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Abstract

Background: Visceral leishmaniasis (VL) is a parasitic disease transmitted by sandflies and is fatal if left untreated.
Phase II trials of new treatment regimens for VL are primarily carried out to evaluate safety and efficacy, while
pharmacokinetic data are also important to inform future combination treatment regimens. The efficacy of VL
treatments is evaluated at two time points, initial cure, when treatment is completed and definitive cure, commonly 6
months post end of treatment, to allow for slow response to treatment and detection of relapses.
This paper investigates a generalization of the triangular design to impose a minimum sample size for
pharmacokinetic or other analyses, and methods to estimate efficacy at extended follow-up accounting for the
sequential design and changes in cure status during extended follow-up.

Methods: We provided R functions that generalize the triangular design to impose a minimum sample size before
allowing stopping for efficacy. For estimation of efficacy at a second, extended, follow-up time, the performance of a
shrinkage estimator (SHE), a probability tree estimator (PTE) and the maximum likelihood estimator (MLE) for
estimation was assessed by simulation.

Results: The SHE and PTE are viable approaches to estimate an extended follow-up although the SHE performed
better than the PTE: the bias and root mean square error were lower and coverage probabilities higher.

Conclusions: Generalization of the triangular design is simple to implement for adaptations to meet requirements
for pharmacokinetic analyses. Using the simple MLE approach to estimate efficacy at extended follow-up will lead to
biased results, generally over-estimating treatment success. The SHE is recommended in trials of two or more
treatments. The PTE is an acceptable alternative for one-arm trials or where use of the SHE is not possible due to
computational complexity.

Trial registration: NCT01067443, February 2010.
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Background
Visceral leishmaniasis (VL) is a parasitic disease transmit-
ted by sandflies and is fatal if left untreated. It is estimated
that there are 0.2–0.4 million incident cases per year,
with the six worst affected countries—India, Bangladesh,
Sudan, South Sudan, Ethiopia and Brazil—reporting more
than 90 % of them [1].
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Until recently, the first-line treatment for VL was daily
injections with the antimonial compound sodium sti-
bogluconate for 30 days. The current first-line treat-
ment in eastern Africa is 17 days of daily injectable
doses of sodium stibogluconate and paramomycin [2].
Sodium stibogluconate is associated with cardiotoxicity,
and drug resistance is a concern in Asia [3]. From a pub-
lic health perspective, safe and efficacious short-course
combination therapies of less than 2 weeks duration with
one or two oral treatments would be considered most
desirable [3].
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A number of trial designs have been adopted in the con-
duct of clinical trials against VL and other neglected trop-
ical diseases, with the use of adaptive/sequential designs
gaining prominence, particularly for Phase II trials. In par-
ticular, the triangular design allows for repeated interim
analyses, each on a relatively small number of patients, to
efficiently triage between poorly performing treatments
and those showing promise for further investigation (e.g.,
inclusion in a Phase III trial) [4]. Effectively, the design
acts as a decision tool for whether or not a treatment
merits continued study. By pre-specifying the power, Type
I error, and null and alternative values for the outcome
(e.g., proportion cured), a closed continuation region is
drawn with upper and lower boundary lines forming
a triangular shape. If higher values are beneficial, then
crossing the upper boundary corresponds to stopping for
promise, while crossing the lower boundary corresponds
to stopping for lack of promise. Variations on the design
accommodate comparative trials [5].
The estimation of efficacy at the end of the trial using

the full sample of data needs to account for the multi-
ple interim analyses, which lead to bias in the maximum
likelihood estimator (MLE), e.g., the simple proportion of
the number of patients cured divided by the number of
treated. One suitable option is the median unbiased esti-
mate (Chapter 5 in [6]), which can be found using software
such as R or SAS.
In VL treatment trials, there are two important efficacy

endpoints: initial cure and definitive cure. After comple-
tion of treatment, initial cure status is established before
the patient is discharged. In a clinical trial with a para-
sitological assessment conducted as standard at the end of
treatment, a patient may have:

• cleared parasites (initial treatment success)
• parasites remaining but with clinical improvement,

so that additional treatment is not considered to be
required prior to discharge (potential slow responder
to treatment)

• parasites remaining and clinical improvement not
shown, and so they require rescue treatment prior to
discharge (confirmed treatment failure)

For those not needing rescue treatment, definitive cure
is assessed after a period of time (usually 6 months
post end of treatment) due to the possibility of (1)
slow response to treatment and (2) relapse following
an initial treatment success. Slow response to treat-
ment is confirmed with an additional clinical and par-
asitological assessment, usually 1 month after end of
treatment. If parasites are cleared, the patient does not
need rescue medication, this being a subset of treat-
ment success at definitive cure. If parasites remain, the
patient will have indication of rescue treatment, and

will be considered a definitive failure at the 6 months’
follow-up. Future research direction decisions are based
on definitive cure at the end of the follow-up period,
as patient status may change between end of treat-
ment and final definitive assessment. Figure 1 high-
lights the different assessment time points and possible
outcomes.
In a Phase II randomized trial of VL treatments in Sudan

and Kenya, a triangular continuation region was defined
for each of the three arms [7]. In this trial, the primary
endpoint, used for sequential decision-making, was initial
cure: a binary outcome defined by absence or presence of
parasites at end of treatment. This endpoint permitted the
prompt identification of poorly performing treatments.
Use of definitive cure in sequential decision-making was
deemed not to be feasible due to implications for time to
trial completion and the potential to expose an unaccept-
able number of patients to ineffective treatments.
The investigators found it necessary to modify the stan-

dard triangular design in two ways. Firstly, a pharmacoki-
netic (PK) evaluation component required a minimum
of 30 patients, whereas the interim analysis was to be
done after every 15 patients had completed the end-of-
treatment assessment. So recruitment was to continue
even if the upper boundary was crossed at the first interim
analysis. Secondly, although standard sequential meth-
ods sufficed for the end-of-trial analysis of initial cure,
a new methodology was needed for point and interval
estimation for definitive cure, to account for sequen-
tial stopping, then non-sequential follow-up, operating in
tandem.
The first modification ignored the impact on Type I

and II errors, rather than attempting to adjust the stan-
dard continuation region. And the second modification
consisted of a simple probability tree argument whose effi-
ciency, in the statistical sense of low standard error, was
not evaluated.

Aims
Hence, in the current paper, we aim to derive methods for
the following two distinct aspects of such trials:

• definition of flexible boundaries that generalize
simple triangular ones to prevent stopping before a
given number of patients, while maintaining nominal
error probabilities

• estimation, by shrinkage and other methods, of the
outcome variable (e.g., cure) at a time point later than
that used for the sequential stopping rule

Motivating example
In the motivating trial example [7], known as LEAP 0208,
initial cure/end of treatment was at day 28 and definitive
cure at day 210. The trial was non-comparative, with each
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Fig. 1 Flowchart outlining the assessments in a visceral leishmaniasis trial. A diagram showing the different clinical and parasitological assessment
time points carried out and possible outcomes in a VL trial

arm having the same triangular boundary and being sub-
ject to the same stopping rules independently of the other
two arms.
It was assumed that a day 28 cure rate of p0 = 0.75

could be achieved on standard care. Denoting the day 28
cure rate on treatment j by pj, the treatment effects were
parameterized as

θj = log
{pj(1 − p0)

(1 − pj)p0

}
, θj ∈ (−∞,∞), j = 1, 2, 3.

As a cure rate of 0.9 would be considered sufficiently
promising to warrant further investigation, in this case

θR = log
{
0.9(1 − 0.75)
(1 − 0.9)0.75

}
= 1.10.

The Type I and Type II error rates were both set at 5 %,
so it was required that for each null hypothesisH0j: θj = 0,
j = 1, 2, 3:

P(reject H0j; θj = 0) = 0.05, (1)
P(reject H0j; θj = θR) = 0.95. (2)

Omollo et al. found the boundaries using analytical
results specific to a triangular test, as described by Ranque
et al. [8], rather than numerical integration. From the
planned frequency of interim analyses—every 15 patients
in each arm—and other parameters such as the error
probabilities, equations for the upper and lower straight
line boundaries are obtained. The maximum sample size

is given by the intersection of these lines, in this case 63
per arm.
An additional complication in this trial was that at

least 30 patients were required to assess PK. Therefore,
although crossing the lower boundary at the first interim
analysis would result in the arm being stopped for ethi-
cal reasons, crossing the upper boundary was to be dis-
regarded, with recruitment continuing until the second
interim analysis. This partial disregarding of the bound-
aries affects the stopping probabilities and hence, deviates
the error probabilities from their nominal values. This was
ignored in the trial described by Omollo et al., but such
modified stopping rules are developed formally in the
current paper, and we derive corresponding adjustments
under asymmetric stopping or unequally spaced analyses.

Methods
The group-sequential triangular design
To review the triangular design briefly [6], consider a
parameter of interest, θ , which could represent either the
advantage of an experimental treatment over a control
arm in a two-arm study, or relative to a fixed null value in
a single-arm trial. The null hypothesis to be tested is H0:
θ = 0 against the alternative H1: θ > 0, subject to error
constraints:

P(reject H0; θ = 0) = α (3)
P(reject H0; θ = θR) = 1 − β (4)
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for suitably small α and β , where θR represents the small-
est possible treatment effect size that would be considered
interesting or clinically relevant.
There are k looks at the data, with the data available at

the ith interim analysis summarized in terms of the effi-
cient score for θ , denoted by Bi, and Fisher’s information,
denoted byVi (see p. 107 [9]). Formost types of data, there
is a straightforward relationship between Fisher’s infor-
mation and the sample size, ni. For example, for a single
stream of binary data Vi = nip(1 − p), where p is the suc-
cess probability [6]. Two key assumptions underpinning
most sequential methods are that Bi ∼ N (θVi,Vi), and
that (Bi+1 − Bi) and Bi are independent, i = 1, 2, . . .. The
standardized test statistic is denoted by Zi = Bi/

√
Vi and

follows the standard normal distribution when θ = 0 [10].
These assumptions have been shown to be valid for a wide
variety of response types [6].
The efficient score is compared to a set of upper and

lower boundary values at the ith analysis, i = 1, . . . , k. At
the first (k − 1) interim analyses, if Bi ≥ ui

√
Vi, the trial

is stopped and the null hypothesis rejected; if Bi ≤ �i
√
Vi,

the trial is stopped and the null hypothesis not rejected,
and the trial is continued otherwise. We reject the null
hypothesis at the final analysis if Bk ≥ uk

√
Vk , and fail to

do so otherwise as we define �k = uk .
To design a group-sequential trial, we need to choose

3k−1 values (Vi, �i and ui, with the subscript for � running
only to k − 1, since �k = uk), such that (3) and (4) are sat-
isfied. It is clear that additional constraints are required to
produce a unique trial design. This involves specifying the
spacing of the information levels, i.e., specifying constants
r2, . . . , rk and imposing that Vi = riV1 for i = 2, . . . , k.
Additionally, formulae for the boundary values, li = li(a)
and ui = ui(a), are provided in terms of a single common
parameter, a. This leaves just two unknowns, a and V1,
to be found by solving (3) and (4). For example, to create
triangular boundaries,

�i = −a{1 − 3(ri/rk)}/√ri (5)
ui = a{1 + (ri/rk)}/√ri (6)

for i = 1, . . . , k [11]. A SAS implementation is available
[11]. At each analysis, Bi is compared to �∗

i = �i
√
Vi and

u∗
i = ui

√
Vi. The triangular shape can be seen on a plot of

B against V (Fig. 2).
Note that if for any reason one wishes to avoid stopping

early for efficacy at analysis i, for some i < k, then it is
straightforward to impose ui := ∞ before solving for a
and V1.

Fixing an interim analysis after a pre-specified number of
responses
Whilst phase II trials primarily look at the safety and effi-
cacy of a treatment, they may also be concerned with the

Fig. 2 Illustration of the triangular group-sequential design.
Boundaries for plotting the efficient score (Bi) versus Fisher’s
information (Vi) for k analyses. The sample path shows one possible
route the analysis could take. Here, the trial would be stopped for
inefficacy at the third interim analysis

PK properties of a new treatment, and a specific num-
ber of participants will be required for this. Here, we
discuss how to design a group-sequential trial where the
first interim analysis occurs after a pre-specified number
of observations, n1 = n′, or, equivalently, a fixed first
information level, V1 = V ′.
Since we can no longer fix Vi = riV1 for i = 2, . . . , k (as

this would arbitrarily fix the total sample size), we instead
specify r3, . . . , rk and require Vi−V1 = ri(V2−V1) for i =
3, . . . , k. The boundary Eqs. (5) and (6) remain unchanged.
In principle, this is a very straightforward modifica-

tion, and one must again solve two equations for two
unknowns. However, the solution becomes slightly more
difficult due to the effect of this modification on the corre-
lation structure of the interim test statistics. In the original
problem, one can simplify the computation because the
correlation structure depends only on the relative spac-
ing of interim analyses and not on the absolute sample
sizes. Specifically, setting Vi = riV1, li = li(a) and ui =
ui(a) for i = 1, . . . , k, one can first solve Eq. (1) for a
via a one-dimensional search or root-finding routine and
subsequently solve Eq. (2) for V1. If, however, we now
fix V1, then the relative spacing and, consequently, the
correlation structure, is dependent on the absolute total
sample size. Thus, (1) and (2) can only be solved by a
two-dimensional search or root-finding routine. As this
option is not available in standard software for designing
group-sequential trials, we have written R functions and
made them available here as supplementary material (see
Additional file 1). Note that the same idea can be used
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to pre-specify the information levels at more than one
interim analysis.
We considered three potential designs for the example

in ‘Motivating example’. In Design 1, two interim analy-
ses are planned, with the first occurring after a fixed 30
observations. Design 2 is similar, except that an additional
earlier interim analysis is planned after 15 responses, with
no early stopping for efficacy (u1 = ∞). In Design 3,
six interim analyses are planned, where the first three are
fixed at 10, 20 and 30 observations, with the first two
analyses not allowing early stopping for efficacy (u1 =
u2 = ∞).
We produced a graph of the boundaries for plotting the

efficient score (Bi) versus Fisher’s information (Vi), and
for each design, investigated the operating characteris-
tics by simulating 10,000 experiments under both the null
and alternative hypotheses. Specifically, the Type I error,
power and expected sample size were calculated.

Estimation of the probability of cure after extended
follow-up
Consider estimating the probability of cure after extended
follow-up (day 210) in the motivating example. For treat-
ment j = 1, 2, 3, the MLE is

p̂210,j = S210,j/n210,j,

where S210,j denotes the number of successes (patients
cured) at day 210. If we focus on the treatment j∗ providing
the apparent largest effect size, i.e.,

j∗ = arg max
j=1,2,3

p̂210,j,

then p̂210,j∗ is a biased estimate of p210,j∗ for two reasons.
Firstly, due to the potential early stopping of the trial based
on the day 28 endpoint. Note that

p̂210,j = p̂jq̂j + (1 − p̂j)ŝj (7)

where p̂j denotes the day 28 success proportion, q̂j denotes
the proportion of patients who remain cured at day 210
(out of those already cured at day 28) and ŝj denotes the
proportion of patients who switch from not cured at day
28 to cured by day 210 (out of those not cured at day
28, i.e., slow responders). It is well known that p̂j tends
to overestimate pj when a trial is stopped early for effi-
cacy (and underestimate pj when a trial is stopped early
for futility) [6], and this bias will be inherited by p̂210,j. The
second source of bias is due to the multiple treatments
being evaluated. Assuming that the success probabilities
of the three treatments are reasonably similar, it is intu-
itively clear that if we focus our attention on the largest
success proportion, then this proportion will tend to be an
overestimate.
We now investigate two methods that aim to improve

estimation compared to the MLE. The first is a probabil-
ity tree estimator (PTE), which attempts to address the

early stopping bias by replacing p̂j in (7) with a median
unbiased estimate. The second is a shrinkage estima-
tor (SHE), which should help counteract both sources of
bias by shrinking the three maximum likelihood estimates
towards each other [12].

Probability tree estimator
In this PTE section, we omit the j subscript to simplify
the notation. Estimation of the success probability in the
initial period, p, is subject to sequential stopping, while
the subsequent follow-up is not. Hence, Omollo et al.
proposed estimating the proportion with definitive cure—
denoted by p210—using a probability tree argument to
separate the two periods [7]. More specifically, p210 is the
sum of the probabilities of two events: (1) initial cure fol-
lowed by cure at extended follow-up and (2) initial failure
followed by cure during the extended follow-up. These
probabilities are denoted pq and (1 − p)s, respectively [pr
and (1−p)s in the notation of Omollo et al.], i.e., q denotes
the conditional probability of cure at day 210 given cure at
day 28, and s denotes the conditional probability of cure at
day 210 given no cure at day 28. Omollo et al. [7] proposed
the following estimate for p210:

p̃210 = p̃q̂ + (1 − p̃)ŝ,

where p̃ is the median unbiased estimate of p [6], with
q̂ and ŝ being estimated by maximum likelihood from
the 2 × 2 table of cure status at the two time points.
The first term, p̃q̂, takes into account those patients who
relapse—important in VL trials. Here, q̂ is the proportion
of patients cured after treatment (at day 28 in Omollo et
al.’s trial) who do not relapse. The second term, (1 − p̃)ŝ,
accounts for slow responders—those who are not cured
initially (at day 28) but become so by follow-up (day 210).
Here, ŝ is the proportion of slow responders out of those
patients who are not cured by day 28.
The sampling variance of this estimator was not derived

by Omollo et al., so we do so here. We have

Var[ p̃210]= Var[ p̃q̂]+Var[ (1−p̃)ŝ]+2Cov[ p̃q̂, (1−p̃)ŝ] .

The first two terms in the above expression can be ana-
lyzed into variances of single parameters by using the
standard formula for the variance of a product.We assume
p̃, q̂ and ŝ are mutually independent. Denoting Var[ p̃] by
σ 2, and with an obvious notation for the variances of q̂ and
ŝ then, for example, the first term becomes

E( p̃)2σ 2
q + E(q̂)2σ 2 + σ 2

q σ 2.
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For the third term, some expectation parameters can be
taken into brackets:

2 Cov[ p̃q̂, (1 − p̃)ŝ]=2 E[ p̃q̂(1 − p̃)ŝ]−2 E[ p̃q̂] E[(1 − p̃)ŝ]
= 2 E[ q̂] E[ ŝ] {E[ p̃(1 − p̃)]

− E[ p̃] E[ (1 − p̃)] }
= −2 E[ q̂] E[ ŝ] {E[ p̃2]−(E[ p̃] )2}
= −2 E[ q̂] E[ ŝ] σ 2.

Bringing the terms together, replacing the expectation
by the observed values of p̃, q̂ and ŝ, and gathering by σ 2

q
and σ 2

s yields:

Var[ p̃210]= σ 2
q

(
p̃2 + σ 2)+σ 2

s

((
1 − p̃

)2 + σ 2
)
+σ 2(q̂−ŝ)2.

A 95 % confidence interval (CI) can then be calculated
using

p̃210 ± z1−α/2

√
Var

[
p̃210

]
where z1−α/2 = 1.96 is the 1 − α/2 percentile of the
standard normal distribution.

Shrinkage estimator
Shrinkage methods have a long and rich history in statis-
tics, going back to the famous James–Stein estimator [13].
Their usefulness in the context of a clinical trial with mul-
tiple treatment arms and interim analyses has been shown
by Carreras and Brannath [12]. See also [14].
In very general terms, the idea is that the estimate of

treatment effect in one particular group borrows infor-
mation about the treatment effect in all other groups
[15]. More specifically in our context, consider a probit
transformation of the (day 210) success probabilities,

θj = �−1( p210,j) forj = 1, 2, 3,

where � denotes the standard normal distribution func-
tion. We now make the assumption that the success prob-
abilities are similar to each other, in the sense that they
have a common prior distribution that is Gaussian with
mean μ and variance τ 2:

θj | μ, τ 2 ∼ N (μ, τ 2), j = 1, 2, 3.

This produces the effect that, compared to the maxi-
mum likelihood estimate θ̂j = �−1( p̂210,j), the posterior
mean of θj is shrunk towards μ—where the smaller τ 2 is,
the greater the amount of shrinkage. In reality, we treat
μ and τ 2 as unknowns and give them prior distributions.
This produces the effect that the posterior means are
shrunk towards each other, where the degree of shrink-
age depends on how spread out the maximum likelihood
estimates are. Our full model is

P(Yi,j = 1) = p210,j, i = 1, . . . , nj; j = 1, 2, 3, (8)
p210,j = �(θj), j = 1, 2, 3,

θj|μ, τ 2 ∼ N (μ, τ 2), j = 1, 2, 3,
μ ∝ 1,
τ 2 ∼ IG(α,β),
α = 2,
β = 0.3,

where Yi,j is the day 210 response of the ith patient on
treatment j, � is the cumulative distribution function
of the standard normal distribution and IG denotes the
inverse-gamma distribution.
Our prior distribution for μ is non-informative. How-

ever, we do not choose a non-informative prior for τ , as
this leads to problematic inferences when the number of
groups is small [16]. Instead, we use an inverse-gamma
distribution for τ 2. The model (8) can then be fitted using
a relatively simple Markov chain Monte Carlo (MCMC)
algorithm [17], and we provide R code in the supplemen-
tary material (see Additional file 1). The parameters of
the inverse-gamma distribution are chosen based on our
prior knowledge that a range of treatment effect sizes (θj’s)
of �−1(0.9) − �−1(0.75) ≈ 0.6 was very plausible, but a
range of effect sizes twice this large was fairly unlikely. For
a normal distribution with variance 0.3, 42 % of the prob-
ability density lies within 0.3 of the mean, and 73 % of the
density lies within 0.6 of the mean. It, therefore, seemed a
reasonable and pragmatic choice to give τ 2 a prior mean
of 0.3. This implies that β = 0.3(α − 1). If α is chosen too
large, the degree of shrinkage or borrowing is effectively
fixed in advance, i.e., it does not depend on how spread
out the treatment effect estimates are. On the other hand,
if α is too small, the MCMC will run into convergence
issues.We, therefore, found α = 2 via a process of trial and
error, such that the model gave acceptable performance in
a range of simulated scenarios (see below).
The output of the MCMC algorithm is a sequence

of draws θ
(1)
j , . . . , θ(N)

j from the posterior distribution
of θj for j = 1, 2, 3. To produce a point estimate
for p210,j, we take the mean of the back-transformed
draws �

(
θ

(1)
j

)
, . . . ,�

(
θ

(N)
j

)
. A 95 % credible interval

is found via the sample 2.5 % and 97.5 % quantiles of
�

(
θ

(1)
j

)
, . . . ,�

(
θ

(N)
j

)
.

Maximum likelihood estimator
As described previously, the MLE for the probability of
cure after extended follow-up (day 210) in the motivating
example is given by

p̂210,j = S210,j/n210,j, j = 1, 2, 3,

where S210,j denotes the number of successes (patients
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cured) and n210,j denotes the number of patients at day
210. A 95 % CI is then given by

p̂210,j ± z1−α/2

√
p̂210,j(1 − p̂210,j)

n210,j
, j = 1, 2, 3,

where z1−α/2 = 1.96 is the 1 − α/2 percentile of the
standard normal distribution.

Bias and efficiency of the estimationmethods
To compare the performance of the SHE, PTE and MLE,
a simulation was performed to calculate bias, root mean
square error (RMSE), length of 95 % CIs and coverage
probabilities. We considered four different scenarios for
the true proportion of successes at the end of treatment:

• Scenario 1: all treatments unpromising
p1 = p2 = p3 = 0.75

• Scenario 2: all treatments promising
p1 = p2 = p3 = 0.9

• Scenario 3: one treatment promising
p1 = p2 = 0.75, p3 = 0.9

• Scenario 4: linear relationship between efficacy and
treatment
p1 = 0.75, p2 = 0.825, p3 = 0.9

and four different cases for the change in patient status
between the end of treatment and follow-up:

• Case 1: no relapses, no slow responders
q = 1, s = 0

• Case 2: no relapses, 33 % slow responders
q = 1, s = 0.33

• Case 3: 25 % relapses, no slow responders
q = 0.75, s = 0

• Case 4: 25 % relapses, 33 % slow responders
q = 0.75, s = 0.33

where q and s were defined as for the PTE. For each com-
bination of the above, 10,000 simulations of Design 2 were
performed.
We calculated the bias and RMSE of the three estima-

tors after selecting the best performing treatment of each
simulation. The best performing treatment refers to the
treatment with the largest estimated success probability
at follow-up. The bias and RMSE from selecting the best
treatment were calculated using the following formulas:

bias = bp(QS) = Ep(QS − p′
S)

and

RMSEp(QS) =
√
MSEp(QS) =

√
Ep

[
(QS-p’S)2

]
=

√
Varp(Qp) + b2p(QS),

where S ∈ (1, 2, 3) is the index of the selected treatment,
QS is the estimator used and p′ is the true value of the
efficacy at follow-up.
The length of the 95 % CIs is given as the upper confi-

dence limit minus the lower confidence limit. The cover-
age probability of a CI gives the proportion of times the
true value of the parameter (p′) lies within the interval.
For a 95 % CI, we would, therefore, expect the coverage
probability to be approximately 0.95.

Trial registration and ethical approval
Ethical approval for the LEAP 0208 trial was obtained
from the following committees: in Sudan, of the Insti-
tute of Endemic Diseases, University of Khartoum (refer-
ence IEND:UKIENDERC 2/11), and the Health Research
Council, National Research Ethics Review Committee
(reference 113-11-09), Ministry of Health of Sudan; in
Kenya, of the Kenya Medical Research Institute (KEMRI
EC, protocol 1720); and in the United Kingdom, of the
London School of Hygiene and Tropical Medicine (refer-
ence 5543). The trial is registered with ClinicalTrials.gov,
number NCT01067443.

Results
Fixing an interim analysis after a pre-specified number of
responses
Figure 3 shows the three potential designs for the moti-
vating example. One can see that the boundaries become
wider and the maximum sample size becomes larger as
the number of interim analyses is increased. The results
of the simulation exercise are summarized in Table 1. The

Fig. 3 Three flexible triangular design boundaries. Boundaries for
plotting the efficient score (Bi) versus Fisher’s information (Vi) for the
three potential designs for the motivating example with a two-sided
Type I error rate of α = 0.05 and power of 0.95 when θR = 1.10
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Table 1 Parameter estimates for the three potential designs for
the motivating example. A simulation was performed to calculate
expected sample size, Type I error and power

Estimate Design 1 Design 2 Design 3
(3 analyses) (4 analyses) (7 analyses)

Maximum sample size 62 62 66

Expected sample size under H0 36 31 30

Expected sample size under H1 40 40 39

Type I error 0.0479 0.0482 0.0484

Power 0.893 0.889 0.894

expected sample size decreases as the number of interim
analyses increases. Although all three designs satisfied the
Type I error of 5 %, a power of 95 % was not achieved,
with the average being approximately 90 %. This reduc-
tion is due to the use of the normal approximation, which
has limited accuracy when used with a single stream of
binary data and when used with success probabilities close
to 1 (see p. 235 [10]). A simple correction is to increase
the sample size until the simulated power exceeds 95 %
(see Table 2). More accurate approaches are available that
take explicit account of the binomial distribution of the
data [18, 19].

Estimation of the probability of cure after extended
follow-up
Figure 4 shows a plot of the bias and RMSE of the three
estimators (SHE, PTE and MLE) calculated under each
combination of the true success probability scenarios and
change in patient status cases, with the latter represented
on the x-axis. One can see that for all of the estimators, the
bias and RMSE are higher for some scenarios than others.
To some extent, this is explained by the closeness of the
true probability to 1, which places an upper limit on the
degree of the bias.
When all treatments are unpromising (Scenario 1), the

SHE has the smallest bias and RMSE regardless of the
change in patient status. In Scenario 2 (all treatments

Table 2 Parameter estimates for the three potential designs for
the motivating example under the maximum sample size
required to satisfy power. A simulation was performed to
calculate expected sample size, Type I error and power

Estimate Design 1 Design 2 Design 3
(3 analyses) (4 analyses) (7 analyses)

Maximum sample size 86 86 102

Expected sample size under H0 46 44 43

Expected sample size under H1 49 49 48

Type I error 0.0471 0.0453 0.044

Power 0.962 0.964 0.976

promising), the PTE has the smallest bias in all change
of patient status cases. However, the performance of the
estimators for RMSE differs dependent on the change
in patient status. When there are no slow responders
(patients not cured at end of treatment who become cured
at extended follow-up), the PTE has the smallest RMSE;
when there are slow responders, the SHE has the smallest
RMSE.
When only one treatment is promising (Scenario 3) or

when there is a linear relationship between efficacy and
treatment (Scenario 4), the SHE has the smallest bias and
RMSE in the majority of change in patient status cases.
The PTE marginally outperforms the SHE when there is
no change in patient status between the two time points.
Figure 5 shows the length of 95 % CIs and the cover-

age probability for the three estimators calculated under
each combination of the true success probability scenar-
ios and change in patient status cases, with the latter
again represented on the x-axis. The length of the CIs is
similar for all estimators whilst the coverage probability
differs considerably between them. When all treatments
are unpromising (Scenario 1), the SHE has much better
coverage probability regardless of the change in patient
status. In all other success probability scenarios, the SHE
has the largest coverage probability in most cases, the
exception being when there is no change in patient sta-
tus between time points (Case 1) when the PTE performs
better.

Discussion
Fixing an interim analysis after a pre-specified number of
responses
The triangular test is a popular choice of sequential test
due to its low expected sample size across a wide range of
potential treatment effect sizes, and also for historical rea-
sons, as very good approximations could be used to gen-
erate stopping boundaries without a computer. We have
shown how one can modify the triangular test to fix an
interim analysis after a pre-specified number of patients.
This enables a trial designer to guarantee the minimum
number of patients necessary to obtain sufficient PK data
unless a treatment is unpromising.
Just as for the standard triangular test, it remains true

that the effect of increasing the number of interim analy-
ses is to reduce the expected sample size, but at the price of
increasing the maximum total sample size (see Table 1). A
greater number of interim analyses provides more oppor-
tunities to stop a trial early; however, it could make the
trial less efficient to perform and increases the possibil-
ity of overrunning—data accumulated after the formal
stopping criterion has been reached (see Section 5.5 [6]).
Stopping boundaries and sample sizes can be found to

match specified Type I and Type II error rates. For nor-
mally distributed data, the error rates are achieved exactly.
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Fig. 4 Plot showing the bias and RMSE of the three estimators. A plot of bias and RMSE for the SHE, PTE and MLE calculated under each true success
probability and change in patient status combination

For many types of non-normal data [6], they are achieved
approximately. The adequacy of this approximation can
be assessed via simulation. In our setting, we found that a
Type I error of 5 % was achieved; however, a power of 95 %
used in the trial designs was not achieved and the aver-
age expected power was approximately 90 % (see Table 1).
This reduction in power is due to the normal approxima-
tion performing poorly with success probabilities close to
1 (see p. 235 [10]).
In this phase II trial, the emphasis was on learning rather

than confirming, and therefore no formal correction was
made for the multiple hypotheses tested.

Estimation of the probability of cure after extended
follow-up
The second aim of the paper was to derive methods
for estimation of the outcome variable (e.g., cure) at a
time point later than that used for the stopping rule.
In a trial for a new treatment approach for Indian VL
[20], the impact of the group-sequential design was not
considered in the analysis at the extended follow-up.
Instead the MLE was used, which we know to be a biased
estimator.

Simulation suggests that a SHE based on a Bayesian pro-
bit model is the preferred choice of estimator (out of the
SHE, PTE and MLE) for estimation of the probability of
cure after extended follow-up. The simulation was per-
formed under a range of true success probability scenarios
and change in patient status cases (it is possible for there
to be slow responders to treatment or relapses). The SHE
performed best in most situations in terms of reducing
both bias and RMSE and providing coverage probabilities
close to 0.95. The PTE performed well in instances where
there was no change in patient status between end of treat-
ment and follow-up. The MLE was poor in all instances.
It is well known that for binary data, the MLE CI based
on the normal approximation only performs well for large
n. Agresti states that “the actual coverage probability usu-
ally falls below the nominal confidence coefficient, much
below when π is near to 0 or 1”, where π is the true suc-
cess proportion [21]. We would not recommend using the
MLE for estimation of efficacy at follow-up based on these
findings in any of the scenarios considered.
Whilst the SHE performs best, it is difficult to imple-

ment in comparison to the PTE and MLE. In particular,
choosing the prior distribution for the variance random
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Fig. 5 Plot showing the length of 95 % CIs and coverage probability of the three estimators. A plot of the length of 95 % CIs and coverage
probability for the SHE, PTE and MLE calculated under each true success probability and change in patient status combination

effects is a subtle task. The SHE would also be unsuitable
for use in trials of a single treatment arm and so the PTE
may provide a suitable alternative.

Conclusions
Generalization of the triangular design is simple to imple-
ment and allows the minimum number of patients neces-
sary for PK analysis to be obtained. For the estimation of
efficacy at follow-up following a sequential design trial, a
SHE is preferable. The PTE would provide an alternative
for use in one-arm trials or when the SHE is not possible
due to its computational complexity.

Additional file

Additional file 1: Supplementary R functions. Zip file containing all R
code necessary to reproduce our results, together with description files
that explain how to use the functions. Installation instructions can be
found at: http://cran.r-project.org/doc/manuals/r-release/R-admin.html#
Installing-packages. (PDF 463 kb)
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