correlation analysis was used to 

evaluate relationships between variables. These tests were performed in GraphPad Prism v.6. 

Differences of p < 0.05 were considered significant. 
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FIGURE 1. Bioluminescence imaging of T. cruzi TcVI-CLBR in BALB/c mice reveals infection kinetics 
and gastrointestinal persistence.  A, B: Course of TcVI-CLBR infection in female (n = 10) (A) and male 
(n = 5) (B) BALB/c mice tracked by in vivo bioluminescence imaging. Panels show serial ventral 
images of one mouse. Log-scale pseudocolour heat-maps show intensity of bioluminescence; 
minimum and maximum radiances are indicated. Charts show total bioluminescence for five 
individual mice (grey) and their mean (red) from the experiment(s) represented by adjacent images. 
Dashed line indicates detection threshold. C, D: Quantification of tissue-specific chronic parasite 
densities in female (n = 9, 167 – 168 dpi) (C) and male (n = 5, 151 dpi) (D) BALB/c mice using ex vivo 
bioluminescence imaging. Images show bioluminescence intensities for a representative mouse: 
Adipose (A), gut mesenteric tissue (GM), heart (H), lung (L), large intestine (LI), liver (Lv), skeletal 
muscle (M), spleen (S), small intestine (SI) and stomach (St). Charts show quantification of tissue-
specific infection intensities expressed as fold change in bioluminescence vs. matching tissues from 
uninfected controls. Black lines show median values and dashed red lines indicates detection 
threshold. Data are from two independent experiments (female) and one experiment (male). 
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FIGURE 2. T. cruzi TcI infection kinetics in BALB/c mice culminate in gastrointestinal persistence 
and sporadic heart infection. A, B: Course of T. cruzi TcI-X10/6 (n = 6) (A) and TcI-JR (n = 10) (B) 
infection in BALB/c mice tracked by in vivo bioluminescence imaging. Panels show serial ventral 
images of one mouse. Log-scale pseudocolour heat-maps show intensity of bioluminescence; 
minimum and maximum radiances are indicated. Charts show total bioluminescence for five 
individual mice (grey) and their mean (red) from the experiments represented by adjacent images. 
Dashed line indicates detection threshold. C, D: Quantification of tissue-specific chronic parasite 
densities in TcI-X10/6 (n = 6, 141 – 146 dpi) (C) and TcI-JR (n = 10, 154 – 161 dpi) (D) infected BALB/c 
mice using ex vivo bioluminescence imaging. Images show bioluminescence intensities for a 
representative mouse: Adipose (A), gut mesenteric tissue (GM), heart (H), lung (L), large intestine 
(LI), liver (Lv), skeletal muscle (M), spleen (S), small intestine (SI) and stomach (St). Charts show 
quantification of tissue-specific infection intensities expressed as fold change in bioluminescence vs. 
matching tissues from uninfected controls. Black lines show median values and dashed red lines 
indicates detection threshold. Data are from two independent experiments. 
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FIGURE 3. Immunosuppression leads to systemic parasite dissemination.  
A, B: Tissue-specific chronic TcVI-CLBR parasite distributions and densities in BALB/c mice after 6 (n = 
6) or 14 (n = 6) days of cyclophosphamide-induced immunosuppression compared with 
immunocompetent controls (n = 9). Representative images (A) show ex vivo bioluminescence 
intensities for samples from a representative mouse in each group: Adipose (A), gut mesenteric 
tissue (GM), heart (H), lung (L), large intestine (LI), liver (Lv), skeletal muscle (M), peritoneum (P), 
spleen (S), small intestine (SI) and stomach (St). Log scale heat-maps indicate bioluminescence 
intensity; minimum and maximum radiances for pseudocolour scale are indicated. Charts (B) show 
infection intensities expressed as fold change in bioluminescence intensity compared to matching 
tissues from uninfected control, black lines indicate median values. Dashed lines indicate 
background luminescence cut-offs equal to the mean +2SDs of the fold change in bioluminescence 
intensity for empty regions of interest (ROI) compared with empty ROI in images obtained for 
uninfected mice. Asterisks indicate p-values for Kruskal-Wallis tests between groups (* P < 0.05; ** P 
< 0.01; *** P < 0.001). Data are from two independent experiments. 
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FIGURE 4. T. cruzi TcI-JR and TcVI-CLBR have similar infection dynamics in C57BL/6 mice including 
chronic gut persistence. 
A, B: Course of T. cruzi TcVI-CLBR (n = 10) (A) and TcI-JR (n = 10) (B) infection in C57BL/6 mice 
tracked by in vivo bioluminescence imaging. Panels show serial ventral images of one mouse. Log-
scale pseudocolour heat-maps show intensity of bioluminescence; minimum and maximum 
radiances are indicated. Charts show total bioluminescence for five individual mice (grey) and their 
mean (red) from the experiments represented by adjacent images. Dashed line indicates detection 
threshold. C, D: Quantification of tissue-specific chronic parasite densities in TcVI-CLBR (n = 10, 170 – 
175 dpi) (C) and TcI-JR (n = 10, 156 – 158 dpi) (D) infected C57BL/6 mice using ex vivo 
bioluminescence imaging. Images show bioluminescence intensities for a representative mouse: 
Adipose (A), gut mesenteric tissue (GM), heart (H), lung (L), large intestine (LI), liver (Lv), skeletal 
muscle (M), spleen (S), small intestine (SI) and stomach (St). Charts show quantification of tissue-
specific infection intensities expressed as fold change in bioluminescence vs. matching tissues from 
uninfected controls. Black lines show median values and dashed red lines indicates detection 
threshold. Data are from two independent experiments. 
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FIGURE 5. Distinct T. cruzi TcI-JR and TcVI-CLBR infection dynamics in C3H/HeN mice. A, B: Course 
of T. cruzi TcVI-CLBR (n = 10) (A) and TcI-JR (n = 10) (B) infection in C3H/HeN mice tracked by in vivo 
bioluminescence imaging. Panels show serial ventral images of one mouse. Log-scale pseudocolour 
heat-maps show intensity of bioluminescence; minimum and maximum radiances are indicated. 
Charts show total bioluminescence for five individual mice (grey) and their mean (red) from the 
experiments represented by adjacent images. Dashed line indicates detection threshold. C, D: 
Quantification of tissue-specific chronic parasite densities in TcVI-CLBR (n = 10, 154 – 160 dpi) (C) 
and TcI-JR (n = 8, 168 – 174 dpi) (D) infected C3H/HeN mice using ex vivo bioluminescence imaging. 
Images show bioluminescence intensities for a representative mouse: Adipose (A), gut mesenteric 
tissue (GM), heart (H), lung (L), large intestine (LI), liver (Lv), skeletal muscle (M), spleen (S), small 
intestine (SI) and stomach (St). Charts show quantification of tissue-specific infection intensities 
expressed as fold change in bioluminescence vs. matching tissues from uninfected controls. Black 
lines show median values and dashed red lines indicates detection threshold. E: Number of infected 
tissues outside the GI tract compared with equivalently infected BALB/c, and C57BL/6 mice at 
experimental end-points. Hearts, lungs, spleens, adipose and skeletal muscle samples above 
threshold ex vivo bioluminescence were scored as T. cruzi positive. Data are from two independent 
experiments. 
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FIGURE 6. Variable chronic cardiac pathology across host-parasite strain combinations. A: 
Representative myocardial sections stained with haematoxylin-eosin, magnification 400X, scale bar = 
50 µm. B: Quantitative histopathological analysis of myocardium samples obtained at 154-174 days 
of T. cruzi infection from the following groups: TcVI-CLBR-BALB/c (n = 9), TcVI-CLBR-C57BL/6 (n = 10), 
TcVI-CLBR-C3H/HeN (n = 10), TcI-JR-BALB/c (n = 10), TcI-JR-C57BL/6 (n = 10), TcI-JR-C3H/HeN (n = 8), 
uninfected control BALB/c, C57BL.6 and C3H/HeN (all n = 10). Number of nuclei per 6 x 104 µm2 were 
quantified as a marker of the extent of cellular infiltration. C: Representative myocardial sections 
stained with Masson’s trichrome, magnification 400X, scale bar = 50 µm. D: Quantification of 
collagen content (% blue area in Masson’s trichrome stained sections) as a marker of cardiac fibrosis 
severity in same groups as in (B). Data are the means +SEM and are from two experiments. Asterisks 
indicate p-values for one way ANOVA comparisons between groups (* P < 0.05; ** P < 0.01; *** P < 
0.001). 
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FIGURE 7. Correlates of chronic heart pathology in T. cruzi infected mice A: Pearson correlation 
analysis of myocarditis scores (left) and cardiac end-point parasite densities (ex vivo 
bioluminescence intensities) (right) against cardiac fibrosis scores. Data are from samples obtained 
at 154-174 days of T. cruzi infection from the following groups: TcVI-CLBR-BALB/c (n = 9), TcVI-CLBR-
C57BL/6 (n = 10), TcVI-CLBR-C3H/HeN (n = 10), TcI-JR-BALB/c (n = 10), TcI-JR-C57BL/6 (n = 10) and 
TcI-JR-C3H/HeN (n = 8). B: Pearson correlation analysis of group mean cardiac fibrosis scores against 
group mean myocarditis scores (left), cardiac end-point parasite densities (ex vivo bioluminescence 
intensities) (middle) and number of ex vivo T. cruzi bioluminescence positive non-gut tissues as an 
indicator of dissemination level (right). Data are from the same groups as in (A). Error bars show 
SEM. Dashed lines are linear regression models. 


