Cooke, Mary; Van-Tam, Jonathan; (2005) Modelling study suggests pandemic influenza could be controlled at source. Euro surveillance, 10 (8). E050811.4-. ISSN 1025-496X DOI: https://doi.org/10.2807/esw.10.32.02773-en

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/2320/

DOI: https://doi.org/10.2807/esw.10.32.02773-en

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshmt.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Modelling study suggests pandemic influenza could be controlled at source

Mary Cooke (mary.cooke@hpa.org.uk) and Jonathan Van-Tam, Respiratory department, Health Protection Agency Centre for Infections, London, United Kingdom

The highly pathogenic avian influenza A (H5N1) virus which is causing influenza outbreaks in South East Asia represents the most plausible candidate for a pandemic human influenza strain since the last influenza pandemic in 1968 [1]. Initial reports of outbreaks in poultry in the region were received in 2003. These were soon followed by sporadic reports of human infection. As yet there have been no confirmed reports of sustained human to human transmission that would signal evolution towards a pandemic.

A keynote paper from a group modelling the course of an influenza pandemic and the impact of control measures has recently been published. The study predicts that, given enough antiviral medication, local cooperation, operational efficiency in implementing measures and a rapid response, a pandemic could be controlled at a potential source in rural South East Asia.
In the study, it was assumed that an infected individual would spread the virus to 1.8 other people \((R_0 = 1.8)\) [2]. The impact of a combination of geographically targeted treatment and prophylaxis was modelled (it was assumed that 90% of cases are detected and treated and 90% of persons within a 5 km radius of the pandemic source are prophylaxed). This would require 2-3 million courses of antiviral drugs, as well as social-distancing (such as closing schools and workplaces) and quarantine measures.

The World Health Organization (WHO) currently has a stockpile of approximately 120 000 antiviral treatment courses resulting from a charitable donation. This study suggests that a significantly larger stockpile is likely to be needed along with considerable liaison and planning between the WHO and the national and local governments likely to be affected.

References:
