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ABSTRACT

Objectives: We investigate the chance of
demonstrating Ebola vaccine efficacy in an individually
randomised controlled trial implemented in the
declining epidemic of Forécariah prefecture, Guinea.
Methods: We extend a previously published dynamic
transmission model to include a simulated individually
randomised controlled trial of 100 000 participants.
Using Bayesian methods, we fit the model to Ebola
case incidence before a trial and forecast the expected
dynamics until disease elimination. We simulate trials
under these forecasts and test potential start dates and
rollout schemes to assess power to detect efficacy, and
bias in vaccine efficacy estimates that may be
introduced.

Results: Under realistic assumptions, we found that a
trial of 100 000 participants starting after 1 August had
less than 5% chance of having enough cases to detect
vaccine efficacy. In particular, gradual recruitment
precludes detection of vaccine efficacy because the
epidemic is likely to go extinct before enough
participants are recruited. Exclusion of early cases in
either arm of the trial creates bias in vaccine efficacy
estimates.

Conclusions: The very low Ebola virus disease
incidence in Forécariah prefecture means any
individually randomised controlled trial implemented
there is unlikely to be successful, unless there is a
substantial increase in the number of cases.

INTRODUCTION

Since 2013, the largest epidemic of Ebola
virus disease (EVD) to date has been
ongoing in West Africa, with over 25000
cases and 10 000 deaths reported as of 7 July
2015. There is no licensed vaccine or treat-
ment for EVD, and the case fatality rate is
around 70%." The epidemic has declined
since its peak, however disease incidence
remains low.” As a result, it may be challen-
ging to run the phase III vaccine trials neces-
sary to assess the efficacy of candidate

Strengths and limitations of this study

= Timely estimates of chance of success of indi-
vidually randomised controlled trials (RCTs) in
the declining Ebola epidemic.

= Determination and explanation of bias introduced
to vaccine RCTs by exclusion of cases that occur
shortly after vaccination.

= This model can only account for RCTs con-
ducted in the declining phase of the epidemic.

vaccines that are currently in development,
and hence apply for licensure. As well as
existing study designs being proposed, such
as individually randomised controlled trials
(RCTs) and stepped wedge trials,” the declin-
ing incidence of EVD has led to develop-
ment of novel vaccine trial designs® to
account for the limited number of cases in
West Africa.

Some areas have continued transmission,
however, and thus remain potential candi-
date locations for a large-scale Ebola vaccine
trial.” For example, trials have been pro-
posed in Guinea, where Forécariah prefec-
ture has seen continuing transmission since
October 2014. Conventional statistical power
analysis or sample size estimation using fixed
assumptions on incidence rates is inappropri-
ate when incidence rates change during the
course of an epidemic. Here we use a com-
bination of epidemic modelling and statis-
tical analysis to examine the chance of
success of such trials. Specifically, we estimate
the power of an RCT to detect vaccine
efficacy in the coming months under a range
of different scenarios. Unlike other
approaches,” our method uses real-time fore-
casting to account for the possibility that the
epidemic will end during the trial, and incor-
porates this possibility into the evaluation of
trial success.
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METHODS

Model fitting and forecasting

To investigate the dynamics of EVD in the prefecture of
Forécariah (population 245 000), we fitted a stochastic
Susceptible-Exposed-Infectious-Recovered (SEIR) trans-
mission model to the weekly incidence of confirmed
and probable cases published by the WHO’ and
Guinean Ministry of Health between 1 August 2014 and
7 June 2015 A description of parameters is given in
table 1.

We used published estimates of 9.4 days for the mean
latent period and 11.8 days for the mean infectious
period.! To account for external influences on the
reproduction number (FR;), for example, variation in
population behaviour, or epidemic control measures, we
assumed that the transmission rate could change over
time. Therefore, the change in ; would also absorb any
effective change in the infectious period during the epi-
demic. The extent and direction of rate change was esti-
mated during the model-fitting procedure.8 We used the
same Bayesian inference framework as in.? Briefly, we
defined the likelihood of the data through a negative
binomial observation process
dispersion in the reporting of cases (the mean reporting
rate was fixed at 60% and the dispersion parameter was
inferred). Then, we used a particle Monte-Carlo Markov
Chain'’ algorithm implemented in the SSM library'' to
sample from the marginal posterior distribution of the
parameters and the states of the model.

After fitting the transmission parameters of the
model, we projected the model forward in time, to simu-
late the potential future trajectories of the epidemic.
More precisely, we simulated 200 000 epidemic trajector-
ies without a vaccine trial from 7 June 2015 until 1 May
2016. This corresponds to 40 stochastic simulations of
5000 samples from the posterior distribution of the para-
meters and model states inferred on 7 June 2015. We
restricted the forecast to those parameter sets for which
more than 25% of the 40 simulated epidemics go
extinct before 1 May 2016, that is, assuming that elimin-
ation of EVD will be achieved within 10 months. We kept

accounting for over-

3542 (71%) of the 5000 parameter sets. Epidemic trajec-
tories resulting from these parameter sets are sum-
marised in figure 1A, and the distribution of R, for
forecasted epidemics is shown in figure 1B, C. In par-
ticular, we note that all forecasts have R, below the epi-
demic control threshold, that is, we assume that the
epidemic will remain under control until elimination.
This is a reasonable assumption, given the low incidence
in Forécariah.

Trial implementation

To model the vaccine trial, we extend the stochastic
SEIR transmission model to include the recruitment of
two arms of an individually randomised controlled
trial'? for an EVD vaccine (figure 1D).

In the model, the vaccine is delivered in one dose,
and protective immunity begins 2 weeks later. We also
conducted a sensitivity analysis by using 1 week delay,
based on the intermediate results of the rVSV ring-
vaccination trial in Guinea.'” Immunity lasts 1 year and
has efficacy of assumed values 0%, 50%, 70% or 90%.
Each arm of the modelled trial has 50 000 participants,
and we test three potential start dates: 1 July, 1 August
and 1 September 2015, and we also test two modes of
recruitment; immediate, where 100 000 individuals are
recruited in the first 2 weeks of the trial and gradual,
where 10 000 individuals are recruited during the first
2 weeks of each month, for 10 months. The gradual
recruitment scenario is more realistic because of the
delays inherent in recruiting and vaccinating people,
however we present the immediate recruitment scenario
as an example of the ideal implementation.

Analysis of trial outcomes
In a primary analysis of a randomised controlled vaccine
trial, the vaccine efficacy, 6y, at time t is measured by:

g =1

cases in vaccinated group/number in vaccinated group

cases in control group /number in control group

where the vaccinated and control groups are defined in
the trial protocol (see below), and 95% CIs are com-
puted as score CIs."* These standard vaccine efficacy cal-
culations assume that the risk of infection is constant
through time in both arms, which is violated when an
epidemic is declining. Forécariah has seen unstable
declining incidence since mid-March 2015 (figure 1A),
which has two implications for a trial in this area; (1)
the false-positive rate (type I error) may be different
than the expected 5%, and, (2) the trial may be under-
powered if the epidemic goes extinct before enough
events have occurred (type II error).

For each trial simulation, we computed &; each week
until the simulated epidemic went extinct. A positive
(negative) effect is defined if the lower (upper) bound
of the CI is strictly positive (negative). We then derived:

Table 1 Parameter descriptions and values

Parameter Description Value

By Time varying transmission Estimated
rate

1/e Average latent period 9.4 days’

1hv Average infectious period 11.8 days’

R: Time-varying reproduction By/v
number

1/x Average time between 14 days
vaccination and protection

1/y Average duration of vaccine 1 year
protection

c Vaccine efficacy 0%, 50%,

70%, 90%
2
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Figure 1 Model fit (blue) to the incidence data in Forécariah (red points) and forecast (grey) based on the posterior distribution
at the latest data point (A). The solid line corresponds to the median estimate and the shaded areas to the 50% and 95%
credible intervals. Fitted (blue) and forecasted (grey) values for the time-varying reproduction number R; (B). Posterior distribution
of R, on 7 June 2015 (blue) and distribution corresponding to the trajectories used for forecasting (grey)(C). Mechanistic model
for the vaccine trial (D). Susceptible participants are recruited into the trial at rate, rt. Before the trial begins, rt equals zero, and
the model reduces to an SEIR model. Those entering the vaccine arm pass through a period of immune development, Vg, during
which they are susceptible to Ebola virus disease infection. Following onset of protective immunity, they enter V,, and experience
reduced susceptibility, ¢, equal to the vaccine efficacy. Protective immunity is lost at rate y, and individuals become susceptible
again. Participants enter the control arm at the same rate as vaccinated participants and are separated between early (C4) and
late (C,) control to match the delay in acquiring immunity in the vaccine arm. For biological realism, the distribution of durations of
E, Vs and V,, follow an Erlang distribution with shape parameter two. Similarly, to match the vaccine arm, the same distribution is
assumed for the compartment C.

A. Extinction probability—the probability that the epi-

demic has gone extinct by time t, which is the pro-
portion of extinct simulations at time t.

Measured vaccine efficacy—the median value of o
in simulations where the epidemic is non-extinct at
time t and at least one case occurred in either the
control or intervention arms (otherwise &, is not
defined).

vaccine is efficacious and the epidemic is non-extinct.
We use the proportion of simulations with a positive
effect among the non-extinct simulations at time t.

. Power adjusted by extinction probability—the prob-

ability that the epidemic is non-extinct and vaccine
efficacy is detected. The power at time t is multiplied
by l-extinction probability at time t, and this there-
fore represents the chance of success of the trial.

C. False-positive rate—the probability that a positive or
negative vaccine effect can be detected, given that
the vaccine has no efficacy and the epidemic is non-
extinct at that time. Calculated as the proportion of
simulations with a positive or negative vaccine effi-
cacy when true efficacy is 0%, and the epidemic is
non-extinct at t.

D. Power to detect vaccine efficacy—the probability that
a positive vaccine effect can be detected given that the

Definition of the vaccine and control groups

Some trial protocols exclude participants who develop
symptoms shortly after vaccination, that is, before the
vaccine becomes immunoprotective, under the assumption
that the participant became infected before recruitment or
before the vaccine could generate an immune response in
the host. Other trial protocols also exclude control partici-
pants who develop symptoms within this period,'* under
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similar assumptions about exposure time. We test the effect
of excluding participants in each arm who are infected
within 2 weeks of recruitment. We distinguish three defini-
tions of the vaccinated or control groups depending on
which participants are excluded: (1) no early cases
excluded, (2) only early cases in the vaccine arm are
excluded, (3) early cases in both arms are excluded.

RESULTS

Detection of vaccine efficacy

For each vaccine efficacy tested, the extinction probabil-
ity quickly increases through time, with more than 50%

Feb
Time

chance of extinction by October 2015 (figure 2A).
Power is positively correlated with vaccine efficacy
(figure 2B). The power to detect vaccine efficacy at a
given time depends on the probability that the epidemic
has not gone extinct by that time, which is also influ-
enced by the true vaccine efficacy (o), due to
population-level immunity caused by the vaccine trial.
Figure 2C shows that there is low power to detect effi-
cacy when adjusted by the extinction probability.

Effect of vaccine or control group definition
For a model with immediate recruitment on 1 July, and
70% vaccine efficacy, the highest power is achieved by
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Figure 3 Effect of group definition on trial outcomes. The X-axis shows the probability that the epidemic goes extinct before the
value on the Y-axis is reached. Advancing time moves left-to-right, as the extinction probability increases. Power to detect
efficacy (A), false-positive rate (B), and measured vaccine efficacy (where 70% is assumed) (C). The three group definitions (1)
no early cases excluded (blue), (2) early cases in the vaccine arm excluded (black), and (3) cases in both arms excluded (red).
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Figure 4 Effect of start date on trial success. The figure
shows immediate administration of a 70% efficacious vaccine
to all participants (round points) for trials starting on the 1
July, 1 August and 1 September. In addition, the gradual
recruitment of participants (triangles) is shown for the 1 July
start date. The dashed line shows the power when the
assumed delay from administration of vaccine until protective
immunity is 1 week. All other results are for a 2-week delay.

excluding only early cases in the vaccine arm (figure
3A). However, this cohort definition is also associated
with an inflated type I error (figure 3B) and overesti-
mates the true vaccine efficacy (figure 3C). Excluded
cases have a higher risk of infection because the force of
infection decreases over time. Since early cases in the
control arm that were at the same high risk are not
excluded, bias is introduced.

Including all cases reduces the false-positive rate below
5% but also decreases the trial power, and leads to
underestimates of vaccine efficacy (figure 3C).
Excluding early cases in vaccinated and control arms
maintains the false-positive rate below 5%, does not bias
vaccine efficacy downward and maintains moderate
power. In all cases, there is high probability that the epi-
demic goes extinct before vaccine efficacy can be accur-
ately measured. These results are generalisable to other
vaccine efficacies and start dates.

In practice, it may be difficult to find the appropriate
exclusion period, where the period over which immunity
is developed is unknown. Reducing both the protection
delay and exclusion period from 2 to 1 week leads only
to a slightly earlier and higher peak in power due to
greater sample sizes and number of cases included in
the analysis. In addition, shorter delay increases herd
immunity effect, leads to faster extinction of the epi-
demic and thus reduces the adjusted power at later time
(figure 4).

Realistic rollout scenarios

Under an ideal scenario of immediate recruitment of
100 000 participants, the later the trial starts the lower
the probability to detect vaccine efficacy (figure 4). The

effect of delaying the start of the trial by 1 month halves
the chance of success. Gradual enrolment of partici-
pants drastically reduces the power to detect efficacy
compared with immediate rollout. The example shown
is 1 July start date although other start dates show the
same pattern, with greatly reduced power. This occurs
because there is a high probability of extinction before
enough participants are recruited.

DISCUSSION

Here we modelled the implementation of an individu-
ally randomised control vaccine trial in Forécariah pre-
fecture, Guinea using an extended version of a
previously published dynamic transmission model for
EVD. We showed that if an RCT were to start later this
year in Forécariah prefecture it would have a very
limited chance of detecting any vaccine efficacy, because
the epidemic is likely to go extinct before enough cases
have occurred in participants. In addition, in realistic
rollout scenarios of 10 000 participants per month, the
chance that the epidemic persists until enough partici-
pants are recruited and the trial is able to detect efficacy
is very low, for example, below 2% for a trial beginning
on 1 July 2015 with a 70% efficacious vaccine. We note
that this adjusted power is probably an overestimate
since our model operates at the population level and
does not account for clustering effect at small scales.

We also demonstrated that exclusion of early cases in
the group definition for the vaccine arm of a trial (ie,
individuals vaccinated but not yet protected) inflates the
power but also the false-positive rate due to the declining
risk of infection over time. Ideally, the group definition
for a primary analysis in a declining epidemic should con-
sider excluding early cases in the control and interven-
tion arms to maximise the power to detect vaccine
efficacy while keeping the false-positive rate below 5%.
Alternatively, more advanced statistical analyses account-
ing for time-varying risk of infection should be consid-
ered to circumvent the necessity of excluding early
control cases.® This important bias must be accounted for
in protocols of infectious disease vaccine trials.

Overall, our analysis is an example of how real-time
mathematical models can be used to design trials more
efficiently during an epidemic, and assess feasibility of
planned trials, although models are infrequently utilised
to this end. More realistic models accounting for
network structure could be even more precise given that
the majority of transmission events may be seen in clus-
ters formed at confined space (eg, hospital or house-
hold) and also at a small spatial scale.
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