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Abstract

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we 

describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read 

depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In 

extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate 

a highly accurate imputation reference panel and identify novel alleles associated with levels of 

triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and 

RGAG1) from single-marker and rare variant aggregation tests. We describe population structure 

and functional annotation of rare and low-frequency variants, use the data to estimate the benefits 

of sequencing for association studies, and summarize lessons from disease-specific collections. 

Finally, we make available an extensive resource, including individual-level genetic and 

phenotypic data and web-based tools to facilitate the exploration of association results.

Assessment of the contribution of rare genetic variation to many human traits is still largely 

incomplete. In common and complex diseases, a lack of empirical data has to date hampered 

the systematic assessment of the contribution of rare and low-frequency genetic variants 

(defined throughout this paper as minor allele frequency (MAF) <1% and 1–5%, 

respectively). Rare variants are incompletely represented in genome-wide association 

(GWA) studies1 and custom genotyping arrays2,3, and impute poorly with current reference 

panels. Rare and low-frequency variants also tend to be population- or sample-specific, 

requiring direct ascertainment through resequencing4,5. Recent exome-wide resequencing 

studies have begun to explore the contribution of rare coding variants to complex traits6, but 

comparatively little is known of the non-coding part of the genome where most complex 

trait-associated loci lie7. At the other end of the human disease spectrum, the widespread 

application of exome-wide sequencing is accelerating the rate at which genes and variants 

causal for rare diseases are being identified. Despite this, many Mendelian diseases still lack 

a genetic diagnosis and the penetrance of apparently disease-causing loci remains 

inadequately assessed.
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The UK10K project was designed to characterize rare and low-frequency variation in the 

UK population, and study its contribution to a broad spectrum of biomedically relevant 

quantitative traits and diseases with different predicted genetic architectures. Here we 

describe the data and initial findings generated by the different arms of the UK10K project. 

In addition to this paper, UK10K companion papers describe the utility of this resource for 

imputation8, association discovery for bone mineral density9, thyroid function10 and 

circulating lipid levels11 and provide access to the study results through novel web tools12.

Study designs in the UK10K project

The UK10K project includes two main project arms (Table 1). The UK10K-cohorts arm 

aimed to assess the contribution of genome-wide genetic variation to a range of quantitative 

traits in 3,781 healthy individuals from two intensively studied British cohorts of European 

ancestry, namely the Avon Longitudinal Study of Parents and Children (ALSPAC)13 and 

TwinsUK14. A low read depth (average 73) whole-genome sequencing (WGS) strategy was 

employed in order to maximize total variation detected for a given total sequence quantity15 

while allowing interrogation of noncoding variation. Sixty-four different phenotypes were 

analysed, including traits of primary clinical relevance in 11 major phenotypic groups 

(obesity, diabetes, cardiovascular and blood biochemistry, blood pressure, dynamic 

measurements of ageing, birth, heart, lung, liver and renal function; Supplementary Table 1). 

Of these, 31 phenotypes were available in both studies (referred to as ‘core’ and reported in 

association analyses), 18 were unique to TwinsUK and 15 were unique to ALSPAC.

The UK10K-exomes arm aimed to identify causal mutations through high read depth (mean 

~80× across studies) whole-exome sequencing of approximately 6,000 individuals from 

three different collections: rare disease, severe obesity and neurodevelopmental disorders. 

The disorders studied in the UK10K-exomes arm have been shown to have a substantial 

genetic component at least partially driven by very rare, highly penetrant coding mutations. 

The rare disease collection includes 125 patients and family members in each of eight rare 

disease areas (Table 1). Disease types were selected with different degrees of locus 

heterogeneity, prior evidence for monogenic causation and likely modes of inheritance (for 

example, dominant or recessive). The obesity collection comprises of samples with severe 

obesity phenotypes, including approximately 1,000 subjects from the Severe Childhood 

Onset Obesity Project (SCOOP)16, plus severely obese adults from several population 

cohorts. The neurodevelopmental collection comprises of ~3,000 individuals selected to 

study two related neuropsychiatric disorders (autism spectrum disorder and schizophrenia).

Discovery of 24 million novel genetic variants

In total, 3,781 individuals were successfully whole-genome sequenced in the UK10K-

cohorts arm. After conservative quality control filtering (Extended Data Figs 1 and 2 and 

Supplementary Table 2), the final call set contained over 42M single nucleotide variants 

(SNVs, 34.2M rare and 2.2M low-frequency), ~3.5M insertion/deletion polymorphisms 

(INDELs; 2,291,553 rare and 415,735 low-frequency) and 18,739 large deletions (median 

size 3.7 kilobase). Each individual on average contained 3,222,597 SNVs (5,073 private), 

705,684 INDELs (295 private) and 215 large deletions (less than 1 private). Of 18,903 
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analysed protein-coding genes, 576 genes contained at least one homozygous or compound 

heterozygous variant predicted to result in the loss of function of a protein (LoF, 

Supplementary Information, 14,516 variants in total). As previously shown5,17, variants 

predicted to have the greatest phenotypic impact (LoF and missense variants, and variants 

mapping to conserved regions), were depleted at the common end of the derived allele 

spectrum (Extended Data Fig. 3). There were 495 homozygous LoF variants, a subset of 

which associated with phenotypic outliers (Supplementary Table 3).

We assessed sequence data quality by comparison with an exome sequencing data set (WES, 

~50 × coverage)18 and in 22 pairs of monozygotic twins (Extended Data Fig. 1). The non-

reference discordance (NRD, or the fraction of discordant genotypes for non-reference 

homozygous or heterozygous alleles) was 0.6% for common variants and 3.2% (range 0.1–

3.3%; Extended Data Fig. 1) for low-frequency and rare variants. False discovery rates 

(FDR) were comparable between newly discovered sites and sites previously reported in the 

1000 Genomes Project phase 1 (1000GP) data set5.

When compared to two large-scale European sequencing repositories, 1000GP and the 

Genome of the Netherlands (GoNL, 12 × read depth19), UK10K-cohorts discovered over 

24M novel SNVs. Overall, 96.5% of variants with MAF > 1% were shared, reflecting a 

common reservoir within Europe (Fig. 1 and Extended Data Fig. 2). Conversely, 94.7% of 

singleton (allele count (AC) = 1) and 55.0% of rare (AC > 1 and MAF < 1%) SNVs were 

study-specific. In a similar comparison, 64.4% (AC = 1) and 15.8% of variants (AC > 1 and 

MAF < 1%) found in GoNL were found to be study-specific compared to 1.2% of variants 

above 1% MAF.

This deeper characterization of European genetic and haplotype diversity will benefit future 

studies by creating a novel genotype imputation panel with substantially increased coverage 

and accuracy compared to the 1000GP reference panel8 (see ref. 9 and the next section for 

its application). It further informs a detailed empirical assessment of the geographical 

structure of rare variation in the UK where we detected geographical structure for very rare 

alleles (AC = 2–7) in Northern and Western UK regions, although this did not show 

evidence of substantial correlation with variation in phenotype (Box 1).

Findings from single-marker association tests

A main aim of the UK10K-cohorts project was to assess associations of low-frequency and 

rare variants under different analytical strategies (Fig. 2). We used a unified analysis strategy 

for the parallel evaluation of all quantitative traits (Supplementary Information, 

Supplementary Table 4). Here we describe results for the 31 core traits shared in ALSPAC 

and TwinsUK, with other results reported elsewhere12.

We first carried out single-marker association tests, as in standard genome-wide association 

studies of common variants20. Assuming an additive genetic model, we used standard 

approaches to model relationships between standardised traits, residualized for relevant 

covariates, and allele dosages of 13,074,236 SNVs, 1,122,542 biallelic INDELs (MAF ≥ 

0.1%) and 18,739 large deletions in whole-genome sequenced samples (‘WGS sample’). We 
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further assessed associations in an independent study sample of genome-wide genotyped 

individuals (‘GWA’ sample) including up to 6,557 ALSPAC and 2,575 TwinsUK 

participants who were not part of UK10K (actual numbers per trait are given in 

Supplementary Table 1). In the GWA sample, genotypes were imputed from genome-wide 

single nucleotide polymorphism (SNP) data using the UK10K haplotype reference panel, 

described in a companion manuscript8. The combined WGS+GWA sample had 80% power 

to detect associations of SNVs of low-frequency and rare down to ~MAF 0.5%, for a per-

alleles trait change (the regression beta coefficient or Beta) of ~1.2 standard deviations or 

greater (Fig. 3). To combine WGS and GWA data we carried out a fixed effect meta-analysis 

using the inverse variance method, which showed no evidence of inflation of summary 

statistics at the traits investigated (GC lambda ≈ 1). We used a conservative stepwise 

procedure for reporting loci from single-variant analysis (Supplementary Table 5), and we 

discuss elsewhere replication and technical validation of associations of rare variants not 

supported in the combined WGS+GWA sample (Supplementary Information, 

Supplementary Table 6).

Overall, across the 31 traits 27 independent loci reached our experiment-wide significance 

threshold21 P value ≤ 4.62 × 10−10 in the combined WGS+GWA sample (Fig. 3 and 

Supplementary Table 5). Two associations have been newly discovered by this project, and 

were conditionally independent of other variants previously reported at the same loci. The 

first was a low-frequency intronic variant in ADIPOQ associated with decreased adiponectin 

levels (rs74577862-A, effect allele frequency (EAF) = 2.6%, P value = 3.04 × 10−64). The 

second was a rare splice variant (rs138326449) in APOC3 described in advance of this 

manuscript11,22,23. The remaining 25 loci reaching experiment-wide significance in the 

combined WGS+GWA sample included common, low-frequency and rare variants tagging 

known associations with adiponectin levels (CDH13 and ADIPOQ), lipid traits (APOB, 

APOC3-APOA1, APOE, CETP, LIPC, LPL, PCSK9, SORT1-PSRC1-CELSR2), C-reactive 

protein (LEPR), haemoglobin levels (HFE) and fasting glycaemic traits (G6PC2-ABCB11, 

Supplementary Table 5). In contrast to previous projections24, from this analysis of a wide 

range of biomedical traits there was no evidence of low-frequency alleles with large effects 

upon traits (Fig. 3)25, with classical lipid alleles identifying extremes of single-variant 

genetic contributions for these traits. This suggests that few, if any, low-frequency variants 

with stronger effects than those we see are likely to be detected in the general European 

population for the wide range of traits that we considered.

Increasing sample size may identify additional moderate effect variants, or variants with 

rarer frequency. We therefore sought to assess the extent to which the more accurate 

imputation offered by the UK10K reference panel, applied to larger study samples, could 

discover additional associations. A restricted maximum likelihood (REML)26 analysis 

suggested that using the UK10K data could increase the estimated variance explained, 

compared to the sparser HapMap2, HapMap3 and 1000GP data sets (Extended Data Table 

1). We tested four lipid traits (high-density and low-density lipoprotein cholesterol, total 

cholesterol and triglycerides) in up to 22,082 additional samples from 14 cohorts imputed to 

the combined UK10K+1000GP phase I panel (Supplementary Table 7).
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This effort identified two novel associations with low-density lipoprotein cholesterol (Fig. 3, 

Supplementary Table 8), which we further replicated in an independent imputation data set 

of 15,586 samples from 8 cohorts and through genotyping in 95,067 samples from the 

Copenhagen General Population Study (CGPS27). The first was a rare intronic variant in 

LDLR (rs72658867-A, c.2140 + 5G > A; EAF = 0.01, combined sample P value = 1.27 × 

10−46); per allele effect Beta (s.e.m.) = −0.23 mmol l−1 (0.02), P value = 7.63 × 10−30 

(CGPS, n = 95,079). The second was a common, X-linked variant near RGAG1 (rs5985471-

T, EAF = 0.403, P value = 1.53 × 10−12); per allele effect Beta (s.e.m.) = −0.02 mmol l−1 

(0.004), P value = 1.8 × 10−5 (CGPS, n = 93,639). The LDLR variant was previously 

classified to be of uncertain impact in ClinVar, and reported to have no effect on plasma 

cholesterol levels in a small sample of familial hypercholesterolaemia patients28. The 

LDLR-A allele is almost perfectly imputed in our sample (info = 0.96), but absent in 

previous imputation panels29; the RGAG1-T allele is common but was missed in previous 

studies, which focused predominantly on autosomal variation29. Within CGPS, these 

variants were weakly associated with ischaemic heart disease (odds ratio (OR) = 0.77(0.66, 

0.92), P = 0.003 for rs72658867; 0.96(0.94, 0.99), P = 0.005 for rs5985471) and rs72658867 

with myocardial infarction (OR = 0.65(0.49, 0.87), P = 0.003; Supplementary Table 8). 

These results demonstrate the value of our expanded haplotype reference panel for discovery 

of trait associations driven by low-frequency and rare variants, as also shown in refs 9, 10.

Findings from rare variant association tests

Single-marker association tests are typically underpowered for rare variants30. Many 

questions remain regarding the optimal choice of test, owing to the unknown allelic 

architecture of rare variant contribution to traits, in particular outside protein-coding regions. 

We first evaluated associations by considering genes (GENCODE v15) as functional units of 

analysis using three separate variant selection strategies. Naive tests considered all variants 

in exons, untranslated regions (UTRs) and essential splice sites, weighted equally. 

Functional tests considered missense and LoF variants, the latter defined as being predicted 

to cause essential splice site changes, stop codon gains or frameshifts. For each scenario we 

applied two separate statistical models with different properties, sequence kernel association 

tests (SKAT) and burden tests implemented in SKAT and SKAT-O31,32, to rare variants 

(MAF < 1%).

Overall, there was an excess of test statistics with P values ≤10−4 for functional and loss-of-

function tests (Extended Data Figs 4 and 5), with a total of 9, 70 and 196 genes associated 

with the 31 core traits with the LoF, functional and naive tests, respectively (Supplementary 

Table 9). A signal driven by loss-of-function variants in the APOB gene (encoding 

apolipoprotein B) achieved our threshold for experiment-wide significance (P value ≤1.97 × 

10−7), in a burden-type test (min P value for TG = 7.02 × 10−9). Overall, 3 singleton LoF 

variants were responsible for this signal, of which two were not previously reported 

(rs141422999 and Chr2:21260958). Examples of novel rare variants in complex trait-

associated loci (for example, G6PC2 associated with fasting glucose) were also seen for 

genes reaching suggestive levels of association (P value ≤10−4). Lastly, we tested the value 

of a genome-wide naive approach to explore associations outside protein-coding genes by 

combining variants across ~1.8 million genome-wide tiled windows of 3 kb in size (median 
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37 SNVs per window, MAF < 1%, assigning an equal weight to all variants in the window). 

Overall association statistics appeared underpowered to detect true signals, apart from an 

association signal for adiponectin driven by a known rare intronic variant at the CDH13 
locus (rs12051272, EAF = 0.09%, P value = 6.52 × 10−12; Supplementary Table 10)33,34. As 

previously shown for single-variant tests, in this study adiponectin and lipid traits yielded 

the greatest evidence for associations for region-based tests.

Informing studies of low-frequency and rare variants

The UK10K-cohorts data allow an empirical evaluation of the relative importance of 

increasing sample size, genotyping accuracy or variant coverage for increasing power of 

genetic discoveries across the allele frequency spectrum. In a companion paper8 we show 

that common variants are exhaustively and accurately imputed using current haplotype 

reference panels, so increasing sample size is likely to be the single most beneficial 

approach for discovering novel loci driven by common variants. We further show that the 

UK10K haplotype reference panel, with tenfold more European samples compared to 

1000GP, yields substantial improvements in imputation accuracy and coverage for low-

frequency and rare variants. To obtain realistic estimates of the power benefit due to 

imputation with 1000GP+1UK10K compared to 1000GP alone, we averaged the smallest 

value of Beta (the magnitude of a per-allele effect measured in standard deviations) 

detectable at 80% power, across variants imputable from both reference panels on 

chromosome 20. Fig. 4a shows sizable reductions in the magnitude of the effect sizes that 

can be identified at any sample size through use of the UK10K reference panel, compared to 

the 1000GP panel alone. For instance, for a variant of MAF = 0.3% we have equivalent 

power when imputing from UK10K+1000GP into a 3,621 sample as we have when using the 

1000GP imputation panel alone with 10,000 samples.

Similar, although weaker, increases in power were seen for region-based tests of rare 

variants. Using the WGS autosome data from UK10K, we used simulation to introduce 

genotype errors into 220 randomly selected regions of 30 variants each. For each variant, 

errors were simulated to match the MAF and the observed r2 values between imputation and 

sequencing, and between whole-exome and whole-genome sequencing (Supplementary 

Table 11). We modified the SKAT power calculator35 to estimate power both for the true 

genotypes in a region and the data containing error, and averaged results across the 220 

regions (see Supplementary Information). Although absolute power in Fig. 4b is generally 

poor, we can also see demonstrable power improvements when data are better imputed or 

are directly sequenced (Fig. 4c).

Tests involving non-coding rare variants may further benefit from aggregation strategies 

driven by biological annotation that takes into consideration the context- and trait-specific 

impact of non-coding variation36–38. Exploiting the denser sequence ascertainment of the 

UK10K-cohorts, we developed a robust approach to quantify fold-enrichment statistics for 

different categories of non-coding variants compared to null sets matched for minor allele 

frequency, local linkage disequilibrium and gene density (Supplementary Information). We 

used this approach to assess the relative contribution of low-frequency and common variants 

to associations with five exemplar lipid measures (the study did not have sufficient signal for 
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rarer variants). We considered twelve different functional annotation domains, five in or near 

protein-coding regions and seven main chromatin segmentation states, defined using data 

from a cell line informative for lipid traits (HepG2; Supplementary Table 12). Low-

frequency variants in exonic regions displayed the strongest degree of enrichment (25-fold, 

compared to fivefold for common variants, Fig. 5), compatible with the effect of purifying 

selection39. Importantly, however, we showed nearly as strong levels of functional 

enrichment at both sets of variants for several non-coding domains (~10- to 20-fold for 

transcription start sites, DNase I hotspots and 3′ UTRs of genes), confirming the important 

contribution of non-coding low-frequency alleles to phenotypic trait variance.

Findings from the exome arm of UK10K

In the UK10K-exomes arm studies (see Supplementary Table 13), 5,182 individuals passed 

sequencing quality control with an average read depth of 80× in the bait regions. We 

analysed variation discovered in 3,463 disease-affected, unrelated, European-ancestry 

samples (Supplementary Information). We discovered 842,646 SNVs (of which 1.6% were 

multiallelic) and 6,067 INDELs. Both variant types were dominated by very rare variants, 

with more than 60% observed in only one individual. (Extended Data Fig. 6). When 

compared to European-American samples from the NHLBI Exome Sequencing Project 

(ESP)39, we found near-complete overlap at sites with MAF ≥ 1%: 99% of SNVs that are 

well covered by both projects and pass quality control are present in both data sets. By 

contrast, 72% of well-covered SNVs seen only once or twice in UK10K are present in ESP. 

To inform the functional annotation of these variants, we used the Illumina Body Map to 

determine if the frequency of LoF and functional variants changed when transcripts are 

selected based on their expression level (Extended Data Fig. 7). When only consequences 

from highly expressed transcripts and especially those highly expressed in all the Body Map 

tissues were considered, LoF and functional changes declined. This demonstrates that the 

choice of transcript can affect the consequence and this should be taken into account when 

annotating patient exomes.

The rare disease collection studied 1,000 exomes, or ~125 from each of eight rare diseases. 

Thus far, 25 novel genetic causes have been identified for five of the eight diseases: 

ciliopathies (n = 14), neuromuscular disorders (n = 7), eye malformations (n = 2), congenital 

heart defects (n = 1) and intellectual disability (n = 1; Supplementary Table 14). Notably, 

there was marked variation in our ability to identify causal variants based on familial 

recurrence risk, with the primary factors appearing to be: (1) the proportion of patients with 

a monogenic cause, (2) the strength of prior information about the mode of inheritance (for 

example, dominant, recessive), and (3) the extent of prior knowledge of the relevant 

functional pathways. In contrast with our success identifying single-diagnostic variants in 

these rare diseases, our analysis of three complex diseases (obesity, autism spectrum 

disorder and schizophrenia) on their own did not yield replicating disease-associated loci. 

This is perhaps unsurprising given expected locus and allelic heterogeneity, and modest 

sample size40. We therefore engaged in a collaborative meta-analysis as part of the Autism 

Sequencing Consortium41 which identified 13 associated genes (FDR < 0.01), many of 

which have been previously shown to cause intellectual disability or developmental 

disorders. This suggests that rare variation in single genes can have a large role causing a 
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subset of autism spectrum disorder, but these effects only become apparent when large 

numbers of individuals are studied.

We also used the UK10K-exomes sequence data to explore the occurrence of incidental 

findings. We focused on disease-specific genes identified in current guidelines for the 

analysis of exome/whole-genome data by the American College of Medical Genetics and 

Genomics (ACMG)42, and used objective criteria described in the Supplementary 

Information. We identified a total of 29 distinct reportable variants affecting a total of 2.3% 

of the UK10K cases considered in this analysis (42 out of 1,805 individuals), a number 

similar to previous estimates (2% estimate in adults of European ancestry43). The incidental 

findings were predominantly associated with cardiovascular disorders (Supplementary Table 

15).

Two main challenges of reporting incidental findings from whole-exome surveys emerge. 

The need for clinical expertise, the difficulty of interpreting a fraction of variants, and the 

lack of completeness of the ClinVar database44 all highlighted the need to further 

consolidate knowledge from the community into freely accessible and more exhaustive 

databases. Furthermore, for some disorders, the frequency of carriers is likely to be too high 

compared to the disease frequency, despite our strict assessment criteria. This suggests that 

reported estimates of the penetrance of recognized variants for specific disorders are too 

high. Given these challenges, we suggest that, in the absence of additional evidence, 

scientific publications describing proposed penetrant associations for rare variants need to be 

complemented by accurate estimates of population frequencies.

Conclusions

In summary we have generated a high-quality whole-genome sequence data repository 

including 24 million novel variants from nearly 4,000 European-ancestry individuals. We 

showed that the UK10K haplotype reference panel greatly increases accuracy and coverage 

of low-frequency and rare variants compared to existing panels such as the 1000GP phase 1 

panel. We carried out a large-scale empirical exploration of association testing of common, 

low-frequency and rare genetic variants with a large variety of biomedically important 

quantitative traits. For each of the different association scenarios tested, we report first 

examples of novel alleles associated with lipid and adiponectin traits. This provides proof-

of-principle evidence on the value of the large-scale sequencing data for complex traits, 

while also indicating that there are few low-frequency large effect ‘quick wins’ that make 

substantial contributions to population trait variation and that can be discovered from 

sequencing studies of few thousands individuals. Our power calculations, informed by the 

sequence data, provide realistic estimates of the benefit of sequencing versus imputation in 

future association studies. Finally, rare variation tests showed limited evidence for 

confounding owing to population stratification at the traits investigated, likely to be due to a 

weakening of historical patterns of population structure in the current general UK 

population45.

Overall, this effort has given us both new genomic tools12 and insights into the role of low-

frequency and rare variation on human complex traits, and will inform strategies for future 
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association studies. Our exploration of non-coding variants supports the need for 

incorporating functional genome information in association tests of rare variants outside 

protein-coding regions. Improved study power through larger numbers, and a better 

understanding of the observed heterogeneity in allelic architecture between different loci, are 

likely to provide the best route forward to describe the contribution of rare variants to 

phenotypic variance in health and disease, and for assessing their utility in healthcare.

Extended Data
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Extended Data Figure 1. UK10K-cohorts, sequence and sample quality and variation metrics
a–e, Sample quality metrics for UK10K-cohorts (n = 3,781) where n = 1–1,927 corresponds 

to ALSPAC and 1,928 to 3,781 to TwinsUK. This sample includes all individuals passing 

sample quality control, including related pairs and non-European individuals that were later 

removed from association tests. A subset of 3,621 individuals was included in association 

analyses. Samples sequenced at BGI are coloured in blue and samples sequenced at Sanger 

are coloured in grey. a, Number of singletons (AC = 1) by sample (×103). b, Number of 

INDELs by sample (×105). c, Read depth (sequence coverage) by sample. d, Ratio of 

heterozygous and homozygous non-reference (=homozygous alternative) SNV genotypes 

(mean for females = 1.54, mean for males = 1.47). e, Transition to transversion ratio (Ts/Tv) 

by sample. f–i, Sequence variation metrics for UK10K-cohorts. f, Types of substitution 

(×106). g, Number of SNVs (×106), INDELs (×105) and large deletions (×103) by non-

overlapping non-reference allele frequency (AF) bins. h, Size distribution of INDELs. 

Negative INDEL lengths represent deletions and positive INDEL lengths represent 

insertions. i, Large deletion size distribution in unequal bin sizes where the smallest 

deletions were 200 bp to 1 kb long and the largest deletions 100 kb to 1 Mb. In total 18,739 

deletions were called with GenomeSTRiP14. The average deletion size was ~13 kb and the 

median size was ~3.7 kb. j, Total number of SNVs and INDELs by AF bin (based on 3,781 

samples), multi-allelic variants are treated as separate variants. k, Sequence quality and 

variation metrics for UK10K-cohorts. For 61 overlapping TwinsUK individuals we 

compared the variant sites and genotypes of the low-coverage sequences with high-coverage 

exome data by non-overlapping AF bins (WGS versus Exomes). We considered 74,621 

shared sites in non-overlapping AF bins. We calculated the fraction of concordant over total 

sites, the number of non-reference genotypes and non-reference genotype discordance 

(NRD, in %) between WGS and Exomes; false discovery rate (FDR = FP/(FP + TP); TP, 

true positive; FP, false positive), where we consider the exomes as the truth set; number of 

false positives (FP) and FDR for sites that are or not shared with the 1000 Genomes Project, 

phase I (1000GP); false negative rate (FNR = FN/(FN + TP); FN, false negative; TP, true 

positive), where AF bins were defined based on the 61 exomes. Furthermore, we compared 

22 monozygotic twin pairs at 880,280 bi-allelic SNV sites on chromosome 20, reporting the 

percentage of concordant genotypes, non-reference genotypes and NRD. AFs are from the 

set of 3,621 samples, which contains at most one of the two monozygotic twins from each 

pair. We note that discrepancies can be caused by errors in either twin, so the expected NRD 

to the truth would be half the NRD value given.
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Extended Data Figure 2. UK10K-cohorts, comparison with GoNL and 1000GP-EUR
Percentage of autosomal SNVs that are either shared between UK10K (n = 3,781), GoNL (n 
= 499) and 1000GP-EUR (n = 379), or unique to each set, for allele counts (AC) AC = 1, AC 

= 2, and non-overlapping allele frequency (AF) bins for higher AC. a, Shared and unique 

variants for GoNL with AF based on GoNL, and b, for 1000GP-EUR. AF bins are not 

directly comparable owing to the different sample sizes in each call set. The x-axis shows 

the number of variants in millions. The percentages next to the bars represent the percentage 

of variants from GoNL (a) and 1000GP-EUR (b) that are shared with at least one of the 

other data sets. All numerical values used in a can be found in d and for b in e. c, Numerical 

values for Fig. 1.
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Extended Data Figure 3. UK10K-cohorts, derived allele frequency spectrum by functional 
annotation
Derived allele frequency (DAF) spectrum for UK10K-cohorts chromosome 20 variants 

divided by functional class. a, Proportion of total variants (standardized across DAF bins) as 

a function of DAF for different genic elements. b, Standardized proportion of all variants by 

DAF bin, and divided into conserved (GERP > 2) versus neutral (GERP ≤ 2) sites. c, Ratio 

of conserved versus neutral variants by DAF bin, and classified by chromatin segmentation 

domains defined by ENCODE as detailed in the methods.
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Extended Data Figure 4. UK10K-cohorts, false discovery rate (FDR)
a–g, FDR values for reporting associations at different P value cut-offs for all analyses 

reported in this study and the 31 core traits for single-variant analysis (a); naive exome-wide 

Meta SKAT (b); naive exome-wide Meta SKAT-O (c); functional exome-wide Meta SKAT 

(LoF and missense) (d); functional exome-wide Meta SKAT-O (LoF and missense) (e); 

functional exome-wide Meta SKAT (LoF) (f); functional exome-wide Meta SKAT-O (LoF) 

(g).
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Extended Data Figure 5. UK10K-cohorts, QQ plots
QQ plots for the association tests of the 31 core traits in the WGS data set (n = 3,621 

individuals). a, Single-variant analysis (~14 million variants with MAF ≥ 0.1%); b, naive 

exome-wide Meta SKAT (1,783,548 variants with MAF < 1% in 50,717 windows); c, 

functional exome-wide Meta SKAT (LoF and missense; 256,733 variants with MAF < 1% in 

14,909 windows); d, loss-of-function functional exome-wide Meta SKAT (LoF; 9,113 

variants with MAF < 1% in 3,208 windows); e, genome-wide Meta SKAT (35,858,684 

variants with MAF < 1% in 1,845,982 windows).
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Extended Data Figure 6. UK10K-exomes, sequence variant statistics
Number of variants (×103) that are found in one or more of the three UK10K-exomes 

disease data sets, as a function of allele frequency (AF) of the non-reference allele. Variants 

are split into allele counts (AC) AC = 1, AC = 2 and non-overlapping AF bins for AC > 2. 

Allele frequency is the frequency of the alternative allele. The distributions of SNVs and 

INDELs across frequencies and disease collections are similar, except that there is a lower 

proportion of INDELs with AF > 1% compared to SNVs. a, SNVs. Multiallelic sites are 

included (1.6%), and non-reference alleles at the same site are treated as separate variants. b, 

INDELs. Counts are given in c. c, Variants are classed by whether they were found in more 

than one disease collection or unique to a specific group. d, Comparison of UK10K patient 

set with European-Americans individuals from the NHLBI Exome Sequencing project (EA 

ESP). The left panel shows the variants identified in UK10K and the percentage shared with 

EA ESP. Both the total number of variants and the number within the EA ESP bait regions 

(intersection of bait sets) are given. The right panel shows the variants identified in EA ESP 
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and the percentage shared with UK10K. Both the total number of variants, and the number 

within the UK10K baits after removing any that failed UK10K quality control, are given. 

There is some overlap in the ranges of AC and AF for EA ESP variants because different 

numbers of individuals were included.

Extended Data Figure 7. UK10K-exomes, functional consequences
a–d, Percentage of SNVs in each allele frequency bin that are loss of function (a), functional 

(b), possibly functional (c) and other (d), when consequences are restricted to given subsets 
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of transcripts, and where the most severe consequence in qualifying transcripts is used. 

Values are percentages of SNVs that have transcripts of a given type. Protein-coding is 

transcripts with a biotype of protein coding. High expression is transcripts with FPKM 

(fragments per kilobase of transcript per million mapped reads) ≥1 in any tissue. Widely 

expressed is transcripts with FPKM ≥ 1 in 16 tissues. Only low expression is transcripts 

expressed at FPKM < 1 in all 16 tissues where there were no transcripts with high 

expression in that variant. Expression was determined from the Illumina Body Map data set. 

Variants mapping to protein-coding transcripts <300-bp long or with missing or low quality 

expression data were excluded. Frequency bins are singletons and non-overlapping allele 

frequency ranges for allele counts above 1. Allele frequency is the frequency of the 

alternative allele. Multi-allelic sites were included with alternative alleles at the same site 

treated as separate variants. e, Counts of single nucleotide polymorphisms in each 

consequence class by allele frequency and transcript subset.
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Extended Data Figure 8. UK10K-cohorts, genotype and phenotype similarities within and 
between regions
a, b, Dot plots show the genetic (a) and phenotypic distribution (b) of the relationships of 

1,139 unrelated TwinsUK individuals by their regional place of birth. To determine the 

genetic relationships we used the mean number of shared alleles between two individuals 

within and between regions for allele counts (AC) 2 to 7, where AC is calculated from the 

whole data set of 3,781 samples. To determine phenotypic similarities we calculated the 

mean difference between the residualized phenotypes. Genetically-related individuals are 

more closely related within a region than between regions, while the phenotypic distance 
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measure has similar distributions within and between regions. The mean shared alleles 

increase with increasing allele count, and simultaneously the within and between 

distributions converge. c, The five lowest P values for AC 2 to 7 obtained from Mantel tests 

to determine similarities between genotypes and phenotypes by region. P values were not 

significant after correcting for multiple testing using the FDR method49. Full trait names are 

given in Supplementary Table 1.

Extended Data Figure 9. UK10K-cohorts, population fine structure in the TwinsUK sample
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a, Chunk length matrix for all UK10K defined geographic regions, calculated as described 

in the methods. The bottom 5 regions are merged in Box 1 Figure. b, Coancestry matrix for 

all UK10K defined geographic regions, calculated as described in the methods. c, Chunk 

length matrix for all UK10K FineSTRUCTURE inferred populations, calculated as 

described in the methods. d, Coancestry matrix for all UK10K FineSTRUCTURE inferred 

populations. Details on calculation of these parameters are described in Methods. e, Pairwise 

coincidence matrix for the UK10K FineSTRUCTURE MCMC run, showing the fraction of 

the 1,000 retained iterations from the posterior in which each pair of individuals is in the 

same population, averaged for each pair of populations. The full posterior is extremely 

complex, which is indicative of a continuous admixture cline rather than discrete 

populations. f, Sources distribution for the FineSTRUCTURE inferred populations with the 

full set of inferred populations and geographic labels. Geographic labels of London, 

Southeast, North Midland, Southern and Eastern are merged into South and East for Box 1 

Figure. FSPop labels are given to populations inferred by FineSTRUCTURE, which are 

merged into the Pop labels as shown in the main Box 1 Figure. g, The f2 haplotype age 

analysis estimates the time to the most recent common ancestor (tMRCA) between the two 

haplotypes underlying a given observed variant of allele count 2 in all of the TwinsUK 

samples. The observed IBD segment length around each f2 variant estimates the tMRCA, 

using an explicit model parameterized by the recombination and the mutation rates. Shown 

is the map of the UK with all regions used in this analysis depicted by their location, and 

lines colour-coding the observed median tMRCA of f2 haplotypes.
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BOX 1

Genetic structure of rare variation within the UK

We used the ALSPAC cohort (from the Bristol region) and a subset of TwinsUK 

individuals (UK-wide origin) to investigate the spatial structure of rare genetic variants 

(Supplementary Table 16). We first sought to define the extent to which variants of 

different MAF were geographically structured. We estimated the excess of allele sharing 

between pairs of individuals as a function of their physical distance, as compared to 

expectations under a neutral model (Supplementary Information)46. Rare genetic variants 

showed excess allele sharing at distances smaller than about 200 km, and reduced sharing 

for more than about 300 km. There was a steeper geographical cline for doubletons (AC 

= 2), which decreased with increasing allele counts (3 up to 7, equivalent to a MAF of 

~0.1–0.3%; a). No corresponding geographical structure was observed for phenotypic 

variation (b).

We next assessed the extent to which the non-random distribution of rare SNVs could be 

accounted for by regional differences at the level of 13 main regions within the UK47. 

Overall, patterns of allele sharing were indicative of a larger degree of genetic 

homogeneity in Southern and Eastern England compared to individuals of Welsh, 

Northern, Scottish or Northern Irish origin. Doubletons were the most structured both 

within and between regions (Wilcoxon rank sum P value <0.05, Extended Data Fig. 8).

Finally, we used “chromosome painting”48 to gain insights into possible demographic 

events underlying the observed genetic structure. We first estimated the average length of 

DNA tracts shared between individuals, and used the number of such tracts to identify 

fine population structure in our data set. The tract length distribution showed weak 

geographic structure reflecting the rare variant analysis. A fine structure analysis 

suggested that the identified populations were not strongly geographically defined, 

indicative of a large degree of movement between regions compared to the samples in the 

Peoples of the British Isles study45, which were chosen to have all four grandparents born 

in the same location (Extended Data Fig. 9).
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Box 1. Population structure in UK10K-cohorts
All ALSPAC (from Bristol), and 1,139 TwinsUK (UK-wide) participants with a complete 

set of genotype, phenotype and place of birth data.a, Excess of allele sharing as a 

function of geographical distance, expressed as the proportion of shared alleles between 

sample pairs for AC from 2 to 7 against their geographical distance. b, Phenotypic 

sharing, estimated for the 31 core phenotypes as the absolute difference between pairs of 

individuals, averaged within distance bins, rescaled and plotted against their geographical 

distance. The four traits with the most extreme structure are highlighted. HOMA-IR, 

homeostatic model assessment for insulin. c, Geographical decomposition of each 

population. Populations are shown proportional to size; historically ‘Celtic’ and ‘Briton’ 

regions are closer to the edges, whereas ‘Anglo-Saxon’ England is more homogeneous 

and at the centre (see ref. 45). Ridings refers to East and West Ridings, Yorkshire. d, 

Average length of DNA tracts shared between individuals when clustered by sampling 

location. The ‘admixture’ index is given in brackets, with one-third corresponding to 

regions containing completely unadmixed populations and infinity to completely 

admixed populations. See also Extended Data Fig. 9.
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Figure 1. The UK10K-cohorts resource for variation discovery
Number of SNVs identified in the UK10K-cohorts data set in all autosomal regions in 

different allele frequency (AF) bins, and percentages that were shared with samples of 

European ancestry from the 1000 Genomes Project (phase I, EUR n = 379) and/or the 

Genomes of the Netherlands (GoNL, n = 499) study, or unique to the UK10K-cohorts data 

set. AF bins were calculated using the UK10K data set, for allele count (AC) = 1, AC = 2, 

and non-overlapping AF bins for higher AC. All numerical values are in Extended Data Fig. 

2.
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Figure 2. Study design for associations tested in the UK10K-cohorts study
Summary of phenotype–genotype association testing strategies employed in the UK10K-

cohorts study.
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Figure 3. Summary of association results across the UK10K-cohorts study
Allelic spectrum for single-marker association results for independent variants identified in 

the single-variant analysis (Supplementary Table 5). A variant’s effect (absolute value of 

Beta, expressed in standard deviation units) is given as a function of minor allele frequency 

(MAF, x axis). Error bars are proportional to the standard error of the beta, variants 

identifying known loci are dark blue and variants identifying novel signals replicated in 

independent studies are coloured in light blue. The red and orange lines indicate 80% power 

at experiment-wide significance level (t-test; P value ≤4.62 × 10−10) for the maximum 

theoretical sample size for the WGS sample and WGS+GWA, respectively.
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Figure 4. Power for single-variant and region-based tests
a, Strength of single-variant associations detectable at 80% power as a function of MAF and 

sample size. Using data from chromosome 208, we calculated the smallest value of the 

strength of association Beta (measured in standard deviations), that would be detectable 

under a linear dosage model, given the MAF and r2 of each variant imputable from both the 

1000GP and the UK10K+1000GP reference panels, for various sample sizes, n. The 

averages of these minimum detectable beta values by MAF and sample size are shown. b, 

Power of region-based tests in the UK10K-cohorts sample. Evaluations assume n = 3,621, α 

= 6.7 × 10−8 and that the proportion of causal variants in the regions is either 5% or 20%, for 

maximum association (Max Beta) in a region = 2, 3, 4 s.d. c, Power of region-based tests 

and the impact of genotype imputation. Ten regions of 30 variants were randomly sampled 

from each autosome, and then genotype errors were randomly added to the data following 

observed r2 values between genotypes from data imputed from different sources (WGS, high 

depth WES, GWAS imputed against 1000GP, GWAS imputed against the combined 

reference panel of 1000GP and UK10K; Supplementary Table 11), and matching the MAF 

of each variant using the same parameters as in b, with the proportion of causal variants in 

the regions set to 20%.
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Figure 5. Enrichment of single-marker associations by functional annotation in the UK10K-
cohorts study
Distribution of fold enrichment statistics for single-variant associations of low-frequency 

(MAF 1–5%) and common (MAF ≥ 5%) SNVs in near-genic elements or selected chromatin 

states and DNase I hotspots (DHS). Boxplots represent distributions of fold enrichment 

statistics estimated across the five (out of 31 core) traits where at least 10 independent SNVs 

were associated with the trait at 10−7 P value (permutation test) threshold (HDL, LDL, TC, 

APOA1 and APOB). Chromatin state and DHS regions were inferred from ENCODE data in 

a liver cell line, HepG2, which is informative for lipids. Promoter and 5′ UTR are not shown, 

but corresponding statistics are given in Supplementary Table 12.
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Table 1
Summary of sample collections and sequencing metrics for the four main studies of the 
UK10K project

Study name and design n Sequencing strategy, 
mean read depth and 
Ts/Tv ratio

SNVs/INDELs SNVs/INDELs by allele 
frequency

Cohorts. Unselected samples from two 
population-based cohorts

3,781 WGS, 7×Ts/Tv=2.15 42,001,210/3,490,825 <1%: 
34,247,969/2,296,962
1–5%: 2,298,220/412,168
>5%: 
5,869,317/1,496,955

Rare. Eight rare diseases with expected 
different allelic architectures (ciliopathy, 
coloboma, congenital heart disease, familial 
hypercholesterolaemia, intellectual 
disability, neuromuscular, severe insulin 
resistance and thyroid disease)

961 (397) WES, 77×Ts/Tv=3.02 252,809/ 1,621 <1%: 171,564/1,384
≥1%: 81,245/237

Obesity. Severely obese children (BMI >3 
s.d. from population mean) and adults with 
extreme obesity

1,468 (1,359) WES, 82×Ts/Tv=3.02 484,931/ 3,370 <1%: 403,684/3,133
≥1%: 81,247/237

Neurodevelopmental. Autism and 
schizophrenia (individual probands, 
families with one affected and other healthy 
individuals sampled, families with data 
from multiple affected individuals and 
individuals with comorbid intellectual 
disability and psychosis)

2,753 (1,707) WES, 77×Ts/Tv=3.02 538,526/ 3,826 <1%: 457,278/3,589
≥1%: 81,248/237

For the cohorts arm, numbers are for the set of 3,781 samples passing quality control, while a subset of 3,621 was used for association testing. For 
the exome arm, numbers of sites are based on the joint call set, and are calculated for a subset of all individuals that represent the patient subset (in 
brackets). The total number of individuals sequenced in each study is also given (see Supplementary Methods). The transition to transversion ratio 
(Ts/Tv) was calculated for the final set of SNVs excluding multiallelic sites. WGS, whole-genome sequencing; WES, whole-exome sequencing.
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