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Evidence on the effects of long-term exposure to traffic pollution on health is inconsistent. In Greater
London we examined associations between traffic pollution and emergency hospital admissions for
cardio-respiratory diseases by applying linear and piecewise linear Poisson regression models in a small-
area analysis. For both models the results for children and adults were close to unity. In the elderly, linear
models found negative associations whereas piecewise models found non-linear associations charac-
terized by positive risks in the lowest and negative risks in the highest exposure category. An increased
risk was observed among those living in areas with the highest socioeconomic deprivation. Estimates
were not affected by adjustment for traffic noise. The lack of convincing positive linear associations
between primary traffic pollution and hospital admissions agrees with a number of other reports, but
may reflect residual confounding. The relatively greater vulnerability of the most deprived populations
has important implications for public health.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A large body of evidence from daily time-series studies has
found short-term associations between a range of ambient air
pollutants, including those of primary traffic origin, and emergency
hospital admissions for cardiovascular and respiratory conditions
(WHO, 2013). Evidence for associations with long-term exposure to
traffic pollutants, in contrast, is rather mixed (HEI, 2010; WHO,
2013). A systematic review on studies published between 1950
and 2007 found none reporting positive associations between
chronic exposure to nitrogen dioxide (NO2) or nitrogen oxides
(NOx) and cardiovascular or respiratory morbidity and concluded
that, due to the small number of studies, evidence on these pol-
lutants was insufficient to make solid conclusions (Chen et al.,
2008). In 2010, a report on traffic-related air pollution and health
ondon, WC1H 9SH, United

and.
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also concluded that the epidemiologic evidence relating to the as-
sociations between long-term exposure to primary traffic expo-
sures, for example nitrogen oxides, and health was largely
inconclusive (HEI, 2010).

To address this question studies of traffic-related pollution
within cities are needed. Population-wide small-area studies which
use routinely collected register data have the relative advantage over
most cohort studies of individuals of having a larger sample size and
greater representativeness, although they are likely to be more
vulnerable to residual confounding from unmeasured area and
individual-level factors. Previous ecological studies of environ-
mental exposures in London, however, have successfully used small-
area methods (Halonen et al., 2015a, 2015b; Hansell et al., 2013).

Therefore, as part of a research programme into the health ef-
fects of traffic pollution in London (TRAFFIC study (King's College
London, 2014)), we conducted a within-city small-area study of
the associations between long-term exposure to primary traffic
pollution and hospital admissions for cardiovascular and respira-
tory diseases for the whole of London between 2003 and 2010. We
hypothesized that long-term average pollution contributes to
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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exacerbations of existing health conditions resulting in additional
hospital admissions observable at the small-area. We used a
dispersion model to estimate at a fine spatial scale long-term
exposure to six primary traffic pollutants including metrics for
exhaust and non-exhaust related primary particles that have rarely
been used in previous studies. In addition to the commonly used
linear models we used piecewise linear models that relax the
assumption of linearity across the whole exposure range.

2. Methods

2.1. Study area

Our study area comprised all postcode areas within the M25
motorway with over nine million inhabitants. Each postcode is
nested within a Census Output Area (COA) that was the spatial unit
of analysis (n ¼ 27,731). Mean population of COAs is 300 (>40
households) (Office for National Statistics, 2014). We included
27,686 COAs with complete information for the exposures, health
outcomes, and possible area-level confounders.

2.2. Health outcomes

We selected the first emergency hospital episode in each of the
years 2003e2010 recorded in the Hospital Episode Statistics pro-
vided by the Health and Social Care Information Centre (HSCIC). We
used emergency rather than all (including elective) admissions to
better capture exacerbations of disease as opposed to planned visits
due to existing diseases. The outcome groups were (ICD-10): all
cardiovascular diseases (I00-I99), coronary heart disease (I20-I25),
heart failure (I50), stroke (I61, I63, I64), all respiratory diseases
(J00-J99), obstructive respiratory diseases (J12-J18 and J20-J22) and
infections of the lower respiratory tract (J40-J46). Cardiovascular
outcomes were analysed in two age groups: 45e74 and � 75 years
old, and respiratory outcomes in three age groups: 0e14, 15e64,
and �65 years old. We used the sum of admissions across
2003e2010 within each COA. Of all HES admission records in En-
gland from 2003 to 2010, 4.2% did not have a valid postcode and
were excluded. Annual mid-year population estimates at COA-level
by sex and 5-year age band from the Office for National Statistics
(ONS) were used to calculate admission rates. The study uses
SAHSU data, supplied fromONS; data use was covered by approvals
from the National Research Ethics Service - reference 12/LO/0566
and 12/LO/0567 - and by Health Research Authority Confidentially
Advisory Group (HRA-CAG) for Section 251 support (HRA - 14/CAG/
1039); superseding National Information Governance Board and
Ethics and Confidentiality Committee approval (NIGB - ECC 2-
06(a)/2009).

2.3. Exposures

We used the KCL urban dispersion model (Beevers et al., 2013;
Kelly et al., 2011) to estimate average annual concentrations
(2003e2010), as follows: 1) six primary traffic pollutants: nitrogen
oxides (NOx), nitrogen dioxide (NO2), as well as exhaust (tailpipe
emissions) and non-exhaust (brake and tyre wear and re-
suspension) related primary PM2.5 and PM10 (aerodynamic diam-
eter <2.5 and < 10 mm, respectively); and 2) five pollutants
reflecting the contribution of regional/urban background pollution:
PM2.5, PM10 and ozone (O3) from which we calculated coarse
fraction of PM10 (PM10-2.5) and oxidative gases (Ox, i.e. NO2þO3)
(Williams et al., 2014) The modelling was based on Atmospheric
Dispersion Modelling System (ADMS) v.4 and road source model
v.2.3, which incorporates hourly meteorological measurements,
empirically derived NOeNO2eO3 and PM relationships, and
information on source emissions from the London Atmospheric
Emissions Inventory (LAEI) (Greater London Authority, 2008). For
NOx and NO2, modelled data have been evaluated against mea-
surement data from monitoring sites with an annual data capture
of >75%. Minimum number of sites was 62 in 2003, and maximum
number was 100 in 2008. The model performed well when vali-
dated against measurements: a comparison of observed vs.
modelled concentrations provided high spearman correlation co-
efficients (r): for NOx r varied between 0.79 and 0.92, and for NO2
between 0.85 and 0.93. More detailed information about the
modelling procedure and model validation can be found elsewhere
(Beevers and Dajnak, 2015). Spatial resolution of the model was
20 � 20 m; estimates for each postcode address centroid were
based on interpolation between model grid points. COA-level
exposure was calculated as the mean of: 1) annual mean concen-
trations at all postcode address centroids within a COA, and 2)
overall study years.

2.4. Statistical analyses

Adjacent small areas tend to be more alike than those further
apart. To model these spatial dependencies we used ecological
Poisson regression specified in a Bayesian framework that was
implemented through the Integrated Nested Laplace Approxima-
tion (INLA) approach (Rue et al., 2009) using R 3.1.0 package R-INLA
(www.r-inla.org) (Martino and Rue, 2010; R Core Team, 2014). We
included age and sex standardised expected numbers of admissions
as offsets in the models and accounted for (i) spatial residuals
through a conditional autoregressive structure which assumes
dependencies between neighbouring areas, and (ii) spatially un-
structured variability through an area specific random effect.
Minimally informative priors were specified on all the parameters
in the model: Gaussian distributions centred on zero and charac-
terised by a precision (1/variance) equal to 0.00001 for the
regression coefficients; Gaussian distributions on the two random
effects, both centred on zero and characterised by a lognormal (0.5,
0.00005) on the logarithm of the precision.

First we used linear Poisson regression models to determine
associations between pollutants and cause-specific hospital ad-
missions. Linear models are most commonly used and thus results
can be more reliably compared with prior findings. However, the
associations between air pollutants and health outcomes are not
necessarily linear. To overcome this issue, categorical variables
based on percentiles of the exposure are often used that do not
account for changes in the estimates of epidemiological risk (RR/
OR) within each category. As a compromise between the two ap-
proaches we used piecewise linear models that relax the
assumption of linearity of any association across the whole range
of exposures. These models use pre-defined exposure categories
(here characterised by approximately equal exposure range in
each) and assume a (potentially different) linear effect within each
category. Models were adjusted for COA-level confounders:
quintiles of socioeconomic deprivation; tertiles of proportion of
COA population of black and South Asian ethnicities; proxy for
smoking (annual smoothed age and sex standardised relative risk
of lung cancer mortality (ICD-10: C33-C34)) (Hansell et al., 2013);
and daytime road traffic noise (LAeq, 16 h). The Carstairs index
(Morgan and Baker, 2006) was used as small-area level composite
measure of socioeconomic deprivation. Deprivation and ethnicity
data were derived from the UK Census 2011, provided by the ONS,
and cancer data are derived from national cancer registries and
were supplied by the ONS. Annual daytime (from 7:00 to 22:59)
road traffic noise levels were modelled at geometric centroids of
~190,000 postcode locations in London using the TRAffic Noise
EXposure (TRANEX) (Gulliver et al., 2015) model with 0.1 dB(A)

http://www.r-inla.org


Table 1
Distribution of hospital admissions for cardiovascular and respiratory diseases across 27,686 Census Output Areas, London, 2003e2010.

Outcome Mean SDa Minimum P25b Median P75c Maximum Total n

Cardiovascular
All 45-74 6.8 4.3 0 4 6 9 69 187,395
All �75 6.5 6.3 0 2 5 9 135 179,099
IHDd 45-74 2.8 2.4 0 1 2 4 30 77,019
IHD �75 1.8 2.1 0 0 1 3 32 48,522
Heart failure 45-74 0.6 1.0 0 0 0 1 10 16,786
Heart failure �75 1.3 1.7 0 0 1 2 49 34,951
Stroke 45-74 0.9 1.1 0 0 1 1 12 24,458
Stroke �75 1.3 1.8 0 0 1 2 30 35,697
Respiratory
All 0-14 4.1 3.5 0 2 3 6 48 113,163
All 15-64 5.4 3.9 0 3 5 7 113 149,308
All �65 7.2 8.6 0 3 5 9 179 198,899
Infections 0-14 1.7 1.8 0 0 1 2 20 46,217
Infections 15-64 2.0 2.0 0 1 2 3 73 56,595
Infections �65 4.2 6.3 0 1 3 5 126 116,292
Obstructive 0-14 0.9 1.3 0 0 0 1 19 25,108
Obstructive 15-64 1.8 2.1 0 0 1 3 22 50,253
Obstructive �65 2.4 3.0 0 0 1 3 32 66,979

a Standard deviation.
b 25th percentile.
c 75th percentile.
d Ischaemic heart disease.

Table 2
Distribution of average air pollution concentrations and potential confounding variables across 27,686 Census Output Areas, London, 2003e2010.

Variable Mean SDa Minimum P25b Median P75c Maximum IQRd

Primary traffic pollutant (mg/m3)
NOx 66.2 16.2 34.8 54.4 64.0 75.7 178.9 21.3
NO2 39.0 6.50 25.4 34.3 38.4 43.0 73.4 8.7
Exhaust related primary PM2.5 0.72 0.28 0.28 0.52 0.66 0.85 3.33 0.33
Non-exhaust related primary PM2.5 0.73 0.24 0.27 0.55 0.70 0.86 3.17 0.31
Exhaust related primary PM10 0.80 0.32 0.30 0.58 0.74 0.95 3.74 0.37
Non-exhaust related primary PM10 2.46 0.80 0.98 1.88 2.37 2.91 10.5 1.03
Regional/urban background pollutant (mg/m3)
PM2.5 15.3 0.86 13.7 14.7 15.2 15.8 20.0 1.1
PM10 24.0 1.50 21.3 22.9 23.8 24.9 36.5 2.0
PM10-2.5 8.7 0.71 0.00 8.25 8.66 9.11 19.8 0.86
O3 38.7 3.80 24.6 36.0 38.8 41.4 48.3 5.4
Ox (NO2þO3) 77.7 2.78 73.4 75.7 77.1 79.1 98.7 3.4
Area-level covariates
Noise, LAeq,16hr (dB) 58.5 3.58 54.8 55.4 57.4 60.6 78.2 5.2
Deprivation score 0.00 3.18 �5.99 �2.62 �0.45 2.22 13.7 4.5
Black ethnicity (%) 12.0 12.2 0.00 2.86 7.69 17.6 73.2 14.7
South Asian ethnicity (%) 10.2 13.2 0.00 2.41 5.26 11.7 90.8 9.3
Smokinge 1.00 0.28 0.29 0.79 0.96 1.16 3.15 0.40

a Standard deviation.
b 25th percentile.
c 75th percentile.
d Interquartile range.
e Smoothed age and sex standardised relative risk for lung cancer mortality.

J.I. Halonen et al. / Environmental Pollution 208 (2016) 48e5750
noise level resolution. For the analyses mean noise levels were
aggregated to COA-level.

We tested interactions between continuous exposure and
quintiles of socioeconomic deprivation, and ran sensitivity ana-
lyses: 1) adjusting models for an “inner-outer London” dummy (13
inner and 20 outer London boroughs) (London Councils, 2014); 2)
using different prior distributions in the models; and 3) using 95th
percentiles (instead of means) of the air pollution concentrations
within the COAs. Because the correlations between pollutants were
high (Supplemental Table 1) we confined these sensitivity analyses
to associations between NOx and all cardiovascular and all respi-
ratory admissions. All results are presented as relative risks (RR)
with 95% credible intervals (CI) per “half a range increase” that is
based on each pollutant's exposure categories used for the piece-
wise models, for example, per 7.5 mg/m3 for NOx.
3. Results

3.1. Descriptive statistics

Total numbers and distributions of all outcomes by age groups
across COAs are shown in Table 1. Table 2 presents the distributions
of average air pollutant concentrations across the COAs. Area-level
variationwas larger for the primary traffic pollutants (coefficient of
variation range 0.17e0.40) compared to the regional/urban back-
ground pollutants (coefficient of variation range 0.04e0.10). In
Fig. 1 spatial distribution of modelled NOx levels over the study
area is shown. Correlations between pollutant concentrations were
high; for NOx in relation to PM concentrations Spearman r ranged
from 0.94 to 0.98, and for O3 the range was from �0.92 to �0.99
(Supplemental Table 1). Correlations between pollutants and



Fig. 1. Map of A) the study area and B) distribution of nitrogen oxide (NOx) concentrations.

Table 3
Adjusteda relative risks (RR, 95% credible intervals, CI) for all cardiovascular admissions in association with traffic and regional/urban background pollutants.

Pollutant All cardiovascular admissions

45-74 yr (n ¼ 187,395) �75 yr (n ¼ 179,099)

Primary traffic Increment mg/m3 RR 95% CI RR 95% CI
NOx 7.5 1.00 0.99 1.01 0.99 0.98 1.00
NO2 4.0 1.00 0.99 1.02 0.98 0.97 1.00
Exhaust related primary PM2.5 0.15 1.00 0.99 1.01 0.98 0.97 0.99
Non-exhaust related primary PM2.5 0.10 1.00 0.99 1.01 1.00 0.99 1.00
Exhaust related primary PM10 0.15 1.00 0.99 1.01 0.99 0.98 1.00
Non-exhaust related primary PM10 0.50 1.00 0.99 1.01 0.99 0.98 1.00
Regional/urban background
PM2.5 0.60 1.00 0.98 1.02 0.98 0.96 1.00
PM10 1.0 1.00 0.99 1.01 0.99 0.97 1.00
PM10-2.5 0.35 1.00 0.99 1.01 0.99 0.98 1.00
O3 2.5 0.99 0.98 1.01 1.02 1.00 1.04
Ox 1.5 1.00 0.99 1.01 0.99 0.98 1.00

a Models adjusted for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, and daytime road traffic noise.
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deprivation index varied by exposure category; correlations be-
tween NOx and deprivation by increasing NOx exposure category
were: 0.12 (when NOx <50 mg/m3), 0.31 (50e64.9 mg/m3), 0.10
(65e79.9 mg/m3), and �0.06 (�80 mg/m3).

3.2. Results from linear models

Linear associations between pollutants and all cardiovascular
hospital admissions were close to unity among adults (45e74
years) and the elderly (�75 years) (Table 3). Effect estimates for all
respiratory admissions among children (�14 years) and adults
(15e64 years) were close to one (Table 4). Among the elderly (�65
years), nearly all effect estimates for all respiratory admissionswere
slightly below one.

3.3. Results from piecewise models for cardiovascular outcomes

Partially and fully adjusted relative risks for all cardiovascular
admissions and NOx from the piecewise analyses are presented in
Table 5. Estimates adjusted only for age and sex indicated a clear
pattern of higher relative risks at low exposures compared to high
exposures. Increasing adjustment for confounders partially
attenuated this pattern among adults (45e74 years), but less so
among the elderly (�75 years). Adjustment for smoking,
ethnicity, and road noise accounted for the majority of the
attenuation in the effect estimates at the lowest exposure range
whereas effect estimates at the highest exposure range remained
unchanged. Additional adjustment for area-level deprivation had
a minor effect. Results from the fully adjusted piecewise analyses
for the other primary traffic and all regional/background pollut-
ants are in Supplemental Table 2. Similar to the results for NOx,
there was no evidence of an association between any of the
pollutants and cardiovascular admissions among adults. Among
the elderly, results were similar to NOx with positive associations,
i.e. increased risks, in the lowest exposure categories and negative
associations, i.e. “protective effects”, in the highest exposure
categories.

In association with NOx, the fully adjusted results from



Table 4
Adjusteda relative risks (RR, 95% credible intervals, CI) for all respiratory admissions in association with traffic and regional/urban background pollutants.

Pollutant All respiratory admissions

0e14 yr (n ¼ 113,163) 15e64 yr (n ¼ 149, 308) �65 yr (n ¼ 198, 899)

Primary traffic Increment mg/m3 RR 95% CI RR 95% CI RR 9% CI
NOx 7.5 1.01 1.00 1.02 1.00 0.99 1.01 0.99 0.97 1.00
NO2 4.0 1.01 0.99 1.03 0.99 0.98 1.01 0.98 0.96 1.00
Exhaust related primary PM2.5 0.15 1.01 0.99 1.02 1.00 0.99 1.01 0.98 0.97 0.99
Non-exhaust related primary PM2.5 0.10 1.00 0.99 1.01 1.00 0.99 1.01 0.99 0.98 1.00
Exhaust related primary PM10 0.15 1.00 0.99 1.02 1.00 0.99 1.01 0.98 0.97 0.99
Non-exhaust related primary PM10 0.50 1.00 0.99 1.02 1.00 0.98 1.01 0.99 0.97 1.00
Regional/urban background
PM2.5 0.60 1.01 0.99 1.04 0.99 0.97 1.01 0.98 0.96 1.00
PM10 1.0 1.01 0.99 1.03 0.99 0.98 1.01 0.98 0.96 1.00
PM10-2.5 0.35 1.00 0.99 1.01 1.00 0.99 1.01 0.99 0.98 1.00
O3 2.5 0.99 0.97 1.02 1.01 0.99 1.03 1.02 1.00 1.05
Ox 1.5 1.01 0.99 1.02 1.00 0.99 1.01 0.99 0.97 1.00

a Models adjusted for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, and daytime road traffic noise.

Table 5
Partially and fully adjusted relative risks for all cardiovascular hospital admissions in association with 7.5 mg/m3 increase in nitrogen oxide.

NOx n COAs All cardiovascular admissions

Mean n of admissions 45-74 yr (n ¼ 187,395) Mean n of admissions �75 yr (n ¼ 179,099)

Increment 7.5 mg/m3 RR 95% CI RR 95% CI

Partially adjusted 1a

<50.0 4991 7 1.07 1.01 1.12 9 1.04 0.99 1.08
50e64.9 13,062 7 1.06 1.04 1.09 7 1.03 1.00 1.05
65e79.9 2316 6 1.03 1.01 1.05 5 1.00 0.98 1.02
�80.0 8115 6 1.02 1.01 1.03 4 0.98 0.96 1.00
Partially adjusted 2b

<50.0 4991 7 1.03 0.99 1.09 9 1.03 0.98 1.07
50e64.9 13,062 7 1.03 1.01 1.06 7 1.02 0.99 1.04
65e79.9 2316 6 1.02 1.00 1.04 5 1.00 0.98 1.02
�80.0 8115 6 1.02 1.01 1.03 4 0.98 0.97 0.99
Fully adjustedc

<50.0 4991 7 1.03 0.98 1.07 9 1.03 0.98 1.07
50e64.9 13,062 7 0.99 0.97 1.01 7 1.00 0.98 1.03
65e79.9 2316 6 0.99 0.97 1.01 5 0.99 0.97 1.01
�80.0 8115 6 1.01 1.00 1.02 4 0.98 0.96 1.00

a Models adjusted for age and sex.
b Models adjusted for age and sex, ethnicity, smoking and daytime road traffic noise.
c Models adjusted for age and sex, ethnicity, smoking and daytime road traffic noise and area-level socioeconomic deprivation.
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piecewise models for heart failure and stroke were similar to those
for all cardiovascular diseases, but associations for ischaemic heart
disease were close to unity (Supplemental Table 3).
3.4. Results from piecewise models for respiratory outcomes

Partially and fully adjusted results for NOx in associationwith all
respiratory admissions from the piecewise analyses are in Table 6.
Confounder adjustment had relatively little impact on the esti-
mates among children. In adults and the elderly, the additional
confounder adjustment particularly for smoking, ethnicity, and
road noise had clear impact on the effect estimates at the low
compared to high exposure range.

Fully adjusted results for the other primary traffic and all
regional/background pollutants with respiratory admissions from
piecewise linear models were similar to those for NOx
(Supplemental Table 4). Associations between NOx and obstructive
diseases were similar to those for all respiratory diseases in all age
groups (Supplemental Table 5). Associations between NOx and lower
respiratory tract infections among the elderly shared the same non-
linear pattern as all respiratory admissions, but we observed no
associations in children or adults (Supplemental Table 5).
3.5. Effect modification and sensitivity analyses

Interactions between NOx and deprivation in the lowest vs.
highest quintile had posterior probabilities (of having an increased
risk of hospital admissions with increasing exposure) > 0.95 sug-
gesting effect modification by deprivation. For all cardiovascular
admissions the relative risks among adults increased slightly with
increasing deprivation; relative risk in the area of lowest depriva-
tion was 0.99 (95% CI 0.97e1.00 per 7.5 mg/m3 increase in NOx) and
1.01 (95% CI 1.00-1.03) in the area of highest deprivation. While
differences are small, the finding supports effect modification as
the credibility intervals did not overlap. Smaller differences across
deprivation quintiles were observed for the elderly (Fig. 2). In as-
sociations between NOx and all respiratory admissions in children,
we also observed this increasing trend by deprivation (Fig. 3). In
areas of lowest deprivation relative risk was 0.98 (95% CI 0.96-1.00
per 7.5 mg/m3 increase in NOx) but in areas of highest deprivation
the corresponding RR was 1.02 (95% CI 1.01-1.04), which also
supports effect modification as the credibility intervals did not
overlap. Sensitivity analyses adjusting for the inner-outer London
borough, using different priors, or using the 95th percentile of the
exposure range had a minor effect on the results (Supplemental
Tables 6 and 7).



Table 6
Partial and fully adjusted relative risks for all respiratory disease hospital admissions in association with 7.5 mg/m3 increase in nitrogen oxide.

NOx n COAs All respiratory admissions

Mean n of admissions 0-14 yr
(n ¼ 113,163)

Mean n of admissions 15-64 yr
(n ¼ 149,308)

Mean n of admissions �65 yr
(n ¼ 198,899)

Increment 7.5 mg/
m3

RR 95% CI RR 95% CI RR 95% CI

Partially adjusted 1a

<50.0 4193 4 1.04 0.98 1.10 5 1.12 1.05 1.20 8 1.13 1.06 1.20
50e64.9 10,374 4 1.02 0.99 1.05 5 1.06 1.03 1.10 8 1.08 1.05 1.11
65e79.9 8035 4 1.01 0.99 1.03 6 1.04 1.01 1.06 7 1.01 0.99 1.03
�80.0 5084 4 1.01 1.00 1.02 6 1.00 0.99 1.02 6 0.99 0.97 1.00
Partially adjusted 2b

<0.50 4193 4 1.02 0.96 1.08 5 1.06 1.00 1.13 8 1.09 1.03 1.15
0.5e0.79 10,374 4 1.01 0.98 1.05 5 1.04 1.00 1.07 8 1.05 1.02 1.08
0.8e1.09 8035 4 1.01 0.99 1.04 6 1.04 1.01 1.06 7 1.00 0.97 1.03
�1.1 5084 4 1.02 1.00 1.03 6 1.01 1.00 1.03 6 0.99 0.98 1.01
Fully adjustedc

<0.50 4193 4 1.02 0.96 1.08 5 1.04 0.99 1.10 8 1.08 1.02 1.14
0.5e0.79 10,374 4 1.00 0.97 1.03 5 0.98 0.95 1.00 8 1.01 0.98 1.04
0.8e1.09 8035 4 1.00 0.98 1.03 6 1.00 0.98 1.02 7 0.98 0.95 1.00
�1.1 5084 4 1.01 1.00 1.03 6 1.00 0.99 1.01 6 0.98 0.97 0.99

a Models adjusted for age and sex,
b Models adjusted for age and sex, ethnicity, smoking and daytime road traffic noise
c Models adjusted for age and sex, ethnicity, smoking and daytime road traffic noise and area-level socioeconomic deprivation

Fig. 2. Adjusteda associations between an interquartile range increase in nitrogen oxides (NOx) concentration and all cardiovascular hospital admissions among adults and the
elderly by quintiles of area-level deprivation. aModels adjusted for age, sex, ethnicity, smoking and daytime road traffic noise.

Fig. 3. Adjusteda associations between an interquartile range increase in nitrogen oxides (NOx) concentration and all respiratory hospital admissions among children, adults and the
elderly by quintiles of area-level deprivation. aModels adjusted for age, sex, ethnicity, smoking and daytime road traffic noise.
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4. Discussion

Our comprehensive and statistically powerful analysis of air
pollution and hospital admissions for cardiovascular and respi-
ratory diseases in the whole population of London found little
evidence of positive associations. Some non-linear associations
were observed, especially in the elderly, which took the form of
inverse J-shaped dose response. For some outcomes there was
evidence of effect modification by area-level socioeconomic
deprivation, with an increasing trend across deprivation quintiles
and small but significant positive associations in the highest
deprivation group.
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4.1. Methodological issues

Our hypothesis was that increased long-term exposure to air
pollutants, especially those from traffic sources, increases the risk
of exacerbation of cardiovascular and respiratory diseases and that
this is reflected in emergency hospital admissions for these con-
ditions. It is already known from many time-series studies,
including some from London, that short-term exposure to a range
of gaseous and particulate pollutants measured at city monitors is
associated with increased hospital admissions (Atkinson et al.,
1999; WHO, 2013). The postulated mechanism is acute exacerba-
tion of disease in an individual already on the brink of admission. It
is not known to what extent such increases in risk represent the
bringing forward in time of an inevitable admission, or cause an
additional admission that would not have otherwise occurred. It is
only in the latter scenario that there would be an increase in
admission rates detectable in a small-area analysis with disease
counts aggregated over many years.

Whereas time-series analyses control by design spatial con-
founding factors that are relatively stable over time, small-area
analyses such as ours are vulnerable to spatial confounding. This
is especially the case for hospital admissions which reflect not only
aetiological factors responsible for the development of disease and
the incidence of exacerbating factors, but complex organisational
and behavioural factors (Anderson, 1978) which do not relate to the
severity of disease and which cannot be accounted for by crude
measures of deprivation. At the outset we were aware of the po-
tential for spatial confounding and had planned a change on change
analysis at postcode level which would be more robust to spatial
confounding. However, temporal changes over the period
2003e2010 were very similar spatially and too small for this
approach to be adopted and we therefore chose to use a small-area
approach which had been applied successfully in previous studies
(Halonen et al., 2015a, 2015b; Hansell et al., 2013). Our analytic
approach using conditional autoregressive models will have
captured some unmeasured spatial confounders, and in addition to
age and sex, we controlled for area-level smoking, ethnicity, road
traffic noise and socioeconomic deprivation. Nevertheless, we
cannot exclude the possibility of residual confounding. For
example, the piecewise model found lower risks in areas of highest
exposures and some of the highest exposures are in extremely
wealthy areas of central London. Thus, use of the Carstairs index,
may not have been sufficient to adequately adjust for socioeco-
nomic status because one of its components (car ownership) is
likely to represent different social status in the inner (more
affluent) parts of the city than elsewhere.

The fine scale dispersionmodel employed to estimate long-term
exposures has been used extensively for traffic planning in London
(Greater London Authority, 2010) and performed well when vali-
dated against measurements. However, due to lack of covariate
data and low numbers of admissions at postcode level, the aggre-
gation of postcodes to COAs was associated with a loss of variability
in exposure estimates for the pollutants. Nevertheless, the vari-
ability of primary traffic pollutants remained clearly greater than
that of urban background pollutants such as PM2.5.

4.2. Comparison with literature

Overall, we found little evidence for positive linear associations
between air pollution and hospital admissions in London. Our es-
timates were characterised by narrow confidence intervals; thus
the lack of associations could not be explained by a lack of statistical
power. Our results are generally in line with the available literature
which comprises few if any studies of equivalent power. Several
recent studies, many of which are based on cohort data, have
examined the effects long-term exposure to markers of traffic
exposure: NO2 and NOx. A summary of these studies (Table 7)
shows that nearly half of the studies reported positive and statis-
tically significant associations, a few others reported positive non-
significant associations, and the rest reported no associations.
Positive associations were more common for respiratory than car-
diovascular outcomes, and the respiratory effects were often
observed either among older population groups or in children. We
also observed the strongest positive associations for respiratory
outcomes among the elderly although only at the lowest exposures.

As the associations between air pollutants and health outcomes
are not necessarily linear we used piecewise linear models that can
identify non-linear relationships and are more easily interpreted
than more flexible and complex models like cubic splines. That the
strongest positive associations were observed in the lowest expo-
sure category particularly for some outcomes among the elderly is
likely due to differential residual confounding, as adjustment for
area-level confounders had a greater impact on the effect estimates
in the low than high exposure category. However, it should be
noted that concentration response functions relating air pollution
to health outcomes are not infrequently observed to be steeper at
low concentrations and flatten out at higher concentrations. This is
illustrated by the integrated exposure response curves derived
from combining cohort results for various sources of pollution that
are much steeper at low concentrations (Burnett et al., 2014). This
pattern has also been reported, for example, for ambient PM2.5
concentration in association with cardiovascular mortality (Pope
et al., 2011), and for NO2 and PM2.5 with IHD mortality (Cesaroni
et al., 2013; Crouse et al., 2012). However, none of these studies
observed a decline in association at higher exposure as we did. Due
to different study methods, previous findings are not directly
comparable to ours and further research using similar piecewise
regression methods are needed to make solid conclusions.

Few studies have examined the modifying role of area-level
deprivation on the associations between traffic pollution and
health. No effect modification by area deprivation was observed by
Atkinson et al., 2015 in their study that examining first COPD ad-
missions in an English cohort (Atkinson et al., 2015). However, in
their earlier work, associations between NO2 and heart failure
incidence were stronger in the least versus most deprived areas
(Atkinson et al., 2013). In our study, area-level socioeconomic
deprivation seemed to slightly modify the associations for traffic
pollutants with all cardiovascular admissions among adults, and
with all respiratory admissions among children, with small but
significant positive associations in the highest deprivation group
observed.

4.3. Strengths and limitations

Our study of all London residents' benefits from the large
number of events included, its representativeness, and consistency
of characterisation of outcomes, exposure, and confounding factors.
This is in contrast to cohort studies, which are often underpowered
for the investigation of major events, subject to attrition, and un-
representative of the population. Conversely, cohort studies are not
prone to the ecological fallacy whereby observed risks for small
areas may not apply to all individuals in that area. Both cohort
studies and the present study design are prone to problems of
exposure characterisation (e.g. lack of time-activity patterns), but
have to a variable extent the advantage of using individual-level
confounding data such as smoking habit, residential history and
exposure earlier in life. Many cohort studies to date have lacked
data on neighbourhood-level socioeconomic indicators (de
Kluizenaar et al., 2013; Katsoulis et al., 2014; Miller et al., 2007;
Molter et al., 2014; Neupane et al., 2010) which can be a source of



Table 7
Summary table on the literature on associations between traffic related air pollution and morbidity from year 2005.

Author, year Study design Location Population, n (age year) Traffic exposure Outcome Findinga

Cardiovascular
Maheswaran et al.,

2005b
Ecological England 308,841 (�45) NOx CHDb admission e

Maheswaran et al.,
2005a

Ecological England 199,682 (�45) NOx Stroke admission þ

Johnson et al., 2010 Ecological Canada 1,034,945 NO2 Stroke admission e

Miller et al., 2007 Cohort USA, 36 MSAd 65,893 women (50e70 at baseline) NO2 All CVDc events e

Cesaroni et al., 2014 Cohort 11 ESCAPE 100,166 (44e74 at baseline) NO2, NOx, PM2.5

abse
Acute coronary events e

Rosenlund et al., 2008 Cohort Italy Residents of Rome (35e84) NO2 First coronary event þ
Katsoulis et al., 2014 Cohort Greece 1504 women NO2 CHDb incidence þ
Atkinson et al., 2013 Cohort England 836,557 (40e89 at baseline) NO2 Heart failure þ
Atkinson et al., 2013 Cohort England 836,557 (40e89 at baseline) NO2 MI, arrhythmia, stroke incidence e

Lipsett et al., 2011 Cohort CA, USA 12,172e15,149 (postmenopausal
women)

NOx, NO2 MI, stroke, incidence e

de Kluizenaar et al.,
2013

Cohort Netherlands 18,213 (�65) NO2, EC CHDb, cerebrovascular admission e

Katsoulis et al., 2014 Cohort Greece 2752 (47 at baseline) NO2 All CVDc, stroke incidence e

Stafoggia et al., 2014 Cohort 11 ESCAPE 99,446 (44e74 at baseline) NO2, NOx, PM2.5

abse
Cerebrovascular, incident e

Sorensen et al., 2014 Cohort Denmark 57,053 (50e64 at baseline) NO2 Stroke, incident e

Andersen et al., 2012b Cohort Denmark 57,053 (56 at follow-up) NO2 Stroke, incident weak
Rosenlund et al., 2006 caseecontrol Sweden 1379 þ 1870 (45e70) NO2 MI, overall e

Respiratory
Rushworth et al., 2014 Ecological England Residents of Greater London NO2, NOx All respiratory admissions weak
Andersen et al., 2011 Cohort Denmark 57,053 (56 at baseline) NO2/NOx COPDf admission þ/weak
Schikowski et al., 2014 Cohort 3 ESCAPE 6550 (34e54 at baseline) NO2, NOx, PM2.5

abse
COPDf incidence e

Atkinson et al., 2015 Cohort England 812,063 (40e89 at baseline) NO2 COPDf admission weak
MacIntyre et al., 2014 Cohort 10 ESCAPE 16,059 (up to 3) NO2, NOx Diagnosed pneumonia þ
Andersen et al., 2012a Cohort Denmark 50-65 at baseline NO2 Asthma admission þ
Young et al., 2014 Cohort USA 39,350 (55, women) NO2 Asthma, incident e

Modig et al., 2009 Cohort Sweden 3609 (39 at baseline) NO2 Asthma, onset/incident self-
reported

þ

Yamazaki et al., 2014 Cohort Japan 10,069 (6e9 at baseline) ECg/NOx Asthma, incident þ/weak
Oftedal et al., 2009 Cohort Norway 2871 (9e10) NO2 (lifetime) Asthma, onset e

Jerrett et al., 2008 Cohort CA, USA 217 (10e18 at baseline) NO2 Asthma, onset þ
McConnell et al., 2010 cohort CA, USA 2497 (5e9 at baseline) NO2 Asthma, incidence þ
Molter et al., 2014 (brith) cohort England 1158 (3e11) NO2 Asthma prevalence e

Gruzieva, 2013 (birth) cohort Sweden 4089 (0e12) NOx Asthma, incident at 12 yr þ
Neupane et al., 2010 caseecontrol Canada 345 þ 494 (�65) NO2 Pneumonia þ
Modig et al., 2006 caseecontrol Sweden 203 þ 203 (20e60) NO2 Asthma, incident weak
Clark et al., 2010 Nested case

econtrol
British
Columbia

37,401 NO2 Asthma, incidence þ

Anderson et al., 2013 Meta-analysis NO2 Asthma þ
a Finding: “�”means no or negative association, “þ”means positive statistically significant association, and “weak”means positive statistically non-significant association.
b Coronary heart disease.
c All cardiovascular diseases.
d Metropolitan Statistical Areas.
e PM2.5 absorbance.
f Chronic obstructive pulmonary disease.
g Elemental carbon.
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additional confounding, whereas our study did not have data on
individual-level confounders nor residential mobility. Having sec-
ondary housing outside London, for example, where air pollution
exposure is likely to be lower, may be more common among the
more affluent residents of the more polluted inner boroughs (City
of London, Westminster, and Kensington and Chelsea (Office for
National Statistics, 2012)) than in outer London boroughs. This
may have added to the exposure misclassification and masked
some positive associations in the high exposure group. It may also,
in part, help to explain the observed effect modification by depri-
vation, with lowest risks in lowest deprivation quintiles. We did not
know the spatial distribution of the excluded admission records
without valid geographical information, and thus cannot say how
many would have been in London (the study area) or whether their
spatial distribution was non-random. However, when we mapped
the hospital admissions they did not suggest missing data
corresponding to particular areas. Also, as the percentage was
rather small, we suspect this factor is unlikely to bias our results.
Finally, some significant associations may also have occurred due to
chance due to multiple testing of different outcomes and
exposures.

4.4. Conclusions

Overall, in this large and statistically powerful study within
London we found no convincing positive linear associations, which
is in line with much of the existing literature generally based on
smaller studies. The piecewise analyses revealed positive associa-
tions in the low and negative associations in the high exposure
categories potentially due to differential residual confounding, but
this finding needs to be replicated in other studies. There was ev-
idence of effect modification with area-level socioeconomic
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deprivation, with those living in areas of higher deprivation having
the greatest risk of hospital admission. Increased vulnerability of
the most deprived groups in urban centres, chronically exposed to
air pollution over the long-term, will have important implications
for public health.
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