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Abstract

Background

P. vivax is an important public health burden in Ethiopia, accounting for almost half of all

malaria cases. Owing to heterogeneous transmission across the country, a stronger evi-

dence base on local transmission dynamics is needed to optimise allocation of resources

and improve malaria interventions.

Methodology and Principal Findings

In a pilot evaluation of local level P. vivaxmolecular surveillance in southern Ethiopia, the

diversity and population structure of isolates collected between May and November 2013

were investigated. Blood samples were collected from microscopy positive P. vivax patients
recruited to clinical and cross-sectional surveys from four sites: Arbaminch, Halaba, Bada-

wacho and Hawassa. Parasite genotyping was undertaken at nine tandem repeat markers.

Eight loci were successfully genotyped in 197 samples (between 36 and 59 per site). Het-

erogeneity was observed in parasite diversity and structure amongst the sites. Badawacho

displayed evidence of unstable transmission, with clusters of identical clonal infections.

Linkage disequilibrium in Badawacho was higher (IAS = 0.32, P = 0.010) than in the other

populations (IAS range = 0.01–0.02) and declined markedly after adjusting for identical infec-

tions (IAS = 0.06, P = 0.010). Other than Badawacho (HE = 0.70), population diversity was

equivalently high across the sites (HE = 0.83). Polyclonal infections were more frequent in
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Hawassa (67%) than the other populations (range: 8–44%). Despite the variable diversity,

differentiation between the sites was low (FST range: 5 x 10−3–0.03).

Conclusions

Marked variation in parasite population structure likely reflects differing local transmission

dynamics. Parasite genotyping in these heterogeneous settings has potential to provide

important complementary information with which to optimise malaria control interventions.

Introduction
Once considered a relatively benign infection, Plasmodium vivax is now acknowledged to be an
important public health threat capable of causing severe and fatal disease [1–3]. Whilst the
greatest burden of infection is in South and Southeast Asia, the Horn of Africa harbours a con-
siderable proportion of the global reservoir of infections, and an estimated 10–20% of all P.
vivax cases [4]. The greatest number of clinical cases is reported from Ethiopia, where malaria
continues to be a major cause of morbidity and mortality, accounting for almost 15% of all out-
patient visits and 10% of hospital admissions [5]. The high proportion of P. vivax infections is
a likely reflection of the large number of Duffy positive individuals [6]. Chloroquine has been
the first-line treatment of uncomplicated P. vivax in Ethiopia for over five decades, however
drug resistant parasites are emerging, particularly in the south of the country [7–10]. Contain-
ment strategies of P. vivax are underway, however, relative to P. falciparum, P. vivax has proven
far harder to control [11, 12]: new approaches are needed to reduce the transmission of this
highly adaptive pathogen.

Wide variation in climate, ecology and human settlement patterns across Ethiopia have
resulted in extensive heterogeneity in malaria epidemiology. The greatest threat occurs in the
40 million people living between altitudes of 1,500 and 2,500 metres, where unstable transmis-
sion coupled with a receptive environment gives rise to sporadic malaria outbreaks [13, 14].
Current epidemiological surveillance strategies aim to identify populations at greatest risk to
prioritise malaria control activities. New molecular approaches are being increasingly used to
further characterise parasite populations, quantifying parasite diversity and population struc-
ture; these data can provide important insights relevant to the national malaria control pro-
gram [15–38]. A previous study examined the genetic diversity of P. vivax isolates collected
between 2006 and 2008 in Assendabo, Ethiopia, providing broad insights into the population
structure and diversity of African versus Asian isolates [20]. However, as the isolates were col-
lected from a single site, investigation of the local variation in parasite diversity and underlying
transmission dynamics was not possible.

In an evaluation of the scope of molecular surveillance of P. vivax transmission dynamics in
Ethiopia, genotyping methods were used to characterize the local genetic diversity and struc-
ture of isolates collected during the main transmission season in 2013 at four sites in neigh-
bouring zones in the South Nations Nationalities and Peoples’ Region (SNNPR).

Materials and Methods

Study Sites and Sample Collection
The study was conducted in four sites in the SNNPR; Arba Minch (town) and Zuria in Gamo
Gofa Zone (Arbaminch), Misrak Badawacho in Hadiya Zone (Badawacho), Halaba Special
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Woreda (Halaba) and Hawasa town in Sidama Zone (Hawassa) (Fig 1). Details on the local
population and malaria epidemiology in each of the districts are provided in the Supplemen-
tary Material (S1 Table). Patients were enrolled to the study during the peak malaria transmis-
sion season between May and November 2013. In Arbaminch, the majority of patients were
enrolled within the framework of a P. vivax chloroquine sensitivity survey conducted at Shele
Health Center. Additional patients were recruited by cross-sectional sampling from Arba-
minch Hospital. In Badawacho and Halaba, patients were recruited in the framework of a P.
vivax chloroquine survey conducted at Shone Health Center and Guba Health Center, respec-
tively. In Hawassa, all patients were recruited by cross-sectional sampling at Adare Hospital
and Millenium Health Center. Enrolment criteria were uncomplicated P. vivaxmono-infection
with microscopy-determined parasite density above 250 μl-1, an axillary temperature of
�37.5°C or history of fever within 48 hours of presentation, and residence in close proximity
to the health center (i.e. within 10 km radius). Patients were asked to donate a capillary (50–
150 μl) blood sample spotted onto filter paper (Whatman1 3MM filter paper, Cat
No.3030917) in addition to a blood sample for routine microscopic examination. Thick and
thin blood films were read by two to three independent laboratory technicians from the health
center. The number of asexual parasites was counted per 200 white blood cells (WBC) and
parasitaemia estimated assuming a WBC count of 8000 μl-1.

Molecular Processing
DNA extraction was undertaken using the QIAamp blood mini kit (Qiagen) according to the
manufacturer’s protocol for dried blood spots. Genotyping was undertaken at nine previously
described STR markers: Pv3.27,msp1F3,MS1,MS5,MS8,MS10,MS12,MS16 andMS20 [40,
41]. These markers are included in a consensus panel selected by partners within the Vivax
Working Group of the Asia Pacific Malaria Elimination Network [42]. The Pv3.27,MS16 and
msp1F3 loci were amplified using methods described elsewhere [15]. The protocol for the
remaining loci and the details of the primer sequences and chromosomal locations for each
marker have been provided previously [15, 20]. The labelled PCR products were sized by dena-
turing capillary electrophoresis on an ABI 3100 Genetic Analyzer with GeneScan LIZ-600
(Applied Biosystems) internal size standards. Genotype calling was undertaken using Gene-
Mapper Version 4.0. To reduce potential artefacts, an arbitrary fluorescent intensity threshold
of 500 rfu was applied for peak detection. All electropherogram traces were additionally
inspected manually. For each isolate, at each locus, the predominant allele and any additional
alleles with minimum 33% height of the predominant allele were scored [43].

Population Genetic Analysis
An infection was defined as polyclonal if more than one allele was observed at one or more loci.
The multiplicity of infection (MOI) for a given sample was defined as the maximum number of
alleles observed at any of the loci investigated. With the exception of measures of polyclonality
and MOI, only the predominant allele at each locus in each isolate was used for analysis [43].
The expected heterozygosity (HE) was measured as an index of population diversity using the
formulaHE = [n/ (n-1)] [1-Sp i

2], where n is the number of isolates analyzed and pi is the fre-
quency of the ith allele in the population. The pairwise FST metric was used to gauge the genetic
distance between populations. Calculations were undertaken using Arlequin software (version
3.5) [44]. Standardized measures (F’ST) were additionally calculated to adjust for high marker
diversity [45]. Population structure was further assessed using STRUCTURE software version
2.3.3 [46]. Twenty replicates, with 100,000 burn-in and 100,000 post burn-in iterations were run
for each of K (populations) from 1–10 using the model parameters of admixture with correlated
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allele frequencies. The most probable K was derived by applying the delta K method [47], and
bar plots were prepared with distruct software version 1.1 [48]. Multi-locus genotypes (MLGs)
were reconstructed from the predominant allele at each locus in isolates with no missing data.
Multi-locus linkage disequilibrium (LD) was measured by the standardised index of association
(IA

S) using the web-based LIAN 3.5 software [49]. The significance of the IA
S estimates was

assessed using 10,000 random permutations of the data. For each population, LD was assessed
in 1) all samples, 2) samples with a maximum of one multi-allelic locus, and 3) with repeated
MLGs represented once. The genetic relatedness between sample pairs was assessed by measur-
ing the proportion of alleles shared between MLG pairs (ps). Using (1-ps) as a measure of
genetic distance [50], an unrooted neighbour-joining tree [51] was generated with the ape pack-
age using R software [52]. The correlation between genetic and temporal distance was assessed
using Mantel’s r-test with 10,000 permutations using the ade4 package in R [53].

Fig 1. P. vivax prevalencemap for Ethiopia illustrating the location of the study sites. This map was
generated by the Malaria Atlas Project, University of Oxford. The colour scale reflects the model-based
geostatistical point estimates of the annual mean P. vivax parasite rate in the 1–99 year age range (PvPR)
within the stable spatial limits of P. vivax transmission in 2010 [39]. The approximate locations of the study
sites are indicated with numbered black dots: Shone Health Center, Badawacho (1), Guba Health Center,
Halaba (2), Adare Hospital, Hawassa (3), Millenium Health Center, Hawassa (4), Arbaminch Hospital,
Arbaminch (5), and Shele Health Center, Arbaminch (6). All MAP maps are available to users under the
CCAL 3.0. http://www.map.ox.ac.uk/about-map/open-access/.

doi:10.1371/journal.pone.0140780.g001
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Statistical Analysis
Statistical comparisons of patient gender and infection polyclonality between sites were under-
taken using Pearson’s Chi-square test. The significance of difference between sites with regard
to patient age, parasite density, MOI and expected heterozygosity were assessed using the
Mann-Whitney U test. Assessment of the correlation between MOI with patient age and para-
site density was undertaken using Spearman’s rank correlation coefficient. All tests were per-
formed using R software, with a significance threshold of 0.05.

Ethical Approval
Ethical approval for the study was granted by the respective Ethical Boards of the Addis Ababa
University College of Natural Sciences, Ethiopia (RERC/002/05/2013), the Armauer Hansen
Research Institute, Addis Ababa, Ethiopia (AHRI-ALERT P011/10), the National Research
Ethics Review Committee of Ethiopia (Ref.no. 3.10/580/06) and the Human Research Ethics
Committee of the Northern Territory Department of Health and Menzies School of Health
Research, Australia (HREC-13-1942). Written informed consent was obtained from all study
participants or a parent or guardian where participants were 18 years of age or younger.

Results

Patient Sampling
Between May and November 2013, a total of 353 participants with microscopy-positive P.
vivax infection were enrolled in cross-sectional and clinical surveys at multiple health centres
and hospitals across the four sites investigated (Table 1). In Arbaminch and Hawassa sites, par-
ticipants were recruited from two health care facilities in each district; isolates were pooled
according to district for analysis. Comparison between Arbaminch Hospital and Shele Health
Center did not reveal any significant differences in sample diversity (S2 Table). Owing to the
small number of samples from Adare Hospital that were included in the analysis (n = 5), com-
parisons with Millenium Hospital were not undertaken.

The median age of participants was lowest in Badawacho (5.8 years), followed by Halaba
(12 years), Arbaminch (13.5 years) and Hawassa (20 years); Table 1. With the exception of
Arbaminch versus Halaba (P = 0.887), all pairwise comparisons of age were significant
(P< 0.05). Within both the Arbaminch and Hawassa sites, participants were significantly
older at the Hospitals compared to the outpatient clinics (P = 3.3 x 10−4 and P = 0.003 respec-
tively; Table 1). Significant differences were also observed in peripheral parasitaemia, with the
lowest median density observed in Badawacho (1,172 ul-1), followed by Hawassa (2,300 ul-1),
Arbaminch (3,247 ul-1) and Halaba (7,698 ul-1); P< 0.05 in all pairwise comparisons. No sig-
nificant differences were observed in the proportion of male participants, which ranged from
55–66% across the sites.

Filter spot blood samples were available from 61.5% (217) of the 353 P. vivaxmicroscopy-
positive participants, on which parasite genotyping could be attempted. Owing to artefact
peaks that were difficult to distinguish from authentic allele peaks, the MS8 locus was excluded
from analysis. The remaining 8 loci performed well with 0 (0%) to 10 (5%) genotyping failures
across the 217 samples. All 8 markers exhibited moderate to high diversity in each of the four
sites (see Supplementary Material; S3 Table). Although MS16 has exhibited apparent excess
diversity in other sites [54], we did not observe evidence of excess diversity at this marker in
southern Ethiopia, where it fell fifth in order of highest to lowest diversity amongst the 8 loci
assessed (S3 Table). Indeed, whilst the diversity at MS16 was moderately high in our study sites
(HE = 0.85), a previous study in Assendabo, southern Ethiopia, observed markedly lower
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diversity (HE = 0.20) [20]. Another marker that we considered as a potential confounder of
population diversity and/or structure is the msp1f3 locus. The product of the msp1f3 locus is
expressed on the merozoite surface and patterns of diversity at this locus may therefore be
affected by balancing selection. However, a previous study conducted on P. vivax isolates from
Papua New Guinea and the Solomon Islands demonstrated that there was no evidence of bal-
ancing selection at the msp1f3 locus [24], We therefore retained MS16 and msp1f3 in our anal-
yses but conducted additional analyses on a reduced data set without these two markers in
consideration of the potential impacts of excess diversity and/or selective pressures.

A total of 197 isolates could be included in the population genetic analysis, comprising 181
(92%) isolates with complete genotype data across all 8 loci, 13 (7%) with successful calls at 7 of
these loci, 2 (1%) with successful calls at 6 loci, and a single sample with successful calls at 5/8
loci. Genotyping data for the individual isolates is presented in the Supplementary Material (S4
Table). Selection bias was assessed between all enrolled participants (n = 353) and participants
whose samples were included in the population genetic analysis (n = 197); no significant differ-
ences were observed in patient age, gender or peripheral parasitaemia at any of the districts (all
P> 0.05).

Infection Complexity and Population Diversity
A summary of polyclonality, MOI and population diversity is presented in Table 2. Moderate
variation was observed in the proportion of polyclonal infections, ranging from 8% in Badawa-
cho to 67% in Hawassa. In accordance with the polyclonality rates, the mean MOI was lowest
in Badawacho (1.09) and highest in Hawassa (1.80). With the exception of Badawacho versus

Table 1. Details of parasite sampling.

Site Health
Facility

Sampling
framework

Collection
period

No.
participants 1

Median age of
participants (IQR),

years

No. male
participants

Median
parasite

density (IQR),
ul-1

No. samples
analyzed 2

Arbaminch Arbaminch
Hospital

Cross-
sectional

Jun-Aug
2013

19 20 (14.5–22.5) 12 (63.2%) 3,213 (2,476–
3,420)

15

Shele Health
Center

Clinical survey May-Nov
2013

89 10 (4–18) 58 (65.2%) 3,520 (1,520–
7,200)

21

Both sites Cross-
sectional and

clinical

May-Nov
2013

108 13.5 (5–19.3) 70 (64.8%) 3,247 (1,660–
6,705)

36

Halaba Guba Health
Center

Clinical survey Jun-Nov
2013

52 12 (4.8–21.3) 30 (57.7%) 7,698 (2,774–
14,450)

47

Badawacho Shone Health
Center

Clinical survey May-Aug
2013

90 5.8 (4–8) 51 (56.7%) 1,172 (800–
3,342)

59

Hawassa Adare
Hospital

Cross-
sectional

Sep 2013 19 25 (21–30) 11 (57.9%) 1,890 (1,236–
2,679)

5

Millenium
Health Center

Cross-
sectional

Aug-Nov
2013

84 18 (11.8–24.3) 46 (54.8%) 2,312 (1,219–
4,544)

50

Both sites Cross-
sectional

Aug-Nov
2013

103 20 (13–26) 57 (55.3%) 2,300 (1,222–
3,780)

55

All sites All sites Cross-
sectional and

clinical

May-Nov
2013

353 13 (5–20) 207 (58.6%) 2,408 (1,200–
6.020)

197

1 Number of microscopy-determined P. vivax positive patients enrolled in the study.
2 Number of samples included in the final data set.

doi:10.1371/journal.pone.0140780.t001
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Halaba, all pairwise comparisons of the proportions of polyclonal infections and of the mean
MOI demonstrated significant differences (P< 0.05). MOI did no differ significantly with
either peripheral parasitemia (rho = 0.04, P = 0.558) or patient age (rho = 0.12, P = 0.100). In
contrast to the complexity of infection, other than Badawacho (HE = 0.70), P. vivax population
diversity was consistently high across the sites (allHE = 0.83). As detailed in the Supplementary
Material (S5 Table), exclusion of the MS16 and msp1f3 loci did not have any notable impact
on the polyclonality, MOI or population diversity in any of the study sites.

Relatedness
Neighbour-joining analysis of 181 isolates with no missing genotype data across the 8 loci
highlighted clusters of isolates with 4 or more identical or near-identical multi-locus genotypes
(MLGs) in Badawacho (Fig 2). The largest cluster (cluster 1) comprised 17 clonal infections
with identical MLGs. A second cluster comprised two separate groups of related isolates, one
with 4 identical MLGs (cluster 2a) and a second with 5 identical MLGs (cluster 2b). The iso-
lates from the other sites exhibited overall lower genetic relatedness, with no more than two
infections displaying identical MLGs.

All of the 17 isolates within cluster 1 were collected within two days of one another. A signif-
icant correlation was observed between the distance in sampling date and the proportion of
alleles shared between infections in Badawacho (Mantel r-test, r = 0.52, P = 1.0 x 10−5). The
correlations observed in the other sites were markedly lower, ranging from r = 0.017 in Arba-
minch to r = 0.070 in Hawassa. In these three sites, only the correlation in Hawassa reached sig-
nificance (P = 0.036).

Linkage Disequilibrium
LD levels varied markedly between the sites, ranging from IA

S = 0.006 in Hawassa to IA
S =

0.322 in Badawacho (P< 0.05 in all sites except Halaba) (Table 3). However comparable levels
of LD were observed in all sites when the sample set was either restricted to monoclonal infec-
tions or after accounting for isolates with identical MLGs. The only exception being in Badawa-
cho, where the LD level declined from IA

S = 0.322 to 0.058 after adjusting for the repeated
MLGs. Exclusion of the MS16 and msp1f3 loci did not have any notable impact on the patterns
of LD in the study sites as detailed in the Supplementary Material (S6 Table).

Population Structure and Differentiation
Population differentiation was low (FST < 0.2) amongst the study sites (FST range: 0.001–0.1)
(Table 4). The highest levels of genetic differentiation were observed in comparisons against
Badawacho (FST range: 0.065–0.1). After adjusting for the high diversity of the markers using
the standardised fixation index (F’ST), differentiation remained low amongst the study sites
except in comparisons against Badawacho, where the F’ST ranged from 0.267 to 0.410

Table 2. Complexity of infection and population diversity.

Site % polyclonal infections (no. polyclonal/ total no.) Mean MOI, median (range) Mean HE ± SE (range) No. of unique MLGs

Arbaminch 44% (16/36) 1.53, 1 (1–4) 0.83 ± 0.01 (0.69–0.94) 35

Halaba 21% (10/47) 1.21, 1 (1–2) 0.83 ± 0.01 (0.75–0.92) 43

Badawacho 8% (5/59) 1.09, 1 (1–2) 0.70 ± 0.01 (0.60–0.79) 25

Hawassa 67% (37/55) 1.80, 2 (1–3) 0.83 ± 0.01 (0.67–0.90) 45

All sites 35% (68/197) 1.40, 1 (1–4) 0.82 ± 0.01 (0.69–0.90) 148

doi:10.1371/journal.pone.0140780.t002
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Fig 2. Unrooted neighbour-joining tree illustrating the genetic relatedness between the P. vivax isolates.

doi:10.1371/journal.pone.0140780.g002

Table 3. Linkage disequilibrium.

Site All infections 1 Low complexity 2 Unique MLGs 3

N IAS N IAS N IAS

Arbaminch 35 0.020* 25 (71%) 0.026* 35 (100%) 0.020*

Halaba 44 0.009 NS 38 (86%) 0.003 NS 43 (98%) 0.006 NS

Badawacho 56 0.322* 53 (95%) 0.331* 25 (45%) 0.058*

Hawassa 46 0.006* 31 (67%) 0.015 NS 45 (98%) 4.0 x 10−4 NS

All sites 181 0.051* 147 (81%) 0.074* 148 (82%) 7.0 x 10−4 NS

1Only samples with no missing data at all 8 loci are included in the analyses.
2 Restricted multi-locus haplotypes from samples with no more than one multi-allelic locus.
3 Unique set of multi-locus genotypes.
NS Not significant (P > 0.05).

* P < 0.05.

doi:10.1371/journal.pone.0140780.t003
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(Table 4). Furthermore, there was no marked difference in either the FST or F’ST results between
the full (8 marker) data set and the reduced data with exclusion of MS16 and msp1f3 (Supple-
mentary Material; S7 Table).

Analysis using STRUCTURE software revealed evidence of sub-structure in the P. vivax
population, largely driven by the clusters of identical isolates in Badawacho. The delta K
method identified the most likely number of populations within the dataset as two (i.e. K = 2)
(S1 Fig). At K = 2, the isolates were largely divided by the clusters of identical isolates (K2) and
all remaining isolates (K1) (Fig 3). At K = 3, the largest cluster of identical isolates was clearly
resolved (K3) and at K = 4, a second cluster of identical isolates was resolved (K4). At higher
estimates of K, no substantial changes were observed in the population structure.

Discussion
In the first survey of local trends in the genetic make-up of P. vivax in southern Ethiopia, sig-
nificant variation was observed in population genetic parameters reflecting underlying differ-
ences in transmission between neighbouring populations. The insights derived from the
genetic dynamics of the parasite population complement the traditional epidemiological sur-
veillance approaches, and highlight a potential role for molecular surveillance in guiding evi-
dence-based transmission intervention strategies.

One of the major differences observed amongst the districts was in the complexity of P.
vivax infection. The proportions of polyclonal infections observed across the sites ranged from
levels comparable to low endemic settings in Central China, Malaysia and pre-elimination
regions of the Solomon Islands [15, 19, 25] (8% polyclonal infections in Badawacho), to higher
transmission settings in Papua New Guinea and southeast Asia [20, 24, 28, 55] (67% polyclonal
infections in Hawassa). In a previous study conducted at multiple sites in Indonesia, we
observed a positive correlation between the rate of polyclonal infections and annual parasite
incidence (API) indicating that polyclonality might provide a complementary gauge of local
transmission intensity [55]. However, we did not observe the same trend in this study. The
highest level of polyclonality (67%) was observed in Hawassa, which is home to one of the larg-
est towns in the SNNPR: indeed Hawassa represented the most urban setting of the four sites
investigated, exhibiting the second lowest P. vivax API (35 cases per 1,000 persons). It is possi-
ble that the high rates of polyclonal infection despite the low incidence in Hawassa might
reflect the acquisition of malaria from satellite towns with higher P. vivax incidence on the out-
skirts of the main urban center. This pattern of malaria acquisition has previously been
described in a study in Senegal, where individuals presented at health centers in Dakar having
acquired ‘weekend malaria’ from small satellite towns surrounding the city [56]. Indeed, this
trend might also explain the relatively older age of the patients from Hawassa (median 20
years) relative to the other sites (median age range from 6 to 14 years). With ever-increasing
urbanization in malaria-endemic regions across the globe, further investigations will be needed

Table 4. Pair-wise differentiation between sites.

Site Arbaminch Halaba Badawacho Hawassa

Arbaminch - 0.005 0.410 0.031

Halaba 0.001 (P = 0.396) - 0.267 0.031

Badawacho 0.100 (P <1 x10-5) 0.065 (P <1 x10-5) - 0.327

Hawassa 0.006 (P = 0.117) 0.005 (P = 0.108) 0.079 (P <1 x10-5) -

FST (P-value) in lower left triangle. F’ST in upper right triangle.

doi:10.1371/journal.pone.0140780.t004
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to better understand the epidemiology of P. vivax in these settings. At the other end of the spec-
trum, the lowest rate of polyclonal infections was observed in Badawacho (8%), which repre-
sents a moderately rural setting and which exhibited the second highest P. vivax API amongst
the study sites (41 cases per 1,000 persons). The low rate of polyclonal infections at this site
likely reflected the unstable transmission dynamics described below. In addition to transmis-
sion patterns, patient and/or parasitological features might also influence estimates of infection
complexity: however, we did not find any evidence of correlation between the proportion of
polyclonal infections with patient age or parasite density within any of our study sites. Further
investigations of the relationship between infection complexity and patient and parasitological
details such as age, ethnicity and parasite density will require larger sample sizes in a broader
range of endemic settings.

Another notable population genetic feature was the observation of large, distinct clusters of
isolates with identical or near-identical multi-locus genotypes (MLGs) in Badawacho. The clonal
nature of the clustered isolates, marked decline in population-level LD after accounting for
repeated MLGs, and temporal clustering of identical strains, were all indicative of unstable trans-
mission dynamics. Reaching a maximum elevation of 1,985 meters above sea level, the climate in
Badawacho is especially amenable to unstable malaria transmission. Indeed, malaria had previ-
ously been eliminated from Badawacho in the 1960s but resurged several decades later, after the

Fig 3. Population structure. Bar plots illustrating the population structure at K = 2, K = 3, K = 4 and K = 5.
Each vertical bar represents an individual sample and each colour represents one of the K clusters (sub-
populations) defined by STRUCTURE. For each sample, the predicted ancestry to each of the K sub-
populations is represented by the colour-coded bars. K1 = dark green, K2 = light green, K3 = red,
K4 = orange, and K5 = white.

doi:10.1371/journal.pone.0140780.g003
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change of government in 1991 when populations who had been resettled in the malaria-endemic
Gambella and Metekel zones returned to Badawacho [57]. After the re-introduction of malaria
into the district, a number of epidemic outbreaks were observed [57], likely affecting the non-
immune host population who had resided in Badawacho throughout the resettlement events.

It remains unclear what specific mechanism(s) enabled the Badawacho isolates observed in
the current study to expand rapidly, particularly in the case of cluster 1, which comprised 17
strains with identical MLGs. Inspection of the clinical records including the location of
patients’ homes did not reveal any evidence that the patients within any of the clusters were rel-
atives or resided in the same households. The standing genetic diversity in Badawacho and the
neighbouring districts was very high (mean HE range from 0.7–0.8), hence the region could be
harbouring multiple existing strains with enhanced transmission potential or drug resistance
variants capable of rapid expansion under the right environmental /selective conditions. The
patients from Badawacho were recruited from a clinical trial to determine the clinical efficacy
of chloroquine against P. vivax (manuscript under review). However, 88.2% (15/17) of the
infections in cluster 1 and 90% (9/10) of the infections in cluster 2 (a plus b) were cleared by
day 28. Hence, the available evidence suggests that chloroquine resistance alone was not
responsible for the successful expansion of the strains in clusters 1 and 2.

In Ethiopia, the health facilities are responsible for the surveillance of malaria outbreaks by
means of monitoring clinical cases in healthcare facilities. However, in some regions, as many
as 80% of patients with fever do not attend a health facility, and hence malaria outbreaks are
often detected late after a high mortality and socio-economic burden has already been inflicted
[13, 58]. Parasite genotyping may offer a complementary tool to existing malaria surveillance
tools by detecting rapidly emerging strains associated that occur in the evolution of an epi-
demic, allowing local malaria control programs to implement appropriate interventions before
the problem escalates. Prospective evaluation of the standard temporal dynamics in the local
parasite genetic architecture will help to refine molecular surveillance to identify unusual and
high-risk changes in the parasite population.

With the exception of Badawacho, the genetic differentiation between the study sites was
generally low even after adjusting for the extensive marker diversity (F’ST range: 0.005–0031).
The higher differentiation observed in pairwise comparisons against Badawacho (F’ST range:
0.267–0.410) was likely inflated by the sampling of multiple repeated MLGs in the ‘outbreak’
clusters. The low differentiation suggests that parasites are readily spreading from one district
to another. Such dynamics have important implications for the risks of drug resistance spread,
and warranting diligent surveillance of local treatment efficacy.

As demonstrated in other endemic locations [18–22, 24, 25, 33, 37, 38, 40], P. vivax popula-
tion diversity was high in all the sites in the current analysis (HE = 0.70–0.83), with no apparent
correlation with transmission intensity. The factor(s) responsible for this diversity remain
unclear, but may include high recombination rates supported by the contribution of relapsing
infections to the overall complexity of infection, and high rates of parasite gene flow within and
across sites [28, 55]. The high levels of parasite diversity facilitates the parasite adaptation in
response to drug pressure and changes in environmental conditions. The extensive population
diversity ensures that individual P. vivax strains can be uniquely bar-coded or finger-printed
with a small and cost-effective subset of markers [59], providing a viable means for high-
throughput molecular surveillance to inform local transmission dynamics.
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