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Abstract

Heterogeneous malaria exposure may result in distinct clusters of higher malaria
burden, or hotspots, across space and time. Targeting control programs to these
areas may be highly efficient, however, operationally attractive approaches for
identifying hotspots are needed for any such program to be sustained by local
malaria control programs. The principal aim of this project was to investigate the
ability of convenient sampling to identify hotspots of malaria transmission in a low
endemic transmission setting in the western Kenyan highlands: 1) The boundaries
of hotspots, and associated uncertainties, was determined using a large community
survey; 2) The value of convenience sampling to estimate transmission in the
community was assessed using cross-sectional surveys of 4964 children in 46
government primary schools and 3042 individuals in five rural-health facilities; 3)
The value of compound-level screening of sentinel age groups that are likely to
have patent level infections was determined and; 4) The potential use for
convenience sampling in hotspot targeted approaches was assessed using spatial
information on residences collected during the school and health-facility surveys.
The community-based approach was able to detect 77% of the parasite infections
in selected hotspots of malaria exposure using field-based tools in sentinel age
groups. Both convenience-sampling approaches tested produced similar estimates
of malaria transmission to the community when restricted to those residing in the
same catchment areas and those testing positive for malaria were more likely to
reside in a hotspot. The findings suggest that operationally attractive approaches
provide reliable information on malaria transmission and may play an important
role in targeted malaria control strategies. Future research on ascertaining what
coverage of the hotspot is needed to see sustainable reductions in transmission

would provide a threshold with which to gauge the utility of this strategy.
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Chapter 1: Introduction

Malaria is a complex infection. Control and elimination campaigns should be
developed based on an understanding of the parasite biology, epidemiology, and
transmission dynamics. This chapter provides background to the research
presented in subsequent chapters and puts the work in context of the existing
literature. Section 1.1 provides an overview of malaria epidemiology and discusses
some of the immunological factors that are likely determinants of the observed
population level patterns of parasite carriage and morbidity. Next, in section 1.2
and 1.3, heterogeneity in malaria transmission is explored including how to
measure it both in terms of spatial statistical methods and the different malaria
metrics available. Finally, the need for operational approaches to malaria control

and elimination is discussed in section 1.4.

1.1 Burden of malaria and malaria epidemiology in transition

Since the etiology of malaria was first discovered at the end of the 19t century,
significant progress has been made in understanding the basic biology of
transmission, in reducing the clinical burden, and in controlling and eliminating
infections. (1-4) However, despite the considerable progress made, there is still
much about malaria biology and transmission dynamics that is not fully
understood and malaria is still a significant public health burden. (5) Globally, it
has been estimated between 198-451 million new cases and 584,000-1.2 million
malaria deaths occur each year, a 47% global reduction since 2000. (5-8) Of the six
species of human malaria, Plasmodium falciparum is responsible for the vast
majority of all malaria deaths. There are an estimated 2.57 billion people at risk of
P. falciparum malaria worldwide however; the burden of P. falciparum is
disproportionately distributed with the majority of people at risk in Africa, where

transmission of this species is the most intense. (9, 10)

Malaria is a vector-borne infection that has a complex lifecycle with distinct phases
of the Plasmodium parasite in the human host and vector, the female Anopheles

mosquito (figure 1-1). Although there are developmental processes unique to each
Plasmodium species, such as the dormancy phase of P. vivax and the two species of

P. ovale called hypnozoites, the underlying transmission cycle is similar. (3) Briefly,
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parasites, in the form of sporozoites are injected into the human hosts through the
bite of an infectious female Anopheles mosquito. The sporozoites quickly progress
to the liver where they mature and are eventually released into the blood stream.
Once in the blood, merozoites undergo a cycle of infecting red blood cells,
multiplication, bursting out, and re-invading uninfected red blood cells; this cycle
of invasion and rupturing of red blood cells is responsible for the clinical
symptoms associated with malaria. (4, 11, 12) During the blood stage infection,
some of the parasites differentiate into gametocytes, the stage that is infectious to
mosquitoes. If a female Anopheles mosquito ingests gametocytes while taking a
blood meal, the parasite will undergo a maturation cycle in the vector, known as
the extrinsic incubation period. Once the sporozoites reach the salivary glands, the
mosquito becomes infectious and is capable of transmitting sporozoites through
their next human blood meal thereby maintaining the transmission cycle. (3) The
focus of this research is P. falciparum, and therefore all subsequent discussion and

mention of malaria is in reference to this species.

Cycle in Mosquito Cycle in Human
) E Hepatic cell
Sporozoites _— _Hypnozoite
(to salivary gland) K TS .-lt &I (hepatic dormancy)
7 e %
Bursting cyst __ i ";.-_.
0 \ p _ Mature liver
Oocyst _ \ ; schizont
q ‘/ Merozoites —=v
\
Mosquito \ 2 /Ery(hm()'t«'
midgut &) L Qokinete P C« *~(’ Tropnozoite
Zygote — {: R !
Ruptured \ o
A
Macrogamete - 9,\ erythrocyte.— .# 3 G\\Erythm()nr
Q L // schizont
Microgamet “/ ~ (( L‘ L*\ Erythrocyte
vl ‘ >
Game !r)(yl('

Figure 1-1: Schematic of the malaria life cycle depicting both the human and
mosquito stages including the hypnozoite phase unique to Plasmodium
vivax and the P. ovales. Image Credit: "Life cycle of the malaria parasite”
from Epidemiology of Infectious Diseases. Available at:
http://ocw.jhsph.edu. Copyright © Johns Hopkins Bloomberg School of
Public Health.

16



1.1.1 Malaria Epidemiology - Transmission patterns

Classification of malaria risk has evolved over time to reflect the use of new

diagnostic tools or improved understanding of transmission dynamics. (13)

Commonly used malaria endemicity classifications include areas with <5% P.

falciparum parasite rate (PfPR) as having low or unstable malaria transmission,

areas with >40% PfPR as having high transmission and those in between being

moderate. (14) These guidelines are useful for developing country-level

recommendations for malaria control strategies (figure 1-2), however the broad

classifications and the reliance on aggregated data may mask variability of local

level transmission intensity. (9, 13, 15)

Endemicity Phase

Metric

Pfs

Action stage

Activity/
intervention

PfPR
PAPI

Attack > Sustain > Transition > Consolidate > Maintain
Risk of epidemics
Intense stable endemic Moderate stable endemic Unstable endemic Non-endemic Free
"hyper-holoendemic” "hypo-mesoendemic” (from high to low receptivity)  (moving to zero receptivity)
: Anophelism wathout malaria h

PfPR=40% P{PR=5 1-39.99% P{PR=5% PfAPI<0-01% PfAPI=0%

PfAPI=0.01-0-1%
RM PfR 225 RM PfR =1.2-2-49 RMPfR =1-119 RM PfR =0-1 RM PfR =0
Smith PR 210 Smith PfR =1-4-9-99 Smith PfR =1-1:39 Smith PfR,=0-1 Smith PfR,=0
Starts when PfPR240%. Starts when PfPR=40%. Starts when PfPR=5% Starts when PfAPI<0-01%. Starts when PfAPI=0%
Commence aggressive, Sustain aggressive, Commence spedific and Sustain specificand targeted  Malaria free when three
combined, and combined, and targeted interventions interventions guided by consecutive years of
extensive interventions extensive interventions quided by efficient active  efficient active and passive autocthonows transmission

and passive case detection  case detection through reported. Maintain vigilance

through surveillance
Initiate foci control

surveillance. Eliminate foci

Total coverage RxACT,
ITN, IRS, IPT, etc

Total coverage RxACT,
ITN, IRS, IPT, etc

Targeted RxACT, ITN,
and foci control

Targeted ReACT
and foci elimination

Responsive RxACT
and foci elimination

Figure 1-2: Classification of malaria endemicity and recommended phases

and action for control and elimination. IRS=indoor residual spraying;

IPT=intermittent preventive therapy; ITN=insecticide-treated net; PfAPI=P.

falciparum annual parasite incidence; PfPR=P. falciparum parasite rate;

RxACT=radical treatment with artemisinin-combination therapy. Image

Credit: Hay et al., 2008 (13)
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Transmission patterns exhibit high levels of variability and are driven by many
factors that affect mosquito-human-parasite contact. (12) At the macro level,
malaria transmission is largely driven by ecological conditions that are conducive
to mosquito and parasite development. (2) The availability of standing water is
essential for mosquitoes to breed and propagate. (2, 16) Therefore, malaria
transmission tends to be seasonal with the highest prevalence occurring after the
peak of the rainy season. (17) Historically, malaria, especially P. vivax was very
widespread and covered the majority of the world whereas P. falciparum was
largely confined to areas with higher temperatures. (15, 18, 19) The current range
of malaria transmission is largely confined to areas with tropical climates. (20, 21,
22) Tropical temperatures are especially conducive for malaria transmission as the
development of the parasite in the mosquito midgut is highly sensitive to ambient
temperature; parasites mature more slowly in temperatures that are too cold or
too hot as well as incurring a fitness cost for mosquito survival. (23, 24) Inversely,
in warmer climates, while temperature is within the optimal range, parasite

development is much faster and thereby facilitating transmission. (16)

Next, the ecological niches preferred by each of the 60 species of Anopheles
identified as being competent for malaria parasite development largely determine
the vector composition and the malaria risk profile in an area. (25-27) Each
species has a different vectorial capacity, meaning that some are more efficient
vectors than others. (28) Each species also exhibits differences in behavior, such as
choice of blood meal and whether it feeds indoors or outdoors. (16) The
susceptibility of each species to malaria control interventions will also influence
the observed transmission patterns. For example, in areas with high ITN use,
transmission may be (partly) driven by the vector species that preferentially feed

outdoors or are resistant to the insecticide used. (29-31)

There are also several factors that facilitate transmission at the local level,
including microclimates and human host, which have been identified as being
associated with either increased risk or protection for malaria. (16, 32, 33) Risk
factors associated with malaria are complex and will vary based on the

microepidemiological characteristics of each region (12, 16) therefore; only the
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predominant ones are highlighted here. Firstly, proximity to vector breeding sites
such as swamps, irrigation, or floodplains has been found to increase risk of
malaria and is likely associated with the mosquito flight range and preference in
selecting blood meals. (17, 34) For example, a study in Uganda identified a dose-
response relationship between risk of malaria and distance to swamp with those
residing closest to the standing water having almost four times the risk of malaria
compared to those living the furthest away. (28) House construction materials are
also an important determinant of malaria risk. For example, houses with thatch
roofs tend to provide easy entry increasing the risk of exposure as well as could
protect mosquitoes from predators while resting to digest their blood meal. (35,
36) Similarly, houses with open eaves, a space between the roof and walls, have
been associated with increased risk as they provide easy entry and exit points for
mosquitoes. (16, 33, 35) Finally, household wealth has also been consistently
associated with malaria where those in the poorest households have an estimated
twice the odds of infection than the wealthiest groups. (33) The reason for the
protective association of wealth on malaria burden is likely multifactorial.
Wealthier households have more disposal income to spend on protective
measures, prompt treatment, or improved house construction inhibiting mosquito
entry. Furthermore, wealthier households also tend to have higher levels of
education, which may contribute to a more informed and timely decision-making

on malaria prevention and case-management. (37)

Several behavioral and innate factors have also been associated with risk of
malaria. Studies have found that those who report sleeping under a bednet have a
reduced odds of infection compared to those not sleeping under nets. (38) Those
engaging in certain occupational endeavors such as gold mining or forestry, for
example, or travel to malaria endemic areas have also been found to be at
increased risk for malaria. (39-41) In addition, innate factors also mediate risk of
infection. For example, evidence suggests that mosquitoes may be more attracted
to malaria-infected individuals harboring gametocytes. (42, 43) Also, the chemical
composition of individual odors has been found to repel or attract mosquitoes with
the African Anopheles mosquitoes being particularly attracted to certain foot odors.

(44, 45) Finally, genetic traits such as alpha thalassemia, sickle cell anaemia, and
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glucose 6 phosphate dehydrogenase (G6PD) deficiency have also been found to be
associated with malaria risk. (46) For example, a study in Uganda found that
children with the sickle cell trait had a 32% reduced risk for malaria compared to
those without a haemoglobinopathy, adjusting for ITN use. (28) Similarly, it has
also been found that certain ethnic groups, such as the indigenous Fulani
population, and their ability to mount a strong and efficient immune response

reduces their susceptibility to malaria. (47)

1.1.2 Malaria Epidemiology - Impact of Antimalarial Immunity

Immunity to malaria is complex and not yet fully characterized and plays an
important role in the observed patterns of disease. (4) Development of
antimalarial immunity is associated with exposure to the malaria parasite and age.
There are two phases of the immune response, after protection acquired from
maternal antibodies wanes, which are important for malaria epidemiology. The
first phase is anti-disease immunity, which provides protection against the severe
forms of malaria pathology. In areas of intense transmission, anti-disease
immunity typically occurs within the first five years of life (48-50) and is acquired
with repeated exposure. (1, 51) For example, a study in Uganda found that those
exposed to a larger variety of parasite clones, a proxy for transmission intensity,
acquired a higher level of protection against symptomatic malaria. (52) The rate of
development of anti-disease immunity influences the age distribution of
symptomatic cases in a community. The development of anti-disease immunity
also means that a large proportion of individuals, including young children, are
asymptomatically infected and therefore not likely to present for treatment and be
recorded by health facility based surveillance programs. (53) In fact, it has been
found that in many settings, including those with low levels of transmission more

than 75% of infections are carried in the absence of concurrent symptoms. (54)

As an individual develops protection from the severe forms of malaria, the immune
system is also developing a response that is able to regulate parasite densities. (4)
The comparably slowly forming anti-parasite immunity is more persistent, once
acquired, with an estimated half-life four times greater than that of anti-disease

immunity. However, in most infected individuals, even those with high antibody

20



levels, parasite densities tend to fluctuate with microscopically detectable malaria
likely to be present at some points during each infection. (52, 55, 56) Parasite
densities are important for malaria epidemiology in two ways. The first is that high
parasite densities are a component cause of severe forms of malaria (57) reducing
the likelihood that older individuals will present with symptomatic malaria.
Second, as discussed below in section 1.3, the sensitivity of commonly used
diagnostic tools in malaria endemic settings is limited when parasite densities are
low meaning that a significant proportion of infections go undetected unless more
sensitive detection tools are used. (58, 59). Furthermore, these difficult to detect
reservoirs of parasite populations produce gametocytes and therefore plausibly

contribute to maintaining malaria transmission. (53, 58, 60, 61)

1.1.3 Strategies for malaria control - reducing disease burden

Malaria control strategies have largely focused on vector control and prompt and
effective treatment of symptomatic cases. Indoor residual spraying (IRS) involves
spraying the interior surfaces of all structures using compounds with long-lasting
insecticidal properties such as organophosphates (ie.
dichlorodiphenyltrichloroethane (DDT)) or pyrethroids (ie. deltamethrin). IRS acts
by both repelling mosquitoes away from the sleeping spaces and therefore
reducing exposure and by killing mosquitoes that rest and digest their blood meal
on sprayed surfaces reducing the potential for onward transmission. (62) The
large-scale use of DDT was the primary intervention used in the 1950s and has
been cited as enabling elimination in several countries. (2, 15) However, in areas of
high endemicity and efficient vectors, the use of IRS is not likely to contribute
significantly to transmission reduction. (63) More recently, studies have shown
that the use of IRS is associated with a protective efficacy of between 33-92%,
although it appears to be most effective in areas with high coverage levels and

when the primary vectors are endophilic and endophagic. (64)

Insecticide treated bednets (ITNs) are increasingly been relied on as the primary
tool for malaria control and studies suggest that they can provide better protection
than IRS. (64, 65) ITNs are hung over sleeping spaces and provide those under the

net a physical as well as chemical barrier from exposure to the mosquito. ITNs,
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provide protection from malaria in a similar way to IRS with the main difference
being that the ITN, if in good condition and hung properly, provides a physical
barrier between the mosquito and its’ potential blood meal. This barrier acts to
reduce exposure to potentially infectious mosquitoes while simultaneously
blocking the mosquito from ingesting gametocytes and becoming infectious. (3)
Although they have been found to be effective at reducing malaria burden in
individuals, ITNs work best when high community coverage is achieved. (66)
However, in practice, ITN distribution has not been uniform and the use of
bednets, particularly in adolescents and young adults, is poor. (67, 68) However,
even with high coverage, the protective efficacy is not ubiquitous. For example, in a
high transmission setting that had good public health capacity in conjunction with
high ITN use, the burden of malaria, according to slide positivity rate, only
decreased from 80.5% to 36.3% over 15 years. (69) The persistent transmission in
areas with high ITN use may be due to residual transmission due to outdoor biting
mosquitoes or due to people not being under the net at the time when mosquitoes
are active. (29, 63) The combined effects of IRS and ITN have also been shown to
have a significantly greater impact compared to a single intervention. However, the
consistency across a range of transmission intensities and the utility of IRS in areas
with universal ITN coverage still needs to be shown. (68, 70) Additional mosquito
control measures available include larviciding, or larval source management: due
to the difficulty in achieving high coverage of all potential breeding sites, the use of

these methods is limited. (71, 72)

In addition to vector control, a strong public health system is an essential
component of any malaria control strategy. Ensuring prompt and effective
treatment with antimalarial drugs is important for reducing the risk of adverse
outcomes and has also been associated with decreases in malaria burden and
maintaining low levels of transmission despite reintroduction of parasites. (73, 74)
While the recommended first line antimalarial drugs were inexpensive and
effective, the policy of presumptive treatment for malaria in children and adults
when no diagnostic tool was available was maintained. Resistance to the first line
antimalarials became widespread prompting a switch to artemisinin and

artemisnin based combination therapies (ACT). (75, 76) The use of ACTs and the
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increasing availability in RDTs to provide point of care confirmatory testing lead to
a change to a test and treat policy, whereby ACTs would be restricted to those with

confirmed malaria. (5)

1.1.4 Strategies for Malaria Elimination - Targeting Transmission

Since it became apparent that the malaria burden was declining in some countries
and in others, it was not as high as previously estimated, there has been a renewed
focus on malaria elimination. (77) The substantial efforts to improve access and
coverage to basic malaria control interventions such as ITNs and IRS has likely
contributed to the estimated 30% decline in malaria burden observed between
2004 and 2010 but reductions have not been uniformly distributed. (7, 78-80) Of
the countries with endemic malaria one third have reduced transmission
substantially and are pursuing an elimination strategy. (30, 81) Factors leading to
successful elimination of malaria are complex, not fully understood, and vary per
setting. (82) There are also some systemic factors that are difficult to measure that
likely have an impact on malaria burden, for example, the increased rate of
urbanization and improved socio-economic status in many malaria endemic areas
has been associated with a reduction in malaria risk. (33, 83) To achieve and
maintain elimination, the infectious lifecycle stages within both the mosquito

vector and human are increasingly becoming the focus of interventions. (73, 84)

As discussed, there are several factors that contribute to the capacity of a mosquito
to transmit malaria and provide targets for blocking transmission. (2) In addition
to the conventional mosquito control tools identified in section 1.1.3 there are also
some new approaches being developed. Studies have shown that, during a blood-
meal, mosquitoes can absorb drugs administered to people that can have an
impact on transmission potential. (85) The use of ivermectin has been found to
shorten the mosquito lifespan as well as delay the development of the parasite in
the mosquito reducing the probability of onward transmission. (86) For example, a
study in Burkina Faso found that ivermectin was associated with a 4- to 7- fold
increase in mosquito mortality and up to a 35% reduction in malaria transmission
from malaria-infected individuals. (85) In addition to the use of synthetic drugs to

impact transmission capacity in the mosquito, there is also evidence of
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transmission blocking immunity that develops in infected humans and is related to
gametocyte exposure. This anti-gametocyte immunity transferred during a blood-
meal may act by impeding the development of parasites within the mosquitos
rendering them less infectious, although the overall impact this has on
transmission is not yet known. (87) Transmission blocking vaccines that block
parasite development in the mosquito are a novel tool being developed to
contribute to reducing and eliminating malaria transmission, however potential

candidates are still being evaluated. (88)

Understanding human infectiousness could also provide insight for reducing
malaria transmission. The likelihood of transmission from human to mosquito has
been associated with gametocyte density. Studies have found that the number of
mosquitoes and the burden of infection within mosquitoes increase as parasite
densities in the human host increases. (9, 61, 89) Also, research has shown that
gametocyte densities are highest during the transmission season, (90) and that
carriage is greatest in younger children with some studies reporting that 90% of
children were gametocyte carriers at the end of the transmission season. (60)
Antimalarial drug choice also impacts transmission potential: Fast clearance of
asexual parasites inhibits the production of new gametocytes; drugs that clear
immature and mature gametocytes reduce the duration and potential for
infectiousness; and the prophylactic potential of the drug which is associated with
the drugs’ half-life (range ~ 3.2 to ~23-28 days) delays reinfection. (91) For
example, studies have found that gametocytes can persist for more than one month
after clearance of asexual parasiteamia but this can be shortened if treating with a
drug with gametocytocidal properties such as artemisinin or primaquine. (92)
Also, even with incomplete parasite clearance, the lower density of circulating
gametocytes due to treatment can also render an individual less infectious to
mosquitoes (93) and simulations suggest that this can contribute to reductions in

malaria transmission, particularly in low endemic settings. (91, 94)

1.1.5 Malaria Elimination - Changing Epidemiology
The reductions in malaria burden achieved in African countries have not been

uniformly distributed with the largest reductions occurring in areas where malaria
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transmission was initially low to moderate with the bulk of the malaria burden
now concentrated in only 10 countries. (21, 80) However, the decline in malaria
transmission over the past decade has resulted in a shift in epidemiological

patterns of malaria burden observed.

A recent review by Cotter et al. (95) has provided a comprehensive assessment of
the changes in malaria risk factors in areas where malaria transmission intensity
has declined. Briefly, more cases of symptomatic malaria are found in the adult and
male populations partly as a result of decreased immunity but also due to
occupational and behavioral factors such as travel to endemic areas, which
increase risk of exposure. (39, 96) Malaria transmission is also likely to persist in
hard-to-reach populations whom typically have less access to malaria control
programs through choosing not to participate or because they reside in difficult to
access localities. (97) Lastly, as transmission declines, imported malaria and
human movement may provide a significant source of parasites that could sustain
transmission in the absence of strong public health systems (see appendix 1.2).
(98) It is likely that the malaria burden in these populations is not new, however
the lingering parasite carriers become more apparent due to the reductions

observed in the rest of the populations.

A reduction in malaria transmission also impacts the clinical disease burden. (99)
For example, a study in Kenya found that the proportion of severe malaria cases
declined first with rates of hospitalization for malaria staying constant for the first
decade after transmission was reduced. (100) The change in the age profile of
clinical malaria has been observed in several settings. (96, 99, 101, 102) For
example, in the Gambia, as malaria transmission declined, the mean age of
pediatric malaria admissions changed from 3 to greater than 5 years (103) and in a
large prospective study in Tanzania, the mean age of severe malaria increased
from 1 to 3 years. (104) However, once extremely low levels of transmission are
achieved, evidence suggests that, a greater proportion of infections are likely to be
symptomatic due to the lower levels of acquired immunity associated with the lack
of exposure. (73) For example, a study in an unstable transmission setting in the

highlands of Kenya found that only 0.1% of individuals were infected with malaria
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by PCR based on a community survey whereas of patients attending health
facilities with suspected malaria based on symptoms, 6.5% had confirmed malaria.

(105)

In addition to the shifts in the age and immune profile of malaria in settings with
reductions in transmission, changes are also expected to occur in the spatial
distribution of disease. Specifically, as transmission is reduced, the distribution of
parasite populations becomes more spatially clustered. (95, 106) This shift
suggests that understanding this spatial heterogeneity is necessary to fully

characterize the epidemiology of declining malaria transmission.

1.2 Heterogeneity of disease transmission

Heterogeneity of disease transmission occurs when a small proportion of the
population, either defined based on spatial proximity or population characteristics,
is disproportionately affected and experiences the majority of disease. (107) The
importance of the spatial distribution in malaria risk is not a recent phenomenon
however; due to factors such as availability of data, assessing heterogeneity has
traditionally focused on national level estimates. (108, 109) However, national
estimates provide a simplified view of the variability present at the scale where
transmission is actually taking place and therefore a focus on the local-level
heterogeneity is needed to fully characterize malaria epidemiology. The detection
of local level clusters of infection has an important role for improving
understanding of the microepidemiological patterns of disease transmission, and
to ensure that control strategies are tailored to the specific epidemiological

characteristics in an area as much as is feasible. (110, 111)

The current hypothesis suggests that these hotspots may be responsible for
sustaining transmission from one season to the next. (106) Mosquito exposure is
heterogeneous with a small proportion of people receiving the majority of bites.
(107) The differential biting rates have been associated with ease of access (ie. not
using a bednet), body surface area, body temperature, and body odors. (45, 112)
The disproportionate rate of exposure likely results in more parasite carriage in

highly exposed individuals, which then facilitates transmission. This
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heterogeneous exposure has been estimated to lead to a 1.5 to 4-fold increase in
the basic reproductive number of malaria. (84, 106, 113) Although this idea is
biologically plausible, there is limited evidence to support this. Therefore,
improved understanding of local-level heterogeneity in transmission is also
important for identifying areas that may fuel parasite transmission as well as their

role in sustaining transmission.

1.2.1 Sources of heterogeneity in malaria transmission

There are many different individual and spatial drivers of heterogeneity in the
malaria transmission cycle, as discussed in section 1.1.1. (17, 97, 114) However,
the precise combination of innate and ecological factors each person is exposed to
will fuel the observed patterns. (97) For example, in a cohort of children observed
for over 2 years in urban Uganda, 47% of children experienced no episodes of
malaria and only 15% experienced more than 2 per person-year. (28) Similarly, a
study in Kenya found that children that were infected at baseline during a cohort
study had over 5 times the odds of acquiring another asymptomatic infection over
the 3 months of the study follow-up. (48) Understanding these individual level risk
factors is a large focus on the epidemiological research conducted and has been
useful to inform malaria control programs and policies. However, the spatial
heterogeneity is apparent in malaria transmission patterns and is comparably less
well studied at the local level. (26) For example, as transmission declines, it is
likely to become concentrated spatially around vector breeding sites. (97) Other
possible drivers of spatial heterogeneity include non-uniform impacts of malaria
control. For example, a study on Bioko Island found that after ITN distribution,
malaria risk was associated with not using a net and was consistently high in one

part of the island resulting in a new spatial pattern of malaria risk. (115)
1.2.2 Impact of disease clustering

1.2.2.1 Measuring transmission

The reproductive rate (Ro) is an important concept in disease transmission as it
provides a measure of the transmissibility of a disease. Formally, Ry is defined as
the number of secondary cases that arise from the introduction of a single case into

a naive population. (73) In practice, the populations in the majority of malaria

27



endemic countries are not naive and therefore, estimates of Rg are typically
adjusted downward and reflect the transmission potential in a population with
non-sterilizing immunity to malaria under certain control scenarios (Rc). (84)
Estimates of Rcless than one suggest that any new infection will result in less than
one new case and malaria transmission will eventually disappear. (116) For
malaria, Rc is difficult to measure directly, however, available estimates have

suggested that it varies between just above one to several hundred. (84)

The heterogeneous distribution of mosquito breeding sites, amongst other factors,
is known to impact the estimates of Rcand malaria risk. Estimates derived
assuming a homogenous distribution are biased and tend to underestimate the
true risk (17) because the humans that are bitten most can amplify transmission.
(106,109, 117) However, in areas where the infected individuals are bitten more
often than the rest of the population, they can also serve to absorb some of the
infectiousness, which would be missed by standard survey techniques used to
estimate Rc. (109) In these areas with increased exposure, the clinical

manifestations of disease will likely also be impacted as described in section 1.1.5.

1.2.2.2 Malaria control

The heterogeneous nature of infections suggests that if interventions were applied
uniformly, achieving the near 100% coverage of perfectly effective malaria control
strategies would be needed. (118, 119) However, it has been proposed that
reducing transmission could be made much more efficient if high coverage could
be achieved in those that are bitten the most instead of the entire population. (107,
109) In fact, simulations have suggested that such focal targeting of interventions
to areas that then fuel transmission to surrounding communities, could double the
reductions in malaria burden compared to a uniform strategy. (65) Targeting areas
of increased transmission is being done in many countries including Zanzibar,
Burkina Faso, and Swaziland. (59, 120, 121) However, despite the popularity and
the biological plausibility supporting this approach, there has been little evidence
to date supporting the impact of employing such a targeted strategy. There have
also been no empirical studies conducted with the stated aim to ascertain the

impact of the spatial distribution of disease on the impact of malaria control
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interventions despite evidence suggesting that spatial biases exist. (16, 65, 122-

126)

Another important consideration with employing a spatially targeted control
strategy is at which baseline endemicity do they become important. Heterogeneity
in transmission occurs at all spatial scales and transmission intensities. (127) In
high endemic settings, heterogeneity in mosquito exposure is likely to be less well
defined as due to the overall high levels of exposure experienced by the
population. Evidence suggests that even in high transmission settings, malaria
incidence is highly over dispersed with one study on the Kenyan coast finding that
23% of the person-time constituted 55% of the clinical malaria episodes. (128)
This differential distribution of risk of malaria incidence has also been found to be
reflected in the manifestation of hotspots: in areas of high transmission, hotspots
are characterized by lower average age of clinical malaria as in such populations
immunity is acquired relatively quickly. (127) Although hotspots are apparent in
high transmission settings, they tend to be more pronounced and therefore more
easily identifiable /targetable in low endemic settings. (129) For example,
transmission levels in Zanzibar were historically high leading to the deployment of
uniformly distributed control interventions. (130) As transmission declined, and
Zanzibar became a country with low endemic transmission, clear hotspots were
visible with a recent study finding that 80% of clinical cases are reported in only
20% of the health facilities on the island. (120) Targeting hotspots within high
transmission areas is likely not practical given the high risk across the entire
population. As transmission declines, such a targeted approach likely becomes
more attractive. However, there is currently no known endemicity threshold
where spatial heterogeneity becomes important for control or elimination
strategies and current approaches are primarily driven by what is operationally

feasible. (121)

1.2.3 Tools for detecting spatial heterogeneity
The ability to detect hotspots of malaria has developed with advances in
geographical information systems (GIS) and statistical cluster detection methods.

(131, 132) Initially, spatial analysis of malaria was restricted to visual comparisons
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of the differences in malaria burden across space. (15, 133) For example, malaria
prevalence estimates are plotted by district or by health facility catchment area to
provide a picture of spatial heterogeneity in transmission. (26, 134) A recent study
in Sudan showed that despite an overall slide prevalence of <1.0%, the population
within a single area had a prevalence of 70%. (135) However, in most areas where
heterogeneity is less dichotomous more robust methods are needed to interpolate

malaria risk as well as to identify disease clustering. (136)

1.2.3.1 Spatial prediction surfaces

The ecological and innate drivers of malaria transmission suggest that risk is
expected to be more similar to those areas located in close proximity and less like
those areas further away. (26) The continuous spatial variation in risk can be
measured using the mean, variance and a spatially defined correlation structure
quantified using a semivariogram which plots the variance between points by
distance; these values can then be applied to interpolate risk across space. (26,
132, 137) Advances in spatial statistical methods have facilitated the creation of
risk maps, which are being increasingly applied to malaria and their application in
parasite epidemiology, have recently been reviewed. (14, 26, 137-139) This
section will therefore focus on those approaches most commonly applied to

malaria.

Malaria risk maps are typically developed using available covariates such as
distance to breeding sites, (140) a measure of the propensity for water to
accumulate and pool to form breeding sites, (34) ambient temperature, (6, 18) or
land use, typically measured using normalized difference vegetation index (NDVI).
(141) Different geostatistical approaches have been developed such as kriging or
model-based geostatistics in both frequentist (142) and Bayesian (143)
frameworks and tend to be informed using village-level prevalence estimates. (14,
144) Such spatial predictions of malaria risk are useful for capturing patterns in
malaria at different scales and account for uncertainty in the estimates. However,
despite rapid improvements in the scale of data being generated, due to the
availability and resolution of the majority of geocoded data currently accessible,

use of this modeling approach is largely restricted to national and regional-scale
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mapping of malaria risk and is not able to capture heterogeneity on the village or
local level. (6) Risk surfaces for malaria have been used to identify priority areas
for interventions or to quantify the population at risk of malaria transmission. (6,
9, 13, 145, 146) Due to the granularity of such maps, which are typically
constructed at resolutions of several kilometers, the utility for identifying hotspots

at the local level tends to be limited.

1.2.3.2 Cluster detection

To identify areas that may disproportionally contribute to malaria risk, statistical
approaches that detect spatial clustering are useful. When testing for the presence
of disease clusters, the assumption is that the points, or locations of the cases, are
distributed completely at random meaning that risk is consistent across space.
(26) Methods therefore assess whether the points are distributed not at random
and can be considered as clustered. These techniques account for the non-uniform
distribution of the population at risk and therefore require data on both infected
and non-infected individuals. (26, 147, 148) Disease clusters tend to result from
local level spatial variation and therefore identifying such foci are useful to study
the processes driving disease transmission and could facilitate targeting
interventions to areas that contribute disproportionately to the spread of malaria.
(110) Although several spatial clustering methods have been developed, including
kernel density, Kulldorff’s spatial scan statistic, or the cumulative X2 test, the
premise for cluster detection are similar and are based on the likelihood ratio test.

(148, 149)

The most popular cluster detection approach used in malaria research is the
Kulldorff’s spatial scan statistic, (26, 148) which has been made accessible through
the software package SatScan (Harvard Medical School, Boston, USA). The
statistical process behind Kulldorff’s statistic uses a series of circles or elliptical
shaped windows of incremental sizes centered on each data point. A likelihood
ratio test is then conducted comparing the rate inside the window to outside.
Monte Carlo simulations, which generate permutations of the data across the area,
are used to test the null hypothesis that points are distributed randomly. (26, 150,

151) Hot- or coldspots are delineated using either a point representing the center
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and the radius of the cluster size or the coordinates of the points with significantly
greater or lesser risk, respectively. (127, 152) Kulldorff's statistic has been
extended to allow different types of outcome variables such as count or binomial
data and have also added the flexibility to include covariates to adjust estimates of
malaria risk. This method has been used to identify hotspots in many malaria
endemic settings and has been found to successfully predict malaria risk in
subsequent years. A study on Bioko Island in Equatorial Guinea used SatScan to
identify areas that had significantly higher malaria burden and identified areas
suggestive of residual transmission. (115) Similarly, in a study in Tanzania, areas
identified as significant clusters of malaria have been associated with increased
malaria prevalence in subsequent years suggesting that some of the underlying

spatial process is being captured. (148)

1.2.3.3 Spatial-temporal heterogeneity

Options for extending both continuous risk surfaces and point cluster detection
tools to include a temporal element have also been developed. (26, 127, 153)
Temporal options for continuous risk surfaces developed include stationary and
the more complex anisotropic versions, whereby spatial autocorrelation is
dependent on both location and direction. (9) Although spatio-temporal methods
are more computationally intensive, they can provide more accurate predictions of
risk when spatial data is available at different time points and also enables a better
prediction by accounting for historical trends as well as changing risk due to

factors such as malaria control interventions or changes in climate patterns.

Methods incorporating temporal dimensions for cluster detection using SatScan
have also been applied to malaria data. One approach is to analyze each year (or
unit of time) of data independently and visually examine any observed trends
between the images. For example, Bejon et al used SatScan to detect clusters for
each year of a 12-year study and were able to identity stable hotspots and hotspots
that varied from year to year. (129) The second approach is to employ the space-
time model extension to Kulldorff’s spatial scan statistic where the moving
window extends into a cylindrical shape with the height reflecting the temporal

element. (26, 154, 155) For example, using this approach, a study in South Africa
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detected 5 spatial and 2 time clusters with the time clusters corresponding to the

localized outbreaks recorded. (156)

1.2.4 Spatial scale and targeting transmission heterogeneity

Heterogeneity in malaria transmission is apparent at all spatial scales as has been
demonstrated by recent work in Swaziland (157) and Kenya. (127) Although
heterogeneity in malaria transmission is increasingly being recognized as an
important component of malaria epidemiology, current guidelines to deploying
interventions focus on the country or district level (12, 13) or are necessarily

ambiguous to ensure tailoring to local circumstances. (158, 159)

The generation of malaria burden maps using risk surfaces described above has
been a useful tool for informing decision making at the national level, or
increasingly the regional scale, which are operationally attractive units for
deploying interventions. (118, 160) However, as transmission declines, the
national/district level prevalence estimates become less accurate and the uneven
distribution of malaria transmission becomes more prominent: local level
estimates tend to be highly heterogeneous and some areas within a district can be
hyperendemic whereas other may be extremely low. (161, 162) For example,
current data suggest that 80% of all malaria infections in Zanzibar are reported in

20% of health facilities on the island. (120)

Spatial scales that are relevant for malaria transmission largely consist of where
mosquitoes come into contact with humans. (163, 164) A recent study has
suggested that the optimum scale relevant for surveillance strategies that can
target >60% excess of new cases and can identify smaller sub-hotspots within
primary foci involves targeting an 8 km area. (129) However, it is unknown how
this translates into identification of hotspots or the relevance and impact of

targeting such areas with control strategies.
Operationally, elimination strategies have used an iterative approach whereby

high burden districts are initially targeted. (59) As transmission declines, the focus

shifts to sub-districts, and finally to clusters of households as the spatial
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distribution becomes progressively patchier. (120, 127) For example, P. vivax
malaria elimination in China relied on a mass drug administration approach
targeting administrative units with high reported clinical incidence and then as
transmission dropped, they refined the approach to focus on sub-units with
persisting levels of higher incidence. (165) Similarly, in low transmission settings,
identifying and targeting foci of parasite populations at the individual or
household level, through active or re-active case detection, discussed further in
section 1.4.2.2, is being employed to target local transmission dynamics.(13, 97,
166) However, such an approach is only likely to become operationally feasible
once caseloads get low and the number of people required to follow-up is
minimized although the impact on reducing the parasite reservoir has yet to be
confirmed. (167, 168) Regardless of the approach used, all strategies for reducing
or stopping transmission are reliant on being able to accurately quantify malaria
transmission and ensuring robust datasets are available with which to gauge the

effectiveness of programs.

1.3 Approaches to quantify malaria transmission

In order to understand the heterogeneous distribution of malaria and identifying
the areas most at risk, transmission intensity must be measured. As the direct
measure of transmission, Rc, is not easily quantified, different malaria metrics have
been developed that measure different stages in the malaria lifecycle and provide
indirect measurements of transmission many of which have been used to detect

hotspots. (59, 127, 169, 170)
1.3.1 Metrics - Overview

1.3.1.1 Entomological

The entomological inoculation rate (EIR) is correlated with Rc and is considered
the gold standard for measuring transmission. EIR assesses the number of
infectious bites that a person in a given area is expected to receive, typically
measured over one year and provides a measure of the degree of exposure to
malaria in a population. (117, 169) The EIR is notoriously difficult to calculate
directly as it involves catching host-seeking mosquitoes and identifying the

proportion of these mosquitoes that are harboring sporozoites, the transmissible
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stage of the malaria parasite. (119) Using human landing catches is considered to
be the ideal method for identifying host-seeking mosquitoes. This technique
involves people sitting awake all night, when Anopheles mosquitoes are typically
active, aspirating all mosquitoes that land on the person for counting, and assaying
for the presence of sporozoites. (171) As human landing catches are laborious and
involve risk of the workers being exposed to malaria, alternative methods have
become more widely utilized including the use of traps where mosquitoes are
caught inside or while leaving the house. (31, 63) However, in addition to being
laborious, there is little standardization in methods employed across studies and
sites. EIR is highly seasonally variable, and is difficult to measure in areas of low
transmission intensity where the density of mosquitoes is low. (172) Therefore,
despite it being considered the gold standard for estimating Rc, due to
questionable precision and accuracy, EIR is not extensively used and is particularly

difficult to assess over small spatial scales. (169)
1.3.1.2 Parasitological

Microscopy

Microscopy has been considered the gold-standard malaria diagnostic tool in the
field since the 1960s when it replaced the use of spleen rate. The P. falciparum
parasite rate (PfPR) estimates are currently the most widely reported metric of
malaria burden. (2, 13) The widespread use of this metric is in part because of the
ease in collection in field conditions and it being the diagnostic tool recommended
in clinical settings. Blood slides are typically prepared and are visualized under an
oil immersion microscope where the presence of parasites can be viewed and
quantified. (173) Microscopy is able to consistently detect as few as 5 parasites/pl
of blood however, the sensitivity has been reported to vary considerably with
some estimates suggesting a limit of detection closer to 100-200 parasites/pl of

blood is more consistent for routine microscopy in clinical settings. (58, 170, 174)

Microscopy quality is notoriously low at rural health centers, where the largest
burden of clinical malaria is seen. (174) Factors that impact performance include
training and monitoring of microscopy quality, fluctuations of staff, patient load

and the time available to read each slide, the quality of equipment, and the
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technicians’ skill in preparing slides. (175, 176) Estimates have suggested that
parasite prevalence using microscopy could be negatively biased by at least 20%,
due to factors, such as fluctuating parasite densities, described in section 1.1.2
above. (11) However, other studies suggest that although individuals do shift from
detectable and submicroscopic, the rate is relatively consistent and is predictably
related to the total parasite population therefore does not have substantial impacts
on prevalence estimates. (58, 177) A recent study in Kenya found that through
consistent monitoring for quality assurance, high sensitivity and specificity can be

achieved, however in most malaria endemic settings this is not the case. (178)

To mitigate some of the biases with using parasite prevalence to measure malaria
transmission intensity, age standardized rates, usually in those 2-10 years (PfPRo.
10), have been employed to improve comparability between sites. (109) As
discussed in section 1.1.3, estimates in this population tend to be more robust as
children are most likely to present with detectable parasite densities. (58) The
PfPR2.10 has been shown to be a sensitive metric of transmission intensity: The
relationship between EIR is strongly correlated with estimates of PfPRz.10 (117,
179) and therefore PfPR2.10is considered to be a reasonable proxy for
transmission intensity until very low levels (ie. ~<3%) when it become unreliable
due to the large number of people that are needed to achieve a reasonable

sensitivity. (13)

Rapid Diagnostic Tests

Despite the utility of microscopy, many facilities where malaria is endemic do not
have the necessary equipment, reagents, or skilled personnel. Therefore, the
malaria diagnosis largely relies on clinical signs and symptoms, which are highly
non-specific. (170, 174) Malaria RDTs are increasingly popular as they provide an
easy diagnostic tool that has similar sensitivity to conventional field based
microscopy while being less technically demanding therefore achieving better
consistency between operators. (180) Most malaria RDTs detect the presence of
histidine rich protein 2 (HRP2), an antigen secreted exclusively by the P.
falciparum parasite. Other tests have been developed that are based on the enzyme

lactate dydrogenase (pLDH), which is produced by all Plasmodium species. (181)
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RDTs are typically distributed in a cassette format and involve adding a fixed
volume of blood, usually 5 pl, and a reagent, which then reacts with the parasite
antigen if present. (182) Over the past decade the use of RDTs have become more
widespread in rural health centers in endemic countries and have also been trialed
to be used as part of a community based strategy with community health workers.
(183, 184) The sensitivity and specificity of RDTs varies by brand and is related to
the lowest limit of parasite densities that can reliably be detected with most being

inconsistent when parasite densities are below 200 parasites/pl of blood. (182)

There are also some potential measurement biases associated with the use of
RDTs. First, HRP2 has been found to persist for up to 6 weeks after treatment of an
infection suggesting that some false positive cases are likely. (185, 186) Also, as
transmission declines and parasite densities in persisting infections tend to be
lower, the utility of RDTs becomes questionable. (120) For example, when
transmission was high in Zanzibar, sensitivity was reported to be 92% (against
microscopy) but when transmission became low, sensitivity dropped to 79%.
(187) Similarly, in Swaziland, another setting undergoing an elimination agenda,
RDTs were able to achieve a high specificity, but missed the 2 cases detected by
more sensitive methods. (157) Furthermore, in settings where malaria
transmission has declined the importance of non-P. falciparum infections may
increase. In such circumstances, pLDH based tests that detect any Plasmoidum
species could be useful whereas RDTs that detect HRP2 may become less relevant.

(188)

The increased inter-facility consistency and the availability of RDTs in a greater
number of clinical and research settings suggests that RDTs can provide more
robust estimates with which to inform decision-making and to identify
heterogeneity in malaria burden. (180) The use of RDTs, particularly in a clinical
setting, has also been found to reduce the overuse of antimalarial drugs and
therefore, despite the higher cost associated with the test, lead to cost savings by
reducing the amount of drugs administered. (189) For example, a study in Uganda
found that the introduction of RDT’s into health facilities resulted in greater than

2-fold reduction in antimalarial drug prescription. (190) The scaling up of RDTs
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will also improve the quality of the routine data collected at health facilities and

malaria surveillance. (191)

Molecular methods

Molecular methods for detecting the presence of Plasmodium DNA in a sample was
developed in the 1990’s (192) and are considered to be highly valuable for
determining positivity in malaria research. (53) The standard method, polymerase
chain reaction (PCR), involves extracting DNA from a sample and using a series of
reactions where any parasite specific DNA present is amplified creating
exponentially more copies. The higher number of copies present in the reaction
makes it easier to detect visually using an ultraviolet transilluminator. (193) PCR-
based methods are extremely sensitive and specific and have been found to detect
as few as 1 or 2 parasites/pl of blood. (54, 194) The increased sensitivity of PCR
has been instrumental to quantify the full extent of the parasite reservoir and
overall detects 50% more infections than microscopy or RDTs. (53, 58) Molecular
methods are also better able to identify mixed infections and non-P.falciparum
species compared to microscopy. (195) However, the technical complexity and
high cost of the assay as well as the length of time required to process samples,
limits the application of PCR in the field or as a point of care diagnostic tool in

endemic settings. (174)

Molecular based diagnostics are being developed to provide tools that are more
operationally attractive for malaria control programs. (196) Loop mediated
isothermal amplification (LAMP) is the most advanced and may provide the
required balance between a sensitive molecular based diagnostic tool that is
operationally attractive and that can be used in malaria endemic countries. (197,
198) LAMP methods are similar to those of PCR whereby malaria specific DNA in a
sample is extracted and selectively amplified. After the reaction has developed,
positive samples can be visualized by a change in the color intensity. (199) The
LAMP system is less technically demanding, requires less time to obtain a result,
and can achieve similar sensitivity to PCR making in an attractive alternative in

areas where submicroscopic infections are of interest. (200)
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Despite the high potential for use of molecular based methods in malaria control
and elimination settings, as a point of care test, it has been found to offer little
benefit over conventional RDT or microscopy. In clinical settings, symptomatic
malaria cases tend to have parasite densities at levels detectable by RDT or
microscopy and molecular methods may not be as easily justified. (201) However,
when the priority shifts to reducing or eliminating transmission, detecting
subpatent infections becomes a priority as they do contribute to maintenance of
transmission. (53) In such settings, LAMP and other molecular assays have the

potential to become a useful tool to quickly detect areas of focal transmission.

1.3.1.3 Serological

An alternative approach to measure malaria transmission is to detect anti-malarial
antibodies, which provides a marker for exposure to malaria. (51, 202) The use of
serology to describe malaria epidemiology has become more common since the
refinement of the enzyme linked immunosorbent assay (ELISA) for the detection of
malaria specific antibodies. (203) Briefly, this assay works by binding antigens to
specific plates and all non-malarial antibodies are blocked. The bound-antibodies
are then detected with an enzyme-linked secondary antibody. The presence of the
target antigens (bound-antigen) is visualized through a color change in the
reaction, and quantified using a spectrometer. (203) It has been shown that anti-
malarial antibodies can be effectively extracted from filter paper blood spots and
can be processed as a high-throughput technique making it an operationally

attractive tool for quickly assessing malaria exposure in large populations. (204)

Different malaria-specific antigens have been identified and although some are
associated with clinical protection, here they are discussed as markers of exposure.
(49, 52) The presence of antibodies to any anti-malarial antigens has become a
popular metric to assess the cumulative burden of malaria exposure in a
population. (204) The rate of acquisition of antibodies with age can be calculated
using a reverse catalytic conversion model and provides an estimate of the
seroconversion rate (SCR), or the number of people in a population expected to
seroconvert each year. A study in Tanzania found that SCR was strongly correlated

with the EIR and provides a proxy measure for estimating the force of infection in
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a community. (205) A different study in Brazil found that SCR correlated with the
annual parasite index, an alternative measure of transmission intensity, collected
by the malaria surveillance program. (39) Also, a study on Bioko Island, Equatorial
Guinea found that changes in SCR were correlated with changes in parasite rate
and with reductions in all cause child mortality. (115) Seropositivity is also able to

rank areas by endemicity. (164)

Serological tools are more sensitive than conventional parasitological diagnosis in
areas of low or highly seasonal transmission. (157) Antibody responses are longer
lived and are therefore able to detect past infections as individuals can maintain
stable levels in the absence of recent exposure to parasites. (202) Furthermore,
conventional diagnostics are particularly affected by fluctuating parasite densities,
which affect the sensitivity of the diagnostic tool. Serological tools are particularly
useful in low endemic settings where the sensitivity of field friendly parasitological

tools is inadequate.(202, 206, 207)

Serology has shown to be able to confirm or suggest interruption in transmission
based on the age-adjusted serological profiles of the population, and particularly
the exposure in younger children. (203) A recent serological assessment in
Swaziland found that presence of anti-malarial antigens were virtually absent in
those under 20 years (1.9%) of age while they were 10 times greater in adults
(11.7%) suggesting that there is little ongoing transmission at present while adults
were historically exposed to more intense malaria transmission. Seropositivity
observed in the adult population may also be influenced by travel to neighboring
endemic countries. (157) Serological tools have also been shown to identify
heterogeneity in the impact of interventions. For example, on Bioko Island
seroconversion rates for AMA1 in certain parts of the island were significantly
lower compared to others combined with the lower seroprevalence observed in
children suggest that the impact of control interventions were heterogeneously
distributed. (115) Therefore, the use of serology has the potential to become a
powerful tool for assessing malaria burden and heterogeneous transmission

intensity in a population.
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1.3.2 Metrics for measuring spatial heterogeneity

Work to identify spatial heterogeneity in malaria burden has relied on different
metrics to spatially delineate areas of high malaria burden. The generation of risk
surfaces typically rely on PfPR>.10 data generated using microscopically confirmed
cases (6,9, 145, 208) For example, in Burkina Faso, using data on parasitaemia in
children, risk maps were generated to characterize the heterogeneity in malaria
risk across the country with a range in predicted prevalence between 11 and 92%.
(209) Other metrics such as clinical incidence (139) or RDT positivity (210) have
also been used to inform risk models but their application to delineate spatial
heterogeneity is limited due to quality or the availability of sufficiently large and

geocoded datasets as well as resolution of model covariates to inform models.

Despite the reliance of PfPR2.10 to model malaria risk, a variety of other metrics has
been used to inform spatial clustering for the detection of hotspots. For example, a
study in Ethiopia used clinical case data recorded by hospitals to detect clusters of
infections that identified several hotspots. (211) A second example of clustering of
clinical malaria is a study conducted by Bejon et al in Kenya that identified
hotspots of symptomatic malaria in children reporting to health facilities. (127)
Other indicators that have been used include malaria deaths (133) and although
application is more limited, PCR has also been used to inform cluster detection.
(148, 157) Finally, testing for clusters of confirmed malaria infections according to
microscopy or RDT parasite rate is commonly used. (135, 155, 156) For example, a
country-wide survey conducted by Ashton et al. in Ethiopia identified significant

clusters of microscopically confirmed infections using SatScan. (212)

Serological data is increasingly being used to identify hotspots of malaria however;
the interpretation of these results is less straightforward than with metrics of
current parasite infection. (127, 152, 154) Studies using serological tools for
detection of hotspots have used different antigens, or combinations of antigens.
Similarly, different approaches to modeling the data have also been used with
some relying on the binary seropositivity metric (213) and others using antibody
density (115) or a combined estimate. (129) Furthermore, SCR has also been used

in some settings to inform clustering of malaria transmission. (110) Complicating
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the interpretation of serological indicators for detecting hotspots is that evidence
suggests that antibody domains within the same antigen do not all exhibit the
same spatial clustering patterns, likely due to the differences in individual

responses to antigens. (213)

The different malaria metrics provide different approximations of malaria
transmission intensity making explicit comparisons between results difficult.
However, some consistency has been observed between hotspots defined using
different metrics (213) but this is not always the case. (110) How these differences
impact resulting hotspot boundaries or how hotspots can be delineated in a way

that is operationally feasible has never been formally assessed.

1.4 Operational research and malaria

Operational research focuses on translating current knowledge into routine health
programs and facilitating more informed decision-making based on local
circumstances. (214) Although definitions of what constitutes an operational
strategy in the public health context differ, the primary focus is to identify
strategies that can improve health in a way that is tailored to local capacity to
maximize health outcomes in the affected populations. (215, 216) An ideal strategy
is flexible enough to ensure targeting to local conditions, that the responsibilities
and actions of each party is clearly delineated and considers the current realities of
the community involved including the availability of infrastructure, transportation,
communication, and human capacity. (216, 217) Operational feasibility has been
associated with three factors: government stability, effectiveness and

commitment; the capacity of health systems; and the size and ease of access to the
populations at risk. (118) Operational research is useful to identify best practices
and to tailor programs to meet local needs but is also linked to good monitoring
and evaluation programs that facilitate updating practices based on changing
circumstances such as the development of drug resistance or targeting

interventions to high-risk areas. (214)

There is a deficit in translating research into policy and improving health-care

practice, and malaria programming is no exception. The importance of identifying
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best practices and how malaria control interventions can be implemented to
achieve their maximum level of efficacy has long been highlighted as a priority for
research. (218) However, only an estimated 3% of all malaria literature can be
considered to be operational research and what exists primarily focuses on
strategies for malaria control in the African setting with little focus on low
transmission or elimination settings. (219) Despite the lack of an operational
focus, studies cite the importance of community involvement as reasons for
successfully programs and achieving high coverage rates for interventions. (59,

120)

Malaria transmission is largely concentrated in settings that may be difficult to
access, have limited infrastructure, public health capacity, and have limited
resources. (220-222) Operational approaches and the necessary research to
identify the optimum strategies and the best way to implement them by local
malaria control programs is highlighted as one of the critical areas for

sustainability of the current malaria control and elimination agenda. (95)

1.4.1 Current strategies for monitoring malaria transmission

As discussed, Rc is the most direct measure of malaria transmission. (84)
Operationally tractable tools have been developed to estimate R¢ based on the
proportion of locally acquired and imported cases using surveillance data, (40)
however, this tool only becomes relevant when the number of new cases is low.
Therefore, the majority of malaria surveillance for transmission will likely be
informed by a combination of both passive and active case detection designs using

either microscopy, RDTs, or clinical malaria, depending on the setting.

Passive case detection is the primary source of historical data on malaria burden
and typically involves aggregated data routinely collected at health facilities. (20,
223, 224) The metric typically used is the number or proportion of malaria cases
or deaths, diagnosed based on clinical symptoms or increasingly through test-
positivity rate for confirmed cases of malaria. (22) Confirmed malaria incidence
may provide a useful metric in very low transmission environments where the

majority of infections would likely be symptomatic and report to health facilities;
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however, as discussed in section 1.1.5, in the majority of malaria endemic
countries passive case detection may not necessarily reflect malaria transmission
due to the pervasiveness of silent infections and poor reporting rates, as discussed

further in chapter 3. (5, 167, 219)

To supplement health facility based reporting on malaria burden, many countries
conduct countrywide, community-based surveys. Malaria indicator surveys (MalS)
are typically designed using a two-stage cluster design to ensure that nationally
representative data are collected while including a focus on high-risk areas. (225)
These surveys have traditionally assessed malaria burden in children under five
years of age and confirming malaria infections using microscopy or RDT. (226,
227) With the increased focus on elimination and recognition of the importance of
the silent parasite reservoir, surveys are increasingly including all ages in their
sampling framework and employing more sensitive diagnostic tools, including
serology. (228) The MalS surveys are useful to obtain a current picture of malaria
burden across the country. However, due to the high expense and logistical
difficulties, they are typically conducted sporadically with some countries
engaging in MalS every one or two years while others have only conducted a single
survey. (225) These large surveys become even less operationally attractive for
assessing malaria burden when transmission levels are low. Not only are large
numbers needed to achieve sufficient power, the operationally attractive
diagnostic tools, as discussed above, are not sufficiently sensitive to provide an

accurate picture of malaria transmission. (229, 230)
1.4.2 Convenience sampling: An operationally tractable approach

1.4.2.1 Malaria Surveillance

Alternative sampling strategies that rely on sentinel populations can provide
useful alternatives for malaria surveillance that could provide more robust and
reliable data compared to routinely reported records yet are more operationally
attractive than the large community based approaches such as MalS. (231, 232)
Health facility surveys whereby all attendees instead of just suspected malaria
cases are sampled or primary school surveys are two such options that have been

used. (232, 233) For example, a study in The Gambia found that health facility
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surveys were able to identify heterogeneity in malaria transmission and provided
similar estimates to those obtained in the surrounding community. (134) Similarly,
school surveys conducted in Ethiopia were able to identify heterogeneity in
malaria transmission however; no concurrent community estimates were
available. (212) However, the bias of such convenience sampling approaches for

malaria surveillance is not well characterized.

1.4.2.2 Identifying hotspots of transmission

One of the goals of malaria surveillance is to identify areas with increased risk and
to provide the evidence base needed to effectively tailor malaria control efforts.
(159) However, to inform malaria elimination a new framework is needed to
detect areas with residual transmission so that interventions can be targeted
accordingly. (63, 222) Shifting the timing of surveys to focus on the low
transmission season will likely be useful to identify residual parasite infections.

(161, 225)

Despite the paucity of operational research on how best to do it, several countries
are currently engaging in malaria elimination activities. The elimination-focused
activities are predicated on identifying and treating the residual parasite
population in the community. Two main types of approaches have been reported:
active and re-active case detection. (97) Active case detection involves seeking out
cases in the community using a mass treatment (234) or screening and treatment
(120) of areas thought to be at increased risk; typically defined using routinely
reported health facility data. Due to the risk of drug resistance, mass drug
administration has not been extensively trialed, and although simulations suggest
that they will result in a reduction in burden, (94) in low transmission settings
field trials have found little impact. (234) Screening and treatment in the
community over time has been found to reduce risk of malaria infections (235) but
this has not been consistent in all settings and is not operationally attractive due to
the repeated community sampling required. (59) The most cited reason for the
limited impact of a screen and treat approach is due to the sensitivity of diagnostic

tools used and the proportion of subpatent infections that are missed. (53, 120)
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In low transmission settings, the most commonly implemented strategy to tackle
residual transmission is a re-active approach with ongoing programs currently
reported in several of the Asian-pacific countries, Swaziland, and a pilot study in
Zambia. (121, 166, 217) Re-active case detection to identify reservoirs of infections
in the community typically use a symptomatic index case to identify areas where
additional parasite carriers are likely due to the tendency of cases to cluster in
space and is analogous to contact tracing for directly transmitted infectious
diseases. (121) Such an approach can be complicated in areas where the risk for
imported cases to re-ignite transmission and alternative methods to identify
possible networks or snowball sampling may become necessary. (40, 167, 236)
However, the utility of such an approach, best practices to ensure optimum
coverage of the parasite populations, and what proportion of the reservoir is
actually targeted are still relevant questions for study. Furthermore, despite the
use of re-active case detection in many countries, implementation can be logically
difficult and more work is needed to determine if these efforts are worth the time.

(121)

1.4.2.3 Operationally attractive hotspot detection

For hotspot targeted approaches to malaria control and elimination strategies to
become operationally feasible, convenient ways of identifying hotspots are needed.
Health facility and primary school based populations could provide a useful means
for malaria surveillance; however, it is not known how representative these
populations are of the community and potential bias needs to be better understood
so that malaria burden is then interpreted accordingly. Furthermore, the utility of
convenience sampling to identify hotspots in the community may provide an
operationally attractive method however, evidence is required to better
understand the sensitivity and therefore potential of such an approach. Moreover,
the sensitivity of a community based re-active case detection approach is not well
characterized and is important to gauge the potential impact of a targeted
approach to identify the entirety of the parasite population and therefore justifying

the large efforts involved.
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Chapter 2: Study Rationale and Objectives

This chapter will introduce the rationale for this research project as well as
introduce the main and specific objectives. The overview of the study rationale
highlights the two unifying themes of this work: i) identifying hotspots of
transmission and their potential as part of control and elimination strategies and
ii) operational approaches that can provide logistically attractive options for local

malaria programs. This section concludes by outlining the aims of this research.

2.1 Study Rationale

Malaria risk is not distributed equally, and heterogeneity in malaria exposure is
especially pronounced in areas with low and moderate transmission intensities.
Heterogeneity in malaria exposure suggests that a small proportion of people are
not only carrying the majority of the malaria burden, but are also contributing
disproportionately to onward transmission. (97, 106) It has been suggested that
individuals experiencing the majority of the malaria burden tend to cluster in

space and form hotspots of infection. (129)

Identification of hotspots could be extremely useful, as it would allow targeting of
malaria control, which would reduce costs of deploying interventions, as only a
subset of the population would be targeted. (107) Because hotspots may fuel
malaria transmission in larger regions, it is conceivable that such a targeted
approach could lead to a greater reduction in malaria transmission in areas
surrounding malaria hotspots. (106) Modeling exercises have shown that hotspot
targeted interventions that achieve 90% coverage with insecticide treated nets and
indoor residual spraying in areas with a baseline parasite prevalence of ~15%
could result in a reduction of parasite prevalence and vector densities inside the
hotspot to less than 1%. (65) Such an approach could then lead to a reduced
reservoir of infection or even local malaria elimination by inhibiting the spread of

malaria to surrounding communities. (97)
In an era where malaria elimination is possible in many settings, it is these

persistent hotspots of infection that may prove to be a formidable challenge if

these cannot be adequately targeted. (81, 118) The first issue is how to measure
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and define what constitutes a hotspot of transmission so that boundaries drawn
reflect the true nature of transmission in the community: if hotspots are
incorrectly specified and a proportion of the hotspot is missed it is likely that
transmission will be sustained and the targeted approach will be incorrectly
deemed to be ineffective. (127, 160) The second major challenge with employing a
hotspot-targeted strategy is that the current approach for identifying reservoirs of
infection involves costly and time-consuming community based surveys. The
ability to easily and accurately identify hotspots in a timely manner is essential to
ensure that this method can be integrated into local malaria control programs.
Therefore, there is a need for strategies that can identify hotspots of malaria that
are effective and easily sustained by local public health infrastructure. (121, 216,

222)

2.2 Main Objective

The overall objective of this study was to determine if operationally attractive
approaches for the identification of hotspots of malaria transmission in the
western Kenyan highlands are possible and can provide viable alternatives to a

community based survey approach.

2.3 Specific Objectives

1) Define hotspot of malaria transmission in the community

2) Determine if surveys conducted at primary schools and health facilities
result in comparable transmission indices compared to community
surveys

3) Identify the sensitivity of primary schools and health facilities to provide a
reliable metric to identify hotspots of malaria transmission intensity in
the broader community.

4) Determine the proportion of parasite carriers that can be identified using
an intensive but operationally tractable community-based sampling

approach within hotspots.
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Chapter 3: Study Design Overview

To address the outlined objectives, this research combines data collected across
several different studies. This chapter outlines the framework depicting how the
different studies fit together in relation to the specific aims outlined in chapter 2.
To avoid ambiguity in terminology, definitions of important terms are provided
and gold standards that are relevant to this work are outlined. A brief overview of
the study site, including the study population and malaria epidemiology is
discussed with more detailed descriptions provided in subsequent chapters.
Finally some background on the primary school and health systems that are

present in the area is reviewed.

3.1 Research Framework

Each component of this work offers essential information by providing insight on
the ‘true’ state in the community, the alternative approaches to identify the ‘true’
state of malaria epidemiology, as well as looking into the bias associated with the
alternative approaches. The relationship between the different studies described
in subsequent chapters and how they relate to the specific objectives presented in
chapter 2 are provided in figure 3-1. Briefly, three community-based surveys were
conducted to act as the gold standard and represent the true malaria transmission
in the community. The main studies were then conducted and compared with the
relevant dataset to address each of the objectives of this research. For example,
detecting malaria heterogeneity (specific objective 1) involved using the baseline
school zone community survey (baseline) to provide data on the ‘true’
transmission levels and was compared with results from the school surveys (main

studies).
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Baseline Studies: Specific Objectives Main Studies
Gold Standard

1. Detect Malaria

School Zone Heterogeneity
Community Survey School Survey

(XSS3)

Y

2. Define Malaria

Hotspots
REd_HOt Health Facility
Community Survey Survey
(XSS4) d
3. Identify Malaria
Hotspots
A 4
Hotspot Targeted 4. Proportion of Passive Case
Treatment (FMDA) parasite population Detection
in hotspot identified

Figure 3-1: Schematic overview of studies conducted and how they relate to

the specific objectives of this research.

Malaria transmission can vary dramatically over a small geographical area. (17,
129, 237) To ensure comparability over space, the surveys informing this research
were all conducted within the same study site ensuring as much spatial overlap as
was possible (figure 3-2). The initial study area consisted of one larger area
extending into Kisii, the neighboring district, for the school surveys. The extremely
low malaria prevalence observed in this region prompted the study area to be
restricted to a smaller area of approximately 200 km? for the health facility
surveys. Based on data collected during the previous studies, the community work
was revised further to concentrate on a 100 km? area to ensure that sufficient
heterogeneity could be detected. Finally, within this 100 km? community study

area, five smaller areas of focal transmission were subsequently identified.
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Similarly, malaria can also vary over time with differences between and within
transmission seasons. (129, 238) Therefore, temporal overlap is also important to
consider when comparing different approaches to measure malaria transmission
and was accounted for in designing the research framework when possible.
However, due to the intensive research operations in the area and the seasonal
nature of transmission, it was not always feasible. Specific protocols followed in
each survey are described in their respective chapters, but key differences are
highlighted (table 3-1). The variations of note include the temporal differences
between the surveys. When possible work was conducted in the main transmission
season, but due to the specific objectives of the individual studies, the season and
year of data collection were not always synchronized. The second main difference
between surveys was due to changing to more sensitive diagnostic tools. In 2012,
the Paracheck RDT was replaced with the more sensitive First Response version
and auxiliary digital were replace with infrared tympanic thermometers. The
variance does not affect the internal validity of the individual studies but does
affect what information is available for comparison between studies as well as the

strength of the interpretation of the findings and therefore must be acknowledged.

3.2 Definitions and Terms of Reference

Several key definitions and gold standards are discussed below and terms are used
as consistently as possible throughout this work. Firstly, although the terms
heterogeneity, foci and hotspot tend to be used interchangeably in the literature
(97,106,107, 148, 156, 239) as part of this research they are considered as

important and distinct terms and have important conceptual differences.

3.2.1 Heterogeneity

In the strictest sense, heterogeneity simply refers to something that shows
diversity as opposed to homogeneity, which suggests an even distribution of
exposure, risk, or other metric under investigation. (107) In the malaria field, the
term typically refers to differences in the magnitude of the malaria risk given the
metric used and typically has a spatial dimension but can also refer to individual
exposure. (162) For example, if the malaria prevalence estimates observed at two
neighboring schools were different by a certain magnitude, this would be

considered to exhibit a heterogeneous malaria burden. Similarly, heterogeneity
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can exist at local, regional, national and international scales. (9, 110, 212) In this
study, the term heterogeneity is defined as any unit of study exhibiting biologically
relevant variability in malaria transmission intensity, as quantified by any
parasitological or serological metric. The unit of study can, for example, comprise a
school catchment area or be an individual compound with biologically relevant
differences suggesting variable intensities of malaria transmission and is not

restricted to statistically significant differences.

3.2.2 Foci

Malaria transmission is sustained in areas where environmental conditions are
conducive to mosquito breeding and has human settlements that can sustain and
transmit the malaria parasite within the dispersal range of the vector, typically
around 1 km in African settings. (16) The size of the foci is dependent on the
dispersal range of the mosquito and availability of blood meals: Precise borders
are difficult to measure and are likely fluid. (17) Entomological data may provide
the best way to measure foci but as mentioned, are difficult to obtain, particularly
in areas of low transmission intensity with obtaining data to measure other
metrics for transmission potential such as the effective reproductive rate (R¢) also
being problematic. (117, 119) Therefore, as part of this research, foci are
considered to be areas that can sustain or support transmission of malaria and
provides more of a conceptual framework with which to inform discussions on

hotspots of malaria. (106)

3.2.3 Hotspot

Where foci are considered the entire area where malaria transmission is possible,
hotspots are considered to be those areas within foci that experience higher than
average malaria transmission intensity. (148) More precisely, hotspots are areas
where transmission intensity or risk is greater than the average for the area with
the size of the hotspot smaller than the typical dispersal range of mosquitoes.
Hotspot borders are defined based on predictive models of malaria exposure as
detailed in section 4.2 based on data collected as part of community-based surveys.
(106) Theoretically, it is malaria hotspots that are likely to be fueling transmission

to the larger foci.
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3.2.4 Operational

A major component of this work focuses on operational research to identify
hotspots of transmission. Operational research means studies to inform
implementation of programs in a way that optimizes the process including
ensuring a cost-effective and sustainable approach. (216) When applying the term
operational to the identification of hotspots of malaria transmission in the
community, it is defined as providing evidence to support the use of a simpler yet
effective approach to accurately identify hotspots of malaria in the community so
they can be targeted for control that can be sustained by the capacity in malaria

endemic regions.

In addition to establishing clear definitions for key terminology, there are several

gold standards that have been established to facilitate this research.

3.2.5 Current malaria infection

A current malaria infection is considered those individuals that have live
Plasmodium parasites, at any stage of development, in their bloodstream or liver.
Nested polymerase chain reaction (nPCR) detecting the presence of the 18S
ribosomal subunit of P. falciparum DNA is one of the most sensitive methods for
detecting the presence of blood stage malaria infection and can detect parasite
densities as low as 1 to 5 parasites/ul of blood. (192) In contrast, as discussed in
section 1.3, rapid diagnostic tests (RDTs) or microscopy are not able to
consistently detect parasites at such low densities. (174, 240) Therefore, for the
purposes of this research, nPCR is considered to be the gold standard for

establishing a current malaria infection.

3.2.6 Malaria Transmission

Malaria transmission is defined as the active transmission of the malaria parasite
by the anopheline mosquito vector to the human population. (61) Similarly, the
frequency of the transfer of Plasmodium from mosquito to human is associated
with transmission intensity such that areas of high transmission intensity
experience a higher frequency of infectious bites compared to areas of low
transmission. (117) Measuring transmission intensity is ideally conducted using
the entomological inoculation rate, a measure of the number of infectious

mosquito bites a person receives over a given unit of time. (169) However, as
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mentioned, collecting entomological data is challenging and parasite measures are
subject to several biases or logistical difficulties. (51, 205, 241) Therefore, the gold
standard for malaria transmission in our studies is the seroconversion rate (SCR)

to AMA142and/or MPS119antigens as estimated from community-based surveys.
3.3 Rationale for selected operational approaches

3.3.1 Primary schools

The use of school surveys to monitor malaria burden is not a new phenomenon
with the earliest reports of using this strategy dating back to the 1920’s. (232)
School surveys have recently been emphasized as a potential tool for quickly
obtaining population based estimates, particularly once transmission has reduced
to the point where community based approaches are no longer viable. (230, 233)
Children provide a convenient sentinel population: the proportion of cases
expected in the school age population has been estimated to be less stochastic than
other age groups, tends to comprise between 20-40% of cases, and is highest in
areas of moderate transmission intensity. (231) Also, school-aged children tend to
have sufficient levels of immunity to prevent clinical disease but are not able to
fully control parasite densities suggesting that they will be more likely to have
infections that are detectable by microscopy or RDTs, further highlighting the
utility of this group as a sentinel population. (54, 242, 243)

Primary schools have available infrastructure with which to conduct screening and
could provide a secure location to store supplies for testing. The use of existing
school supply distribution networks could also be used to facilitate distribution of
malaria testing supplies. Schools also tend to be accessible to the local community
and are used as community-meeting points in several settings, which may
contribute towards improve community acceptability. (244) Malaria testing with
RDTs is a simple process that can be easily taught (245). Therefore, teachers or
regular community volunteers can provide the human capacity required to

conduct regular malaria screenings.

Levels and equity of school attendance will limit the utility of school surveys in
malaria surveillance. (232) Although many countries are making progress towards

universal free primary education, there are still many barriers to uptake. It is
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known that malaria risk is lower in wealthier households, which are those also
most likely to attend school in areas where school fees may be prohibitive of
attendance. (33) The second potential source of bias is the overlap between school
catchment areas. In many areas, children do not necessarily attend the closest
school to their home, some of which travel great distances. (246, 247) Therefore,
the school-derived estimates of malaria burden may not always accurately reflect

the immediate community and this bias must be better characterized.

Despite these potential biases, school surveys have been shown to identify
heterogeneity in malaria transmission in different settings using both parasite and
serological based diagnostic tools. (67, 161, 247) Therefore, given the cost-
effectiveness and ease of integrating such an approach into a program at the
national scale, school surveys have the potential to be an operationally attractive

approach for malaria surveillance. (248)

3.3.2 Health facilities

Health facility based cross-sectional surveys where all attendees are included in
the screening process in contrast to passive case detection where only those
suspected of malaria are included, provide an operationally attractive means for
collecting data on malaria transmission. (233) By including all attendees in the
sampling framework, data is easily collected on a cross-section of the population
instead of just those suspected of having malaria. A study in Tanzania found that
SCR estimates obtained from health facility surveys were similar to those obtained
in the community and were able to accurately capture the heterogeneity in malaria
transmission in the area. (249) Similarly, a study in The Gambia found that
seroprevalence estimates were able to detect the heterogeneity in malaria risk and
were similar to estimates obtained from the surrounding community. (134)
Therefore, the use of periodic all-attendee malaria surveys in health facilities may
provide an alternative approach to malaria surveillance that could easily be

integrated into the existing public health infrastructure.
Including all health-care seeking individuals in the malaria transmission

surveillance program could mitigate against some of the known biases associated

with passive case detection. Also, as mentioned, those referred for a confirmatory
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test, as part of routine clinical practices is dependent on whether malaria is
suspected and in some settings whether the patient is willing to pay for the testing.
(250-252) Sampling all individuals with sensitive diagnostic tools mitigates these
issues and may also ensure better reporting of data, another known issue with
routine reporting. (134, 223) However, the use of the health care seeking
population for malaria surveillance will likely have some inherent biases including
differences in health care seeking behavior which may arise due to physical access
or cost barriers, for example. (253-255) In malaria endemic areas, it is not
uncommon for people to travel for more than one hour to access health services
and influences the type and severity of cases presenting for care. (126, 256)
Therefore, how these biases affect the utility of health facility surveys for malaria

surveillance require further investigation.

Health facilities also provide an operationally attractive approach for malaria
surveillance. Similar to school surveys, health facilities infrastructure is already
established and sampling could easily be incorporated into existing activities: with
trained personnel, established drug administration capacity, and supply delivery
routes. (134, 257) Also, health facilities are commonly used distribution points for
bednets, maternal care, vaccination campaigns, and other health initiatives, and in
most settings are acknowledged as the health care provider by the community.
Health facilities therefore provide a locally appropriate institution for a malaria
surveillance initiative. (256, 258) Using health facility attendees for malaria
surveillance also ensures a captive population and rapid sampling ensuring that

large amounts of data can be quickly generated. (134)
3.4 Study Site

3.4.1 Population

This work was conducted in the western Kenyan highlands in the Rachuonyo
South district, Nyanza Province, Kenya, centered on the town of Ringa (latitude: -
0.47076, longitude: 34.853449). At the time of the study, Nyanza province, like all
provinces in Kenya, was under the jurisdiction of a provincial commissioner, with
authority then subdivided into districts overseen by a district commissioner and
district officer. Each district was further sub-divided into locations, sub-locations

and villages, which were administered, by chiefs and assistant chiefs. At the time of
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this research, the administrative boundaries were not used to define the study site
but are useful spatial reference to compare with other work conducted in the

region.

The study area is described in more detail in subsequent chapters but briefly, the
majority of the site falls between 1400 and 1600 m above sea level and is
intersected with rivers and the terrain is marked with several rolling hills and
valleys. (259) There is a bimodal rainfall pattern with the heaviest rains typically
occurring between April and June and a smaller peak between October and
December each year. The highest rainfall recorded in 2012 was in April with 431
mm and the driest month was January with only 1 mm of precipitation.
Temperatures can range between lows of 14°C to highs of 32°C on average, with

the hottest days typically occurring around January and coldest in July.(29, 260)

The study area is primarily rural with a few small towns dotted along the main
highway that runs through the site. The study population is largely made up of the
Luo ethnic group who are predominantly subsistence farmers with maize being
the principal crop. The majority of people live in compounds of extended family
units consisting of multiple houses in proximity to their fields. The terms
compound and household are used interchangeably. The houses are typically
constructed with mud walls, open eaves, and iron sheet roofing, however there are
a few houses with brick walls and tiled roofs. (259) The town centers are much

more densely population and people typically live in cement, multi-unit housing.

3.4.2 Malaria Epidemiology

In the western Kenyan highlands, malaria is biennial with 2 peaks in transmission
following the 2 rainy seasons. This site is characterized as being in the highland
fringe, or the area between highland epidemic prone and lowland endemic
transmission settings. (261) The area is classified as having stable, mesoendemic
transmission and has a mean parasite prevalence by RDT between 12 and 16%
however prevalence is highly heterogeneous and can range from 0 to over 70%.
(259) The predominant species of malaria is Plasmodium falciparum and the main
vector species include Anopheles arabiensis and An. funestus. Both species are

known to feed indoors and outdoor during the night, however, An. funestus is more
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antropophilic while An. arabiensis is known to feed on cattle and other animals.
(16, 27) Recently, an additional, currently incompletely characterized vector
species with a high sporozoite rate was identified in the area. (29) Malaria vector
control programs have been active with both indoor residual spraying (IRS) and
long lasting insecticide treated bednet (ITN) distribution. An annual IRS program
has been in place in the study area since 2005. Spraying is targeted to take place at
the beginning of the long rainy season in April, however in practice spraying is
sometimes implemented as late as August. Insecticides used are rotated and
include the use of Lambdacyhaolthrin (Icon) in 2011 and both Icon and
deltamethrin in 2012. IRS coverage is reported to be over 90%. A mass
distribution of ITNs took place in 2011 where one Permanet 2.0 embedded with
deltamethrin was distributed for every two people in a house. Ongoing ITN
distribution is also provided through health facilities as part of their maternal

health care clinic where one net is distributed to each pregnant mother. (260)

3.4.3 School Structure

Kenya is one of the many countries committed to free primary education and is
under the jurisdiction of the provincial administrative director of education. A
head teacher is responsible for the administration of each school. (248) In 2003,
fees for government run primary schools were eliminated, which lead to a spike in
enrollment of over 1 million children. (262) Despite the abolishment of school fees
and improved access, there are estimates that approximately half of the costs to
educate children still fall to the parents, including money for uniforms and sitting
exams therefore there are still subsets of the population to which basic education
is still unattainable. (262) Even with the continued presence of barriers to
education primary school enrollment in the study area was good and estimated at
97.8% in 2007. In the larger study area, and including both public and private
institutions, there were approximately 289 primary, 99 secondary, 9 post-
secondary and 13 non-formal schools, of which 76 primary, 35 secondary, 3 post-
secondary and 4 non-formal schools were located in the restricted study
area.(263) There is currently a precedent for national school-based de-worming

and malaria surveillance programs across the country. (244, 263)
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3.4.4 Health Facility System

In Kenya, the health care system comprises government, private, and faith-based
facilities and all report to the district medical officer of health and district public
health officer. (178, 264) Health facilities are stratified according to size and
services offered with national and provincial level facilities, serving as referral
points for the smaller units. Within each province, district and sub-district
hospitals are present which offer comprehensive medical care including surgery
facilities. (265) Health centers are smaller than sub-district hospitals and are
typically staffed with at least one clinical officer and provide for most primary care
services. (266) The dispensaries offer the lowest level of health services and are
run by a nurse in charge but are supervised by the clinical officer at the nearest
health center. A network of community health and support volunteers is also
present within most health facilities in Kenya and tasked with outreach, data

collection, and other activities, depending on the needs of the facility. (265)

The 12 functional health facilities in the area were identified based on community
consultation and included five government, five faith-based, and two private
institutions. The district hospital is located approximately 15 km west of the study
area in the town of Ouygis and a sub-district facility is approximately five km to the
northeast in Kabondo. The policy in Kenya is consistent with current WHO
guidelines that all malaria cases should be diagnosed before treatment. (75)
However, in this area, no facilities had supplies of rapid diagnostic tests (RDT). At
the time of this survey approximately seven of the 12 facilities in the area had a
working laboratory capable of testing malaria by microscopy, although the quality
of facilities varied dramatically. The first line treatment for uncomplicated malaria
infection is artemether-lumefantrine combination therapy (AL; Coartem®©) with

quinine injections used for severe malaria and as a second line therapy. (260)

Ultimately, the study site in the highlands of western Kenya provided an ideal
setting to explore the many important research questions addressed in this thesis.
The landscape and endemic and highly heterogeneous transmission (259, 267)
present a unique opportunity to define hotspots of malaria as well as to explore
operational alternatives to identify these areas that may be critical to identify so

that they can be targeted with malaria control interventions.
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Chapter 4: Results - Defining hotspot of malaria

transmission

In order to apply a hotspot targeted strategy to malaria control and elimination
practices, the ability to accurately define areas in the community that experience
higher transmission intensity is critical. This chapter explores the impact of
different practical issues present when identifying hotspots of malaria
transmission in the community including the choice of spatial statistical approach,
malaria metric, and the importance of sample sizes on where hotspot boundaries
are drawn. To address the objective of defining hotspots of malaria (specific
objective 1), data from a large community cross-sectional survey was used as

described in section 4.2.

4.1 Background and rationale

As geographic information systems (GIS) have become more accessible over the
past two decades for both research and programmatic disease surveillance, spatial
analysis of malaria has become common practice, and has lead to the concept of
‘shrinking the malaria map’. (15, 136, 145) Identifying the country-level spatial
heterogeneity in malaria burden has been useful for prioritizing areas for malaria
control (9) and to identify thresholds of endemicity for gauging change in
transmission intensity. (13) However, the high heterogeneity in malaria
transmission at the local level is increasingly being recognized (17, 120) with
theory suggesting that there are specific individuals or defined areas that
experience a disproportionate burden of malaria. (97, 106) Identifying these
highly exposed populations at the local level could be extremely useful for malaria
control programs to employ a targeted strategy directing resources to those
experiencing the highest burden. The first step to any hotspot targeting strategy
however is to define the populations of interest. In the context of this research,
defining hotspots is considered to be the more theoretical exercise to determine
where the hotspot boundaries are drawn. In contrast, identifying hotspots, as
discussed further in chapter 6, is considered to be the more practical component
related to operationally detecting the areas determined to be hotspots of

transmission for subsequent intervention.
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Abstract

The spatial heterogeneity of many diseases suggests that a targeted approach to
control and elimination programs could be an attractive option to maximize
impact while minimizing intervention costs. However, in the malaria literature in
particular, there has been little consistency in how such areas of focal transmission
are defined. Here we assess the impact of different malaria metrics (parasitological
and serological), sample size, and hotspot detection technique (model-based
geostatistics and spatial scan statistics) on the delineation of hotspot boundaries.
Using data from a large community-based malaria survey in the western Kenyan
highlands, we show that the choice of malaria metric, sample size, and statistical
method have a significant impact of the size and location of hotspots, with only
poor to moderate agreement in the households identified as being part of a
hotspot. Our results provide the first comprehensive assessment of the challenges

associated with applying hotspot theory to practice.

Introduction

Malaria is an important cause of global morbidity and mortality with an estimated
3.4 billion people at risk. ! The past decade has seen a large reduction in the
malaria burden in some areas and an estimated 47% reduction in mortality
compared to 2000. 2 As country policy shifts from control towards an elimination
agenda 3 new approaches are needed to supplement existing tools. 4 Increasingly,
research and programmatic activities are focusing on the heterogeneous nature of
malaria transmission at the community level. Identifying and targeting ‘hotspots’
(ie.local foci of intense malaria, which may also fuel transmission in surrounding
areas) with control interventions, could lead to a more sustainable reduction in
malaria burden .> 6 Several studies have been conducted that have identified
‘hotspots’ of malaria at various spatial scales. However, methodologically, there
has been little consistency as studies have used a range of different malaria

metrics, cluster detection methods, or assumptions within the same method. 7-1°

As hotspots of malaria increasingly become the focus of malaria research and
control practices 1 it is important to ensure that we are able to identify the most
robust and meaningful approaches for defining where hotspot boundaries lie. For

example, there is evidence that certain spatial statistical approaches are able to
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consistently detect ‘hotspots’ over time 1912 and that hotspots are more likely to
have malaria cases in subsequent years. 13 However, the impact of different
statistical techniques on the delineation of hotspot boundaries, the likelihood of
identifying false hotspots, and consequently the likelihood of individual
households being inappropriately targeted for (or excluded from) any subsequent
intervention, are unknown. Also, although there is evidence to suggest that the
sensitivity of the malaria metric used to inform hotspot detection is important, 14
there is little understanding of the impact of this on hotspot delineation. Model-
based geostatistics (MBG) 15 can predict areas of increased disease prevalence and
has been effectively applied in other disease systems that exhibit both large and
small-scale variation in disease transmission. 1 However, in the context of malaria
to date, these methods have mainly been applied at the national or provincial scale,

which have limited relevance for informing community level control practices. 8 17.

18

Here we use data collected in a large cross-sectional malaria survey carried out in
the western Kenyan highlands to demonstrate a novel MBG-based approach for the
detection of local-level hotspots of malaria while accounting for uncertainty in
their estimated severity and spatial extent. We ran models based on two different
malaria metrics: parasitaemia (measured by polymerase chain reaction [PCR]) and
seropositivity in order to determine the level of consistency in the output. The
models for each malaria metric were then applied to random subsets of the data to
determine the impact of sample size on the number, size and location of identified
hotspots. The MBG maps for both malaria metrics were also compared to results
obtained using SatScan, the most commonly applied cluster detection technique
currently used in malaria research, to determine the degree of consistency
between the two methods. The results generated are not intended to provide a
gold standard for hotspot detection, but to illustrate the difficulties in translating
theoretical concepts of malaria transmission hotspots to practices that can
effectively be applied to reduce malaria transmission as part of malaria control

programs.
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Methods

Data Sources

EPIDEMIOLOGICAL DATA

Epidemiological data were obtained from a community cross-sectional malaria
survey conducted in July 2011 in a 100 km? area situated in a rural area in the
western Kenyan highlands (0°28’S, 34°51’E). 1 This population is primarily
comprised of people from the Luo ethic group with subsistence farming being the
main occupation. The area is characterized by low but spatially heterogeneous
malaria transmission, with Plasmodium falciparum being the predominant malaria
species. 19 Firstly, all houses in the study area were digitized using high-resolution
satellite imagery (Quickbird, DigitalGlobe Services Inc, USA) 11 and was used as a
proxy for the total population size and distribution. Briefly, 17,503 individuals
residing in 3,213 randomly selected households selected from the list of digitized
houses were sampled with each participant providing three filter paper blood spot
samples. Key data relating to characteristics of individuals and households were
obtained using questionnaires. Filter paper blood spots were assayed by PCR to
detect the presence of a current malaria infection. 2021 Age-seroprevalence curves
were fitted for antibody response to AMA1 and/or MSP119 measured by enzyme
linked immunosorbent assay to provide a measure of malaria exposure. 22 23
Ethical approval for the collection of the epidemiological data was granted by the
ethical committees of the London School of Hygiene & Tropical Medicine (LSHTM
5721) and the Kenya Medical Research Institute (SSC 1802).

ENVIRONMENTAL DATA

Mean elevation for each compound was derived from Version 2 of the ASTER
global digital elevation model (DEM) (NASA, USA). The normalized-difference
vegetation index (NDVI) was calculated for the study area using the Quickbird
satellite imagery. The mean, minimum, and maximum NDVI values were calculated

for a 500 m circular buffer around each compound.

To obtain land classification data, multispectral image segmentation (MIS) of the
Quickbird imagery was conducted with eCognition (v 4.0, Trimble Geospatial
Imaging, Germany) software and the proportion of tree cover within the 500 m

circular window surrounding each compound was determined. Other land cover
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classifications such as roads, buildings, and bare earth, were also extracted but
were not associated with either outcome tested. Fishponds were identified using a
refined MIS procedure capable of detecting smaller features and manually verified
against the satellite imagery. The distance from each compound to the nearest

fishpond was calculated in ArcGIS (ESRI, USA).

Two variables associated with water were included in the model: a topographic
wetness index (TWI) and distance to streams. To calculate TWI, the DEM was used
to generate a surface representing the flow direction and accumulation of water
and corresponding TWI for the study area. 24 The maximum and mean TWI values
for the 500 m surrounding each compound were then calculated. Finally, the
locations of all streams in the area were determined by first locating the likely
location of streams using the topographic data and then manually digitizing the
more precise stream path using the satellite imagery and classified according to
the Strahler method for determining stream order. 2> The distances of each house

to all stream orders were calculated.

Determining hotspots of P. falciparum infection and exposure

A model-based geostatistical approach was used to model the spatial variation in
malaria prevalence. 1> 16 Two models were generated: malaria infection was
assessed using PCR prevalence and exposure to malaria was assessed using
seroprevalence estimates from the community cross-sectional survey. Model
covariates were restricted to the environmental variables described above.
Surfaces of the predicted prevalence for both outcomes were generated and used
to determine informative thresholds of risk for what would be considered as a
hotspot of malaria. Thresholds were determined by assessing the predicted
prevalence that encompassed 20% of the population. 26 Next, the probability that
any given area exceeded this threshold was determined and those with greater
than 80% probability that malaria prevalence exceeded the predetermined
threshold were considered to be hotspots. This process was repeated for both
outcomes to generate separate surfaces for hotspots of current infection and
exposure to malaria (see appendix 1.4 for detailed methodology). All analyses

were conducted in R v.3.0.2 (R-Project, USA).
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Model validation

Model validation is directed at ascertaining whether the fitted model adequately
reproduces the spatial correlation structure of the data. To achieve this, we first fit
a simple logistic regression model to the data, i.e. adjusting for the regression
effects of the environmental variables but ignoring any spatial correlation. We then
calculated the empirical semi-variogram of the residuals from this model, which
provides an estimate of the underlying spatial correlation structure of the data.
Next, we repeat the logistic regression fitting and variogram calculation from each
of 10,000 datasets simulated under the fitted model. From the simulated
variograms, we calculate pointwise 95% tolerance bounds for the semi-variogram
under the assumption that the model generated the data. An adequate fit to the
data is indicated if the empirical semi-variogram falls within the tolerance bounds.
Secondly, cross-validation was conducted by fitting the model to a random sample
of 70% of the dataset, calculating the root-mean-square prediction error (RMSE) of
prevalence over the 70% sample, and comparing this with the RMSE achieved
when the fitted model was used to predict prevalence at the locations of the

remaining 30% of the data.

Impact of Sample Size

The impact of sample size on model estimates was assessed by the change in two
summaries of predictive performance: the integrated mean square error (IMSE)
for the predicted surface; and the discrimination index (DI) for the exceedence
probabilities at the determined prevalence threshold. (see appendix 1.4). 15 First,
to estimate what level of performance would have been achieved if 100% of the
population had been sampled, we imputed a complete population data set using
the predicted malaria risk surfaces generated using the available data and
assigning the corresponding household prevalence for the complete set of digitized
households. 11 Next, we selected a random sub-set of the imputed data for each of
the sampling fractions 10-90% and fitted the geostatistical models to each sub-set.
The corresponding IMSE and DI values were calculated and plotted as functions of

the sampling fraction.

The next step was to determine the impact of a reduced sample size on hotspot

boundaries. For this we delineated hotspot areas using the definition given above
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in conjunction with the geostatistical model fitted to the actual data and classified
each compound accordingly as being within a hotspot or not. We then re-fitted the
geostatistical model to random samples of the data, with sampling fractions
between 10-90%. The resulting exceedance probability surfaces were imported
into ArcGIS and hotspot boundaries were determined. The sensitivity and
specificity of the houses correctly identified, using the complete sample as the
reference, were calculated and compared using the area under the curve (AOC)

from a receiver operator curve (ROC) analysis. 27

Comparison with spatial scanning tool

Hotspots identified using MBG were compared to those generated using a spatial
scan statistic (SatScan, USA), currently the most commonly used approach for
cluster detection within the malaria hotspot literature. 10.28-30 For this, we first
determined spatial scan statistics for the entire field. Using the Bernoulli model,
scans were conducted for both PCR and seropositivity outcomes, using both
circular and elliptical scanning windows and allowing the scanning window size to
be a maximum of 25% and 50% of the total population. The expected prevalence
consisted of the global mean prevalence (ie. the mean of the entire study area). 31
All households that were found to have a significantly greater (a=0.05) prevalence
than expected were identified as being part of a hotspot. Hotspots derived using
the various scanning approaches were visualized using ArcGIS. A second set of
SatScan analyses was conducted using a locally weighted expected prevalence with
the different scanning assumptions as has been previously described. 11 Results
were compared between metrics, methods, and assumptions at the structure level
using the Pearson correlation coefficient and the kappa statistic. The hotspots
consistently identified with at least partially overlapping boundaries as well as the
number of hotspots identified using MBG that were missed by SatScan were also
assessed. To determine the sensitivity of the uncertainty in the exceedence
prevalence threshold set to define a hotspot in the MBG-based method, a
comparison was also conducted assuming any structures within the areas that had

greater then 50% probability of exceeding the defined threshold.
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Results

MBG Models

The results of the geostatistical model suggested a positive association between
PCR prevalence and maximum and mean NDVI and a negative associated with
mean elevation, distance from fishponds and the proportion tree cover. The
optimum model fit for seroprevalence also indicated a negative association with
mean elevation, distance from fishponds and tree cover. In addition, maximum
TWI, minimum NDVI and distance to 274 and 3 order streams also had a negative
association while mean TWI had a positive association with seroprevalence (table

P1-1).

The predicted prevalence for PCR infection obtained from the spatial model
suggests that there is spatial heterogeneity of malaria infection in this 100 km?
area (figure P1-1A). The areas with a predicted PCR prevalence greater than 28%
encompassed 20% of the total population providing a threshold for what is
considered a hotspot of current malaria infection in this area. Next, the
seroprevalence estimates generated by the model also suggest that heterogeneity
in exposure is present within this small study area and that overall exposure levels
were much higher than those of current infection (figure P1-1B). The threshold for
what is considered a hotspot of malaria exposure was determined to be those

areas where predicted seroprevalence exceeded 70%.
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Table P1-1: Final adjusted mixed effects logistic regression models for both

outcomes. NDVI=normalized difference vegetation index;

TWI=topographic wetness index

PCR Prevalence Seropositive
Estimate |Std. p.value Estimate |Std. p.value
error error
Intercept |5.430 3.272 10.097 |Intercept |7.972 2.165 ]0.0002
Mean -0.007 0.002 |<0.0001 |Mean -0.005 0.001 |<0.0001
Elevation Elevation
(m) (m)
Maximum |1.532 1.030 |0.137 |[MaxTWI |[-0.011 0.011 |0.297
NDVI
Mean NDVI|5.132 2934 |0.080 |MeanTWI |0.230 0.104 |0.028
Distance [-0.001 0.000 |[0.000 |Minimum |-0.227 0.229 |0.320
from Fish NDVI
Pond (m)
Tree -3.094 1.473 |0.036 Distance |-0.0005 |0.0001 |<0.0001
Cover (%) from Fish
Ponds
(m)
Distance |-0.0001 |0.000 [0.039
3rd Order
Stream
(m)
Distance |[-0.0002 [0.0001 |<0.0001
2nd Order
Stream
(m)
Tree -2.921 0.8194 |0.0004
Cover (%)
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Figure P1-1: Results of the modeled predicted prevalence of A) current
malaria infection with overlaid hotspot boundaries showing the area that
has a predicted PCR prevalence greater than 28% and B) malaria exposure
as measured by seroprevalence with overlaid hotspot boundaries showing

the area that has a predicted seroprevalence greater than 70%.
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Next, the probability of predicted prevalence exceeding the 28% and 70%
thresholds was mapped for both PCR (figure P1-2A) and seropositivity (figure P1-
2B), respectively. The hotspot boundaries for PCR infection and seropositivity (ie.
areas that had a probability >80% of exceeding the threshold) encompassed 6.0%
and 8.3% of the population, respectively. The percent agreement between PCR and
seroprevalence at this probability threshold was 92.3% (Kappa=0.424).
Boundaries corresponding to areas with greater than 50% probability of exceeding
the threshold included 17.9% and 21.6% of the population for PCR and
seroprevalence, respectively. With the more relaxed definition of hotspots
consisting of areas where the probability of exceeding the threshold was >50%, the

percent agreement was 83.4% (Kappa=0.478).
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Figure P1-2: Probability contour maps of the study area indicating the
probability that the prevalence of malaria A) infection by PCR and B)
exposure by seroprevalence exceeds 28% and 70%, respectively with the
corresponding hotspot boundaries using both 50% and 80% thresholds.
MBG Model Validation
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Two methods to validate the model were used. The results of the probabilistic
model validation for both the PCR (figure P1-3A) and seroprevalence (figure P1-
3B) outcomes suggest that the model fits well, as in each case the empirical semi-
variogram lies well within the 95% tolerance limits throughout its range. The
semi-variograms also suggest that there is residual spatial dependence in both PCR
and seroprevalence up to 1.5km. Secondly, the results of the cross-validation also
suggest well-fitting models. For the PCR model, the MSE of the fitting and
validation sub-sets dataset were both 0.259 whereas the MSE for the
seroprevalence model were also similar at 0.278 and 0.242 for the fitting and

validation sub-set, respectively.

A) PCR Model Validation B) Sero Model Validation

25
|
25
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|

Semi-variogram
Semi-variogram
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Figure P1-3: Semi-variogram (solid line) and predicted 95% tolerance
bounds (dashed lines) for probabilistic model validation for A) PCR

prevalence and B) Seropositivity

Impact of Sample Size on MBG Estimates

We found a negative relationship between the sample size and the relative
increase of IMSE in the MBG. The rate of relative increase was similar between PCR
(Figure P1-4A) and seroprevalence (Figure P1-4B) models and had a greater
impact on the efficiency in modeling the predicted surface compared to the
probability contour map. Based on this imputed dataset, the proportion of the
population that was sampled as part of the survey resulted in a relative increase of

0.4 in IMSE for the predictive surface.
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B) PCR exceedance probabilities
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Figure P1-4: The impact of reduced sample size on model efficiency for
both the predicted and probability surfaces for both PCR (A,B) and
seroprevalence (C,D), respectively (solid line) with the dashed vertical line

representing the sample size achieved during the community survey.

Next, the difference in hotspot boundaries, as determined by the structures that
were consistently identified to be part of hotspots was assessed (table P1-2). The
PCR prevalence model showed a change in the number of structures identified as
being within or outside hotspots when sample size was reduced to 70% of the
dataset, or 20.9% of the total population. A second significant change in AOC was
observed with 30% of the dataset, or 9.0% of the total population. The

geostatistical model for PCR prevalence showed no ability to reliably detect
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hotspots with fewer than 10% of the sampled, or 3.0% of the total population. The
impact of sample size on the geostatistical models for seroprevalence showed
similar results. A significant reduction in the ability of the model to consistently
draw hotspot boundaries occurred at 70% of the sampled population, or 23.4% of
the total population. A second drop in hotspot consistency occurred at 40% or
13.3% of the sampled and total populations, respectively. When considering these
results in combination with the increase in IMSE (figure P1-4), these are likely to

be underestimates.

Table P1-2: Results of the impact of sample size on the ability to
consistently detect the same structures as being located inside hotspots of
malaria infection (PCR prevalence) and exposure (seroprevalence).
PCR Prevalence Seroprevalence
% of % of AOC Std. 95% CI % of | AOC Std. 95% CI
Sample | Total Error Total Error
Pop Pop
100 299 1.0 - - 33.2 |1.0 - -
90 269 (0923 |{0.0048 |0.914-0933 | 299 |0.926 [0.0039 |0.918-0.934
80 23.9 (0.896 |0.0054 [0.885-0.906| 26.6 |0.913 |0.0042 |0.905-0.921
70 209 (0.847 |0.0061 [0.835-0.859| 23.4 |0.859 |0.0050 |0.849-0.869
60 179 ]0.812 [0.0065 |0.799-0.824| 19.9 |0.855 |0.0050 [0.845-0.865
50 149 |0.819 [0.0064 |0.807-0.832| 16.6 |0.866 [0.0049 |0.856-0.875
40 12.0 |0.834 [0.0062 |0.821-0.846| 13.3 |0.773 |0.0056 |0.761-0.784
30 9.0 0.739 |0.0067 [0.726-0.752 | 10.0 |0.804 |0.0054 |0.793-0.815
20 6.0 0.693 [0.0066 |0.680-0.706 6.6 |0.706 |0.0056 |0.695-0.717
10 3.0 - - - 3.3 |0.744 |0.0057 |0.733-0.755

Comparing Methods: MBG vs. SatScan

Overall, the results of the two methods tested for detecting hotspots of PCR
prevalence suggested poor overlap in the structures consistently detected as being
part of a hotspot of malaria infection. First, the global SatScan approach tended to
overestimate the size of hotspots compared to MBG and this was consistent
throughout all scanning assumptions tested (Figure P1-5A). Although the percent

agreement between the MBG and global SatScan for PCR prevalence for both
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exceedance probability thresholds tested was high, the Kappa statistic and
correlation coefficient suggest that agreement is moderate and was better when
the less conservative definition of MBG hotspot (p>50%) was used (table P1-3).
Also, between 1 and 4 hotspots that were detected using MBG were missed by
SatScan, depending on the assumptions used. Next, the different assumptions
applied to the locally weighted SatScan approach resulted in fewer hotspots
missed when compared to MBG (figure P1-5B). However, the SatScan approach
identified additional hotspots that were not detected by MBG. The locally weighted

scans also resulted in poor agreement when compared to MBG (table P1-3).
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Table P1-3: Multiple Satscan comparisons with MBG as the gold standard for
PCR outcome showing results for defining the exceedence threshold as areas
with probability greater than 80% (per protocol) as well those areas with
any increased probability (p>0.5) of exceeding the defined threshold (Any).
Satscan comparisons included adjusting the window shape and size as well
as a combined metrics for being identified as having significantly greater
risk by any of the assumptions. Satscan results are shown using a global
scanning assumption encompassing the entire study population as the
comparison and a locally weighted scanning assumption determining
increased risk compared to the surrounding area. HS=Hotspot; Kap=Kappa

statistic; Corr=correlation coefficient

Per Protocol - p>0.80 Any - p>0.5
PCR- # HS #HS |Agrmt|Kap |Corr |#HS # HS |Agrmt|Kap |Corr
POSITIVE |overlap | miss |(%) overlap | miss |(%)
Global Scan

Circular Window

Max 50% 5 3 73.0 |0.197 |0.300 |3 4 76.3 [0.376 [0.402
Max 25% 7 1 714 0.188 |0.297 |5 2 76.3 ]0.398 [0.432
Elliptical Window

Max Size 7 1 75.6 [0.209 [0.301 |4 3 79.9 ]0.441 |0.461
50%

Max Size 7 1 80.0 [0.246 |0.325 |4 3 83.2 |0.490 |0.496
25%

Combined |7 1 69.0 [0.162 [0.263 |5 2 75.7 10.399 |0.441

Locally Weighted Scan

Circular Window

Max 1k 6 2 81.5 [0.227 |0.284 |7 0 79.3 ]0.332 [0.333
Max 250 6 2 79.6 [0.199 |0.258 |7 0 774 10.299 [0.301
Elliptical Window

Max Size 1k |7 1 80.0 [0.222 |0.288 |6 1 78.4 10.332 [0.335
Max Size 6 1 80.0 [0.221 |0.287 |7 1 78.4 ]0.331 [0.335
250

Combined |7 1 76.8 [0.207 [0.289 |6 1 75.6 |0.300 [0.309
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Finally, the hotspots defined using the seroprevalence geostatistical model showed
areasonable overlap with the results obtained from SatScan for both the global
(figure P1-5C) and locally weighted (figure P1-5D) scanning approaches. Visually,
the global scanning approach for all SatScan assumptions tested appear to define
larger hotspots compared to those detected by MBG while between 1 and 4
hotspots detected by MBG were missed by SatScan (table P1-4). Results of the
global scans suggest that there was poor agreement between the methods with
Kappa ranging between 0.133 and 0.252 when the conservative definition of MBG
hotspot was used (p>0.80) and improving to moderate agreement (kappa range:
0.376-0.546) with the relaxed MBG hotspot definition (p>0.50) (table P1-4).
Finally, the comparison of the locally weighted scans for seroprevalence also
suggest moderate to low agreement between methods. However, when
considering the relaxed definition of MBG hotspot (p>0.50) hotspots detected by
SatScan overlapped, at least partially, with all hotspots defined by MBG (figure P1-
5D).
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Table P1-4: Satscan comparison with MBG as the gold standard for Sero
outcome showing results for defining the exceedence threshold as areas
with probability greater than 80% (per protocol) as well those areas with
any increased probability (p>0.5) of exceeding the defined threshold (Any).

Satscan comparisons included adjusting the window shape and size as well

as a combined metrics for being identified as having significantly greater

risk by any of the assumptions. Satscan results are shown using a global

scanning assumption encompassing the entire study population as the

comparison and a locally weighted scanning assumption determining

increased risk compared to the surrounding area. HS=hotspot; Kap=Kappa

statistic; Corr=correlation coefficient

Protocol - p>0.80 Any - p>0.5
SERO- #HS |#HS|Agrmt| Kap | Corr | #HS |# HS|Agrmt| Kap | Corr
POSITIVE |overlap | miss| (%) overlap | miss| (%)
Global Scan
Circular Window
Max 50% 11 1 73.6 (0.245|0.333 |5 4 81.8 |0.541 |0.560
Max 25% 11 1 74.3 (0.252 |0.339 |5 4 82.1 |0.546 |0.563
Elliptical Window
Max 50% 8 4 59.7 |0.155 |0.267 |7 2 69.8 |0.376 |0.442
Max 25% 8 3 64.0 |0.183 |0.295 |7 2 73.2 |0.418 |0.471
Combined |11 1 55.6 |0.133 |0.248 |7 2 67.4 |0.358 |0.442
Locally Weighted Scan

Circular Window
Max 1k 10 2 72.8 (0.204 |0.273 |9 0 73.0 |0.312 |0.321
Max 250 9 2 73.5 (0.210 |0.276 |9 0 73.2 |0.306 |0.313
Elliptical Window
Max 1k 8 3 77.8 (0.246 |0.303 |9 0 76.7 |0.355|0.357
Max 250 8 3 75.3 (0.236 |0.306 |9 0 75.1 |0.345 |0.351
Combined |9 3 71.8 |0.225|0.314 |9 0 73.2 |0.342 |0.358
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Figure P1-5: Probability contour map showing the probability that
prevalence of malaria infection exceeds the defined threshold with Satscan
results superimposed showing the households that were located within a
hotspot based on the different assumptions tested for PCR and
seroprevalence for both A, C) global and D, B) locally weighted scanning

approaches, respectively.

Discussion

We detected highly heterogeneous transmission in the western Kenyan highlands
using different spatial analytical approaches. Comparing the outcomes of these
analytical approaches we have identified several challenges in our ability to
consistently detect hotspots of malaria infection as different methods and metrics
produced different results. These uncertainties in our ability to define hotspots of

transmission have implications for implementing control or elimination strategies.
We used two different malaria metrics, parasite prevalence by PCR and
seropositivity to antimalarial antigens providing measures of current infection and

malaria exposure. The different metrics do not provide the same picture of where
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hotspots are located in the community. The two malaria metrics included in this
study are inherently measuring different things in terms of malaria transmission
and it is possible that they are also measuring different facets of hotspot dynamics.
32,33 For example, hotspots of current infection that were missed by serological
measures may reflect a more epidemic or temporary hotspot whereby
seroprevalence estimates have yet become high enough to be considered
‘relatively’ higher compared to the other areas of more consistent exposure. ? For
analytical methods to successfully target the true extend of hotspots it may be
necessary to combine both metrics, or to use alternative measures like the
reproductive rate (Ro), for example. 34 Regardless of which metric is used, the
resulting hotspots should be interpreted accordingly (i.e. hotspots of infection or

exposure).

In addition to malaria metric, sample size also resulted in significant changes in
where the hotspot boundaries were drawn using the MBG approach. The purpose
of this study was not meant to carry out robust assessment of the sample sizes
required to conduct spatial analysis but to illustrate the point that sample size
matters in determining hotspot boundaries. We determined that the first
significant change in the structures identified as being part of hotspots occurred
when one-fifth of the total population was sampled. When this is considered in
conjunction with the baseline relative increase in IMSE given that we only had a
random selection of the population to start with, this is likely an underestimate.
Although a more rigorous sample size analysis would be useful for both MBG and
SatScan to determine both the optimal number and distribution of points, 35 our
result suggests that the number and/or distribution of points available will impact

where the boundaries are drawn.

Although we cannot determine which statistical approach is better able to
accurately identify and define true hotspots in the community, these results
indicate that the approach used will affect the resulting map. The two approaches
tested are very different in their use and are based on different assumptions. The
MBG approach is generally used to fit a spatial residual risk surface and allows for
a greater understanding of the nature of malaria hotspots by letting the overall risk

surface depend on both measured and unmeasured risk factors for malaria.l> The
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alternative, SatScan, is a simple testing procedure aimed at assessing whether a
disease shows spatial clustering and provides much less information on the
dynamics of the disease. Additionally, almost every disease shows spatial
clustering; hence testing this very general hypothesis is not usually of much
interest.3¢ 37 Some of the differences observed between the two cluster detection
approaches are likely due to factors such as edge effect, the subjectivity in defining
boundaries around points that were identified to have a statistically significantly
greater risk of being part of a hotspot vs. defining thresholds and probabilities of
increased prevalence, or how the models were able to address the complex
dynamics of malaria transmission in this area.® 16. 38 Regardless of the reasons for
the differences between methods, it is essential that those using these approaches
acknowledge the limitations of the methods and our understanding of what

constitutes a hotspot of malaria and not to over interpret the results.

There are several gaps in our ability to reliably detect hotspots of malaria that
have been recognized as part of this research. Firstly, as part of the MBG approach
to define hotspots of malaria, thresholds where malaria is predicted to be above a
set prevalence must be determined. In other applications of this geostatistical
methodology, a predefined policy threshold existed facilitating its application. 16
However, for defining hotspots of malaria such a threshold does not readily exist at
a local level and due to the microepidemiology of malaria and the variability that
exists between areas, thresholds will likely differ depending on the setting.10.26 The
next challenge will be to determine the ideal probability threshold to classify areas
as hotspots. In an ideal scenario, i.e. with unlimited amounts of data, the model will
produce a probability surface this is polarized into areas with 100 or 0%
probability of exceeding a specified threshold. A more realistic scenario, albeit one
that may still be unachievable because of resource constraints, is a multi-phase
approach. Typically, a MBG analysis in conjunction with specified prevalence
threshold and critical probability p (e.g. p=0.95) will divide the study-region into
three sub-regions: those almost certainly in a hotspot (predictive probability > p),
almost certainly not in a hotspot (predicted probability < p) and uncertain (all
others). Given such a map can be created in a time-scale relevant for malaria
transmission dynamics, additional data-collection could then be restricted to the

uncertain sub-region. In our study we used two (p=0.5 and p=0.8) critical
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probabilities to define hotspots, which inevitably gave different results. How the
increased uncertainty corresponds to true hotspots in different settings merits
further investigation. The probabilistic approach used by MBG could also inform
malaria control practices by defining areas where limited resources could be
targeted to the areas with the highest burden irrespective of whether true
hotspots are accurately identified in their entirety: probabilistic thresholds could

then be used to prioritize the structures to be targeted given available resources.

Here, we compared MBG to SatScan using a range of scanning assumptions for the
latter. Other approaches to define clustering, such as Moran’s I or kernel density
analysis, have also been used to define hotspots of malaria infection.!3 However, all
methods carry inherent assumptions with how they process data. For example,
while SatScan adjusts for sampling density, it assumes that clusters will either be
circular or elliptical in shape and, based on current practices in the malaria
literature, assumes that unadjusted prevalence data is sufficient to represent the
complex nature of malaria hotspot dynamics.5 In contrast, while MBG provides a
more statistically robust picture of malaria risk and accounts for uncertainty in the
estimates, it assumes that data conform to the generalized linear geostatistical
modelling framework including selection of an appropriate form for the regression
and residual spatial correlation components of the model, and that model
covariates are available at all locations for which estimates of prevalence are
required.’> Nevertheless, as we have shown, because the MBG approach is
embedded within a general statistical modeling framework, well-established
principles can be used to build the model and to assess its’ goodness-of-fit to the

available data.

The most important difference between MBG and SatScan lies not in the precise
details of their respective implementations in any particular example, but in their
underlying inferential philosophies. SatScan is rooted in a significance-testing
paradigm, whereby a priori each location is or is not part of a hotspot. In contrast,
MBG uses an estimation/prediction paradigm, whereby prevalence is modeled as a
spatially continuous function of location, r(x), the analysis assigns a predictive
probability distribution to the unknown value of r(x) at each location, and the

notion of a hotspot is regarded as no more than an operational convenience. Put
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another way, MBG is concerned not with how likely it is that a location has an
above-average prevalence, but with how likely it is that a given location has a
prevalence sufficiently high to be of practical concern in a specific setting. In our
opinion, the estimation/prediction paradigm is inherently better suited to the
problem at hand than is the testing paradigm. Nevertheless, we acknowledge that
determining which specific spatial statistical models best represent malaria

hotspot dynamics need to be further explored.

Ultimately, the use of cluster detection methods has highlighted the highly
heterogeneous nature of malaria transmission that occurs over a small area.? 10,30
The next natural step is to target these hotspots of malaria with control programs
as, theoretically, a greater impact on malaria transmission can be achieved if
interventions can be targeted to the right place at the right time.> 11 If control or
elimination programs are targeted to hotspots that do not accurately reflect the
true nature of transmission in the community, malaria can quickly resurge and this
approach could then incorrectly be perceived as ineffective. Therefore, it is
important to obtain a deeper understanding of hotspots of malaria transmission at
the local level and the best way of detecting them in terms of both statistical
methodology and malaria metric. A better understanding of malaria hotspots will
ensure that efforts are not wasted and that control policies can be informed by
evidence, as well as to determine how close we need to be to detecting the true

hotspot boundaries so as to achieve a sustainable reduction in malaria burden.
4.3 General Chapter Discussion

4.3.1 Overview of Findings

The results of this chapter suggest that defining hotspots that can accurately
reflect malaria transmission dynamics in the community is complex. Different
malaria metrics and cluster detection approaches offered some consistency and
were able to identify similar areas of increased burden. However, the specific
correlation in where the boundaries were drawn was only poor to moderate
according to both the kappa statistic and the correlation coefficient. Therefore, for
an accurate assessment of malaria transmission, as well as to establish
benchmarks with which to make unbiased comparisons for the efficacy of

interventions, the role of spatial clustering in malaria transmission is needed. A
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better understanding of local-level transmission dynamics would provide a
baseline of true of malaria hotspots and to better inform the optimal methods for

capturing these events in practice.

The inconsistency in delineating boundaries precipitates two main challenges for
applying hotspot theory to practice. Firstly, SatScan is the most commonly used
and operationally attractive malaria hotspot detection tool and is useful to identify
areas of relatively higher burden. (127) However, these results indicate that the
different assumptions used impacts the hotspots identified within the same study
area. Therefore, comparing results between study areas becomes difficult unless
the same assumptions are employed. These assumptions may be setting
dependent. For example, the size and shape of breeding sites will determine the
optimal scanning window size and shape. (16) It becomes difficult to translate a
hotspot targeted approach to malaria control programs if it is unclear which
hotspot detection method best reflects the true malaria transmission dynamics in
different settings. Therefore, a better understanding of the transmission dynamics
in a variety of settings would be useful to inform guidelines on which approach to

use where.

4.3.2 Implications of Spatial Methodology for Hotspot Detection

Some of the assumptions inherent in the analytical approaches presented are
highlighted above, however elaborating on these differences and the potential
risks and benefits inherent are merited. Firstly, the MBG approach would ideally
produce a scenario where the exceedence probabilities show a dichotomous result
around the defined threshold. However, due to the large sample sizes required,
uncertainty is inevitable, and an iterative sampling approach is then recommended
to increase sampling to further refine the resulting map. (146) Although
accounting for uncertainty in model estimates is a benefit, such an iterative
sampling approach is not very practical and such an exercise would likely be
confounded by the seasonal and stochastic nature of malaria transmission.
Similarly, until guidelines for predictive thresholds are established for defining
what constitutes high transmission areas, there is a risk that predictive thresholds
will be over-interpreted or arbitrarily set and not based on potential impact or

identifying populations that are a priority for control activities. Ideally, thresholds
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could be defined to define those areas in low transmission settings where Rc is
greater than 1 suggesting that transmission can be sustained. In high transmission
settings, it is possible that the majority of households would have a Rc value
greater than 1 suggesting that those areas with higher than average Rc could be of
practical concern and constitute the gold standard for transmission hotspots;
although in high transmission settings it is unlikely that such an approach would
be practical given the uniform high risk. However, measuring Rc is currently
difficult and the only proxies currently available (EIR, SCR, see chapter 1) are
restricted to generating population level estimates. The ability to obtain a
household-level measure or proxy of Rc would provide a gold standard for the
operationalization of thresholds for malaria hotspots. If adequate data to inform
these models, such as an individual metric of exposure, becomes available, a more
complete picture of malaria is obtained by accounting for risk not explained by the
modeled covariates, which could result in more robust delineation of hotspots if

correct thresholds for each metric can be identified.

In contrast, SatScan has the benefit of being a simple and operationally tractable
tool to define clusters of infection and in this study was shown to identify the areas
of increased risk for malaria, although provided more generous estimates of
hotspot boundaries. As discussed, SatScan is a tool that identifies clusters of
increased malaria. Although the simple hypothesis testing approach clearly
captures some of the transmission dynamics present in the community, there is a
risk that results are over interpreted without consideration to fundamental
concepts. For example, studies have identified clusters of malaria with small
sample sizes and imprecise measures such as clinical incidence. (268) The
selection of control populations used to compare the distribution of cases may not
be appropriate leading to biased results. (156) Lastly, as mentioned, SatScan
inherently identifies whether the cases of malaria cluster, which is known as
malaria clustering has been repeatedly observed at all spatial scales. (127) Until
studies have shown that the clusters identified using SatScan (or MBG) are
adequately capturing malaria transmission dynamics and are important for

maintaining or fueling transmission, the results should be interpreted accordingly.

88



All methods and metrics to detect areas with high malaria burdens assessed were
able to consistently identify the same regions as ‘hot’. The precise delineation of
hotspot boundaries is likely more essential in a research context where evidence of
the effectiveness of such a targeted approach will require the entire hotspot to
participate in intervention campaigns. As all methods were able to identify what
are likely the main hotspots, regardless of model assumptions, achieving a ‘fuzzy’
definition with less precise smoothed estimates, in an operational context may be
good enough. By expanding the target region to a defined political unit, such as
village or enumeration area, which is not only a more operationally attractive unit
to deploy interventions, but would also minimize the risks of missing sections of
the hotspot which could then refuel transmission despite a successful intervention.

(96)

4.3.3 Defining Hotspots of Malaria Transmission

Due to the lack of a gold standard approach for hotspot detection, the Satscan
method was identified as the working definition of malaria hotspots for the
purpose of this research. Despite the more robust MBG approach available, the use
of Satscan to define hotspots in this setting was taken due to uncertainties in the
ideal threshold for areas of increased risk, to provide consistency with other
studies in the area, as well as consistency with other research projects as this
method is currently the most widely used cluster detection technique in the field at
the moment. (148) Therefore for the purpose of this research, a hotspot of malaria
transmission is operationally defined as areas with statistically significantly higher
seroprevalence than the surrounding community using the SatScan approaches

defined in section 4.2 above (objective 1).

Targeting interventions to hotspots of malaria transmission is operationally
attractive as it suggests that a similar reduction in malaria transmission can be
achieved by focusing on smaller areas compared to a universal approach. (65)
Therefore, exploring the utility of this strategy and the potential application in a
locally feasible and accepted manner is needed. Historically, malaria surveillance
and treatment programs have employed the use of convenience sampling through

primary schools or health facility sampling approaches. Therefore, the use of
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convenience samples to detect heterogeneity and inform such targeted strategies

is a logical next step.

4.4 Conclusions
The main conclusions that can be drawn from the results in this chapter include:

1) The choice of cluster detection techniques for defining hotspots of
malaria has an impact on the resulting map both in terms of hotspots
identified and where the boundaries are drawn;

2) Hotspots of malaria based on a metric of current malaria infection and
malaria exposure provide different pictures of where hotspots and
hotspot boundaries are drawn, but all identify similar regions of high
burden;

3) The sample size used to inform the cluster detection technique has an
impact on where hotspot boundaries are drawn with larger sample

sizes resulting in narrower hotspot boundaries.
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Chapter 5: Results - Convenience Sampling for Measuring

Malaria Transmission Intensity

The ability of convenience samples to reliably gauge transmission intensity in the
surrounding community is critical to supporting the use of these more
operationally attractive approaches as a viable alternative to community based
surveys. This chapter addresses the ability of both school and health facility
surveys to provide a reliable metric of malaria transmission in the broader
community. To address this objective, concurrent school and community surveys
were conducted as described below in section 5.2 and health facility surveys

outlined in section 5.3.

5.1 Background and rationale

Historically, measuring malaria transmission intensity has primarily relied on
convenience samples as a way to monitor the disease burden using data collected
passively at health facilities and to a lesser extent school surveys. (13, 232) As the
understanding of malaria epidemiology evolved and the pervasiveness of
asymptomatic and subpatent infections and their contribution to transmission
recognized (53, 58), there has been a shift to incorporating community based data,
such as the malaria indicator surveys, to obtain a more accurate assessment of the
true nature of malaria burden. (225, 228) However, as community surveys are
operationally unattractive due to their logistical difficulties, and being time
consuming and expensive to conduct, (269) it is important to assess how reliable
the more operationally attractive alternatives are at measuring transmission in the

community (specific objective 2).
5.2 Convenience Sample: Primary Schools

5.2.1 Primary school surveys as a metric for malaria transmission
School-aged children provide a useful sentinel population for measuring malaria
transmission intensity (section 3.3.1). Programs are already in place that use
schools to screen for prevalence of other diseases such as helminthes and
therefore extending them to include malaria would not require many additional
resources. Similarly, training of existing school staff to conduct malaria testing can

easily be done making this approach feasible and operationally attractive. (212,
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263, 270) However, evidence is required to determine if malaria estimates in

school-aged children are representative to those of the surrounding communities.

5.2.2 Reliability of school surveys in estimating geographic variation in

malaria transmission in the western Kenyan Highlands (P2)
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Abstract:

Background: School surveys provide an operational approach to assess malaria
transmission through parasite prevalence. There is limited evidence on the
comparability of prevalence estimates obtained from school and community

surveys carried out at the same locality.

Methods: Concurrent school and community cross-sectional surveys were
conducted in 46 school/community clusters in the western Kenyan highlands and
households of school children were geolocated. Malaria was assessed by rapid
diagnostic test (RDT) and combined seroprevalence of antibodies to bloodstage

Plasmodium falciparum antigens.

Results: RDT prevalence in school and community populations was 25.7% (95%
Cl: 24.4-26.8) and 15.5% (95% CI: 14.4-16.7), respectively. Seroprevalence in the
school and community populations was 51.9% (95% CI: 50.5-53.3) and 51.5%
(95% CI: 49.5-52.9), respectively. RDT prevalence in schools could differentiate
between low (<7%, 95% CI: 0-19%) and high (>39%, 95% CI: 25-49%)
transmission areas in the community and, after a simple adjustment, were

concordant with the community estimates.

Conclusions: Estimates of malaria prevalence from school surveys were
consistently higher than those from community surveys and were strongly
correlated. School-based estimates can be used as a reliable indicator of malaria
transmission intensity in the wider community and may provide a basis for

identifying priority areas for malaria control.

Introduction

Obtaining accurate estimates of malaria transmission can be an intensive process,
especially when transmission is low [1]. As malaria transmission levels continue to
decline in many malaria endemic areas [2], developing robust, cost, and time
effective approaches to measure and monitor changes in transmission intensities
becomes more urgent. The issue is particularly relevant to national malaria control
programs as they largely carry the responsibility for malaria surveillance and for

whom the more extensive approaches (ie. large population surveys, longitudinal
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entomological surveillance) are likely to be logistically and financially burdensome

[3], [4]

In most malaria-endemic settings, children experience the highest incidence of
clinical malaria and highest parasite prevalence [5]. Although much focus has
centred around children under 5 years [6], [7], older, school-aged populations also
provide a valuable source of information on malaria burden. The school-aged
population has been shown to carry higher parasite prevalence and densities
compared to adults [8], [9] and also tend to have a lower reported rate of bednet
use [10]. The lower net use combined with the higher parasite densities suggest
that school-aged children experience a high malaria burden and may also be

important sources for onward transmission of parasites [11].

In areas with malaria transmission, malaria-specific antibody prevalence increases
with age as a consequence of cumulative exposure to malaria antigens and
consequently, the rate at which individuals become antibody positive, the
seroconversion rate, is strongly associated with transmission intensity [12].
Antibody responses in school-aged children are important in defining the slope of
the age-dependent seroconversion curve [13] and therefore constitute a highly
informative sentinel population both for monitoring variations in parasite
prevalence [14] and the rate of acquisition of age-dependent antibodies [13] over

time.

There are a number of logistical advantages associated with sampling children in
schools [11], [15], [16]. School surveys provide a convenient location to sample
large numbers of children in a shorter timeframe than equivalent sampling in the
community and can be easily integrated into routine public health programming.
However, sampling school populations also has inherent biases that can make their
generalizability problematic. For example, healthy and more affluent children may
be more likely to attend school, children may attend a school outside of their
immediate community, and they may be more likely to be positive for malaria by
RDT than adults due to their higher parasite densities and therefore school
estimates may not reflect community prevalence [5], [11], [14]. Therefore, the

suitability of sampling children at school for estimating community-wide
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transmission intensity requires direct comparisons of school and community
surveys to assess whether school-based estimates of malaria can provide accurate

estimates of community-based transmission.

Here, we investigate the concordance in paired school and community based
estimates across a range of malaria transmission intensities measured by infection
prevalence using RDTs and seroconversion rates. Households of school- and
community survey participants were mapped to determine the impact of the
spatial overlap between the two populations on the reliability of school surveys in

an area of highly heterogeneous transmission intensity in western Kenya.

Methods

Ethics Statement

This study was approved by the ethical committees of the London School of
Hygiene & Tropical Medicine and the Kenya Medical Research Institute and was
part of a larger government-lead, national school survey programme [15].
Approval was also provided by the Permanent Secretary's office of the Ministry of
Education (MoE) and the Division of Malaria Control, Ministry of Public Health and
Sanitation. Prior to the school surveys, meetings were held with the teachers,
parent-teachers' association, as well as the broader community including parents,
caretakers, and guardians. Information sheets describing the survey were
distributed at all community meetings and additional copies were left at the
schools, education office, and the chief’s and assistant chief’s offices.
Parents/guardians who did not want their children to participate were given the
option to opt-out of the study. Participating children provided assent: if a child
refused, the next randomly selected child would be approached [15]. Individual
written parental consent was not sought because the survey was conducted under
the authority of the Division of Malaria Control, Ministry of Public Health and
Sanitation, which have the legal mandate to conduct routine malaria surveillance.

Two independent ethical review committees approved this approach.

For the community survey, individual informed consent was sought from all
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residents of the compound above the age of 6 months by signature or thumbprint
accompanied by the signature of an independent witness. Consent for children
under the age of 18 was provided by a parent/guardian and children between 14
and 17 years also provided written assent by signature or thumbprint
accompanied by the signature of an independent witness. As defined in the Kenya
national guidelines, participants below 18 years of age who were pregnant,
married, or a parent were considered "mature minors" and consented for

themselves [19].

Study site and recruitment of study participants

This study was carried out in July 2010 in a rural, highland fringe area (1400-1600
m above sea level) of Rachuonyo South and Kisii Central districts, Nyanza Province,
Kenya [17]. The predominant ethnic groups in Rachuonyo South and Kisii Central
districts are the Luo and Kisii, respectively. Compounds are distributed broadly
across a rolling landscape intersected with small streams and rivers. The main
malaria vectors are Anopheles funestus, and An. arabiensis, and Plasmodium
falciparum is the predominant malaria parasite. There are two seasonal peaks in
malaria transmission reflecting the bimodal rainfall pattern, with the heaviest
rainfall typically occurring between March and June, with a smaller peak in

October/November each year.

A census of government primary schools in the study area was conducted (n=122)
and the numbers of pupils per school determined. A sample of 46 schools with at
least 100 pupils was randomly selected using an iterative process to limit the odds
of selecting schools with overlapping catchment areas. At each school, 11 boys and
11 girls per class from classes 2 to 6 were selected using random number tables
[15]. Corresponding “communities” were defined as all residences (called
compounds) falling within 600 m of each school. Compounds were enumerated
and their geographical location recorded using a Personal Digital Assistant (PDA)
equipped with a Global Positioning System (GPS) receiver. An unstratified random
sample of all enumerated compounds within the 600 m buffer were selected for
inclusion in the study. The 600 m radius was chosen to minimize the possibility of

overlap between the catchment areas of schools. All residents of the randomly
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selected compounds above the age of 6 months were eligible for the community

survey.

The power of the study was calculated to detect significant equivalence in malaria
prevalence estimates between the school and community populations. The average
number of people sampled in each survey was 4300 with a mean of 90 people per
cluster. The mean baseline malaria prevalence by RDT was estimated to be 20% in
the school and community populations. With a 5% absolute tolerance limit, there is
greater than 99% power to detect equivalence between the school and community
surveys at an alpha level of 0.05 [18]. The design effect was calculated to be 16.9,
for each calculated value of p. When the correlation within clusters is taken into

account, the adjusted power is 82%.

Survey Procedures

For both surveys, participants were asked to provide a finger-prick blood sample
for detection of malaria by rapid diagnostic test (RDT) (Paracheck, Orchid
Biomedical Systems, India). The same finger prick sample was used to measure
haemoglobin concentrations using a HemoCue photometer (HemoCue, Angelhom,
Sweden) and to provide three blood spots on Whatman 3 mm filter paper
(Maidstone, UK). Questionnaires were administered to assess wealth indices, use
of preventative measures for malaria, travel history, and household characteristics
[15]. Individuals found to be positive for malaria were treated with artemether-
lumefantrine (AL; Coartem®, Novartis) and haematinics were provided to
individuals found to be anaemic, according to the national guidelines at the time of
the survey. In the school survey, treatment was not given directly to children. If a
child was positive the child had to bring their parent/guardian to the school to
receive the drugs. If the parent was not available, the drugs were left with the
teacher and the child was asked to come to school the next day with the
parent/guardian to receive them. The compound of each child sampled at school

was located and mapped using a PDA with GPS receiver.

Laboratory Analysis
Filter paper blood spots were stored with desiccant at room temperature until

transport to -20 °C for long-term storage. Antibodies to P. falciparum Apical
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Membrane Antigen-1 (AMA-1) for Merozoite Surface Protein-1 (MSP-1) were
detected by Enzyme Linked Immunosorbent Assay (ELISA) as previously
described [12]. Antibody prevalence was determined after defining a cut-off

optical density (OD) using the mixture model [20], [21].

Statistical Analysis

All analysis was conducted in STATA 12.0 (StataCorp, Texas, USA) and Quantum
GIS 1.8 (Open Source Geospatial Foundation Project). Age-specific seropositivity
rates were used to estimate seroconversion rates (SCR). A person was considered
seropositive if they were positive for at least one of the antigens tested [12], [13].
Hypothesis testing for means (t-test) and proportions (z-test) were used to
compare the difference between proportions from the school and community
populations with the null hypothesis being that there is no difference. Crude
agreement between the school/community pairs was assessed using Spearman’s
rank sum agreement, and Youden’s index was used to determine the optimum cut-
off point for delineating high and low transmission intensities [22]. As correlation
is a measure of association, and not of agreement [23], concordance was
determined using Lin’s concordance correlation coefficient (r¢) [24] and the
Bradley-Blackwell F test was used to test if the concordance was statistically
significant [25]. Total least squares regression was used to determine if the school
and community estimates are concordant. The reduced major axis (RMA) is the
line of best fit calculated from the data using the total least squares regression.
Concordance is achieved when the slope of the RMA is not significantly different
from the line of perfect concordance, which has a slope of one signifying that a
change in one unit in one measure has a corresponding one-unit increase in the
second metric. Comparisons were calculated for both the community versus all
school survey participants as well as for the community versus a restricted sample
of school survey participants living within 600 m of the school (<600m population)

to ensure that both populations being compared resided in the same area.

Results
Study Population
A total of 4964 individuals were sampled at school, of which 4888 (98.5%)

could be traced to their compounds and were included in subsequent analysis.
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In the community survey, 3742 participants were sampled in 46 communities
(table P2-1). Due to the random sampling, 4.4% of children were sampled at
school and had their compound visited by a field team during the community

survey. These children were included in analysis for both populations.

Table P2-1: Demographic characteristics of the community and school study
populations. Prevalence of demographic, reported malaria control, and outcome
measures of malaria infection, seroprevalence and anaemia in the community and
school populations, as well as the school populations stratified by distance to
school.
Community |School School Children by Distance to School
0to 600m (601 to 1000 m |>1000m
Sample Size |N 3742 4888 1780 1717 1391
N per Median 80 108 37 38 30.5
Cluster
Range 72-96 81-111 17-94 4-60 8-47
Sex Male % 441 49.9 49.2 48.9 52.0
Age Mean (SD) |21.1 (20.6) |11.8(2.2) |11.7 (2.2) |11.8 (2.2) 11.8(2.2)
Range 0.5-100.7 |6-25 6.4-20.5 |6-25.5 6-22.6
Bednet Use |% (95% |57.1(55.4- |32.5(31.2-|33.4(31.2-|31.3(29.1- 32.9 (29.1-
CD) 58.7) 33.8) 35.6) 33.5) 33.5)
Range* 22.1-95.3 12.2-77.8 |5.9-75.7 |0-80.6 5.9-80
IRSinPast |% (95% |73.8(72.3- |70.4 (68.9-|68.3 (66.1-|70.7 (68.5- 72.9 (68.5-
Year CD) 75.2) 71.5) 70.4) 72.8) 72.8)
Range* 10.4-100 11.3-93.6 |9.2-95.8 |11.4-95.5 12.5-100
Recent % (95% |12.3(11.2- |16.1(15.0-|14.9 (13.2-|17.5 (15.7- 16.0 (15.7-
Travel CD) 13.3) 17.1) 16.5) 19.3) 19.3)
Range* 0-31.5 0-37.9 0-41.7 0-44.4 0-43.5
SES**-% 1 19.1 (0- 21.4 (5.7- |22.5(3.4- |22.0(4.9-50) |20.0 (0-
(Range*) 57.7) 38.5) 51.8) 50)
2 15.3 (0- 23.6 (9.3- |24.5(4.4- |22.9(0-56.7) |23.5 (0-
42.5) 41.4) 50.0) 53.6)
3 19.7 (0- 15.0 (4.5- |13.6 (0- 15.1 (0-40.5) [17.4 (4-
52.3) 28.1) 33.3) 37.5)
4 20.3 (0- 19.6 (11.2-|17.7 (2.8- |21.4 (4.4-50) |19.4 (0-
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72.8) 39.2) 41.2) 38.9)
5 18.9 (0- 19.8 (5.4- |21.3 (0- 18.5 (0-50) |18.5 (0-
48.8) 40.9) 50.0) 61.5)
RDT % +ve 15.5 (14.4- |25.7 (24.4-|25.5 (23.5-|26.9 (24.8- |24.3 (24.8-
(95% CI) |16.7) 26.8) 27.5) 29.0) 29.0)
Range* 0-51.2 0-71.4 0-88.2 0-75 0-78.4
SeroPrevale |% +ve 51.5 (49.5- |51.9 (50.5-|51.5 (49.2- |55.3 (52.0- 48.2 (52.9-
nce (95% CI) |52.9) 53.3) 53.8) 57.7) 57.7)
Range* 22.6-859 |5.6-87.4 |12.5-90.6 |0-91.9 2.8-96.9
Haemoglobi |Mean 12.7 (12.5- (13.4(13.4-|{13.4(13.3-|13.4 (13.3- 13.4 (13.3-
n (g/DL) (95% CI) |22.1) 13.5) 13.5) 13.4) 13.4)
Range 2.9-25.0 4.4-19.7 |4.4-17.7 |4.9-183 6.3-19.7
*Range of cluster level summaries
**Socioeconomic Status (SES) is divided into quintiles with 1=Low and 5=High

The range of the number of people sampled in each cluster was 72-96 and 81-111
in the community and school surveys, respectively (table P2-1). Compound net
ownership in the school population was reported to be 66.1% (95% CI: 64.7-67.4)
and 78.6% (95%CI: 77.3-80.0) in the community (p<0.0001). The school
population reported a significantly lower bednet use (32.5%) compared to the
community (57.1%) (p<0.0001). The age distribution of the participants in the
community survey was, as expected, markedly different than that in the school
survey (figure P2-1a). Analysis of the spatial distribution of residences of the
school children sampled showed that 36.4% of children lived within 600 m of their
school (figure P2-2), with a mean distance of 793 m (IQR: 465-1040 m) (figure P2-
1b). The proportion of school children residing within the community catchment
area varied per school and ranged from 16 to 89% (figure P2-1c). Due to
differences in sample sizes it was not possible to directly compare malaria
outcomes between school children and school-aged children sampled in the

community.
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A Community and School Population by Age
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Figure P2-1: Characteristics of the study population - age and

distance travelled to school. (A) A population pyramid showing the
age distribution of those sampled in the community survey compared
to those sampled during the school survey. (B) Histogram depicting
the distance between the school and compound where each child
resides. (C) The proportion of children sampled at each school that

reside within 600m of the school.
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Spatial Distribution of School Study Participants, Selected Schools
and Community Catchment Area, 2010 - Rachuonyo South,
Western Kenya

Legend

®  School

|:| Community

o Residence of School Child

Figure P2-2: Spatial distribution of school study participants, location of the
schools, and community catchment area. Each point represents the
compound of a child included in the study. The black crosses indicate the
location of each school that was included in the survey. The black circular
outline corresponds to the area with a 600m radius around each school and
thus represents the community catchment area sampled during the

community survey.

Malaria Prevalence

P. falciparum infection prevalence by RDT was significantly higher in the school
population at 25.7% (95%CI: 24.4 - 26.8) compared to 15.5% (95%ClI: 14.4 - 16.7)
in the community (p<0.0001). RDT prevalence ranged from 0 to 71.4% in the
schools and from 0 to 51.2% in the communities with the higher prevalence in
schools and communities typically located in areas of lower elevation (test for
trend p=0.026 and p=0.035, respectively) (table P2-1). School and community
parasite prevalence rates were strongly correlated (r=0.77; p<0.0001) (figure P2-
3A). Restricting the school sample to < 600 m population strengthened this
correlation (r=0.83; p<0.0001) (figure P2-3B).
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Figure P2-3: Prevalence of malaria infection in school vs. community

surveys in 46 clusters by RDT and serology. Scatter plots are shown with

the line of perfect concordance (x=y) and the data’s reduced major axis

using total least squares regression. (A) RDT prevalence per cluster in

community vs. all school children. (B) RDT prevalence per cluster in

community vs. school children residing within 600m from school. (C)

Seroprevalence per cluster in community vs. all school children. (D)

Seroprevalence per cluster in community vs. school children residing

within 600m from school.

Despite this strong correlation, prevalence rates from school surveys were, as

expected, higher than corresponding rates in the community and as such the two

measures were statistically discordant (Bradley-Blackwood p<0.0001, RMA

slope=1.676) (figure P2-3A). When the analysis was restricted to include the < 600

104



m population, the two populations were still statistically discordant (r. =0.56,

Bradley-Blackwood p<0.0001, RMA slope=1.97) (figure P2-3B).

Seroprevalence estimates ranged from 5.6 to 87.4% and 22.6 to 85.9% in the
school and community surveys, respectively. Seroprevalence in the two
populations did not differ significantly with 51.5% (95% CI: 49.5-52.9) in the
community and 51.9% (95% CI: 50.5-53.3) in the school population (p=0.39)
(table P2-1). The cluster-level paired estimates of seroprevalence exhibited good
correlation (r=0.69, p<0.0001) (figure P2-3C) in the community and all school
population. Restricting the analysis to the <600 m population had little impact on

correlation with the community (r=0.70, p<0.0001) (figure P2-3D).

Seroprevalence estimates from school and community surveys were positively
correlated (r=0.69, p<0.0001), but statistically discordant (r. =0.64, Bradley-
Blackwood p=0.0035, RMA slope=1.41) (figure P2-3C). When restricting the school
survey population to the < 600 m population, there was little improvement in the
concordance (r. =0.61), or RMA slope (1.62) and the measures were still

significantly discordant (Bradley-Blackwood p<0.0001) (figure P2-3D).

Table P2-2: Prevalence of malaria by rapid diagnostic test in community and school
populations by transmission zone. RDT prevalence rates and corresponding 95%
confidence intervals in the community, all school children, and school children
restricted to within the community catchment area (<600m from school).
Transmission intensity defined based on RDT prevalence in the community -

low=0-10%; moderate=10.1-20%; high=>20% RDT.

Community School School (<600m)
Low - % (95% CI) 5.8 (4.4-7.2) 12.0 (8.2-15.9) | 8.9 (5.1-12.6)
Moderate - % (95% CI) | 13.9 (12.4-15.3) | 23.0 (16.3-29.8) | 24.3 (16.8-31.8)
High - % (95% CI) 30.8 (24.6-37.0) | 48.4 (36.8-60.1) | 54.4 (42.0-66.8)

Agreement in Transmission Intensity
Transmission intensity strata in this study area were defined based on
approximate terciles of community RDT prevalence: 0-9.9% (low), 10-19.9%

(moderate) and 220% (high). When the school RDT prevalence estimates were
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stratified according to community transmission intensity, malaria prevalence rates
by RDT in the school showed a clear increasing trend in malaria prevalence (table
P2-2). Overall, the seroconversion rates based on school surveys (A=0.07; 95% CI:
0.071-0.078) were similar to those in the community (A=0,07; 95% CI: 0.066-
0.075). When stratified by transmission intensity, school surveys produced similar
seroconversion rates to those of the community in both the high and low

transmission settings (figure P2-4).

Community and School Age Adjusted School Seroconversion
Rates by Transmission Intensity

Probability Seropositive

0 20 40 60 80 100
Age
Figure P2-4: Age-adjusted seroprevalence in community and
school surveys (all children) by transmission intensity. The
age-adjusted community seroconversion curves (solid) and
school aged population (dashed lines). The different
transmission intensities are represented as: high (red)

moderate (green) and low (blue).

A Spearman’s rank test was used to determine whether estimates of parasite rates
obtained through school surveys can provide a guide to transmission intensity in
the community. Agreement in school and community RDT prevalence resulted in a
Spearman’s correlation of 0.78 and 0.84 in the all school children and the <600 m
population, respectively, and both correlations were statistically significant

(p<0.0001). When stratifying these results by transmission intensity, there was
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good correlation of the rank of RDT prevalence between school and community
clusters in the low (p=0.59, p-value=0.01) and high (p=0.61, p-value=0.02)
transmission intensities. In the <600 m population, there was a strong correlation
between ranks in the high transmission setting (p =0.67, p-value=0.01).
Seroprevalence only showed agreement between the community and the <600 m

population in high transmission settings (p =0.64, p-value=0.01).

As the <600 m school population showed better correlation with the community,
the optimum cut-off point for what was considered a low and high transmission
area based on school RDT prevalence in the <600 m population compared to the
community was ascertained. Based on this data, RDT prevalence estimates of less
than 7% (95% CI: 0-19%) and greater than 39% (95% CI: 25-49%) in school
survey represented areas in the community with low and high transmission levels,
respectively. This cut-off point resulted in a sensitivity of 58.8%, 66.7% and 78.6%
to correctly identify schools in low, medium, and high transmission areas in the
community, respectively (overall sensitivity of 68.0%). The specificity using the
cut-points for low, medium, and high transmission in the school and community

was 93.5%, 69.2% and 91.2%, respectively.

Cluster Specific Agreement

To obtain better concordance between each school/community pair, school
estimates were adjusted based on the linear regression coefficient of the cluster
level prevalence estimates. RDT prevalence per school was adjusted by 0.55 (95%
CI: 0.48-0.62) in the all school children population and by 0.51 (95% CI: 0.45-0.57)
in the <600 m school populations. The adjusted all school data showed better
concordance (rc =0.76) with the community data, the RMA slope was 0.92, and the
two measures were significantly concordant (Bradley-Blackwood p=0.36) (figure
P2-5A). Concordance in the <600 m school population was stronger (r.=0.82), had
a RMA slope of 1 and the measures were statistically concordant (Bradley-
Blackwood p=0.23) (figure P2-5B). Adjustment of the seroprevalence did not

change concordance between the community and school measures.
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Figure P2-5: Prevalence of malaria infection: adjusted
school vs. community surveys in 46 clusters by RDT.
Scatter plots are shown with the line of perfect
concordance (x=y) and the data’s reduced major axis using
total least squares regression. (A) RDT prevalence per
cluster in community vs. adjusted prevalence in all school
children. (B) RDT prevalence per cluster in community vs.
adjusted school prevalence restricting to children residing

within 600m from school.
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Discussion

This is the first time that malaria prevalence rates measured during school surveys
have been directly compared to those in the surrounding community as a means of
assessing the accuracy of school surveys for providing an alternative approach to
monitor and/or target malaria control [26]-[28]. The data show that school
surveys exhibit good correlation with the community measures of infection and
exposure. As expected RDT prevalence was higher in the school surveys [3], [11]:
the two survey designs effectively sample populations with markedly different age
distributions and, at least in areas of moderate to high malaria transmission,
school-aged children are more likely to be parasitaemic than the broader
community [14]. [rrespective of this higher prevalence, school surveys were able
to rank malaria prevalence according to their endemicity in a similar way to the

community surveys.

School surveys can identify areas of high or low transmission intensity in a way
that is simple, cost-effective and can quickly assess a large geographical area [15],
[16], [26]. Results indicate that schools in the highest RDT prevalence strata (in
this area, > 39% school RDT prevalence) correspond to areas where there is high
transmission in the community. These areas would therefore be expected to be a
high priority for malaria control. Conversely, schools with the lowest RDT
prevalence (in this area, <7% school RDT prevalence) could be assumed to indicate
either areas with low priority for control (in high endemic settings), areas that
have potential for implementing elimination strategies, or as a threshold to
identify where malaria control has been successful. A crude measure, identifying
priority areas, is operationally attractive for local malaria control programs and
could result in more effective targeting of scarce resources. A more accurate
reflection of malaria transmission in the community is also possible if the higher
RDT malaria prevalence expected in school-aged children is acknowledged [20].
This is the first attempt to quantify the overestimation of malaria prevalence
expected in the use of school surveys as a means to gauge malaria transmission in

the community [11].

The relationships described here may differ in different malaria transmission or

epidemiological settings [26], [29]. For example, in high transmission settings, the

109



parasite profile will be different as more children under 5 years of age are likely to
be infected with malaria [30]. The different transmission settings are not likely to
have an impact on the ability of school surveys to reflect areas of high or low
prevalence in the community; however, prevalence strata would obviously be
different. Also, the numeric factor used to adjust school RDT prevalence for
malaria in the different transmission strata will vary between settings. Correction
factors have been proposed to account for bias when using operationally
attractive, yet imperfect methods for surveillance of a wide range of public health
problems including helminths, HIV, and fractures [31]-[33]. If validated, a similar
approach for malaria could be useful as adjusted school measures for malaria

could facilitate monitoring changes in malaria transmission intensity.

One important consideration in using school surveys is knowledge of the
catchment from which the students derive. In this survey, the community was
defined as the area within a 600 m radius of the school: an arbitrary but pragmatic
decision influenced by the distance between schools, and the spatial heterogeneity
of transmission. After determining the location where the children sampled at
school resided, only 36.4% actually lived within this catchment area, with the
mean straight line distance from the child’s compound to school being just under
800 m. The variability in the distance that some children travelled to school
differed per school and was likely related to factors such as the size and reputation
of the school, proximity to other schools and environmental factors that affect
access. In our study the catchment area of schools influenced the concordance with
community estimates: despite the reduced sample size, both correlation and
concordance improved when restricting the comparison to the school children

residing within 600 m of the school.

School surveys may be biased due to absenteeism and characteristics of the
children that actually attend school, like health and SES. The healthy child effect, a
selection bias where healthier children are present and sick children are absent
from school, may impact prevalence rates as it suggests that the school malaria
prevalence rates would be lower than the true value. However, this may only be an

issue in low transmission areas where school-aged children would not have had
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the opportunity to build up sufficient immunity to reduce the likelihood of clinical

malaria and therefore be more likely to stay home due to malaria infection.

Similarly, the equal opportunity for children to attend school is also not likely a
factor due to the government of Kenya instituting free primary school education in
2003 [34]. In our study we found that children came from all SES classes and
previous work has shown that 97.6% of children in Rachuonyo district have
attended school [35]. Although the above mentioned factors may have an impact
on the estimates of malaria infection obtained during the school survey in this
study site, they are likely to be non-differential and of little consequence in the
application of this approach as an operational strategy to use school surveys to
target or monitor malaria transmission. In areas that do not have universal
primary education, or have low attendance rates, school-based surveys may not be

as representative as has been shown in this setting.

Other factors may have an impact on the observed concordance between the
school and community surveys including altitude and age and these are likely to be
site specific. However, restricting the school children to those that resided in the
same altitude range as the community had little impact on the results (data not
shown). Similarly, the age range of people sampled in the community survey is
much broader than in the school population. When the results of the community
survey were restricted to the school-aged population, no impact was observed. The
lack of impact using this population may have been the result of the very low

sample sizes in the age-restricted community population.

Despite the inherent uncertainty in the cluster estimates, the sample size per
cluster in the community and all school surveys were similar and therefore the
error would not be expected to have a large impact on the results. In the <600 m
population there was more variability in sample sizes, however there were only 14
schools with fewer than 30 people sampled. When the analysis was repeated with
these clusters removed, there was little impact on the results (data not shown).
Similarly, the prevalence data were not normally distributed, which violates the
assumptions inherent in the Bradley-Blackwood F test [25]. To determine the

impact of this, prevalence data were log additive transformed [36] to obtain a
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normal distribution and analyses were rerun. However, there was little impact on

the interpretation of the results with similar statistics of concordance

This study provides evidence that school surveys are able to inform malaria
control strategies and be used to measure or monitor changes in transmission
intensity. As local malaria control programs continue to take increased ownership
of the operational and financial elements of the malaria control and elimination
agenda, the ability to obtain accurate metrics on malaria transmission in an
efficient way will be essential for informed decision-making and long-term
sustainability. If these findings are shown to be consistent in other settings, school
surveys for malaria could provide such an operationally attractive tool for

assessing malaria transmission in the surrounding community.

5.2.3 Primary school surveys as a metric for malaria transmission:
Unpublished results

In addition to the analysis presented in section 5.2.2, a more detailed exploration
of the data was conducted. The more in depth analysis of the data not only
corroborates the findings presented above but also provides important insight to

factors associated with the malaria epidemiology in this study population.

5.2.3.1 Concordance of Seroconversion Rates

Concordance between SCR estimates was examined in the all school population
(figure 5-1A) and the school children residing within the community catchment
area (figure 5-1B). Despite the imprecise estimates of SCR within each cluster due
to the low sample size, in the school population, there was moderate correlation
(r=0.549) in SCR with the community estimates and borderline significant
concordance was observed (Bradley-blackwood F=2.559; p=0.089). Similar to the
other malaria metrics tested (section 5.2.2), when restricting the school population
to those residing within the community catchment, correlation improved
(r=0.613) and there was strong concordance between the estimates (Bradley-
blackwood F=0.162; p=0.851). Therefore, in this population, transmission
intensity ascertained using the convenience sampling approach was a reliable

gauge of malaria and could be a useful tool for malaria surveillance.
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Figure 5-1: Prevalence of malaria infection in school vs. community
surveys in 46 clusters by seroconversion rates (SCR). Scatter plots are
shown with the line of perfect concordance (x=y) and the data’s reduced
major axis using total least squares regression A) SCR in the community
vs. all school children; B) SCR in the community vs. school children

residing within the community cluster (<600 m from the school).

5.3 Convenience Sample: Health Facilities

In addition to school surveys, health facilities provide another convenient source

of data on the disease burden in the community. (100) Historically, estimates from
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passively collected clinical data and more recently health facility based cross-
sectional surveys have been used to assess trends in malaria burden. (134)
However, as discussed in section 3.3.2, the quality of health facility data is affected
by the obvious limitations of restricting sampling to those with suspected malaria,
to those who are willing and able to attend the clinic, and the limited quality of
recorded data and diagnosis. (223, 224, 250, 271) Therefore, the ability of use of
routinely collected data as well as purposefully conducted health facility surveys to
provide an accurate representation of malaria transmission in the community is
needed to assess the sensitivity of these convenient sampling approaches for

monitoring malaria transmission (specific objective 2).
5.3.1 Passive Case Detection

5.3.1.1 Introduction/Background

Passive case detection (PCD) systems have been used to monitor disease burden
and is the main source of information on malaria morbidity and mortality over
time. (100) When the focus was on controlling malaria and alleviating clinical
disease and mortality, the use of PCD systems provided the most sensible data for
monitoring and surveillance. With the decline in transmission and a shift to
malaria elimination, there is evidence that data on suspected and/or confirmed
cases may not provide the best marker to assess the broader community level
transmission however, direct comparisons with community surveys have rarely
been done. (100) The value of PCD to reflect heterogeneity in community malaria
transmission needs confirmation in areas with a large proportion of asymptomatic
infections (53), changing malaria endemicity (99), or areas with significant spatial
variation in risk. (127) Therefore, the aim of this study was to assess if data
collected during PCD in this highly heterogeneous setting was consistent with

community level transmission.

5.3.1.2 Methods

A PCD study was set up in five health facilities whose catchment populations fall
within the study site to maximize the spatial overlap with ongoing community
work and therefore provide insight on how this data represents malaria burden in
the community population: Ober Health Centre, Omrio Health Centre, Oriang

Catholic Dispensary, Nyandiwa Baptiste Dispensary, and Wire SDA Dispensary
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were identified for inclusion. Facilities were identified based on the presence of a
working laboratory, and a full-time laboratory technician. The PCD study took
place between February and September 2012 for a total of 27 weeks. Meetings
were held with the District Ministry Of Health (DMOH) and facility in charges to
obtain their consent for participating in the study, the best ways to integrate the
PCD into daily operations, and for training on all procedures. No remuneration was
offered. Each facility was provided a tympanic thermometer (Braun ThermoScan
Compact Ear Thermometer, Kronberg, Germany) and supplies of RDTs (First
Response, Premier Medical Corporation Ltd., India) to improve diagnostic capacity
and case management. Spot checks took place at least twice a month on randomly
selected days. The PCD began with a four-week pilot phase where adherence to
research protocols was monitored. After which, it was decided to suspend work in
two facilities: Nyandiwa had only worked a total of 4 days during that period and

staff in Oriang was found to be falsifying data.

For other facilities, all patients referred to the laboratory for a blood slide (BS) for
malaria were included in the PCD study. All patients receiving a BS also received a
test for fever using the provided ear thermometer. Those with a tympanic
temperature greater than 37.5 °C were tested for malaria with both BS and RDT. If
patients were not febrile, they received a BS only. All individuals referred for a
malaria test were recorded in a provided record book to record name, age, sex,
head of compound, nearest primary school, temperature, BS and RDT result. All
houses involved in the ongoing community work (appendix 1.3) were provided
with cards that had the study house identification number recorded to identify
those residing within the community study area. The participants were asked to
carry their card any time that they attended the facility throughout the year. The
card did not entitle them to free treatment but the technician asked the patient if
they had a card and recorded the house identification number or the color of the
card if they did not carry it with them, which represented a known area in the

community.

5.3.1.3 Results
Over the 27-week period of the PCD study, a total of 8783 patients attended the

facilities and were recorded in the register with Ober receiving the most patients

115



overall and Wire the fewest (table 5-2). Approximately one third of patients were
children under five years. In total, 3357 (38.2%) patients were suspected of having
malaria and were referred to the laboratory for testing, but this ranged across

facilities with 27.5%, 47.4%, and 67.7% at Ober, Omiro and Wire, respectively.

Malaria positivity ranged per facility and per month. Overall the slide positivity of
suspected malaria cases was 45.2%, but this ranged by month from 7.9% to 90.0%
(table 5-2). Omiro had the highest slide positivity rate (74.6%). Across all facilities
there was higher slide positivity in children under five years of age compared to
those five years of age and older. Similar trends were observed for RDT positivity:
overall 47.7% of patients suspected of having malaria and were febrile tested
positive by RDT and a similar trend was observed to that of slide positivity with
Omiro experiencing the highest and Ober having the lowest prevalence by RDT

positivity (table 5-2).

Attendance trends over the 27-week period of the PCD survey showed minimal
seasonal variability with the peak rains occurring between March (week 10) and
June (week 25) (figure 5-2 A, B). Treatment despite a negative test and treating
patients without a laboratory test for malaria infection was observed in all
facilities. The number of patients treated for malaria without a confirmatory test
result was much higher in Ober Health Center compared to the other clinics. Given
the rate of overtreatment, using the number of people treated for malaria as an
indicator of burden does not appear to be a reliable metric that can be consistently

compared across facilities.
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Table 5-2: Demographic characteristics and malaria results of the

patient population (i.e. suspected malaria cases referred for blood

slide) ordered according to transmission intensity as quantified by

seroconversion rate in section 5.3.3.

Omiro Wire Ober Combined
Number of Patients Attending Facility
N - All*|1864 1416 5503 8783
% <5|35.2 27.8 29.8 33.2
Number Suspected Malaria Cases Sent to Lab
N - All*/883 959 1515 3357
% <5(46.0 36.5 34.6 38.2
Age - Mean (IQR)
All|12.9 (3-17) 16.7 (3-22) 17.5 (3-25) 16 (3-23)
<5(2.5 (1-4) 2.3(1-4) 2.4 (1-4) 2.4 (1-4)
>5(21.7 (9-27) 25.0 (12-32) 25.4 (14-35) |24.4 (12-32)
Sex - % Male
All}43.8 43.3 442 43.8
<5(52.5 48.7 48.0 49.7
>5(37.0 40.3 42.2 40.4
Slide Positivity - % (Monthly Range)
All|74.6 (50-90) |50.2 (25.4-69) |24.9 (7.9-43.8) |45.2 (7.9-90)
<5|77.3 (0-100)  |51.3(15.4-81.8) |31.7 (0-60.0) |51.6(32.8-67.7)
>5(72.5 (53.8-100) (47.7 (21.1-75.0) |22.3 (3.6-39.0) |41.3 (27.9-56.3)
RDT Positivity - % (Monthly Range)
All|63.8 (0-100)  |48.4 (0-78.6) 34.7 (0-62.5) |47.7 (0-100)
<5(69.7 (0-100)  |44.0 (0-100) 40.8 (0-100) |51.0 (0-100)
>5(58.5 (0-100) [50.3 (0-100) 30.7 (0-83.3) |51.7 (0-100)

*175 entries missing age data
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Figure 5-2: Overview of weekly malaria PCD data collected in each health

facility. Panels A, C, E show results for those under 5 years of age and B, D, F

for those aged 5 years and older for Omiro, Ober, and Wire health facilities,

respectively. Lines show total attendance, number of febrile individuals,

number treated for malaria, and the number with a confirmed malaria

diagnosis according to either blood slide or RDT per week.
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To provide an accurate assessment of whether a PCD approach is able to provide
reliable estimates of malaria transmission in the community, ID cards were
distributed to the community to identify those attending the facilities that resided
in the area where community based estimates were available. ID cards were
distributed to approximately 25% of the community (appendix 1.3). However, of
the 8.2% of attendees that reported having received a card, only 14.1% had
remembered to bring it with them to the facility. Due to the small sample size of
individuals with a known location in the community, a meaningful comparison

could not be made.

5.3.1.4 Section Discussion

The PCD survey was a simple and cost effective approach to obtain information on
the malaria burden. Both RDT and BS positivity showed similar trends. It was not
possible to determine how estimates of malaria directly compared with the
community due to the small proportion of people that could be geolocated.
However, the rank of the facilities as determined by the PCD was similar to that
from the cross-sectional surveys, as discussed below in section 5.3.3, suggesting
that this convenience sample provides a reasonable relative measure of intensity
of malaria transmission in the broader population. The utility of routinely collected
data to monitor malaria transmission is therefore likely to be more useful at the
regional scale: Over a broader geographic scale than used in this study, routine
data could be useful to identify areas of relatively high or low endemicity and/or

identify areas that are of interest for further investigation.

Due to the lack of spatial information on patient residence, a comparison at a more
granular level could not be made. One of the strengths of routinely collected data is
that malaria trends can be analyzed in real-time to quickly identify any changes in
transmission intensity. (272) Such systems are integral to any malaria
surveillance program to enable a quick response to contain any potential outbreak
or to ensure that control operations are targeted where and when they would be
more effective. However, as mentioned, their ability to detect the presence of
emergence of hotspots will depend on the availability of spatial information of the

residence of cases.
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This PCD system in our setting involved continuous monitoring of both adherence
to study protocols and for data quality. We found that this was needed and one
facility had particularly unreliable data. This continuous support will not be
available in routine practice and is a known problem with relying on routinely
collected data to monitor malaria transmission. (178) For research purposes,
facilities could only be included if they had a functioning laboratory: in this setting,
of the 12 health facilities in the region, only seven had functioning laboratories at
the time of the survey and of those only three were consistently staffed and
therefore retained in the study. For PCD systems to become a reliable tool to
monitor malaria transmission, the availability of confirmatory testing to replace
clinical diagnosis, the variation in the clinical subjectivity, and more specifically,
the variation inherent in the rate of referrals for suspected malaria must be

addressed before meaningful comparisons between facilities can be made.

Ultimately, the use of routinely collected data is the most convenient source of data
to monitor malaria transmission in the community. This study showed that data
generated during PCD are able to rank regions according to transmission intensity,
but the commonly used malaria metrics (ie. slide positivity) overestimate true
prevalence and the relationship is likely to be highly seasonally variable (ie. 100%
slide positivity rate during the low transmission season). Therefore, PCD systems
are useful for identifying areas that have higher or lower transmission intensity
and would therefore merit for a more detailed examination using alternative
approaches such as school or all attendee health facility surveys with
corresponding geolocation exercises, to obtain more precise estimates of

transmission dynamics in the community.

5.3.2 Health facility surveys as a metric for malaria transmission

One approach to minimize the biases associated with using routinely collected data
in health facilities is to conduct a cross-sectional survey of the health care seeking
population. Testing all patients and accompanying individuals for malaria
regardless of the presence of malaria symptoms could minimize bias inherent with
focusing on suspected cases alone and therefore has the potential to provide a

more robust estimate for transmission intensity in the broader community than
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sampling approaches that include symptomatic individuals only (specific objective

2).
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Abstract

In endemic settings health facility surveys provide a convenient approach to
estimating malaria transmission intensity. Typically, testing for malaria at facilities
is performed on symptomatic attendees, yet asymptomatic infections comprise a
considerable proportion of the parasite reservoir. We sampled individuals
attending five health facilities in the western Kenyan highlands. Malaria prevalence
by rapid diagnostic test was 8.6--32.9% in the health facilities. Of all PCR positive
participants, 46.4% (95% CI: 42.6--50.2%) had infections that were RDT negative
and asymptomatic of which 55.9% consisted of multiple parasite clones as
assessed by merozoite surface protein-2 genotyping. Subpatent infections were
more common in individuals reporting the use of non-artemisinin based
antimalarials in the two weeks preceding the survey (OR 2.49, 95% CI: 1.04--5.92)
compared to individuals not reporting previous use of antimalarials. We observed
a large and genetically complex pool of subpatent parasitemia in the Kenya

highlands that must be considered in malaria interventions.

INTRODUCTION

In order to allow national programs to effectively tailor malaria control strategies
to local transmission dynamics it is essential that existing surveillance systems are
capable of providing accurate, spatially-specific measures of malaria transmission
intensity. 1.2 Most malaria surveillance systems, including the system in Kenya, are
predicated on passive detection of cases at health facilities that use either clinical
diagnosis alone, or clinical diagnosis with parasitological confirmation by
microscopy or rapid diagnostic tests (RDT). 3456 However, estimates of malaria
burden from passive case detection data are subject to a number of potential
biases that can vary considerably between health facilities, including the
occurrence of non-malarial fevers, variations in accessibility of health services,
willingness to pay any ancillary costs, and the diagnostic test used. In addition, the
experience of the laboratory and clinical personnel, quality of microscopy or
particular brand or availability of RDTs, and time dedicated to malaria testing are

also important potential sources of bias making results difficult to compare. 67

Health facility based cross-sectional surveys that sample from all individuals

presenting at the facility, as well as any accompanying individuals (as distinct from
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sampling only among individuals with suspected malaria) have been shown to be a
useful tool for measuring malaria transmission intensity. 8 ° Health facility surveys
provide an operationally attractive method to estimate malaria prevalence in the
wider catchment population, as the inclusion of all health facility attendees
mitigates against some of the biases associated with passive case detection. 7. 10
However, most health facility malaria surveys have relied on diagnosis by
microscopy or RDT, both of which have a limited ability to detect parasitemia at
low parasite densities. & 1112 The number of malaria infections detected through
these surveys is therefore likely to have been substantially lower than would have
been achieved using a more sensitive diagnostic approach such as polymerase
chain reaction (PCR). 11.13.14 The potentially large proportion of infections that are
undetected poses a significant challenge for malaria surveillance, control, and
elimination strategies: transmission is likely underestimated and reservoirs of
infection missed. As a result, control programs may only target a subset of the
actual parasite population or campaigns may be implemented before the parasite

reservoir is at or below the threshold where elimination is feasible. 1315, 16,17

In the current study, two cross-sectional surveys were carried out in five rural
health facilities in the highlands of western Kenya to 1) assess the utility of this
type of survey approach for measuring malaria transmission; 2) identify the
prevalence and complexity of asymptomatic and subpatent infections and; 3) to

evaluate factors associated with having asymptomatic and subpatent infections.

METHODS

Study Site and Population

This study was conducted in health facilities in a highland fringe area covering a
region of approximately 200 km? in Rachuonyo South, Nyanza Province in the
western Kenyan highlands. The area is situated between 1400 and 1600 m above
sea level and the landscape is characterized by rolling terrain intersected with
rivers and streams. The population is predominantly people from the Luo ethnic
group with subsistence farming being the main occupation. 18 Malaria in the area is
spatially heterogeneous with prevalence estimates in primary schools ranging
between 0 and 71% and transmission follows a bimodal seasonal pattern

associated with the long and short rainy season typically occuring between April
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and June and October and December, respectively. 1920 The predominant malaria
vectors in the area are Anopheles funestus and An. arabiensis and Plasmodium
falciparum is the principal malaria parasite species present. 21 Two surveys were
conducted in five rural health facilities representing all government facilities in the
area in collaboration with the District Ministry of Health. Sampling took place in
Agawo, Ober, Omiro, and Tala health facilities in both surveys. In the second
survey, Othoro Health Center was replaced with Wire Dispensary, a faith-based
facility, to achieve maximum overlap with the ongoing community work (figure
P3-1). The surveys were conducted in October 2011 and July 2012 to correspond
with a period of low and high transmission, respectively and examine the

sensitivity of these surveys to changes in transmission intensity. 18
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Figure P3-1: Locations of rural health facilities included in the study as well as
government primary schools and boundaries of the community survey. Note:
Othoro Health Center is located along the main road approximately 20 km to

the west of this area.

Consenting and Sample Collection
All consenting patients and those accompanying them that attended the outpatient
department during the four-week survey period were eligible for inclusion. At each

facility, a maximum of 150 people from each of three age categories (0.5-5, 6-15,
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>15 years old) were included. Recruitment within an age category was stopped
once the target had been reached. Individuals were excluded if they were
extremely ill and required immediate medical attention, if they were less than 6
months of age, if they were attending a scheduled clinic or other ward of the health
facility, if they were unwilling or unable to provide consent (e.g. under 18 without
being accompanied by a suitable guardian), or if they had been previously sampled

at that same facility during the current study.

Two field workers were stationed at each facility and data collection activities
were integrated into the normal day-to-day operations as far as possible. A field
worker would approach each potential eligible participant and explain the study
while they were waiting to visit the clinician. After the consenting process, a short
questionnaire was administered on participant demographics, malaria history and
control behaviors, whether they were a patient or accompanying person, current
and recent symptoms, recent drug use, and travel history. Each participant was
screened by RDT to determine the presence of current patent infections; three
blood spots were collected on filter paper (3MM Whatman, Maidstone, UK) for
subsequent molecular and serological analysis. Filter papers were dried and stored
with desiccant at -80 °C. In the first year of the survey, axillary temperature was
measured using a digital thermometer and those with temperature > 37.2 °C were
considered febrile. 18 In the second year, tympanic thermometers were used due to
the increased accuracy and shorter time to result. For those tested with the
tympanic thermometers, only those with temperatures >37.5 °C were considered
febrile. In the second survey, the RDT was changed from Paracheck (Orchid
Biomedical Systems, India) to the more sensitive First Response kit (Premier
Medical Corporation Ltd., India). 22 All diagnostic information was made available
to the clinician for clinical decision-making. The final diagnosis and any drugs

prescribed by the clinician to study participants were also recorded.

Research Ethics

The ethical committees of the London School of Hygiene & Tropical Medicine (Ref:
LSHTM 5956) and the Kenya Medical Research Institute (Ref: SSC 1589) approved
this study. Individual informed consent was obtained from all participants by

signature or thumbprint accompanied by the signature of an independent witness.
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Consent for children under the age of 18 was provided by a parent/guardian and
children between 14 and 17 years also provided written assent by signature or
thumbprint accompanied by the signature of an independent witness. As defined
in the Kenya national guidelines, participants below 18 years of age who were
pregnant, married, or a parent were considered ‘mature minors’ and consented for

themselves. 23

Laboratory Analysis

Filter paper blood spots were used to test for antibodies to malaria to ascertain
malaria exposure and transmission intensity. Antibodies to P. falciparum Apical
Membrane Antigen-1 (AMA1) and Merozoite Surface Protein-1 (MSP1-19) were
detected by Enzyme Linked Immunosorbent Assay (ELISA). Briefly, two blood spot
sections per sample were punched and antibodies eluted according to Baidjoe et al.
24 Antibody prevalence for each antigen was determined after defining a cut-off
optical density (OD) based on a standard curve of known antibody concentration
using the mixture model and normalized across plates. 202> A person was
considered to be seropositive if they had normalized OD values above the cutoff for
at least one of the antigens tested. Age-adjusted seroconversion rates (SCR) were

calculated. 25

Nested polymerase chain reaction (nPCR) was used to test for the presence of
parasite DNA to provide a gold standard measure for current infection. A Chelex-
saponin approach was used to extract DNA as described by Baidjoe et al. 24 and the
nPCR assay targeting the 18S ribosomal subunit of P. falciparum was used as
previously described. 26 Samples that were positive by nPCR were then selected for
subsequent analysis to identify allelic diversity using the polymorphic MSP2 region
to provide an alternate measure of transmission intensity. 24 2527 An additional
nPCR reaction was conducted to amplify the block-3 region of the MSP2 domain
targeting the FC27 and IC3D7 allelic variants. 28 The product of the MSP2 PCR was
viewed on 1.5% agarose gel to determine the dilution factor necessary to prepare
samples for capillary electrophoresis: intense bands were diluted at 1/100,
moderate bands at 1/40 and faint bands at 1/10. Electropherograms were viewed
using Peak Scanner (v1.0) and all discrete peaks greater than 500 florescent units

were considered to be distinct allelic types. 2°
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Case Definitions

Subpatent malaria infections were those who tested positive for malaria by nPCR
but negative for malaria by RDT; patent infections were defined as those who were
positive by both nPCR and RDT. Individuals who were positive by RDT but
negative by PCR (n=267) were considered to be false positives likely attributable
to residual HRP2 antigen and were not included in the analysis exploring
subpatent infections (they were included in estimates of RDT prevalence,
however). 30 Asymptomatic infections were individuals who tested positive for
malaria by nPCR but were afebrile at the time of sampling and did not report

history of fever in the 24 hours prior to sampling. 14

Statistical Analysis

Statistical analysis was conducted using Stata 12.1 (STATACorp LP, USA) and R
V3.02. Comparisons of parasite prevalence estimates between facilities, between
years, and between age categories were performed using a two-sided test for
proportions and the corresponding exact binomial 95% confidence intervals (CI).
To assess the ability of health facility surveys to provide reasonable estimates of
the community, data from a large community cross-sectional survey conducted in
July 2011 in the same study area was used. 18 Data was restricted to those sampled
as part of the community survey that resided within the health facility catchment
areas as defined by cost-distance analysis and SCR was calculated as described
above. 31 The health facility samples were restricted to those collected in July 2012
to minimize any potential seasonal bias. Multiplicity of infection (MOI) was
calculated for all positive samples and 95% CI were calculated assuming a zero
truncated Poisson distribution to account for all samples containing a minimum of
one clone. Allelic richness (Rs), a metric for allelic diversity, was calculated using

FSTAT v 2.9.3.2 software as previously described. 32

Random effects logistic regression was used to assess factors associated with
having a subpatent as well as asymptomatic malaria infection. Explanatory
variables tested included year, sex, age, whether the individual was a patient or
accompanying person, reported taking an antimalarial drug in the past 2 weeks,

reported taking an anti-pyretic drug, reported using a bednet the previous night,
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reported living in a household where indoor residual spraying had taken place in
the previous 6 months, and number of infecting parasite clones. Due to the non-

specificity of malaria symptoms it was not possible to further stratify patients by
reason for attending facility. The final adjusted models were generated retaining
all variables that were significant at the 0.05 level in a backwards fashion and the

AIC values were used to confirm the optimum model fit.

RESULTS

Population Demographics

In total, 1598 and 1444 people were sampled in the first and second surveys,
respectively, the majority of which were patients (table P3-1). There were similar
proportions of males and females sampled in the <5 and 6-15 age categories, but
significantly more females than males were sampled in the >15 year age group
(p<0.0001). Most of the accompanying people were >15 years of age. Also, the
majority of individuals reported that they had slept under a bednet the previous
night, although in both surveys participants aged 6-15 were less likely to have
reported using a net than younger children (p<0.0001) or adults (p<0.0001) (table
P3-1). The majority of patients (63.4%; 95% CI: 61.4--65.3%; Facility Range
(Range): 25.5--79.0%) reported having a fever in the previous 24 hours compared
to 19.0% of accompanying people (95% CI: 15.9--22.4%; Range: 0--37.7%) but
only 23.2% (95% CI: 21.5--24.9%; Range: 18.4--37.0%) and 7.5% (95% CI: 5.4--
9.7%; Range: 0--19.7%) of patients and accompanying people, respectively had a
current fever at the time of their health visit. Overall, 30.6% (95%CI: 28.9--23.2%j;
Range: 15.6--39.6%) of participants reported having taken antipyretic drugs and
13.7% (95% CI: 12.5--15.0%; Range: 8.8--21.9%) reported taking an antimalarial

drug in the past 2 weeks.
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Table P3-1: Demographics of the study population in health facility
surveys in five rural health facilities carried out during the short and long

malaria transmission seasons.

Low Transmission Season High Transmission Season
(October 2011) (July 2012)
Mean | 95% CI Range Mean | 95% CI Range
N
All | 1598 - 284-388 | 1444 - 203-379
6m-5 years | 537 - 76-147 514 - 52-150
6-15 years | 304 - 32-90 249 - 28-79
> 15 years | 767 - 149-150 | 681 - 104-150

Sex - % Male

All | 37.5 35.2-40.0 | 33.8-38.9 | 38.7 36.2-41.3 | 34.6-40.1

6m-5 years | 49.0 44.7-53.3 | 43.7-53.9 | 52.3 47.9-56.7 | 44.4-58.0

6-15 years | 47.0 41.3-52.8 | 42.9-54.2 | 46.6 40.3-53.0 | 39.7-54.4

> 15 years | 25.6 22.5-28.9 | 20.6-31.8 | 25.5 22.3-29.0 | 22.4-31.5

Patient/ Accompanying status - % Patient

All | 81.4 79.4-83.3 | 66.9-93.0 | 79.5 77.3-81.5 | 53.7-90.5

6m-5 years | 96.5 94.5-97.8 | 91.6-91.7 | 93.8 91.3-95.7 | 88.5-98.0

6-15 years | 96.0 93.2-97.9 |90.6-100 | 97.2 94.3-98.9 | 92.9-100

> 15 years | 64.9 61.4-68.3 | 43.9-85.3 | 62.3 58.5-65.9 | 30.4-80.8

Bednet - % reported sleeping under net previous night

All | 87.2 85.5-88.9 | 82.2-94.0 | 90.4 88.8-91.9 | 89.0-91.8

6m-5 years | 86.8 83.6-89.6 | 82.6-92.1 | 94.0 91.5-95.9 | 88.7-97.5

6-15 years | 82.1 77.3-86.3 | 69.6-92.3 | 81.1 75.7-85.8 | 76.0-84.8

>15 years | 89.6 87.2-91.7 | 84.1-96.7 | 91.2 88.8-93.2 | 89.6-93.3

Recent IRS - % reported having IRS in past 12 months

All | 77.8 75.4-80.4 | 70.1-87.4 | 76.9 74.6-79.0 | 70.6-81.0

Recent Travel - % reporting having travelled in past 3 months

All | 32.5 30.0-35.1 | 26.7-39.9 | 20.1 18.1-22.3 | 10.7-29.8

6m-5 years | 27.9 23.8-32.4 | 17.3-50.0 | 16.1 13.1-19.6 | 6.0-25.9

6-15 years | 21.9 17.1-24.4 | 0-32.6 6.8 4.0-10.7 2.0-10.3

>15 years | 40.7 36.7-44.8 | 22.2-49.0 | 28.0 24.7-31.6 | 14.4-39.3
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Malaria Transmission Intensity

All metrics tested were able to detect a change in malaria burden between the two
surveys. Seroprevalence estimates increased from 37.6% (95% CI: 35.2--40.0;
Range: 24.5--53.0%) during the first survey to 46.8% (95% CI: 44.2--49.4%;
Range: 34.4--62.0%) in the second survey (p<0.0001). Similarly, malaria parasite
prevalence by RDT increased from 16.9% (95%CI: 15.1--18.8%; Range: 8.6--
30.1%) to 22.4% (95% CI: 20.3--24.6%; Range: 9.5--32.9%) and by PCR from
20.4% (95%CI: 18.4--22.4%; Range: 9.5--40.3%) to 25.5% (95%CI: 23.2--27.7%;
Range: 8.7--51.5%) during the first and second survey, respectively (table P3-2).
Prevalence within age categories also increased between surveys with the highest
estimates in the 6--15 years age category and the lowest in adults (p<0.001) (table
P3-S1).

Table P3-S1: Malaria prevalence estimates by rapid diagnostic test (RDT)
and nested polymerase chain reaction (PCR) per year with the range of

estimates across health facilities stratified by age category.

Short Transmission Season Long Transmission Season

% Pos | 95% CI Range | % Pos | 95% CI Range

RDT

All | 16.9 15.1-18.8 | 8.6-30.1 | 22.4 20.3-24.6 | 9.5-32.9
6m-5 years | 18.9 15.6-22.3 | 7.6-44.0 | 27.6 23.7-31.5 | 5.3-54.3
6-15 years | 30.2 25.0-35.4 | 13.0-56.5 | 44.6 38.4-50.8 | 21.5-59.6

>15years | 10.1 25.0-35.5 | 2.2-13.1 | 104 38.4-50.8 | 7.2-14.8
PCR

All | 20.4 18.4-22.4 | 9.5-40.3 | 255 23.2-27.7 | 8.7-51.6
6m-5 years | 25.9 22.2-29.7 | 14.3-53.2 | 27.8 23.9-31.7 | 8.0-67.9
6-15years | 26.1 21.2-31.1 | 7.8-57.6 | 34.1 28.2-40.1 | 11.4-60.3

>15years | 14.2 11.7-16.7 | 5.4-30.4 | 20.5 17.4-23.5 | 8.0-39.3
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Similarly, SCR indicated a range of transmission intensity between facilities and an
increase in transmission intensity between the two surveys (figure P3-2A). Also,
based on this small sample of 5 facilities, SCR estimates from the health facility
survey during the high transmission season were strongly correlated (r=0.96) with
estimates obtained from a community cross-sectional survey in the same area
conducted the previous year (figure P3-3). With the exception of allelic diversity
(p=0.62), the malaria metrics tested were able to consistently rank health facilities
according to transmission intensity, as quantified by SCR. The intensity of malaria
transmission (indicated by the SCR) experienced by individuals attending the
selected health facilities during the first survey was associated with health facility
level parasite prevalence by both RDT (p=0.04) and PCR (p=0.05) as well as
multiplicity of infection (p=0.04). Despite the association of RDT and transmission
intensity, it is worth noting that one facility (Agawo) would have been
misclassified as being in a high transmission setting based on RDT results in
symptomatic patients alone (figure P3-2B). SCR during the first survey was also
strongly associated with SCR in the second survey (p<0.001) and ranks between
transmission intensity and all malaria metrics showed similar trends (data not

shown).

133



Seroconversion Rates per Facility per Transmission Season
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Figure P3-2: A) Seroconversion rates per health facility and
transmission season for facilities sampled in both surveys. Note:
Omiro2 and Tala2 curves overlap B) PCR prevalence ordered
according to transmission intensity including subpatent and
asymptomatically infected individuals per health facility and

transmission season.
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Seroconversion Rate (SCR) from Health Facility and Community Surveys
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Figure P3-3 Comparison of health facility and community: Comparison of
transmission intensity estimates based on seroconversion rate (SCR)
from health facility and community surveys and corresponding
correlation coefficient (r). Health facility estimates were restricted to
sampling that occurred in the high transmission season and community
estimates were restricted to those residing in the health facility
catchment area to minimize spatial or seasonal biases as much as was

possible.

Subpatent and Asymptomatic Infections

Overall, 586 infections were detected by RDT, 54.4% of these were confirmed by
PCR. PCR identified an additional 358 infections (12.0% of the total study
population). In total, 52.9% (Range: 24.7--97.0%) and 67.5% (Range: 27.3--81.4%)
of the PCR positive individuals had sub-patent and asymptomatic infections,
respectively; the majority of which were found in adults (p<0.0001) (table P3-52).
Based on the clinical records, the majority of subpatent infections (83.8%; 95% CI:
79.6--87.5%) were not provided treatment while 95.1% (95% CI: 93.0--96.7%) of

RDT positive individuals were prescribed an antimalarial drug.
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Table P3-S2: Prevalence of subpatent and
asymptomatic infections of all PCR positive
individuals stratified by age category with the
range of estimates across health facilities.
% Pos 95% CI Range
% Subpatent & Asymptomatic Infections
6m-5 years | 33.3 27.8-39.2 14.6-73.3
6-15 years | 31.5 24.4-39.2 6.1-83.3
>15years | 71.5 65.4-77.2 56.5-85.7
% Subpatent & Symptomatic
6m-5 years | 9.4 6.2-13.5 4.4-20.0
6-15 years | 1.2 0.15-4.4 0-16.7
>15 years | 6.7 3.9-10.6 3.3-25.0
% Patent and Asymptomatic
6m-5 years | 20.3 15.7-25.5 0-38.5
6-15 years | 30.9 23.8-38.6 0-46.1
>15 years | 15.5 11.1-20.7 0-30.4
% Patent and Symptomatic
6m-5 years | 37.0 31.2-42.9 6.7-53.9
6-15 years | 36.4 29.0-44.3 0-51.5
>15 years | 6.3 3.5-10.1 0-11.9

Of all PCR positive participants, 26.0% (Range: 3.0--42.6%) were patent and
symptomatic, 21.1% (Range: 0--32.7%) had patent and asymptomatic infections,
while 46.4% (Range: 21.8--75.7%) were subpatent and asymptomatic for malaria.
In total, 6.5% (Range 3.0--21.2%) of PCR positive individuals were subpatent and
symptomatic: 38.6% (17/44) of these individuals were diagnosed with malaria
while 10 of the 17 participants as well as the 27 participants not treated for
malaria were diagnosed with another fever-inducing illness such as flu or typhoid

(figure 2B).
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The majority of infected individuals had one (43.2%) or two (29.4%) allelic types
with the most diverse samples showing evidence of 7 different parasite clones. The
FC27 subtype was most prevalent with 57 distinct allelic types identified
compared to 31 unique types from the 3D7 family. The MOI in the study
population was low with a mean of 2.05 (95% CI: 1.92--2.19; Range: 1.7--2.3) and
2.02 (95% CI: 1.91--2.15; Range: 1.5--2.3) clones per person in the first and second
survey, respectively. Estimates of MOI were slightly higher in the 6--15 year old
population but no difference was observed between patent and subpatent and

symptomatic and asymptomatic infections (table P3-3).

Table P3-3: Unadjusted multiplicity of Infection (MOI) and
range per facility, number of distinct alleles (A) and allelic
diversity (Rs) for PCR positive samples; combined results for

both health facility surveys.

MOI 95% CI | Range A Rs
Age
6m-5y | 1.98 1.85-2.13 | 1.46-2.36 | 70 67.59
6-15y | 2.23 2.03-2.46 | 1.75-2.45 | 67 67.0
>15y | 1.97 1.84-2.13 | 1.39-2.5 58 56.77
Malaria Drugs
No Drug | 2.02 1.93-2.13 | 1.56-2.31 | 80 47.45
ACT | 2.02 1.74-2.42 | 1.33-2.5 37 36.39
non-ACT | 2.26 1.89-2.78 | 1.96-2.75 | 32 32.0

Detectable Parasites

Patent | 2.06 1.93-2.21 | 1.67-2.31 |78 78.0
Subpatent | 2.01 1.89-2.14 | 1.32-2.79 | 62 62.85
Symptoms
Symptomatic | 2.03 1.92-2.16 | 1.40-2.34 |78 76.14
Asymptomatic | 2.03 1.89-2.18 | 1.52-2.51 | 62 62.0

Factors Associated with Subpatent/Asymptomatic Infections
In adjusted models, individuals older than 15 years had 2.55 (95% CI: 1.50--4.30)

times the odds of having an asymptomatic infection compared to those less than 5
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years old. The odds of asymptomatic infections also being subpatent compared to
patent were 7.53 (95% CI: 4.88--11.62). If a person was attending the health
facility seeking care or were sampled during the first survey, they were more likely

to be symptomatic (table P3-4).

Table P3-4: Unadjusted and adjusted results for fixed
effects of mixed effects logistic regression using health
facility as random effects for variables associated with
having an asymptomatic malaria infection compared to

those with symptomatic infections.

Outcome: Unadjusted Adjusted
asymptomatic OR | 95%CI OR | 95%CI
infection
Study Year 1.3 0.92-1.83 | 1.67 | 1.13-2.47
Age Category

6m - 5 years | 1.00 | 1.00 1.00 | 1.00

6-15years | 1.64 | 1.09-2.47 | 1.98 | 1.26-3.11
>15years | 6.14 | 3.89-9.71 | 2.55 | 1.50-4.30

Patient (vs. 0.11 | 0.05-0.25 | 0.26 | 0.10-0.67
accompanying

person)

Subpatent (vs. 8.64 | 5.81- 7.53 | 4.88-11.62
patent) 12.83

Similarly, those over 15 years had over 3 times the odds of having a subpatent
infection (OR: 3.53; 95% CI: 2.23--5.59) compared to the youngest age group and
older children were half as likely to be asymptomatic (OR: 0.54; 95% CI: 0.33--
0.90). Those who had reported taking antimalarial drugs in the past two weeks
had greater odds of having a subpatent infection: participants reporting having
taken non-artemesinin based antimalarial drugs (ie. quinine, sulphadoxine-
pyramethanime) had a 2.49 greater odds of being subpatent (95% CI: 1.04—5.92)

and those reported having used artemesinin combination therapy (ACT) had
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almost twice the odds of being subpatent, although this was not significant (table

P3-5).

Table P3-5: Unadjusted and adjusted results for fixed
effects of mixed effects logistic regression using health
facility as random effects for variables associated with
having a sub-patent malaria infection compared to

patent infections.

Outcome: Unadjusted Adjusted
subpatent OR | 95% CI OR | 95% CI
infection
Age Category

6m-5years | 1.0 | 1.0 1.00 | 1.00

6-15years | 0.79 | 0.51-1.23 0.55 | 0.33-0.90
>15years | 6.00 | 3.91-9.20 3.53 | 2.23-5.59
Asymptomatic 9.08 | 5.97-13.80 | 7.65 | 4.86-12.04

Antimalarial drug (2 weeks)
NoDrug | 1.0 | 1.0 1.0 [1.0

ACT | 1.58 | 0.83-3.01 1.81 | 0.84-3.89

non-ACT | 1.64 | 0.81-3.29 2.49 | 1.04-5.92

DISCUSSION

This is one of the few studies, and the first in Kenya, to assess the utility of surveys
in health facilities as a means of measuring malaria transmission intensity in an
area where transmission varies over a small geographical area. % 1933 The results
of this study indicate that health facility derived serological, parasitological and
molecular measures can detect differences in transmission intensity at a small
geographical scale and are sensitive to seasonal changes. These findings suggest
that health facility surveys are able to provide a reasonable measure of community
level transmission, are capable of delineating areas of high or low malaria
transmission, and that the use of serology and PCR added useful information to
assessing transmission levels in the sampled populations that would have been

missed if sampling focused solely on those cases suspected of having malaria. 8 % 20
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Similar to other studies, subpatent and asymptomatically infections were detected
in this setting. It is likely that over half of malaria infections would have been
missed had testing been restricted to use of RDTs for symptomatic cases. 11,1213
The proportion of asymptomatic and subpatent infections differed by health
facility, the main implication of which being that variations in transmission
intensity will affect the proportion of infections missed using RDTs. The
underestimation of malaria burden can have significant implications for malaria
surveillance or developing control or elimination strategies based on clinical data.
16,30,34 For surveillance programs to capture the complete burden of malaria in a
region the proportion of infections missed should be taken into account. Firstly,
more robust data could be collected through use of more sensitive diagnostic tools
such as PCR or through use of a high quality surveillance system targeting sentinel
populations to get a more comprehensive picture of malaria transmission. 34 35, 36
Alternatively, the limited sensitivity of RDT /microscopy can be acknowledged and
adjusted for to estimate true prevalence or to modify policy guidelines on an

expectation of missed infections. 11.37

Obtaining a better understanding of subpatent and asymptomatic infections is key
to identifying which individuals are most likely to be missed by the current malaria
surveillance practices. Similar to other studies, 14 our results suggest increased
odds of having sub-patent and asymptomatic infections in older age groups. These
findings align with the current theory that in areas with stable transmission, older
individuals will have sufficient immunity to tolerate infections and maintain
parasite densities below the limit of detection of RDTs. 30.38 Also, reporting taking
malaria drugs in the two weeks prior to the survey was associated with having a
subpatent malaria infection. The increased odds of being subpatent in those
reported taking antimalarial drugs may be associated with residual parasitemia
shortly after treatment, or the detection of DNA from persisting gametocytes. 3% 40
An alternative explanation for our finding is drug resistance: resistance to
sulphadoxime-pyrametamine (SP) is highly prevalent in western Kenya and while
the use of this drug is officially limited to intermittent treatment for pregnant

women it is widely available in most private retailers. 41.42 Another possible
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explanation includes suboptimal or self-dosing with malaria drugs. Compliance to
drug regimens in this area has not been studied to our knowledge, but it is possible
that if people are not completing their regimen properly the drugs may only
reduce parasite densities to subpatent levels without completely clearing the
infection. Bias in recalling when or if they took that specific drug is also a

possibility.

We also explored the complexity of malaria infections to gain further insight on the
molecular epidemiology of this study population. MOI has been shown to be a
marker of transmission intensity that may have advantages in relatively high
transmission settings where parasite prevalence may saturate. 3 Although MOI has
proved to be a useful metric of malaria transmission intensity in certain settings 27
32 no significant difference was found between facilities. This may be due to the
spatial overlap of the health facility catchment areas, confounding factors not
accounted for in the unadjusted analysis such as age, or due to the small sample
sizes. However, lower allelic diversities were observed in subpatent and
asympatomic infections, as well as in older individuals and those who reported
taking antimalarial drugs. The lower allelic richness observed in facilities
experiencing lower transmission intensity could be related to lower parasite
densities expected in these populations or that certain low-density allelic forms

were missed due to the PCR process.

The study design had some important limitations. The introduction of more
sensitive diagnostic tools during the second survey may have reduced the
proportion of subpatent and asymptomatic infections in that season. This was,
however, incorporated in the statistical analysis and had little impact on the model
results. Also, due to the cross-sectional nature of this survey, misclassification of
participants on asymptomatic/subpatent status could have occurred. 14 It is
possible that some individuals may have developed fever in subsequent days and
this may have impacted our estimates of asymptomatic malaria. Similarly, the few
studies that have looked at misclassification of patent/subpatent over time suggest
that a small proportion of infections will shift between states but the overall

proportion detected does not shift dramatically, suggesting that it is unlikely that
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following these individuals over time would have a significant impact on these
findings. 28 43 Finally, to obtain a specific understanding of how well health
facilities are able to gauge transmission intensity in the surrounding community,
health facility estimates need to be explicitly compared to those of the community
population which they are supposed to represent. In this study, we have made use
of an existing community sample from the same area but collected the year before.
Despite the temporal difference, the results indicate that a strong correlation in
SCR between the convenience and community sampling strategies suggesting that
the health facility provides a reasonable proxy for transmission intensity in the

surrounding community.

Ultimately, health facility surveys provide an attractive tool to measure and detect
heterogeneity in malaria transmission. In terms of sampling they include a broader
sample of the health care seeking population instead of being restricted to those
suspected of having malaria while at the same time are more operationally
attractive compared to community-based surveys, in terms of the time and cost
required to collect samples. %20 However, more work is required to determine how
these estimates compare to the surrounding community. Estimates based on
routinely used diagnostic tools, such as RDTs, are likely to underestimate malaria
prevalence due to the presence of sub-patent and asymptomatic infections but, in
our study, correctly identified those health facilities with the highest transmission
intensity in their catchment area. More research is needed to further explore the
molecular epidemiology of malaria infections and to develop strategies that can
easily identify these populations to ensure that malaria control decisions are based

on a complete picture of malaria transmission.

5.3.4 Health facility surveys as a metric for malaria transmission:
Unpublished Results

In addition to the results presented in section 5.3.3, additional work was done to
explore the reliability of the diagnostic tools used as well as comparing results to

explore agreement with community based surveys.
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First, the diagnostic performance of the RDTs used in the cross-sectional surveys
was calculated using nPCR as the gold standard. As expected, the First Response kit
(Premier Medical Corporation Ltd., India) used in the second year showed a higher
sensitivity and better predictive values compared to paracheck (Orchid Biomedical
Systems, India) (table 5-3). Interestingly, when diagnostic performance was
stratified by age category, results were more variable. Overall, the RDTs had the
lowest sensitivity in the adult population at 20.0 and 23.3 in year 1 and 2,
respectively. The RDTs performed much better in children, although the sensitivity
was still only around 70%. The variability of RDT performance by age category is
not surprising, as parasite densities in infected individuals would be expected to be
lowest in the adult population who have developed sufficient immunity to control
parasite populations and therefore are more likely to have infections below the

limit of detection by RDT. (49, 54)

Table 5-3: Diagnostic performance of RDTs in year 1
(Paracheck) and year 2 (First Response) using nPCR as
the gold standard for comparison stratified by age

category

Year 1 Year 2
>5 6-15 >15 =5 6-15 >15
Sensitivity | 44.7 62.3 | 20.0 69.2 |71.8 |23.2
Specificity | 89.8 81.1 |914 884 |69.5 |920
PPV 59.6 533 | 27.0 69.7 | 549 |45.7
NPV 89.9 86.1 | 878 88.2 |82.6 |825

Next, results from the health facility cross-sectional surveys were compared with
estimates from the community surveys that were conducted in the same area.
Results were restricted to those individuals that resided within the health facility
catchment areas, as defined using the cost-distance algorithm described in
appendix 1.1. Separate comparisons were made for each malaria metric using the
most recent survey available with comparable data collection protocols. The
surveys used for comparisons are described above: 1) community survey (XSS3)

conducted in 2010 (section 5.2.2); and 2) community survey (XSS4) conducted in
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2011 (appendix 1.3). Due to the small number of health facilities included in the
survey (n=6), calculations for concordance could not be reliably estimated.
Therefore analysis was restricted to correlation, which provides a crude measure
as it does not account for error and bias (273), but provides useful insight as to the

agreement between the surveys being compared.

Firstly, RDT prevalence estimates from the health facility surveys were compared
with the community survey conducted in 2010 (XSS3). Although confidence
intervals for the community estimates are wide, there was a strong correlation
with the health facility survey (r=0.80) with the fitted values falling along the line

of perfect correlation (Figure 5-3).
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Figure 5-3: Scatter plots showing correlation of RDT prevalence from

health facility and community surveys

The second outcome measure used for comparison was seroprevalence and was
compared with the most recent community survey conducted in 2011 (XSS4).
There was a good correlation observed between the health facility and community

results (r=0.78). The community estimates were slightly higher than those
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observed in the health care seeking population (figure 5-4). Although these
findings may be different if restricted to the patient or suspected malaria
populations, health facility surveys appear to slightly underestimate
seroprevalence in the community. This finding may be due to bias due to health
care seeking populations differing to those in the community. (134) An alternative
explanation for this observation could be an association with malaria immunity. In
areas with higher malaria transmission, individuals develop antimalarial immunity
at a younger age and would be less likely to attend the health facility because of
malaria and therefore seropositive individuals would be under-represented in the

health facility survey. (127)
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Figure 5-4: Scatter plots showing correlation of seroprevalence from the
health facility and community survey (XSS4) restricted to those residing
in the health facility catchment areas with corresponding 95%

confidence limits.
Finally, PCR results were available for comparison between the health facility

survey and the community survey conducted in 2011 (XSS4). Correlation between

PCR prevalence estimates obtained during the health facility survey and those
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sampled in the community that resided in the health facility catchment areas was
69% (figure 5-5). Unlike RDT and seroprevalence estimates, PCR estimates at the
health facility were greater than those obtained during the community survey,
particularly in areas with higher transmission intensity. This overestimation of
community prevalence may be driven by the health facility population consisting
of individuals that are more likely to have a current malaria infection and
compounded by the increased likelihood that those accompanying a malaria

positive individual are also carrying parasites. (121, 166)
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Figure 5-5: Scatter plots showing correlation of PCR prevalence from
health facility and a community survey conducted in 2011 (XSS4)
restricted to those residing in the health facility catchment areas with

corresponding 95% confidence limits.

Comparing the health facility estimates to those of community surveys suggests
that bias does exist, and the direction and magnitude of bias is dependent on the
diagnostic tool used. There are limitations present in this comparison, particularly
due to the small number of facilities and that the surveys being compared were

conducted in different years. However, the use of RDT or seroprevalence estimates
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in particular, showed strong correlation with the community suggesting health
facility surveys can act as a useful convenience sample for measuring malaria

transmission intensity in the community.
5.5 General Chapter Discussion

5.5.1 Overview of findings - utility of convenience samples

In this chapter, the utility of convenience samples to provide a reliable proxy
metric for malaria burden in the surrounding community was explored. Despite
the biases present in the convenience sampling approaches, the results from both
the school and health facility surveys were strongly correlated with estimates of
malaria burden obtained during community surveys. The strength of the
correlation was dependent on the malaria metric used; the spatial and temporal
overlap of the studies being compared; and baseline transmission intensity. For
example, when comparing the health facility and community surveys, estimates
using PCR showed a weaker correlation than those obtained by RDT. (49) The
distribution of symptomatic individuals within the populations being compared is
likely to influence this association. For example, a greater proportion of
symptomatic malaria cases would be expected in the health facility sample

compared to the community or school populations.

Also, SCR estimates in both convenience-sampling approaches were consistently
and strongly correlated with those obtained in the community; this suggests that
the school and health facility survey designs provide good estimates of
transmission intensity in the surrounding community. In the school surveys, the
concordance with the surrounding community improved when the school sample
was restricted to those residing in the community catchment area. As expected in
areas with spatially heterogeneous transmission, the exact locality of residence is

of great importance in reliably estimating local transmission.

In this setting, the PCD study was able to identify heterogeneity in transmission
intensity using confirmed malaria cases by either microscopy or RDT. However,
the use of routinely collected data for malaria surveillance required continuous

monitoring, having confirmatory diagnostics, and is consistent with findings in
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other settings. For example, work from health facilities in Kenya showed that
underreporting of malaria burden is common with an estimated overall reporting
rate of 35% across 84 months for the 2165 facilities include in the analysis. (274)
Similarly, a study in Tanzania found that despite very low transmission, the
majority of suspected malaria patients were treated despite less than 2% of slides
confirmed to be positive (275) Notably, the rate of testing for suspected malaria
cases can be low and therefore those reported tend to be clinical cases with
malaria suspected due to fever or other symptoms. The subjectivity and
inconsistencies present in malaria testing suggests that relying on health facility
based data to accurately estimate transmission levels, as part of a routine malaria
surveillance program, may be problematic. (276) Therefore, due to the
inconsistencies in reporting and quality of testing, even the most robust of analysis

using passive case data tend to be inconclusive. (277)

The utility of convenience sampling to become a viable approach for malaria
surveillance will rely on their acceptability by the communities where they will be
implemented. Health facilities as points of disease screening and treatment are
accepted in areas where there is sufficient trust in the health systems and staff
capacity. Although in this setting, the patients were largely willing to partake in the
testing, this may not be the case in all settings. Similarly, the use of school surveys
to monitor malaria transmission or to screen for other parasitic diseases has been
used in different settings (212, 232, 270) but it may not be applicable everywhere,
particularly areas with low school enrollment or resistance to testing for disease
by non-health care workers. Including community members in consultative
processes when deciding on surveillance strategies using convenience sampling

strategies is needed.

5.5.2 Biases in convenience sampling

A more detailed discussion of bias in school and health facility surveys are
discussed in section 3.3, however it is important to acknowledge the key biases
associated with the alternative surveys to ensure that caution is observed when
interpreting the results. Firstly, the populations sampled at primary schools and

health facilities are non-random subsets of the population and the extent of this
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bias will be dependent on many factors including access and costs, among others.
(126, 232, 256) It is expected that the parasite prevalence would be higher in the
primary school and symptomatic patient population, and any accompanying
person residing within the same household. (49, 134, 205) Similarly, the different
age structure in the convenience samples compared to the general population also
likely impact certain metrics, particularly SCR and seroprevalence. (51, 204)
However, despite the sources of bias present, the utility of convenience samples as
a metric for malaria heterogeneity and transmission intensity to represent a
similar trend in the community appear to be able to provide good estimates of
malaria burden in the community therefore making them attractive options for

malaria surveillance especially considering the operational advantages.

5.5.3 Limitations

Multiple studies informed this assessment of the utility of convenience samples to
measure malaria transmission in the community and each had their own specific
limitations as discussed above. There were also some important limitations to the
overall analysis and comparison between surveys that are worth noting. It has
been found that the malaria transmission in this setting is relatively stable
(appendix 1.3) However, some temporal variations in transmission are possible,
which would impact the associations observed when comparing surveys that were
not conducted concurrently. (129) The utility of the health facilities to provide a
reliable estimate of community level transmission was part of the initial proposal,
but due to the ongoing community work (appendix 1.3), it was not possible to
obtain concurrent community estimates. Nevertheless, the comparison of health
facility and community samples restricted to those residing in the same catchment

area provided useful insights despite the lack of temporal overlap.

5.5.4 Implications for hotspot detection

The results of this work suggest that health facility and primary school surveys are
able to provide reasonable estimates of malaria transmission in the community
and could inform a targeted strategy at the regional level. (212) The scale of spatial
data available will likely determine intervention strategies but also at what
transmission intensities such approaches would likely be useful. For these

convenience-sampling strategies to be useful to identify local-level hotspots of
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malaria or any residual cases, it is essential to obtain more precise pictures of
heterogeneity of transmission at the more local level. Without individual level
spatial information, the spatial resolution of transmission estimates is restricted to
those of the catchment areas of the unit of sampling. In this study, the mean
distance traveled to school was 793 m and to health facilities was 2 km, which
would define the level of spatial granularity that could be achieved using these
sampling approaches. The utility of convenience samples to detect hotspots of
infection in the community at a spatial resolution able to reflect the local level
heterogeneity of malaria transmission will depend on establishing an operationally
feasible way of identifying where in the community the case resides (appendix
1.1). However, the smaller catchment areas of the schools, relative to those of the
health facilities, may be more useful for identifying priority areas for control while
transmission intensity is still at pre-elimination levels. As transmission declines or
in areas with well-established health infrastructure (ie. active community health
workers) health facilities may be more useful at identifying the local pockets of
transmission: therefore, the incorporation of convenience sampling strategies

would provide useful additions to any local malaria control programs.

5.6 Conclusions
The main conclusions that can be drawn from the results in this chapter include:
1) School and health facility surveys provide a reasonable proxy for
measuring malaria transmission in the community
2) Seroconversion rates provide the less biased malaria metric to gauge
community level transmission using convenience samples
3) Routinely collected data at health facilities are able to stratify areas
based on high or low transmission intensity IF data recorded is reliable
and based on cases with confirmed malaria by rapid diagnostic test or

quality microscopy.
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Chapter 6: Results - Identifying Hotspots and Targeting

the Parasite Reservoir

For a local-level hotspot targeted strategy to be incorporated into successful
control strategies approaches that can be sustained by local malaria control
programs are needed. This chapter examines operationally attractive strategies to
identify hotspots as well as to target parasite populations within hotspots. Section
6.2 explores the utility of primary school and health facility based sampling
approaches for identifying hotspots in the community (specific objective 3) while,
section 6.3 discusses a method for optimizing the targeting of interventions to sub-
microscopic parasite carriers in the community (specific objective 4). To address
the specific objectives discussed in this chapter, data from several sources was
used including the large community cross-sectional survey described in section
4.2, the schools (section 5.2) and health facility surveys (section 5.3), as well as
data from a population survey in defined hotspots of malaria exposure in the

community as described below in section 6.3.

6.1 Background and Rationale

Currently, programs employing malaria elimination strategies typically include a
re-active case detection component. (121) Such systems are predicated on
evidence that asymptomatic malaria infections cluster at the household level and it
has been shown that such pockets of parasites can be identified using symptomatic
cases at health facilities. (166) The re-active approach is a system that can easily
be integrated into local health capacity. However, given the subjectivity and
inconsistencies inherent with relying on symptomatic and patent malaria cases
presenting at health facilities, other convenience sampling approaches to
determine index cases could provide alternatives. The convenience sampling
approaches discussed in chapter 5 suggest that these study designs provide a
reasonable estimate of malaria transmission in the community and therefore it is
reasonable to postulate that they can also be useful in identifying not only regional
scale heterogeneity but also hotspots of transmission within communities (specific
objective 3). As discussed in chapter 5, the limited spatial information obtained
during the PCD study inhibited including this convenience sampling design as part

of the hotspot identification analysis as was originally planned. If hotspots can be
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identified, understanding what proportion of the parasite population can easily be
targeted provides a useful benchmark with which to gauge the effectiveness of this

approach (specific objective 4).

6.2 Hotspots and Convenience Sampling

As the convenience samples tested provide reasonable outlets for malaria
surveillance, these populations may also provide an attractive means for
identifying hotspots of malaria transmission, as part of a re-active case detection
approach or even potentially to define hotspot boundaries. (54, 174, 180)
(166)(96, 120, 121)However, the potential of these alternative sampling strategies
for identifying hotspots of infection in the community has not yet been assessed.
With this objective in mind, the sensitivity of primary school and health facility

surveys to identify known hotspots of infection in the community was evaluated.
6.2.1 Methods

6.2.1.1 Convenience Samples

Data from the school and health facility surveys described in section 5.2 and 5.3,
respectively, were used to assess any associations present with malaria positivity
and residing in a hotspot of malaria transmission. Briefly, 46 government primary
schools were selected and ~100 children in each school were randomly selected
for inclusion in the survey which, occurred in 2010 during the high transmission
season (July). All children were tested for malaria by RDT (Paracheck, Ochrid
Biomedial Systems, Goa, India) and provided blood spots on filter paper (3MM
Whatman, Maidstone, UK), which was tested for the presence of antimalarial
antibodies to AMA1 and MSP119 by ELISA. (51) Subsequently, 98.5% of the 4964
children sampled were traced to the compound where they resided and spatial
coordinates recorded using a hand-held device. Next, in October 2011 (low peak)
and July 2012 (high peak), 5 rural health facilities were selected and all patients
and people accompanying patients attending the outpatient department were
recruited for the study. All participants were tested for malaria using an RDT
(Paracheck -Low; First Response [Premier Medical Corporation Ltd., India] - High)
and provided blood spots on filter paper (Whatman 3mm, Maidstone, UK) for
testing for antimalarial antibodies to AMA1 and MSP119 by ELISA and the presence
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of current infection by nPCR. (192, 205, 278) Subsequently, 30% of the 3042
participants were randomly selected and traced to their compound where spatial

coordinates were recorded by a handheld device.

6.2.1.2 Hotspot Definition

Hotspots of malaria transmission in the community were defined as described in
chapter 4 and appendix 1.3. Briefly, a large community-cross sectional survey was
conducted in July 2011 where approximately 30% of the population was sampled
and spatial coordinates of their compounds recorded. All samples were then
assayed by ELISA for the presence of antimalarial antibodies to AMA1 and MSP11o.
(204) Alocally weighted SatScan was used to identify areas with statistically
significantly higher seropositivity and/or serodensity using both circular and
elliptical scanning windows to provide the standard for hotspots with which to
compare the sensitivity of convenience sampling to target these foci of malaria in
the community. Compounds that were part of a significant (p<0.05) cluster by at

least one scan were considered to be part of a malaria hotspot.

6.2.1.3 Data Analysis

Participants with spatial coordinates available were plotted in ArcGIS (v12.1) and
those residing within the community survey study area were selected and retained
for further analysis. From the subset of school children and health facility
attendees that resided within the study area, those located within hotspots were
then identified using the built-in join function in ArcGIS (v, 10.2, ESRI, California,
USA). Data was imported into STATA (v12.0) for statistical analysis. Next, the
ability of convenience sampling to target hotspots of infection in the community
was assessed. The sensitivity, specificity and positive and negative predictive value
was calculated. A person was considered to be correctly identified if they tested
positive for malaria during the convenience sampling survey and resided in an
identified hotspot of transmission in the community. True positive individuals are
considered to be those who tested as malaria positive and reside within the
hotspot. False negatives are those individuals who tested negative for malaria and
resided within a hotspot. Conversely, true negative individuals are those whom
tested negative for malaria and reside outside of a hotspot. Finally false positive

cases are those who tested positive for malaria yet live outside of hotspot
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boundaries. Logistic regression was conducted to identify factors associated with
each of the malaria outcome measures available for each study: RDT and
seropositivity for the primary school survey and RDT, PCR and seropositivity for
the health facility survey. Factors assessed included residing within a hotspot, age,
sex, mosquito control behaviors and other relevant epidemiological variables
collected during the survey. All standard errors were adjusted for clustering at the

school and health facility level.
6.2.2 Results - Convenience Samples to Target Hotspots of Malaria

6.2.2.1 Primary School Survey

Of the 4889 children traced to their compound, 1606 resided within the
community cross-sectional survey study area and were retained for analysis. Of
the school children residing in the study area, 708 (44.1%) resided in a hotspot of
malaria transmission. Overall, 29.6% (95% CI: 27.4-31.9%) of children were RDT
positive however; RDT prevalence in those residing within a hotspot was
significantly higher (40.8%; 95% CI: 37.2-44.4%) compared to those not residing
in a hotspot (20.8%, 95% CI: 18.2-23.5%; p<0.001) (figure 6-1A). The sensitivity
and specificity of using RDT positivity in primary school children as a tool to
identify hotspots of transmission was 40.8% and 79.2%, respectively. The positive
and negative predictive values were 60.7% and 62.9%, respectively. Next, several
variables were tested to identify associations with RDT positivity in the school
children. Those who were RDT positive had over twice the odds of residing in a
hotspot (AOR: 2.53; 95% CI: 1.64-3.92) compared to living outside of a hotspot.
The only other factor retained in the adjusted model was residing in a house with

open eaves (AOR: 2.15; 95% CI: 1.32-3.50) compared to closed eaves (table 6-1).
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RDT Positivity in Children Sampled during Primary School Surveys
Cross-Sectional Survey, Western Kenyan Highlads, 2010
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Figure 6-1: Map showing the areas in the community identified as being a
hotspot of malaria transmission and the points showing the location of the
residence of the children sampled during the school survey with those
coloured red indicating those that tested positive by A) rapid diagnostic test

and B) seropositivity and those testing negative in blue

Overall, 55.3% (52.9-57.8%) of the school children in the study area were positive
for antimalarial antibodies and seroprevalence was significantly higher in children
residing inside (64.1%; 95% CI: 60.6-67.6%) compared to children living outside
(48.4%; 95% CI: 45.2-51.7%; p<0.001) of hotspots of malaria transmission (figure
6-1 B). The sensitivity and specificity of using seropositivity in primary school
children as a tool to identify hotspots of transmission was 64.1% and 51.6%,

respectively. The positive and negative predictive values were moderate at 64.1%
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and 51.6%, respectively. After adjusting for age, gender, and bednet use, those
children that were seropositive had almost twice the odds of residing in a hotspot
of malaria transmission (AOR: 1.95, 95% CI: 1.39-2.75) compared to those residing
outside of a hotspot (table 6-1).

6.2.2.2 Health Facility Survey

In total, 3042 patients and accompanying people were sampled as part of the two
health facility surveys and 829 (27.2%) were traced to their compound. Of those
participants with spatial coordinates available, 508 resided within the study area
and were retained for analysis. 34.1% (n=173) of the health facility attendees in
the study area resided within a hotspot of malaria transmission. Of those health
facility attendees residing within the study area, 17.9% (95% CI: 14.6-21.2%) were
positive for malaria by RDT. RDT prevalence in participants that resided in a
hotspot of malaria transmission was greater (27.2%; 95% CI: 20.5-33.8%)
compared to those not residing in a hotspot (13.1%; 95% CI: 9.5-16.7%, p<0.001)
(figure 6-2A). The sensitivity and specificity of using RDT positivity in health
facility attendees as a tool to identify hotspots of transmission was 27.2% and
86.9%, respectively. The sensitivity and specificity was similar when calculated for
each transmission season separately (data not shown). The positive and negative
predictive value of RDTs for identifying participants that resided in hotspots was
51.6% and 69.8%, respectively. In adjusted analysis, those who were RDT positive
had over twice the odds of residing in a hotspot (AOR: 2.43, 95% CI: 1.85-3.19).
Other factors associated with RDT positivity included having a fever at the time of
sampling (AOR: 3.52, 95% CI: 1.35-9.13) and having taken antipyretic drugs in the
two weeks prior to sampling (AOR: 1.84, 95 CI: 1.22-2.77) (table 6-2).
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A Health Facility Survey: RDT Positivity by Transmission Season
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Figure 6-2: Map showing the community hotspots of malaria transmission.

The points show the location of the residence of the participants sampled

during the health facility survey with those coloured red indicating those that

tested positive by A) rapid diagnostic test and B) PCR and C) seropositivity

and those testing negative in blue. The shape of the symbol represents the

year of sampling with triangles and circles identifying those sampled during

the low peak and high peak transmission seasons, respectively.
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Malaria prevalence by PCR was then assessed as the main outcome measure. Of the
health facility attendees residing within the study area, 14.4% (95% CI: 11.3-
17.4%) were positive for malaria by PCR. Similar to the RDT results, PCR
prevalence in those residing in hotspots (20.2%; 95% CI: 14.2-26.2%) was
significantly greater than those not residing in hotspots (11.3%; 95% CI: 7.9-
14.7%; p=0.007) (figure 6-2B). The sensitivity and specificity of using PCR
positivity in health facility attendees as a tool to identify hotspots of transmission
was 20.1% and 88.7%, respectively. The positive and negative predictive value of
PCR diagnosis for correctly identifying residence in hotspots was similar to that of
RDT at 47.9% and 68.3%, respectively. Interestingly, stratifying results by
transmission season had an impact with PCR being more sensitive in the high
(25.3%) compared to the low (16.3%) transmission season, although the
difference was not statistically significant (p=0.51), possibly due to the low sample
size. Adjusted analysis suggests that residing in a hotspot of malaria transmission
was the single covariate tested that showed increased odds (AOR: 1.97; 95% CI:
1.26-3.07) of being PCR positive compared to not residing within a hotspot in this

health care seeking population (table 6-2).
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The last outcome measure available for analysis in this health care seeking
population was the presence of antimalarial antibodies. Of the people residing in
the study area, 35.4% (95% CI: 31.2-39.6%) were seropositive for malaria.
Seroprevalence was significantly greater in those residing inside (43.9%; 95% CI:
36.5-51.3%) compared to those living outside of hotspots of malaria infection
(31.0%; 95% CI: 26.1-36.0%; p=0.004). The sensitivity and specificity of using
seropositivity in health facility attendees as a tool to identify hotspots of
transmission was 43.9% and 69.0%, respectively. The positive and negative
predictive values were also similar to the other diagnostic measures tested at
43.9% and 69.0%, respectively. Finally, similar to the other outcomes, residing in a
hotspot was found to be a significant predictor of seropositivity (AOR: 2.11,95%
CI: 1.28-3.50) after adjusting for other risk factors such as age and mosquito

control (table 6-3).

Table 6-3: Results of the univariate and multivariate logistic regression
for seropositivity in participants sampled during the health facility
surveys that resided in the community survey study area including the
impact of residing in a known hotspot of infection in the community.
Seropositive
Univariate Multivariate

OR | 95%CI | p-value | AOR | 95%CI | p-value
Hotspot 1.74 |1.20-2.51{0.003 |2.11 |1.28-3.50 |0.004
High Season 1.11 |0.71-1.76 |0.640
Gender - Female 1.47 |1.10-1.96 |0.009
Age 1.03 |1.02-1.04 {<0.001 |1.03 |1.02-1.03 |<0.001
Patient 0.35 |0.25-0.47 |<0.001 |0.38 | 0.30-0.48 | <0.001
Current Fever 0.83 |0.47-1.46 |0.516
Net User 1.69 |0.82-3.48 |0.151
Recent IRS 1.65 |1.37-1.98 |<0.001 |1.51 | 1.14-2.00 | 0.004
Recent Travel 0.88 |0.59-1.32 |0.550 [0.66 |0.46-0.94 |0.022
Recent Antipyretic 1.04 |0.86-1.25|0.668 |1.50 |1.16-1.94 |0.002
Recent Antimalarial |1.01 |0.41-2.45 [0.984
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6.2.3 Section Discussion

To determine if convenience sampling could provide a viable option for identifying
hotspots of malaria transmission, the residence of participants sampled during
primary school and health facility surveys was geolocated and overlaid on known
hotspots of infection in the community. Residing in hotspots was significantly
associated with an increased prevalence of malaria infection and measure of
malaria exposure in school children and health facility attendees suggesting that
convenience sampling could be used to identify and target hotspots of malaria
transmission in the community (specific objective 3). Of the two convenience
sampling methods assessed, school children showed a greater sensitivity in
detecting hotspots of malaria transmission in the community when compared to
health facility surveys. These results suggest that there may be opportunities to

incorporate the use of such an approach into a hotspot targeted control program.

Malaria control strategies have traditionally made use of both school and health
facilities for distribution of interventions. For example, primary schools have been
used for malaria surveillance (232), for the distribution of bednets or malaria
treatment (244) and for delivering malaria education campaigns. (67) Similarly,
health facilities have traditionally been the point of distribution of
chemoprophylaxis or bednets targeting pregnant women and children attending
antenatal clinics. (258, 279) Employing convenience samples as a sentinel
population and incorporating into a hotspot-targeted strategy is a logical next step
as these populations, particularly school children, are likely to be most sensitive to

changes in malaria transmission dynamics.

Operational research is needed to determine the best way to go about integrating
convenience sampling into a hotspot-targeted malaria control strategy. Options to
explore include whether a system of re-active case detection in primary schools,
similar to that used in health facilities in some settings, could be employed
whereby positive cases are traced to their compound where malaria control
strategies or treatment campaigns could be employed. (121) For re-active case
detection to be a viable option in this study area, parasite prevalence is likely to be

too high as too many individuals would need to be traced to their compound to
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justify such an approach. However, given that the sensitivity and predictive values
of using convenience sampling to target hotspots were good, a re-active approach
is promising for areas of lower transmission intensity. Also, the added benefit of
screening all attendees instead of just suspected malaria cases to health facility-
based re-active case detection should also be further explored and compared to
the current approach of relying on confirmed malaria cases. Other avenues to
explore include ways to maximize the sensitivity and specificity of hotspot
targeting with convenience sampling. For example, one strategy could include
spatially plotting positive cases identified during convenience samples over time
and visually assess when cases aggregate to define likely hotspots of infection.
Alternatively, achieving a predefined number of cases within a set distance or a
defined prevalence within a village or other aggregate unit to confirm the presence
of a hotspot before justifying a response could be employed. (121) Given the
potential for integrating convenience sampling into a hotspot-targeted approach
demonstrated in this study, further studies to explore operational research
questions for how best to achieve optimum hotspot coverage in different settings

and transmission intensities is warranted.

The advantages of using convenience-sampling approaches were discussed in
section 5.5 however, there are some important challenges associated with
translating this approach into an effective and locally sustainable hotspot targeting
campaign. Most notably, the ability to obtain spatial information on residences of
individuals sampled is required to identify spatial patterns of disease transmission
in the community. Geolocating individuals, or obtaining spatial coordinates for
their place of residence, is challenging and in most malaria endemic areas
currently relies on physically locating and visiting the compound with a handheld
GPS device which, is a time and labor intensive exercise. (280) However,
operationally attractive strategies are available to obtain spatial information on
cases (Appendix 1.1) and these could easily be adapted to facilitate a hotspot
targeting control strategy. For example, locating compounds could be facilitated in
primary schools by accompanying each child with confirmed malaria to their
compound or a geolocation exercise could be incorporated into the curriculum

through production of crude maps providing the necessary spatial reference to
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inform malaria control strategies. Similarly, where community health workers or
other members of the community familiar with the area are available, they could
be engaged to provide or obtain spatial information on cases as is already being

done in some settings. (281)

While sampling protocols between studies were kept as consistent as was feasible
this was not always possible. Data for the three surveys discussed in this chapter
were collected during the high transmission season providing seasonal consistency
however, the studies took place over several years which may introduce some
temporal bias as malaria transmission is highly stochastic and fluctuates between
years. (129) However, the consistency in the results between measures of current
infection and exposure and the significant associations observed despite the
surveys taking place in different years suggests that the temporal bias may not
have resulted in considerably different results. It is acknowledged that different
results may have been observed if sampling had been conducted in the low
transmission season when hotspots may be more pronounced therefore the
sensitivities observed are likely to be underestimates. Secondly, during the
primary school surveys children were randomly selected per class for inclusion
and all were targeted for tracing to their compounds. In contrast, during the health
facility surveys, which have a larger catchment area (appendix 1.1) all patients and
accompanying people attending the outpatient department were targeted for
inclusion while only a random subset were selected for tracing to their compounds
and therefore could be included in this analysis. The differences in sensitivity and
strength of association observed between primary school and health facility
surveys may be associated with the different spatial densities of compounds

available for inclusion in the analysis.

In conclusion, in this low endemic and highly heterogeneous setting, the use of
convenience sampling could be used as an operationally attractive method for
identifying and targeting hotspots of infection in the community and more robust
and operationally driven studies to further tease apart how these findings can be
applied by local malaria control programs as well as it’s utility in other settings are

needed. Similarly, identifying and defining hotspots of transmission in the
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community is the first challenge while developing strategies to target the parasite

populations within the hotspot must also be explored.

6.3 Operational Approach for Targeting the Submicroscopic Parasite

Reservoir in Hotspots

In malaria endemic areas, a substantial proportion of infections may be at
submicroscopic parasite densities making them difficult to detect using current
field-based tools. (54) In hotspots of malaria transmission the occurrence of
submicroscopic parasite carriers may be exacerbated due to the higher exposure
experienced by these populations leading to more adept immune responses at a
younger age. (127) Therefore, insight in the detectability of pockets of infections

once these foci can be identified is of great importance.

6.3.1 Focal Screening to identify the subpatent parasite reservoir in an area

of low and heterogeneous transmission in the Kenya highlands (P4)
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Abstract

Background: Mass screening and treatment currently fails to identify a
considerable fraction of low parasite density infections while mass treatment
exposes many uninfected individuals to antimalarial drugs. Here we test a hybrid
approach to screen a sentinel population to identify clusters of subpatent
infections in the Kenya highlands with low, heterogeneous malaria transmission.
Methods: 2082 inhabitants were screened for parasitaemia by nested polymerase
chain reaction (nPCR). Children < 15 years of age and febrile adults were also
tested for malaria by rapid diagnostic test (RDT) and served as sentinel members
to identify subpatent infections within the household. All parasitaemic individuals
were assessed for multiplicity of infections by nPCR and gametocyte carriage by
nucleic acid sequence based amplification.

Results: Households with RDT-positive individuals in the sentinel population
were more likely to have nPCR-positive individuals (OR: 1.71, 95% CI: 1.60-1.84).
The sentinel population identified 64.5% (locality range: 31.6-81.2%) of nPCR-
positive households and 77.3% (locality range: 24.2-91.0%) of nPCR-positive
individuals. The sensitivity of the sentinel screening approach was positively
associated with transmission intensity (p=0.037).

Conclusion: In this low endemic area, a focal screening approach with RDTs prior
to the high transmission season was able to identify the majority of the subpatent
parasite reservoirs.

Key Words: Malaria transmission, screening, subpatent infection, elimination

INTRODUCTION

Heterogeneity of infectious agents, including malaria is apparent at all spatial
scales and levels of transmission intensity although it is most pronounced where
transmission is low. [1, 2] Across all levels of transmission intensity, a substantial
proportion of malaria infections are asymptomatic and often present at densities
below the threshold for detection by microscopy or rapid diagnostic tests (RDT)
[3-7]. Whilst not associated with (acute) clinical symptoms, a proportion of these
infections may progress to clinical disease [8] and can also produce gametocytes
and thereby contribute to onward malaria transmission. [2, 9, 10] It has been

argued that for programs to sustainably reduce or eliminate malaria transmission,
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the asymptomatic and subpatent reservoir must be detected and targeted. [7, 9, 11,
12] The detectability of malaria infections in malaria endemic countries is related
to malaria parasite density that is associated with acquired malaria immunity. [13-
15] Consequently, infections are most likely to be detected by microscopy or RDT
in children and in symptomatic infections, whilst asymptomatic adults are more

likely to carry infections at subpatent densities. [4, 15, 16]

There are two commonly advocated approaches to include asymptomatic malaria-
infected individuals in treatment campaigns: mass screening and treatment
(MSAT) and mass drug administration (MDA). MSAT campaigns typically test all
individuals, using either RDT or microscopy, and treat individuals that test
positive. [17] The success of MSAT campaigns is greatly influenced by the
sensitivity of the diagnostic. In low transmission settings in particular, a
considerable proportion of infections is missed during MSAT campaigns because
many infections are present at densities below the detection limit of the diagnostic
methods commonly used. [10, 18, 19] Onward malaria transmission from these
subpatent infections was considered the most plausible explanation for a recent
failure of RDT-based MSAT campaigns to sustainably reduce malaria transmission

in the pre-elimination setting of Zanzibar. [7]

Community-based mass drug administration (MDA) campaigns avoid the problem
of imperfect diagnostics by treating without prior diagnosis. However, MDA in low
endemic settings would administer medication to individuals whom are not
infected with malaria nor will have any benefits of the prophylactic effect of drugs
due to the low exposure. [20, 21] Based on the limited success of MDA approaches
under research conditions and the risk of increasing drug pressure that is
associated with the spread of drug resistant strains of parasites, [20, 22] the use of
MDA in malaria has received limited support. [1, 21] Alternative strategies are
required that are capable of targeting the entirety of the parasite population while

being operationally feasible in malaria endemic communities.

Malaria infections are known to cluster at the household level and it has been

shown that asymptomatic parasite carriers are more likely to reside in households
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when a symptomatic case occurs in the same household. [17, 23-25] For example,
in Zambia, it was found that prevalence of malaria in households with a
symptomatic case was 8.0% compared to <1.0% in households without a
symptomatic case. [25] Similarly in Senegal, it was found the risk of being parasite
positive was more than three times higher when residing in a household with a
symptomatic case. [24] This suggests that a hybrid approach in which focal mass
drug administration is guided by the occurrence of positive (index) cases detected
by screening of a sentinel population may represent an efficient method of
maximizing the number of infections treated whilst limiting the total number of
antimalarials distributed and thereby drug pressure. [12, 17, 22] We aimed to
determine the potential of this approach and identify the most appropriate
definition of a sentinel population that balances the number of individuals
screened against the proportion of the parasite reservoir identified and to

ascertain factors associated with its sensitivity.

METHODS

Study area

This study was undertaken in a previously described study site in Rachuonyo
South District, western Kenyan highlands [34.75 to 34.95°E, 0.41 to 0.52°S] with
elevation between 1400-1600 m. The landscape is intersected with rivers and
rolling hills and is characterised by marked variations in elevation within a small
area. [26] Malaria transmission intensity is generally low but is highly
heterogeneous. [27] Plasmodium falciparum is the predominant malaria parasite
and transmission follows a bimodal pattern associated with the peaks in rainfall.
Five areas within this 100 km? area with evidence of on going malaria

transmission [26] were selected for the current study (figure P4-1).
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Figure P4-1: Study Area Map of study area showing the main roads (black
lines) and rivers (blue lines). The five selected localities where this survey

occurred are shown.

Ethical Review and Approval

The study was approved by the ethical committees of the London School of
Hygiene & Tropical Medicine (Ref: LSHTM 5956) and the Kenya Medical Research
Institute (Ref: SSC 2163 & SSC 2495). Individual informed consent was sought
from all eligible participants. Consent for children under the age of 18 was
provided by a parent/guardian and children between 14 and 17 years also
provided written assent. Participants below 18 years of age who were pregnant,
married, or a parent were considered “mature minors” and consented for

themselves. [28]

Data Collection

All residents were enumerated and households were assigned spatial coordinates
with handheld global positioning system receivers (Garmin 62S; Garmin
International, Inc., Olathe, KS, USA). In March 2012, prior to the main malaria
transmission season [26], all households were visited and information obtained on
standard malaria indicators and socio-economic factors. Tympanic temperature
was measured (Braun Thermoscan, Braun, USA); those with a temperature >37.5
°C were considered febrile. All individuals between 6 months and 15 years as well
as febrile adults were tested for malaria infections using a RDT (First Response,

Premier Medical Corporation Ltd., Kachigam, India). This definition of the sentinel

170



population was based on previous evidence that these groups have the highest
proportion of infections with detectable parasite densities.[4, 15, 29] All RDT-
positive cases were provided treatment according to national guidelines. Blood
spotted on filter paper (Whatmann 3MM, Maidstone, UK) was collected from all
consenting participants = 6 month of age and stored at room temperature. For
gametocyte detection, 100 pl of whole blood in nucleic acid stabilizer (Angora
buffer, Avantor Performance materials, Deventer, the Netherlands) was collected
from all individuals in three of the five localities and stored for up to one week at -

20 °C and subsequently at -80°C.

Laboratory Analysis

Filter paper samples were analysed for malaria infection using nested polymerase
chain reaction (nPCR) targeting the P. falciparum 18S rRNA gene [30, 31] after
Chelex-saponin extraction. [30] All nPCR-positive samples were tested for the
presence of multiple clonal infections based on the Merozoite Surface Protein-2
(MSP2) using capillary electrophoresis; [32] samples were analysed with Peak
Scanner (Applied Biosystems, CA, USA, version 1.0) and unique clones were
determined to be any discrete peaks greater the background noise for each plate.
For the three localities where whole blood samples were collected, total nucleic
acids were extracted for all nPCR-positive samples using the MagNA Pure LC Total
Nucleic Acid Isolation Kit (Roche, Switzerland) on an automated extractor
(MagnaNA Pure LC 2.0). The presence of gametocytes was determined by
detection of gametocyte specific PfS25 mRNA by Nucleic Acid Sequence-Based
Amplification (NASBA). [33]

Statistical Analyses

The sensitivity and specificity of different sentinel definitions was determined at
the household level (i.e. the proportion of all households with nPCR detected
infections that was correctly identified) and the individual level (i.e. the proportion
of all individuals with nPCR detected infections that was correctly identified). Five
sentinel populations for RDT screening were defined: i) all household occupants
<5 years; ii) all occupants <15 years; iii) all occupants <5 years and any febrile

individual in other age groups; iv) all occupants <15 years and any febrile
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individual in other age groups; v) only febrile individuals. If at least one individual
in this sentinel population was found to be parasitaemic by RDT, all household
members were considered ‘infection positive’ (and therefore eligible for
treatment). In addition, the sensitivity of a sixth approach was determined in
which RDTs were not used but all household members were considered infection

positive if there was 2 1 febrile household member.

Analysis was conducted using STATA (v12.0, STATA Corps, Texas USA) and R (v.
3.0.2, The R Foundation, Boston, USA). Principal component analysis was used to
determine socio-economic status for each household and resulting scores were
divided into quintiles.[34] Buffer zones of 50, 100, and 250 m around each
household were calculated using ArcGIS (version 10.2, ESRI, California USA). The
mean number of allelic types present in each infected individual was determined
and corresponding 95% CI were calculated assuming a zero-truncated poison
distribution. Logistic regression was used to assess associations with RDT
positivity in the nPCR positive sentinel population adjusting for clustering within
localities. A finite population correction factor was applied to the standard error

for all statistics and the corrected 95% confidence intervals (CI) were calculated.

RESULTS

In total, 2082 individuals were sampled in 401 households (locality range [range]:
233-635), representing 94.2% (range: 90.8-100.0%) of all households (table P4-1).
There was no significant difference in age, proportion of females, or reported
recent travel between the localities. Bednet use the previous night was reported by
71.5% of participants (range: 53.4-77.4%). Overall, 1203 individuals were
screened for malaria by RDT based on their age (< 15 years, n=1158) or febrile
status (n=45) and 24.9% (95% ClI: 24.3-25.5%; range: 6.7-48.6%) were RDT-

positive.

Of all participants, 23.5% (95% CI: 23.1-24.0, range: 11.7-38.9) were parasitaemic
by nPCR, the mean number of allelic forms per infection (MOI) was 2.22 (95% CI:
2.18-2.25, range 1.61-2.61) and 65.0% (n=249; Range: 64.0-84.6%) of the 383

nPCR-positive individuals tested harboured gametocytes. Parasite prevalence
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Table P4-1: Population Demographics.
Demographics of the study population including
the number of people sampled overall, the range
of values per locality and for parasite metrics, the

959% confidence interval.

Mean | Locality Range

Population Characteristics

Households Sampled (%) | 94.2 90.8-100.0

N Sampled 2082 233-635
Sex (% Male) 45.3 43.1-47.3
Reported Net Use 71.5 53.4-77.4

Parasite Metric
nPCR prevalence 23.5 11.7 - 38.9
<5173 9.8-32.1
5-15 | 35.3 14.0 - 59.5
>15| 16.4 8.2-25.5
MSP2 - MOT* 2.22 1.61-2.61
<5224 1.33-2.60
5-15 | 2.34 1.54-2.81
>15|1.95 1.72-2.23
* N=489 nPCR-positive

(35.6%, 95% CI: 34.8-36.4 vs. 12.3%; 95% CI: 11.7-12.9%; p<0.001) and MOI
(2.33,95% CI: 2.28-2.38 vs. 1.95, 95% CI: 1.86-2.04; p<0.001) were significantly
higher in the 5-15 year old population compared to those 16 years of age and
older, respectively. Parasite prevalence in 5-15 year olds was also significantly
higher compared to those <5 years (17.3%, 95% ClI: 16.3-18.2%; p<0.001) but MOI
was not significantly different (2.24, 95% CI: 2.21-2.34; p=0.105). For individuals
tested by RDT, MOI was significantly greater in patent infections (2.48, 95% CI:
2.42-2.53) compared to subpatent infections (1.95, 95% CI: 1.87-2.02; p<0.001). Of
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all nPCR-positive children <15 years old, 29.9% (95% CI: 28.7-31.1%) had

subpatent infections.
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Figure P4-S1: Parasite prevalence per
household (A) and age characteristics of
index cases (B) A) The frequency distribution
of the proportion each sampled household
that was positive for malaria parasites by
nPCR. B) Frequency distribution of the ages of
the RDT-positive index cases for the entire
sentinel population as well as for the
households where only one RDT-positive

individual was found.
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Identifying parasite positive households through sentinel populations
Overall, 42.4% of the 401 households surveyed had no infections and there were 8
households (2.0%) where all members were nPCR-positive (supplementary figure
P4-S1A). Individuals who were RDT-negative or not screened by RDT were
significantly more likely to be nPCR-positive if there was a RDT-positive individual
in their household (OR: 1.71, 95% CI: 1.60-1.84); the odds of being nPCR-positive
increased with the number of RDT-positive individuals within a household (table
P4-51). Of the six definitions of sentinel population, testing those <15 years or
febrile adults achieved the highest sensitivity and specificity for detecting the
parasite reservoir (table P4-2): at the household level, sensitivity was 64.5%
(range: 31.6-81.2) with a specificity of 90.6% (range: 82.3-94.9); at the individual
level sensitivity was 77.3% (range: 24.2-91.0) and specificity was 55.7% (range:
31.3-85.1) (table P4-2).
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Table P4-S1: Household level clustering of
nPCR-Positive Individuals. The odds of being
nPCR-positive in those who were not RDT-
positive in households where RDT-positive
infections were identified stratified by the

number of RDT-positive individuals identified

in the household.

No. RDT- Odds nPCR- 95 %
Positive In Positive Confidence
Household Interval

0 1.0 -

1 1.47 1.36-1.60
2 1.71 1.54-1.90
3 2.34 2.02-2.70
4 3.64 2.97-4.46
>5 3.51 2.74-4.49

Correctly and incorrectly classified households appeared evenly distributed
throughout the area with little variation between the best (locality 1) (figure P4-
2A) and worst performing locality (locality 5) (figure P4-2B). Because 82
households with 244 nPCR-parasite positive individuals were not identified as
infection positive, we determined the impact of extending the focal treatment
response to include buffer areas around RDT-positive sentinel cases on sensitivity
and specificity. Based on the 94.2% of eligible compounds sampled, the median
distance for households that were incorrectly classified as parasite-free (parasite
positive individuals by nPCR but not by RDT in the sentinel population) from the
closest household with an RDT-positive sentinel case was 85.1 m (IQR: 56.9 -
147.3 m). The addition of buffer zones around targeted households improved the
sensitivity, but the specificity was greatly reduced beyond 50 m and the addition of
a 150 m buffer resulted in the inclusion of nearly every household as infection
positive; thereby resulting in an approach similar to MDA if this definition was

used to target antimalarial drugs (figure P4-S2).
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Figure P4-2: Maps of FMDA Sensitivity. Locality
with the A) highest and B) lowest proportion of the
parasite reservoir identified using the FMDA
approach. Dots represent each household
screened as part of this study including those
households that had nPCR-positive individuals but
were missed by the best definition of sentinel
population (black circle), those that were
correctly identified as infection positive (grey
triangle) and those that were correctly classified

as infection negative (black cross).
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Figure P4-S2: Impact of including all households
located within a defined buffer distance (numeric
labels) around households identified as infection
positive. The true and false positivity rate for
coverage of the parasite populations was estimated
at each buffer distance (50 - 250 m) if positive
households were considered those with an RDT-
(light grey circle) or nPCR- (dark grey diamond)

positive case in the sentinel population.

Factors associated with parasite carriers being correctly identified vs.
missed

The number of RDT-positive individuals in the sentinel population ranged between
1 and 12 per household and larger households were more likely to have RDT-
positive cases (p<0.001). In the 165 households with RDT-positive individuals,
52.1% had one and 31.5% had two RDT-positive individuals. The majority of RDT-
positive individuals were under 15 years old (96.7%), but the age ranged from 6
months to 82 years (figure P4-S1B). Of the households with a single index case, the
median age of the RDT-positive individual was 13 (range: 6 months to 82 years).
Overall, PCR prevalence (35.0%, 95% CI: 34.3-35.6% vs. 11.1%, 95% CI: 10.7-
11.6%; p<0.001) and MOI (2.35,95% CI: 2.31-2.40 vs. 1.76, 95% CI: 1.71-1.81;
p<0.001) was higher in correctly identified compared to missed households,

respectively. Sensitivity was associated with the average nPCR parasite prevalence
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in the locality and with the proportion of infections in the sentinel population that

were subpatent (table P4-3).

Table P4-3: Locality level factors associated with screening approach

sensitivity. Parasite and demographic data per locality ordered by the

sensitivity at household/individual level for the optimum definition of

sentinel population (testing those < 15 years and febrile adults).

Locality 1 2 3 4 5 p-value
N Households 109 120 73 42 57 -
N Individuals 571 635 365 233 278 -
Sensitivity - nPCR
Household | 81.2 66.1 55.0 44.0 31.6 -
Individual | 91.0 76.2 69.9 61.5 24.2 -
Parasite Metrics
nPCR prevalence (95% |38.9 (38.0- |19.4 (18.6- [20.0 (19.1- |16.8 (15.6- |11.7 (10.8- |0.037
CI) 39.9) 20.1) 21.0) 18.0) 12.6)
Estimated microscopy |16.5 (13.6- | 6.1 (4.6- 6.3 (4.6- 5.0 (3.3- 3.2 (2.0- -
parasite prevalence [4] | 20.0) 7.9) 8.7) 7.5) 5.0)
(95% CD)*
Subpatent infections in|39.2 (37.6- |48.4 (46.2- |65.7 (63.1- |59.0 (55.2- |81.8 (78.6- |0.037
sentinel population 40.7) 50.5 68.4) 62.7) 85.0)
(%) **
MOI (95% CI) 2.61 (2.55- [1.89(1.83- |1.88(1.79- |2.32(2.20- |1.61 (1.51- [0.188
2.67) 1.96) 1.96) 2.45) 1.72)
Demographic Indicators
Mean altitude (range) |1449.0 1422.8 1495.9 1465.1 1535.2 0.104
(1417- (1396- (1458- (1447- (1512-
1478) 1443) 1518) 1477) 1560)
Economic status, % in |19.1 12.6 14.7 18.2 23.5 0.505
lowest SES quintile
Age, % <15y 54.5 57.7 54.2 57.9 53.5 0.391
Fever, % febrile 2.6 2.4 2.5 1.7 2.5 0.492

individuals

* Microscopy parasite prevalence was estimated based on nPCR data based on a published

mathematical model to illustrate transmission intensity in the different localities; statistical testing

was not performed since this was a derived variable.

** nPCR positive infections that were RDT negative
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In the households where parasite carriers were missed due to no RDT-positive test
result, 43.5% (95% CI: 47.5-51.7% range: 25.0-73.3) of nPCR-positive individuals
were < 15 years of age (figure P4-3), indicating subpatent parasite carriage in the
sentinel population. The odds of individuals in the sentinel population being
correctly identified increased if they reported fever in the past 24 hours (Adjusted
Odds Ratio [AOR] 1.56, 95% CI: 1.25-1.95); had higher temperature (AOR 1.81 [per
°C], 95 CI: 1.58-2.07) and; had a greater number of parasite clones (AOR 1.26 [per
clone], 95% CI: 1.16-1.37) (table P4-4). Whereas, females (AOR 0.73, 95% CI: 0.57-
0.92) and those reporting having taken antimalarial drugs in the two weeks prior
to the survey (AOR: 0.69, 95% CI: 0.53-0.90) were more likely to have a subpatent

infection and therefore be missed.
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Figure P4-3: Detectability of infections in the sentinel age
population. Prevalence of nPCR infection by age group in the sentinel
population (aged 0.5-15 years and febrile adults). Bars indicate
whether these infections were detected by RDT (black) or whether
these were RDT-negative but present in households with RDT-
positive individuals (light grey) or RDT-negative without RDT-
positive household members (dark grey). Error bars indicate the

95% confidence interval for total nPCR parasite prevalence by age.
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Table P4-4: Individual factors associated with RDT-positivity in nPCR-
positive individuals. Results of logistic regression to identify factors
associated with RDT-positivity in nPCR-positive individuals in the
sentinel population, adjusted for clustering within localities.
Univariate Adjusted
OR | 95%CI p-value | AOR 95% CI p-
value
Gender
Male | 1.0 |- - 1.0 - -

Female | 1.06 | 0.99-1.13 | 0.095 0.73 0.57-0.92 | 0.008
Fever in 1.66 | 1.52-1.82 | <0.001 | 1.56 1.25-1.95 | <0.001
preceding 24
hours
Bednet use 0.89 | 0.82-0.96 | 0.005 2.31 1.86-2.87 | <0.001
previous night
Open Eaves 1.88 | 1.62-2.19 | <0.001 | 1.82 1.33-2.49 | <0.001
Temperature in | 1.44 | 1.36-1.53 | <0.001 1.81 1.58-2.07 | <0.001
°C
Reported use of | 1.11 | 1.03-1.19 | 0.003 0.69 0.53-0.90 | 0.007
antimalarials in
the preceding 2
weeks
Complexity of | 1.28 | 1.23-1.34 | <0.001 | 1.26 1.16-1.37 | <0.001
infection, mean
number of
MSP-2 clones

CONCLUSIONS

Including the asymptomatic and subpatent parasite reservoir of infection in
control measures is predicted to considerably augment efficiency [4, 7] but
sensitive and operationally attractive strategies to identify these individuals are

needed. Here, we determine the value and limitations of a viable operational
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approach in which individuals who are most likely to harbour parasite densities
detectable by conventional diagnostics (ie. in this setting, children and those with
fever), are screened by RDT to identify foci of subpatent parasite carriage in

residents of the same household.

Focal MDA campaigns have been used in areas of heterogeneous malaria
transmission [35] but there have not been any attempts to determine the value of
this approach in guiding household-level treatment where considerable clustering
of malaria infections is likely. [36] The presence of RDT-positive individuals in the
sentinel population was highly predictive of nPCR prevalence in individuals who
were RDT-negative or not screened by RDT, confirming household-level clustering
of malaria. [17, 37] We showed that the majority of individuals that were nPCR-
positive for asexual parasites also had concurrent gametocytes; illustrating their

potential role in onward malaria transmission. [38]

We showed that in our setting, screening those <15 years and febrile adults with a
conventional RDT identified over 75% of the patent and subpatent parasite
infections while minimizing the administration of antimalarial drugs to non-
infected individuals. If we had conducted focal MDA in all identified households,
only one-third of all uninfected individuals would have received treatment. This
approach would have been considerably more sensitive than strategies used in
Zanzibar and Burkina Faso where infection was detected at an individual level by
RDT and no attempt was undertaken to target subpatent parasite carriage in
household members of RDT positive individuals. [7, 39] By comparison, if a full
MDA approach had been used in our setting, three quarters of the total population
would have received treatment despite not having a current infection. There are
known risks and expenses associated with overtreatment and the use of
antimalarial drugs should ideally be targeted to those with infection or at risk of

infection. [20, 22]
Our approach to screen individuals most likely to have infections at densities

detectable by RDT [40, 41] did not result in the detection of all parasite positive

households or individuals. Although RDT screening of all age groups might be
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advocated, recent studies have shown that this approach is unlikely to result in
complete uptake [19] and will not detect all infections. [39] Furthermore,
individuals with subpatent infections in the sentinel population were more likely
to be younger and have less complex infections suggesting that the infections that
were missed had lower parasite densities. Although the association of subpatent
parasite carriage with reported drug use suggests that a fraction of RDT- and
nPCR-positive individuals may be older infections with persisting gametocyte
populations [42], this is unlikely to have affected our main outcomes and the HRP-
2 based RDT is likely to have a similar issue with positive results after clearance of
asexual infections. The risk of missing infections due to fluctuating parasite
densities and the single time-point of sampling was also minimised by use of an

HRP-2 based RDT. [43]

In this study it was striking that there was a high prevalence of subpatent
infections in the youngest age groups;[7] particularly in localities with the lowest
average parasite prevalence. These findings indicate that even in low endemic
settings and young age groups, molecular or alternative diagnostics may be
required to detect all parasitaemic individuals. [4, 7, 18] If we had used nPCR to
test the sentinel population (< 15 years and febrile individuals), we would have
achieved a sensitivity of 89.2% and a specificity of 50.9% to detect all nPCR-
positive individuals in our study setting. It is currently unknown what coverage of
the parasite populations is needed to achieve sustainable reductions in
transmission. In addition, it is unknown to what extent that the impact of our
screening approach may have been maximized by an iterative approach where
repeated screening with RDTs followed by focal MDA may progressively reduce
the parasite biomass in the population. However, our findings indicate that any
screening and treatment approaches to reduce malaria transmission would benefit

from field-deployable molecular diagnostics.
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6.4 General Chapter Discussion

Overview of Findings - operational strategies for targeting hotspots

and submicroscopic infections

These results suggest that the operationally attractive sampling strategies tested,
particularly the use of primary school surveys could provide additional benefits for
malaria control programs in terms of using confirmed malaria cases to target
hotspots of malaria transmission in the community. Such a re-active case detection
approach is being implemented using cases presenting at health facilities, however
this work suggests that schools or all attendee health facility surveys should also
be assessed as a possible alternative approach. (121) The use of sentinel
populations that are likely to harbor infections that are detectable by microscopy
or RDT can help identify households with subpatent infections in the community
once hotspots are identified. The use of sentinel populations has the potential to
supplement hotspot targeted control programs by improving the precision of
where interventions are targeted thereby offering a more effective use of

resources.

Limitations

There are important limitations to this work. As discussed, the use of convenience
sampling for hotspot targeted control strategies is reliant on operational
approaches to geolocate the residence of the each participant, which inhibited the
use of the PCD data for the hotspot identification analysis. The current need for
tracing individuals to their compounds to obtain precise spatial information has
the potential to limit the attractiveness of convenience sampling for hotspot
detection. However, the importance of this limitation is dependent on the
objectives of the program and the desired spatial resolution. Spatial heterogeneity
and hotspots of malaria are more likely to be apparent in areas where
transmission is low. (106) Therefore, the smaller number of cases that would need
to be geolocated and, given that the index case could assist in locating their
residence, minimizes the impact of this limitation and increases the utility of
convenience sampling to target hotspots. Furthermore, as people are traced, a
database of spatial information could be created thereby making future

geolocation exercises more efficient.
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Next, all of the surveys used to inform the definitions of hotspots and convenience
samples were cross-sectional studies. It is known that some hotspots are
consistently detected over time whereas others are temporary. (129) Using
seropositivity to define hotspots of infection in the community incorporates
historical exposure (205) however, non-permanent hotspots may be less likely to
be identified using the SatScan approach as individuals within these areas may
have lower average antibody levels and therefore be less likely to be seropositive
using the population based cut-off inherent in the mixture models used. (282, 283)
These temporary hotspots are more likely to be detected by measures of current
infection such as RDT, PCR, and clinical indicators or potentially a combination of
metrics adjusted for age may be ideal. (127) Similarly, the convenience sampling
was not conducted in the same year as the community survey, which was used to
define the ‘true’ hotspots. It is possible that some of the positive cases observed
during the school or health facility surveys originated from a hotspot that was not
present or detected during the community survey. Therefore, the sensitivity of

convenience sampling to target hotspots is likely to be an underestimate.

Implications for malaria control programs

Policies in many malaria elimination and pre-elimination setting have
incorporated a system of re-active case detection using confirmed cases at health
facilities as index cases to identify potential clusters of infection in the community.
(96, 121) The research on convenience sampling and hotspots suggest that the use
of school surveys may provide a more sensitive means with which to target
clusters of parasite carriers in the community that is also a financially attractive
option. (232, 284) However, for the use of school-based surveys to be incorporated
into control programs there is a need to validate this strategy in other settings and

to identify at which transmission settings such an approach can be effective.

Some important operational questions should be further explored to identify the
best ways to incorporate such a strategy into routine malaria control programs.
Firstly, the utility of reactive case detection relies on parasites clustering within

the compound of index cases. A subsequent important question is whether a pre-
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defined area around each index case should also be included in a response and if
that response should be a mass treatment campaign, or if the FMDA approach

would be useful in this setting.

Conclusions
The main conclusions that can be drawn from the results in this chapter are:

1) Individuals testing positive for malaria by all metrics during convenience
sampling approaches are associated with residing in a hotspot of malaria
transmission;

2) The community-based focal strategy identified a substantial proportion
of the parasite population but still missed over one-fifth of infections;

3) School surveys may be robust alternatives for targeting hotspots of

malaria transmission in the community.

187



Chapter 7: Discussion

This thesis has used data collected in the western Kenyan highlands to assess
operationally attractive approaches for identifying hotspots of malaria infection
for subsequent targeted interventions. This chapter provides a general discussion,
highlights the main findings, and discusses future research directions. Section 7.1
provides a general overview of the potential role of malaria hotspots in the context
of malaria elimination and a summary of the principal findings of this research are
discussed in section 7.2. Finally, the implications of the research findings and

future directions are discussed in section 7.3.

7.1 Research in context

Malaria is still a major public health burden with at least 0.5 million deaths per
year. (8) However, substantial progress has been made in the last decade with one
third of endemic countries now in elimination or pre-elimination states. (12, 95)
As discussed in section 1.1.5, when the malaria burden declines in an area, the
transmission dynamics shift; therefore control strategies must adapt so decision-
making is relevant to the new state. Importantly, once transmission achieves a low
level, malaria becomes increasingly focal with certain high-risk populations and
spatially defined areas experiencing a disproportionate amount of the malaria
burden. (121, 127) Eliminating and maintaining a malaria free state is expected to
be challenging in malaria endemic countries with the current tools available as
well as the constant risk of re-importation of the parasite into an area that is
conducive to malaria transmission. (222) If these spatial patterns of transmission
can be identified by local malaria control programmes for targeting with
interventions, it could provide an opportunity to have an economically attractive

and more sustainable impact on reducing malaria. (97, 222)

Currently, identifying hotspots of malaria transmission has largely been supported
by either clinical (121, 139) or community based data. (152, 282) Current studies
have primarily focused on demonstrating the presence of spatial clustering of
malaria infections. (9, 110, 127) The next steps are now to focus on methods for
applying this information and integrate the spatial dynamics of malaria

transmission into effective control and elimination programs that allow the
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assessment of the impact of targeted interventions. Although some malaria control
programs have adopted re-active case detection as part of their targeted
elimination strategies, little research has been conducted on how best to
implement such a program or what kind of coverage is achieved or is necessary to
achieve. Similarly, it is currently unknown if it will be sufficient to rely on using
clinical cases to target local level clusters or if other convenience sampling

approaches may provide alternative and viable options.

The aim of this study was to address this need and explore ways to identify
hotspots in the community and particularly, the role of convenience sampling to
provide an alternative to community based approaches for targeting hotspots of

malaria transmission.

7.2 Overview of findings

Heterogeneity in malaria transmission is known to exist at all spatial scales. (127)
To date, there has been little consistency in the approaches used to define
regional-level heterogeneity, or determine the presence of local-level transmission
hotspots. However, the operational feasibility of the methods by which data are
generated decreases as the desired granularity increases (figure 7-1). When
heterogeneity at different scales can be characterized and utilized, malaria
interventions can first be prioritized to regions of higher transmission intensity
and, once transmission has been reduced, focus on local areas of residual high

transmission intensity to accelerate the path to malaria elimination.
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Figure 7-1: Schematic depicting the relationship between an approach for
identifying and targeting hotspots that is operationally attractive and the
granularity of the spatial information that is typically available: as an
approach becomes operationally more difficult, the more spatial precise
becomes available. Where the different survey approaches discussed would

likely fall along this continuum are marked.

Determining regional-scale variation in malaria transmission intensity

The use of convenience sampling for monitoring malaria transmission is an
attractive alternative to conventional surveillance methods involving intensive
community based sampling or passively collected routine health facility data of
variable quality. Chapter 5 demonstrated that both health facility and primary
school surveys were able to provide reasonable estimates of malaria transmission
in the community and reflects the spatial heterogeneity in transmission intensity
across the study area. Importantly, the convenience sampling approach showed
strong concordance with the community estimates when spatial overlap of
location of residence was achieved highlighting the importance of accounting for
the microepidemiological nature of malaria transmission when interpreting
results. Routine health facility data was also collected as part of a passive case
detection study. Although this data was able to rank facilities according to

transmission intensity, data were based on confirmed malaria by microscopy
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and/or RDT, which is not the case in a large proportion of facilities and required
constant supervision to ensure data quality. Therefore, in this setting, the use of
periodic surveys in health facilities or primary schools where robust diagnostic
practices are enforced (134, 212, 263) provides an operationally attractive
alternative to monitor malaria transmission and could be used to identify areas

with increased burden while minimizing potential bias.

Detecting local-scale hotspots of malaria transmission

In chapter 4, hotspots were detected at the local level using data collected during
an intensive community-based survey. Both model-based geostatistics (MBG) and
the more commonly used SatScan approach were used to detect local level
heterogeneity and models were informed using both sero- and pcr-positivity.
Although obtaining a consistent delineation of hotspot boundaries was difficult,
both cluster detection methods and malaria metrics were able to identify the
general areas with higher burden and therefore offer insight into where
interventions should be prioritized. The number of points used to inform the
spatial models also had an impact on where the hotspot boundaries were drawn.
Similar to convention statistics, large sample sizes resulted in more precise
estimates of hotspot delineation. A better understanding of local level transmission
dynamics would be useful to provide a gold standard with which to assess the
error in terms of where hotspot boundaries are drawn by each cluster detection
methods and the sample size or distribution of points needed to ensure robust
results. (26) The malaria metrics tested are measuring different aspects of malaria
transmission, which is likely to be one of the factors causing the differences

observed in the resulting hotspots.

As discussed in chapter 4, the delineation of hotspots for targeting interventions to
areas with increased burden is ultimately based on an operational decision. The
choice of metric and statistical models will depend on many factors including the
information available, technical capacity, and desired outcome. However, these
results show that the results obtained must be interpreted appropriately and
uncertainties acknowledged. The work on defining hotspots of transmission

highlights the difficulties in translating the theory of targeting interventions to
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malaria foci to practice and underlies some of the gaps that should be explored to
further refine and operationalize such an approach. Furthermore, additional
insight would also help identify what granularity will be good enough to achieve
sustainable reductions in transmission, in other words, be good enough for

decision making.

Convenience sampling to identify hotspots of malaria transmission

The use of convenience sampling was tested as a potential tool to identify hotspots
of malaria transmission in the community for subsequent targeting (chapter 6).
Those testing positive during the convenience sample, particularly school surveys,
were associated with residing in a hotspot of malaria exposure identified based on
a community survey. The use of convenience sampling to target hotspots of
malaria has several advantages over the conventional approaches. Firstly, using
convenience sampling has the potential to provide information with a greater
spatial granularity. Information can be obtained either at the household level if
spatial coordinates of case residences could be obtained (appendix 1.1) or
alternatively to the catchment area of the institution, which tend to be smaller than
district boundaries. (126, 285) Also, a reliance on cross-sectional studies
minimizes the bias and subjectivity associated with focusing solely on suspected
malaria cases (as discussed in section 5.3.3). These data suggest that as well as
being a reliable metric for malaria surveillance, convenience sampling, and
particularly primary school surveys, could provide an operationally attractive

outlet to identify hotspots of malaria transmission in the community.

Targeting Hotspots of Malaria

Finally, if foci of transmission can be identified, it is likely that the distribution of
parasite carriers within that hotspot will also be heterogeneous with some
compounds being more at risk than others. (127) As discussed in section 6.3,
current strategies that target interventions to parasite carriers rely on test and
treat or mass treat campaigns, which either under- or over-target the parasite
reservoir. Therefore, ascertaining the proportion of parasite carriers within known
hotspots of infection that can be identified using an operationally tractable
approach could further refine a targeted strategy and provide a benchmark with

which to compare the efficacy of a convenience sampling approach. Chapter 6
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presents an approach whereby a sentinel population consisting of individuals most
likely to have infections detectable by RDT being tested, and if any individual was
positive for malaria, it was assumed that subpatent and asymptomatic infections in
the household were present. This approach managed to identify the majority of
parasite carriers, however the best approach still missed over one-fifth of
infections. The sensitivity of the focal testing approach was associated with the
baseline parasite prevalence suggesting that this approach may be a viable and

operationally attractive method in some settings.

7.3 Future research directions

That heterogeneity of transmission exists at all spatial scales is increasingly
acknowledged and supports the focus on a hotspot-targeted strategy for malaria
control and elimination. Although a better understanding of what spatial scale is
ideal for a hotspot targeted approach in different settings is needed, the
practicality of integrating such a strategy into a malaria control program will be
contingent on three (not mutually exclusive) factors: that the approach should be
operationally viable; that targeting hotspots will be more cost effective than a
uniform strategy; and that there is an impact on malaria transmission, ideally in

the hotspots as well as the broader community.

Firstly, for any intervention to be sustainable it must be integrated into the local
malaria control program and be feasible given existing financial, technical, and
logistical capacity. (222) This study identified two operationally attractive
strategies that were able to measure transmission intensity in the community and
identify hotspots of infection. The use of school and health facility surveys are
appropriate for capturing the malaria burden given the epidemiological profile in
the Kenyan highlands and probably in many other African settings, but in specific
settings different populations may be more appropriate and acceptable to the
community. For example, mobile populations may be better indicators of
transmission potential in areas primarily affected by imported malaria or targeting
markets or mining camps where cases are associated with certain occupations.
(39, 286) Furthermore, the acceptability of such a program may also vary by

population. For example, in some cultures it may be unacceptable to take biological
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specimens in settings outside of a health care institution or at all. Therefore, it is
essential to identify possible outlets to capture the malaria burden, adapt
strategies to the local context, and integrate the communities into the decision

making process.

Secondly, using a targeted approach will only become viable if the costs associated
with identifying hotspots are lower than the money saved compared to conducting
a universal campaign. The use of convenience sampling for monitoring malaria
transmission has been shown to be more cost effective than community based
surveys (232) and tends to provide more robust estimates compared to routinely
collected malaria data (see section 5.3.1). (178, 223) However, more work is
needed to further refine the use of operational approaches to target hotspots of
transmission, for example whether case-aggregation over time or the use of a more
re-active approach including a pre-specified buffer area around each case achieves
better coverage of hotspots. Once strategies can be further refined, more robust
cost-benefit analysis can be conducted to determine if the additional expenses
associated with this approach compensates for the costs saved by targeting

interventions to a subset of the population.

Thirdly, the focus on transmission hotspots is becoming an increasingly popular
theory for application in malaria control and elimination programs. (121, 127)
However, there is still no empirical evidence on the impact that such a targeted
approach has on malaria transmission. The findings of this research and other
work suggest that heterogeneity in malaria transmission exists and can be
detected. (148, 287) Nevertheless, there are still several gaps in understanding the
transmission dynamics at the local level and how much these foci actually
contribute to malaria transmission. Understanding the local level transmission
would facilitate refinement of methods to both define these, and ensure that
impacts can be measured effectively. More concrete, longitudinal data are needed
to identify such trends and provide a gold standard with which to measure

boundary delineation and effectiveness of interventions against.
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Lastly, the optimum malaria metric to inform cluster detection models merits
further investigation. Ideally, mapping Rc at spatial resolutions relevant to local
malaria control programs would be possible. Deciding where to intervene would
be simple as would then target everywhere where Rc¢ is greater than one. However,
measuring Ro or approximations such as EIR or SCR are population based metrics
and will inevitably introduce spatial bias in estimates. As mentioned above
(section 7.2), cluster detection of seropositivity and PCR infection resulted in some
consistency: both metrics were able to identify similar areas, presumably the most
significant ones. Despite this consistency, there were always clusters identified by
one approach that were missed by the other metric. As discussed, these metrics
are inherently measuring different components of the malaria transmission cycle
and provide different pieces of information. Obtaining a better understanding of
how the different metrics relate would facilitate identifying the optimum metric or
combination of metrics for hotspot detection. For example, is it necessary to
employ both metrics for a combined measure for hotspot detection and how this
compares with relying on the less precise diagnostic tools such as microscopy or
RDT. Alternatively, employing an age-adjusted approach as has been employed by
the global mapping projects, (9, 109) may provide a more accurate picture of
hotspots. A pragmatic approach to a hotspot-targeted strategy would be to take
any evidence of infection or exposure as a trigger for intervention. However, to
refine such a strategy, a better understanding of what is driving these differences
and whether they matter in terms of employing a hotspot targeted approach would
be important. Once a gold-standard metric for defining hotspots can be identified,
if possible, assessing the bias introduced with use of alternative, more operational

practical diagnostic tools would be possible.

If a hotspot targeted approach were to be employed it will be important to identify
what proportion of the parasite reservoir within such areas must be targeted to
ensure a sustainable reduction in transmission. Community uptake of malaria
control interventions is not uniform. It has been found that some individuals will
consistently and correctly participate whereas others will never engage. (122)
Therefore, identifying what threshold coverage must be achieved, and what the

ideal package of interventions is, to ensure a sustainable impact on transmission
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will be useful to provide a benchmark to strive towards and would facilitate
monitoring and evaluation of such strategies. Identifying this threshold, which may
vary in different populations, would also help gauge the efficacy of employing
convenience sampling to target hotspots. Even though this research suggests that
convenience sampling is able to identify hotspots for targeting, if the coverage
achieved despite the use of buffer zones or other method is not sufficient, then

alternative strategies would be needed.

In conclusion, the overall objective of this study was to determine if operationally
attractive approaches for the identification of hotspots of malaria transmission in
the western Kenyan highlands are possible and can provide viable alternatives to a
community based survey approach. This thesis provides the first rigorous
examination of defining hotspots of malaria transmission and the potential role for
integrating operationally attractive approaches to both malaria surveillance and
for targeting hotspots of malaria transmission. The findings show that the
distribution of malaria in the Kenyan highlands is highly heterogeneous and that
operational strategies can provide a sensitive method to monitor malaria
transmission and to identify hotspots for subsequent targeting. However, there
remains a need to further understand the role of hotspots in malaria transmission
and how these can best be measured and ensuring that correct inferences are

made from the available data.
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Summary

Understanding the spatial distribution of disease is critical for effective disease
control. Where formal address networks do not exist, tracking spatial patterns of
clinical disease is difficult. Geolocation strategies were tested at rural health
facilities in western Kenya. Methods included geocoding residence by head of
compound, participatory mapping and recording the self-reported nearest
landmark. Geocoding was able to locate 72.9% (95% CI: 67.7-77.6) of individuals
to within 250 m of the true compound location. The participatory mapping
exercise was able to correctly locate 82.0% of compounds (95% CI: 78.9-84.8) to a
2 km x 2.5 km area with a 500 m buffer. The self-reported nearest landmark was
able to locate 78.1% (95% CI: 73.8-82.1) of compounds to the correct catchment
area. These strategies tested provide options for quickly obtaining spatial

information on individuals presenting at health facilities.
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INTRODUCTION

Many infectious diseases show microepidemiological geographical variation.
Outbreaks of (emerging) infectious diseases may be geographically confined or
start in small pockets that later give rise to larger outbreaks [1-4]. For endemic
infectious diseases with stable disease transmission, considerable geographical
heterogeneity in the intensity of transmission has been described [2, 5-8].
Geographical variation for both epidemic and endemic infectious disease
occurrence has important public health consequences. Identifying regions with
higher disease burden can facilitate cost-effective prioritization of control efforts
[9-11]. Within regions, identifying areas of persistent and intense transmission
may prevent outbreaks of disease that spread from these areas and support
disease elimination strategies when overall disease occurrence has declined [2, 12,
13]. To allow spatial targeting of disease control efforts, attributing a geographic
location to each disease occurrence is ideal, and the minimum number required for

accurate monitoring is likely to be disease specific [9, 14, 15].

Given adequate address information, automated geocoding software packages can
generate accurate spatial coordinate data for a large proportion of individuals [16,
17], thereby providing a basis for the spatial analysis of disease transmission [18-
20]. In circumstances where formal address data are unavailable or privacy
concerns limit the use of precise spatial locations, other approaches have been
used to obtain geographical information on incident cases. Catchment areas of, for
example, community pharmacies or general practitioners have been used for
describing spatial patterns in disease occurrence [6, 15, 20-22]. In areas with well-
developed public health infrastructure, catchment areas tend to be well defined
and sufficiently small to allow a meaningful attribution of localities to clinical cases
based on the facility they attended [20, 22]. Geolocation approaches are likely to
have less utility for resource poor settings where formal address systems are
commonly unavailable and where health facility catchment areas are relatively
large and poorly defined [5, 23, 24]. Alternative approaches to geolocation

strategies are needed in such settings.
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Two of the most commonly used geolocation strategies for rural resource-poor
environments are distributing compound ID cards after an enumeration exercise
or actively visiting compounds and geolocating the area of residence for
individuals of interest [25]. Although these methods provide accurate spatial
information, they are not operationally attractive outside research settings [10, 21,
25]. Approaches that can be implemented without the need for house-to-house
visits would facilitate the incorporation of spatial information into routine data
collection and public health planning at the local level. If this can be done with
sufficient precision it would support the identification of local-level disease

heterogeneity [5, 18, 25].

Here, we examine the accuracy and precision of three approaches to geolocate
health facility attendees in a rural area of western Kenya: geocoding on name of
head of compound, participatory mapping using satellite imagery, and attributing

participants to the catchment area of the self-reported nearest landmark.

METHODS

Study site

The study was conducted in a rural area of Rachuonyo South district, Nyanza
Province in the western Kenyan highlands that spans approximately 300 km?.
There is one main road that runs through the area and the landscape consists of
rolling hills and several large rivers (figure 1). The population mostly comprises
people from the Luo ethnic group whose main occupation is subsistence
agriculture. Compounds typically comprise extended families living in proximity to

their fields or in multi-unit structures in the few, more urban, market centres [26].

Five rural health facilities were identified whose catchments overlapped with
community-based cross-sectional surveys being carried out (figure 1) [27]. Cross-
sectional malaria surveys in the health facilities were conducted in October 2011
and in July 2012 to coincide with the bimodal seasonal peaks in malaria
transmission. Four of the five health facilities were sampled during both surveys.
One facility was replaced for the second year to maximize overlap with the ongoing

community work. All patients and accompanying individuals attending the
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outpatient clinic were recruited for the survey. A questionnaire was administered
to all consenting participants to obtain information on malaria indicators and their
area of residence, as described below. Tracing individual compounds from health
facility attendees is a laborious and costly exercise because of the large catchment
areas and inaccessible terrain and could therefore not be completed for all
attendees. For operational reasons, following the facility survey, 30% of
participants were randomly selected and traced to their compounds, to validate
the geolocation strategies being tested. Compounds were mapped using a GPS

receiver.

Geolocation strategies

Method 1: Geocoding. A system of geocoding was developed to match ‘postal
addresses’ to an existing spatial database. In this setting in rural Kenya,
compounds are known by the name of the compound head, usually the patriarch of
the family. Individuals have three names, two given and one family name. Names of
the compound head were collected as part of the questionnaire at the facility.
Names were matched to an existing database of names of compound heads with
associated spatial coordinates collected as part of a large cross-sectional survey in
the area. This community survey sampled approximately one third of the
population [27]. As not all compounds were sampled during the community
survey, the names of the three nearest neighbors were also collected at the facility
to increase the probability of finding a match. This method would be useful in
areas that have existing and updated registries with accompanying spatial
information and could easily be applied to all scales, depending on the availability

of baseline data.

Analysis was restricted to those compounds located in the area of the community
survey. Names from the two databases were matched using Levenshtein’s distance
algorithm [28] for string matching using Stata (version 12.1; StataCorp, TX, USA).
Possible matches, where the matching probability was 280%, were checked
manually. Matches were discarded if: (a) there was more than one compound head
with the same name in either database; (b) if only one of the three names was

recorded; or (c) if all three names were provided but at least one of the names did
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not match. This process was repeated for the names of the nearest neighbors. All
likely matches were plotted in ArcGIS (version 10.1; ESRI, CA, USA) and the
distance between the actual geolocated compound and the matched compound
from the community survey was calculated. Compounds from the health facility
survey were considered successfully located if they were less than 250 m from the
corresponding compound in the community survey. This resolution was a
pragmatic choice as it was deemed an acceptable balance between accuracy and

spatial resolution, as this area would only likely comprise 2 or 3 compounds.

Method 2: Participatory mapping. The second method assessed was participatory
mapping, and was similar to the recently published ‘map-book’ exercise [25] and
involved producing poster-sized, high-resolution satellite images (Quickbird;
Digital Globe, CO, USA) of each facility catchment area (Figure 2). Locations of
health facilities, schools, markets and other key landmarks were labeled on the
image and a reference grid consisting of 2 km by 2.5 km ‘blocks’ was superimposed
on the area [27]. Each block comprised 20 ‘cells’, each measuring 500 x 500 m.
Each block/cell combination was given a unique numeric identifier. The system
(including size of polygon) was selected because it was familiar to the field
workers and would provide them a better frame of reference for facilitating the
exercise. As part of the participant questionnaire, the interviewer would explain
the main features of the satellite map and with the participant, would attempt to
locate the residence on the map and record the corresponding cell identifier. Due
to the spatial resolution required to locate compounds, this approach is most
applicable to local scale but could be scaled up if satellite imagery was indexed into

a book-format instead of a poster.

Locations of participants followed to their compounds were plotted in ArcGIS and
were classified as correctly located based on the participatory mapping exercise if
they fell within the reported cell. To account for the likely edge effect with
compounds located just outside a grid cell being considered incorrect, the
proportion of compounds correctly identified within 500 m (one cell) or 1000 m

(two cells) surrounding the reported block/cell was also calculated. The distance
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between the edge of the cell/buffer and the incorrectly located compounds was

calculated in ArcGIS to determine the mean error associated with the approach.

Method 3: Nearest self-reported landmarks. The final method tested was to see if
participants resided in the catchment of self-reported nearest landmarks. This
approach is the most flexible and could be easily applied at all scales, given a
database of the relevant landmark with accompanying spatial information is
available. At the health facility, each participant was asked to name the nearest
health facility, primary school, market and church to their compound.
Combinations of responses were also assessed using overlapping catchment areas
to increase the precision of the approach. Locations of compounds were plotted
using ArcGIS and a compound was considered to be correctly located if it fell
within the catchment area or intersecting catchment areas that matched the

response provided at the facility.

Catchment areas for each type of landmark were estimated based on both
Euclidian- (straight-line) and cost-distance [29, 30]. There were some missing
coordinates for certain reported schools. Therefore, analysis was restricted to
participants who reported residing near the schools with known coordinates.
Euclidian distances were calculated using the ArcGIS Euclidian distance tool in the
spatial analyst package to delineate catchment areas for for both health facilities

(figure 3A) and primary schools (figure 3B).

A cost-distance function to account for factors that may either impede or facilitate
travel was also used to delineate landmark catchment areas. Given the gently
undulating topography of the study area, it was assumed that ease and speed of
travel between compounds and relevant landmarks is determined either by the
presence of roads (facilitating travel) or by the presence of rivers (impeding
travel). Roads and rivers in the study area were digitized using high-resolution
Quickbird satellite imagery multispectral imagery at 2.8 m resolution sharpened
with a 60 cm resolution panchromatic image. Roads were classified into four
categories: (1) tarred roads where the likely maximum speed is 80 km/hr; (2)

roads that are not tarred but vehicles travel a likely maximum speed of 40 km/hr;
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(3) roads that are not tarred but accessible to a vehicle or motorbike with likely
maximum speeds of 20 km/hr; (4) paths not likely traversed by a vehicle but by
motorbike with likely maximum speeds of 10 km/hr. For all other surfaces,
including walking paths or fields, a maximum speed of 5 km/hr was assumed [23].
Rivers were classified as barriers to movement except where they were
intersected by a road or path. The cost-distance models for both health facilities
(figure 3C) and primary schools (figure 3D) were created using IDRISI software

(Clark Labs, MA, USA) and imported into ArcGIS for analysis.

The mean error for both methods was calculated as the distance between the
border of the catchment and the location of the incorrectly located compound. The
distance between each compound and the centroid of each polygon could have
been calculated. However, due to the irregular shape of many of the polygons, the
distance to the centroid would not be an accurate reflection of the error rate in this
approach as points that are far away from the centroid but located to the correct

catchment area would generate a large error rate and be misleading.

Ethical considerations. This study was approved by the ethics committees of the
London School of Hygiene and Tropical Medicine (LSHTM 5956) and the Kenya
Medical Research Institute (SSC 1589). Individual informed consent was sought
from all participants of the health facility survey by signature or thumbprint
accompanied with the signature of an independent witness. As defined in the
Kenya national guidelines, participants below 18 years of age who were pregnant,
married, or a parent were considered "mature minors" and consented for

themselves [31].

Data analysis. The proportion of study participants whose compounds were
correctly located using each geolocation strategy of all participants that provided
responses for each method and corresponding binomial 95% confidence interval
was calculated. Mean error of each method was determined by calculating the
distance between the actual location of the compound and edge of the identified

area. Plotting the proportions for each approach against the mean area identified
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the optimum strategy: strategies located in the top left corner of the plot signified

high precision and accuracy.

RESULTS

Across both surveys, 3034 people were enrolled of which 830 (27%) were able to
be traced back to their compounds and included in the analysis. Those that could
not be traced were mainly due to running out of time and inaccurate information
provided at the facility. The participants that could not be traced were evenly

distributed between years and facilities.

Method 1: Geocoding

Of the geolocated participants, 519 lived within the area of the community cross-
sectional malaria survey and could be used for geolocation. Of the 328 matched
compounds, 56% were successfully located using the head of compound. Of the
participants that were matched, 72.9% were correctly located to within 250 m
(95% CI: 67.7-77.6, median distance of 36.2 m). Possible reasons for why more
people were not correctly matched may include people not being familiar with the
full names of their neighbors or reporting different heads of compound for the
same compound (e.g. the grandfather vs. the father of the family). The median
distance from the true location to the matched compound of those that were

incorrectly matched was 4440.9 m (IQR: 1610.1-8591.4 m).

Method 2: Participatory Mapping

Using the participatory mapping approach, 64.9% (95% CI: 61.2-68.4) of 695
participants who attempted the mapping exercise were successfully located to the
appropriate 2 x 2.5 km block (table 1). When a 500 m buffer in all directions
around the block was included, the proportion correctly located improved to 82%
(95%CI: 78.9-84.8) at the block and from 12.4% (95%CI: 10.0-15.0) to 57.1%
(95%CI: 53.3-60.8) at the cell level.

However, 135 (16.3%) participants did not participate in the mapping exercise.

Reasons for refusal were not recorded, but there were no differences in sex or age

distributions in the populations who did and did not participate in the exercise. Of
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those willing to locate their residence, 61.5% were female compared to 58.9% in
the not willing group (p=0.6). Similarly, the mean age in the adult populations in
those not willing to locate their residence was slightly higher at 37.9 compared to
35.3 years in those that did attempt the exercise, although the difference was not

significant (p=0.3).

For compounds that were incorrectly located, the median distance to the correct
block was 489 m (IQR: 229-1036 m), 1036 m (IQR: 737-1737),and 1737 m (IQR:
1179-2728) for the block only, +500 m buffer, and +1000 m buffer, respectively.
The median distance of compounds incorrectly located from the identified cells
was 539 m (IQR: 236-1095 m), 1055 m (IQR: 737-1644) including a 500 m buffer,
and 1588 m (IQR: 1200-2180 m) including a 1000 m buffer. Also, the proportion of
people that were correctly identified to a specific block or cell significantly varied

per facility (block only p=0.007, +500 m p=0.003, +1000 m p<0.0001).

Method 3: Nearest self-reported landmarks

Analysis of self-reported nearest landmarks indicated that responses for nearest
market tended to predominantly consider relatively large markets, rather than
smaller, local markets. In addition there was too much variability in responses
concerning the nearest church, the majority of which were small establishments
whose spatial coordinates had not been recorded, to conduct meaningful analysis.
For these reasons only data relating to the nearest health facility and primary

school were retained.

Overall, the nearest health facility and primary school were reported correctly
84.9% (95% CI: 82.2-87.2) and 73.4% (95% CI: 68.8-77.7) of the time,
respectively, based on straight-line distance (median distance 1486 m, IQR: 1008 -
2241 m). The use of the self-reported nearest primary school was able to locate
82.0% (95% CI: 78.1-85.8) of participants’ compounds to the correct Euclidian
distance catchment area (mean area of 6.7 km?) (table 2) with a median distance
to the self-reported nearest school of 878 m (IQR: 522 - 1234 m). The self-
reported nearest health facility was able to locate 78.1% (95% CI: 73.8-82.1) of

compounds to an area of 12.3 km?2. When the combination of responses was tested,
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the mean area reduced to 1.7 km?and 48.7% (95% CI: 43.6-53.6) of participants’

compounds were correctly located.

Next, 77.1% (95% CI: 74.1-80.0) and 78.1% (95% CI: 73.8-82.1) of participants
were located to the correct health facility and school catchments, respectively
using the cost-distance catchment area. The combined responses were able to
locate individuals based on the combination of responses with 72.4% (95% CI:

67.8-76.8) of compounds successfully located to a mean area of 3.7 km? (table 2).

Of those individuals who did not reside in the catchment area of the reported
nearest landmark, the mean distance away from the edge of the catchment area
was 1252 m (IQR: 261 - 1899 m) for catchments based on Euclidian distance and
496 m (IQR: 174 - 605 m) using the cost-distance model.

Optimal geolocation approach

Although not directly comparable due to the different scales, the results across all
strategies showed a logarithmic relationship between mean catchment area and
proportion of compounds correctly identified (figure 4). Points that are located in
the top left corner represent the optimal combination of low mean area (high
precision) and a high proportion of people correctly located using that strategy
(high accuracy). The results of this analysis suggest that using the location of the
nearest primary school as well as the participatory mapping with buffer was the
most promising methods to geolocate rural health facility attendees in this rural

study setting.

DISCUSSION

A simple and operationally feasible way to identify the spatial occurrence of
disease in rural areas where homes have no formalized address would be an
extremely useful tool and could easily be employed as an operationally attractive
approach to spatial disease surveillance in a wide range of settings around the
world. A recent study has been conducted in Blantyre, Malawi in an urban setting
[25] however, our study is, to our knowledge, the first attempt to examine different

methods to geolocate health facility attendees in a rural area and to gauge their
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precision. Although strategies are not directly comparable due to the different
spatial scales, the current study showed that there are options available to obtain
spatial information in areas where no formal postal network exists. Results have
shown that it was possible to correctly locate close to 80% of participant
compounds using either a participatory mapping exercise (to 2 x 2.5 km blocks
with buffer) or by using information about the nearest primary school. This is
similar to the level of detection of most geocoding strategies when applied in
developed countries, although the spatial resolution is not as good [17, 32]. In this
study, methods based on name-matching or participatory mapping to the 500 x
500 m cell level proved to be less accurate, but are capable of greater spatial

precision.

The ideal geolocation approach in a rural setting will ultimately depend on the
information available, the objectives, whether it be monitoring for epidemics or
planning for disease control interventions, and the required spatial
precision/accuracy. The geocoding approach requires that an accurate and up to
date list of names of compound heads is available, which is unlikely to be the case
outside areas of active community-based research. The geocoding approach also
relies on names recorded being complete and recorded consistently; a difficult task
in busy facilities. There may also be challenges in obtaining correct information
from people who may want to remain anonymous. Also, a systematic bias is
inevitable as compounds whose head has a common name or is the head of
multiple compounds will never be matched unless other variables are also
considered. However, in areas where a complete database is available, through
land registries for example, or if overall accuracy is less important, geocoding

could provide a useful geolocation approach.

The participatory mapping exercise also has notable limitations. It requires that a
map of the study area be available and that there are personnel familiar with the
area capable of interpreting satellite imagery. Key features must be identifiable on
the map to help orient readers. Although the age difference here was not
significant, younger generations may also be more map literate than older

generations. High-resolution satellite imagery can be expensive to acquire, up to
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several thousand US dollars [25] however, free imagery with good resolution is
becoming more widely available for even remote areas in rural and low-income
settings and a similar exercise could be conducted using web-based platforms as is
increasingly being utilized for disaster response [33-35]. Also, depending on the
size of the area of interest, it may be possible to create a schematic map of the area

using local knowledge [10].

To facilitate participatory mapping, a grid was superimposed onto the study area,
leading to an edge effect whereby if a person was located just outside of the
block/cell they would be classified incorrectly even though the error margin could
be only a few meters. Edge effect will always be an important limitation that must
be accounted for in any application of this methodology particularly when the
focus is on locating residences at a precise spatial resolution. However, despite this
limitation, this research has provided important insight into how the edge effect
can be minimized and sensitivity increased by the addition of buffer zones. Other
approaches could have been used including a hexagonal grid or larger clusters as
was used in the study in Blantyre’s urban slum area [25]. These approaches will
likely reduce, but not completely eliminate the edge effect. Also, in this study, there
was a significant difference in the proportion of people correctly located at each
health facility and not every participant was willing to complete the exercise. This
suggests that the familiarity of the interviewers with the area, their ability to read
and explain the maps to local populations, and the time they have or choose to

dedicate may be important determinants for success.

The use of the nearest landmark approach requires that the location of the feature
in question (e.g. church, school) be known. This could be done by visiting and
mapping each site using a GPS receiver, or sites could be located on a map by
someone familiar with the area. National databases of the locations of such
landmarks are becoming more common and therefore this limitation may be less
relevant, however to be useful, databases must be up to date and include all
government, faith based, and private facilities. In this study, people only correctly
located the nearest landmark around 80% of the time and the accuracy of this

approach was dependent on the definition of catchment area used. The reporting
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bias may be due to factors such as spatial perceptions of ‘closeness’, the density of
that type of landmark in the area, or reporting known or highly frequented
landmarks rather than those that are closer. Other possible landmarks that could
be used include nearest chief or assistant chief, nearest shop, or nearest local
transport point. In terms of defining catchment areas, both methods produced
similar results [36]. The analysis using the cost-distance catchment areas showed a
lower error rate based on the distance from the edge of the catchment area
suggesting that this approach may be more robust. However, the utility of this
approach is limited to areas with digitized travel networks, access to the required

software, and the expertise to create the cost-distance surface is required.

The goals of the geolocation exercise will influence the optimum strategy. Firstly,
the ideal scale will depend on the spatial pattern of the disease and the size of the
area of interest [5]. For example, if the objective was to identify foci of infections of
a highly heterogeneous disease such as malaria in a low endemic or epidemic
setting [7, 9, 20] then achieving higher precision would be essential. Conversely, if
the distribution of sexually transmitted infections was being studied, less precision
may be acceptable or even necessary to guarantee anonymity [20]. Secondly, the
ideal strategy will depend on the purpose of geolocating cases. If it is for
programmatic use such as passive public health surveillance, or to establish
disease distribution at a regional or national level, then using the nearest health
facility, with a larger mean catchment area may be sufficient. However, if greater
precision and accuracy were required, for identification of foci for disease
elimination or identifying where to implement control, for example, then knowing
the exact boundaries of the catchment area or having a comprehensive postal

network that can be geocoded to a high precision would be essential.

There were some limitations to this study. Firstly, it was only feasible to trace 27%
of participants to their compounds. Although this provided a large sample, it is
possible that if we could have traced all individuals, the results and the conclusions
on the applicability of the techniques tested may have been different. However, as
the sample was a random selection, the impact on the results is expected to be

minimal. Similarly, spatial coordinates were only available for the government-run
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primary schools in the area, thereby restricting the sample to those residing near
these schools. The limited number of school locations that were available as well
as the lack of covariates such as size or perception of academic rigor to include as
part of delineation of catchment areas likely influenced the size of catchment areas
as calculated by both approaches. However, although altered catchment area
boundaries would impact both the precision and accuracy of the results, this is not

likely to have a significant impact of the results.

Spatial monitoring of health facility data has strengthened public health
programmes in developed countries and facilitates conducting research with
passively collected data [6, 37]. However, the ability to efficiently geolocate
individuals residing in areas where no formal address network exists or where the
settlement pattern is not conducive to matching individuals to specific localities is
currently lacking, particularly in areas around the world where infectious disease
transmission persists [5, 38]. The geolocation strategies tested as part of this
research exemplify alternative options for obtaining spatial information from
health facility patients in a setting that is typical for much of rural sub-Saharan
Africa and other parts of the world. Easily collected spatial information can
supplement both passive and active disease surveillance to detect foci of
transmission, enables the detection of outbreaks in a timely manner, and facilitates
tracking of how disease spreads through the population over time [37, 39, 40]. If
validated in other parts of the world, these results indicate that recording the
nearest primary school or implementation of a participatory mapping exercise at
rural health facilities offer potential strategies to facilitate spatial analysis of
disease dynamics. Further research is needed to demonstrate their utility in a
range of settings and their operational viability before formal testing in a broader

operational context.
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FIGURES
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Figure 1: Map of the study area, Rachuonyo South, Kenya (2011-2012), showing
the main roads (dashed lines), rivers (solid lines), location of schools (flags) and

health facilities (crosses).

Figure 2: Participatory mapping example showing the grid of block and cells that
were overlain on satellite imagery. The red lines outline the block and block
numbers are shown. The cells are outlined by the black lines within each block and

are counted from 1 to 20 starting with the upper left corner and counting from left

to right (ie. 13/01 to 13/20).
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Figure 3: Examples of the catchment areas and the spatial distribution of
responses for self reported nearest landmark for the Euclidian and cost-distance
models, South Rachuonyo, Kenya, 2011-2012: A) Health facility catchment based
on Euclidian distance model; B) Primary school catchment based on Euclidian
distance model; C) Health facility catchment area based on cost-distance model; D)

School catchment area based on cost-distance model.

264



Results of Geolocation Strategies
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Figure 4: Scatter plot showing the summarized results of all geolocation strategies
tested with the precision (mean area) of the approach plotted against the accuracy
(% of compounds correctly located): 1-Cell [participatory mapping (PM)]; 2-Cell
(+500 m)[PM]; 3-Combined Health Facility (HF) & Primary School (PS) (Euclidian
distance - ED)[Nearest Landmark (NL)]; 4-Geocoding; 5-Block [PM]; 6-Cell (+1000
m) [PM]; 7-Block (+500 m)[PM]; 8-Combined HF & PS (cost-distance - CD)[NL]; 9-
PS (ED)[NL]; 10-Block (+1000 m)[PM]; 11-PS (CD)[NL]; 12-HF (ED)[NL]; 13-HF
(CD)[NL].
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TABLES

Table 1: Results of Participatory Mapping Exercise, Rachuonyo South, Kenya, 2011-
2012
Block/Cell Only + 500 m buffer + 1000 m buffer
Mean |% 95% CI|Mean |% 95% CI |Mean |% 95% CI
Area |Correct Area |Correct Area |Correct
(km?) (km?) (km?)
Block |5 64.9 61.2- |7.5 82.0 78.9- 10.5 |90.6 88.2-
68.4 84.8 92.7
Cell ]0.25 (124 10.0- |1 57.1 53.3- 2.25 |77.1 73.8-
15.0 60.8 80.2

Table 2: Results of self-reported nearest landmarks as a geolocation strategy,

Rachuonyo South, Kenya, 2011-2012

Euclidian Distance

Cost Distance

Mean % 95% CI Mean | % 95% CI
Area Correct Area Correct
(km?) (km?)
Health Facility | 14.9 73.9 70.7,76.8 | 36.3 77.1 74.1,80.0
Primary 6.7 82.0 78.1,85.8 | 12.3 78.1 73.8,82.1
School
HF & Sch 1.7 48.7 43.6,53.6 | 3.7 72.4 67.8,76.8
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Abstract

Human travel impacts the spread of infectious diseases across spatial and
temporal scales, with broad implications for the biological and social sciences.
Individual data on travel patterns have been difficult to obtain, particularly in low-
income countries. Travel survey data provide detailed demographic information,

but sample sizes are often small and travel histories are hard to validate. Mobile
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phone records can provide vast quantities of spatio-temporal travel data but vary
in spatial resolution and explicitly do not include individual information in order
to protect the privacy of subscribers. Here we compare and contrast both sources
of data over the same time period in a rural area of Kenya. Although both data sets
are able to quantify broad travel patterns and distinguish regional differences in
travel, each provides different insights that can be combined to form a more
detailed picture of travel in low-income settings to understand the spread of

infectious diseases.

Introduction

Improvements in transportation infrastructure and increasing human mobility are
enabling unprecedented connectivity between populations at both local and global
scales, allowing for the rapid dissemination of pathogens [1-6]. Humans are able
to introduce diseases into immunologically naive populations through direct
transmission or by introducing them into the environment [1, 7-9], and travel
plays a critical role in the spatial spread of influenza, polio, cholera, and dengue, as
well as in the spatial spread of drug resistance among pathogens such as malaria
[2, 3,5, 10-15]. Quantifying population travel dynamics is difficult, however,
particularly in low-income countries where individual level data sets that include

information about travel behavior are difficult to obtain and collect.

Traditionally, travel history questions from household surveys or from census data
have provided the most comprehensive source of travel information [16]. During
these surveys, which often include data on variables such as age, sex, income,
household structure, health status, or ethnicity, for example, individuals are asked
questions about their movement patterns. Surveys therefore provide insights into
the demographic biases and motivations underlying movement patterns.
However, these data sets often only sample a small subset of the population and
may be subject to recall bias. Moreover, these questions are typically nested in
larger surveys with disparate objectives that may impact their generalizability and
oversample individuals of interest to the larger survey objective, for instance they
may be part of country wide Malaria Indicator Surveys, questions asked during

hospitalization, or household budget surveys [17-21]. The most common source of
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travel survey data in Africa is records from a national or micro-census, but these

typically address only long-term changes in residence [22, 23].

In contrast, anonymized mobile phone usage data have recently been shown to
provide a valuable source of information on regular movement patterns on various
spatial scales [14, 15, 24-26]. Call detail records (CDRs) store locational
information for each subscriber when they make a call or send a SMS (Short
Message Service), providing a detailed temporal and spatial picture of often
millions of people. Due to privacy concerns and pre-paid plans, individual socio-
demographic data about subscribers are unavailable to researchers. Analysis from
previous work has shown that mobile phone ownership is biased towards wealthy,
urban males, despite remarkable levels of ownership across all income brackets in
Kenya, for example [27]. Furthermore, phone sharing practices may hinder the
use of mobile phone data to accurately capture individual level inferences about
movement patterns [27]. Nevertheless, we have shown that these biases can be
corrected for and are unlikely to impact the routes and relative volumes of travel

between most populations [28].

We have previously quantified intra-national travel patterns from nearly 15
million mobile phone subscribers in Kenya on a range of spatial and temporal
scales using mobile phone data, with a particular emphasis on the role of travel in
the importation of malaria parasites across the country [15]. The volumes and
direction of travel varied seasonally, and depended on both the origin and
destination locations, with a large amount of travel occurring to and from the
capital city, Nairobi. Here we compare a subset of these data with information from
a detailed survey about travel from the same time and place, collected during
cross-sectional surveys of 2,650 individuals in two districts in western Kenya. The
travel survey was conducted as part of a study to characterize patterns of malaria
transmission and risk factors for infection in an area of low malaria endemicity.
We describe patterns of travel, highlight the differences and strengths in each data
set and discuss how the data sets can be used in conjunction to enhance their

utility.
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Results

Travel history results from community surveys Travel data was collected as part of a
malariometric survey conducted in February 2009 and covered 2,650 (0.13% of
the population in the survey sites N=19,744) individuals in two districts: Kisii
Central (formerly part of Kisii district) and Rachuonyo South (formerly part of
Rachuonyo) (see Figure 1). Despite being predominantly rural, these districts
have the relatively high population densities (707 (Kisii) and 705 (Rachuonyo)
individuals/km?, total populations: 457,105 and 307,126 individuals from the
national census) that characterize the regions surrounding Lake Victoria. The
individuals included in the study are from the rural parts of both districts. Kisii is
primarily made up of the Kisii ethnic group whereas Rachuonyo is primarily made
up of the Luo ethic group (see Figure 1). Travel surveys provided general socio-
demographic information (see Table 1) that was used to analyze travel patterns

stratified by age, gender, and other covariates.

One of the most striking findings in the travel survey was that the vast majority of
people (90%, N= 2,388) reported that they had not made an overnight trip to
another district within the last 3 months (see Table S1). More individuals within
households in Rachuonyo reported traveling more often than those in Kisii (see
Figure 2). When individuals did travel, they reported spending the majority of
their time in neighboring districts or those including a major city, predominantly
Nairobi (Figure 3, Table S2). The primary motivations for travel were either
visiting family or friends (54%, N = 105) or attending a funeral (17%, N = 46) (see
Tables S3-54). Of those who traveled, most reported taking only a single trip that
had most often occurred less than four weeks ago (64%, N = 125 see Table S5-56,
see Figure 4). Of adults (aged 15 or older) who have traveled, men were slightly
more likely to have taken an overnight trip (males: 13% = 70/525, females 11% =
83/657, x?=2.3889, p = 0.6646). The destinations for travel were primarily the
same for both men and women, although men reported that they traveled to
Nairobi more often than women (16% = 11/70 versus 7% = 6/83, x2=29, p
<0.001) (see Table S7). Children (under 15 years of age) were less likely to travel
than adults (3% (42/1318) of children had taken an overnight trip).

271



Less than half (47%, N = 366) of households reported having a mobile phone.
Mobile phone ownership (on a household level) was positively correlated with the
likelihood of reporting having traveled (see Table 2). The percentage of
households where at least one person reported traveling was 60% (83/138) in
households with a mobile phone versus 40% (55/138) (x%=10.72, p=0.001) for

those without a mobile phone.

Mobile phone data analysis. We analyzed CDRs using methods previously described
[15] (see Materials and Methods), identifying 34,861 subscribers (4.6% of the total
population in these districts assuming each subscriber is an individual) in the
region (see Materials and Methods). Briefly, cell tower locations were assigned to
districts, demarcated by political boundaries. Using a daily time series of tower
locations over the course of the data set, subscribers whose most used mobile
phone tower was within 3km, the typical service range, of the study site were
considered (see Materials and Methods). During the three-month study time
period corresponding to the travel survey, movement between districts was

quantified.

In contrast to the travel survey, we inferred from the CDRs that the vast majority of
mobile phone subscribers had spent at least one night outside Kisii and Rachuonyo
districts during the time frame of the survey (61% from Kisii, 95% from
Rachuonyo, in total 27,668 subscribers, see Table 3). As observed in the survey
data, subscribers from Rachuonyo traveled more than those from Kisii, possibly
related to the geographic distribution of the Luo ethnic group. We excluded travel
between Kisii and Rachuonyo because many cell towers lie on the border between
the two districts, making it difficult to separate travelers within this sub-region.
Half of subscribers traveled for at least 2 days away from Kisii and Rachuonyo to
other districts (36% from Kisii, 63% from Rachuonyo, 17,560 subscribers, see
Table 3). Thus, we estimate that between 17,560 (two days or more) and 27,668
(one night or more) subscribers traveled to other districts during the study time
frame. Including travel lasting at least one night, subscribers took a total of 13,860
trips. These trips were often short with 65% lasting less than three days (see Table

$8).
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Comparing travel between data sources. Given the wide divergence in terms of the
magnitude of travel between the two data sets, we calculated an adjustment to
compare the two data sets (see Table S9). The survey sites had a collective
population of 19,744 individuals when accounting for the total enumerated
population for the areas that represented the survey clusters. Using the survey
data, we estimated that between 2,500 and 11,500 mobile phone subscribers were
located in the study site at the time, with the range determined by the estimated
number of subscribers per household (see Supplementary Information and Table
4). This value is up to one order of magnitude less than the number of mobile
phone subscriber IDs we have included in the analysis, indicating that i) we may be
capturing subscribers who reside in neighboring areas in our CDR analysis, ii)
individuals own multiple mobile phones or SIM cards, and/or iii) estimates from

the two data sources are extremely different.

We cannot address this last option, but it seems unlikely that on average each
individual owned 5 SIM cards. Furthermore, even if we assume that all mobile
phone subscribers were adult men, since they represent the most mobile
demographic group, at most 12% of men reported traveling away from their home
district in the survey. This would correspond to 200 to 1,800 mobile phone
subscribers within the study site traveling (see Supplementary Information, Tables
S10-S11). Since this value is orders of magnitude less than measured number of
trips by mobile phone subscribers (approximately 28,000, see Table 4), the two
sources of data remain markedly different in their estimates of the number of
travelers, although both were able to identify the main districts where people

travel.

We next compared the percentage of individuals taking between one and 60 trips
from each data set. In general, individuals from the survey data took a fewer
number of trips than the mobile phone data would suggest, although individuals
traveled more frequently in the survey data (see Figure 4). Possible reasons for the
discrepancies between the two data sets include recall bias or misreporting in the

travel surveys, differences in the populations represented in each data set, and
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mobile phone sharing practices. We hypothesize that the first is highly likely, and
although the last two are possible, they cannot account for the entirety of the
difference [9, 29]. Itis likely, therefore, that all three of these contribute to varying

degrees and actual travel falls somewhere between the two estimates.

Impact of travel estimates on predictions about malaria exchange. One of the most
important reasons to quantify human mobility is in the assessment of the spread of
disease in the region, including malaria. Previously, we quantified malaria
(Plasmodium falciparium) importation within Kenya using mobile phone data [15]
and spatial P. falciparium (PfPR;-10) prevalence data from the Malaria Atlas Project
[30]. Using a simplified metric that does not require as detailed data as in [15], we
used a measure of malaria exchange (as opposed to malaria importation) that
utilizes population-weighted travel as well as prevalence data (see Materials and
Methods and Supplementary Information) [31]. In particular, this metric does not
require information on the duration of travel since it is unavailable in the survey
data. This measure describes the estimated exchange of malaria parasites adjusted
based on the prevalence data between two locations. It almost certainly
overestimates the impact of travel, since we use the higher parasite rate found in
children age 2-10 years old, but illustrates the possible range of importation of

parasites to and from the region.

For travelers from Kisii and Rachuonyo, the mobile phone data produces total
malaria exchange estimates an order of magnitude greater than the survey data, in
this case comparing the total number of travelers from both data sets (see Tables
5, S12). Both data sets predict that the amount of malaria being brought (?)
coming(?) into Rachuonyo is much greater than into Kisii, and were both able to
identify the major routes. Mobile phone data predicted that malaria exchange
occurs between nearly all districts. However, the community survey data suggest
that malaria parasites are likely to predominantly come from a few districts (see
Supplementary Information). These findings have important implications for
targeted surveillance in the region, since the overall volume and locations
contributing to malaria exchange may be a more important consideration for

control programs than travel surveys would indicate. We propose that while travel
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surveys provide important information about motivations for travel, the type of
people who are traveling, and identify the main travel destinations, they are also
likely to under-estimate the volume and range of mobility (see Supplementary

Information).

Discussion

Overall, the community survey provided a snapshot of travel behavior for 2,650
individuals. The volume of travel reported from the surveys was considerably
lower than that captured by mobile phone data. It is possible that mobile phone
subscribers were simply not captured by the survey, since working age men are
often absent during community surveys. Other possible reasons for under-
reporting of travel include recall problems of interviewed individuals; details
about trips taken may be forgotten or when trips were taken not accurately
reported. Lack of knowledge of, or recent changes in administrative boundaries
may also result in underreporting of travel. Surveys are challenging to conduct on
a large scale and it is not feasible to sample the majority of residents within even
small geographic areas. Cross-sectional surveys can only collect travel data for
each individual at one point in time and therefore do not provide a dynamic
picture of overall movement patterns. For example, Nyamira district was once
part of Kisii district and this may have caused confusion in the travel survey that

would not be observed in the mobile phone data.

Mobile phone data enables researchers to estimate travel patterns for a large
sample of the population over time, but can only provide an estimate of travel for
mobile phone subscribers and is limited by mobile phone tower density.
Community surveys are able to compliment mobile phone data by approximating
travel patterns of non-subscribers. Here we used anonymized CDRs where every
subscriber is assigned a unique ID. Subscriber IDs may not reflect individuals due
to phone sharing and/or multiple SIM card ownership [27]. Subscribers also
represent a biased sample of the general population, with ownership more
prevalent among more educated, urban, males [27]. However, based on the results

from the travel survey, it appears that those households that do not own a mobile
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phone are also less likely to travel, so bias of estimates due to skewed mobile

phone ownership may not be as large as previously thought.

Interestingly, it appears that in this setting ethnicity influences travel behavior.
From both data sets, we observed that those living in Rachuonyo travel more than
those in Kisii (see Figure 2). Rachuonyo is predominantly Luo whereas Kisii is
predominately Kisii [32]. The large geographic coverage of the Luo ethnic group
(see Figure 1) may go some way to explain this. The main reasons for travel given
during the surveys were to visit family and friends or attend a funeral, both of
which are more likely to have strong ethnic influences. However, at present we can
only suggest this as a possible explanation. Aside from ethnicity, road access and
travel times to other districts may also impact travel and we suggest that this

should be investigated in future work.

Quantifying human travel patterns can have broad applications in epidemiology,
particularly the spatial spread of infectious diseases. Being able to accurately
parameterize movement patterns will be invaluable in identifying areas that are at
risk of re- or continued importation of disease, which has major implications for
control and elimination programs. Here we compared travel survey questions with
mobile phone data over the same time period in western Kenya. We found that the
survey data produces lower estimates of travel, although it did provide
demographic information about travelers and motivations for travel. Mobile phone
data can give a refined, spatio-temporal description of travel patterns, although it
lacks information about subscribers, is often difficult to obtain, and as more
providers become available such comprehensive estimates as presented here
become even more challenging to achieve. In the case of malaria exchange via
travel within these districts, although the volume of exchange differs by data
source, both surveys were able to identify the some areas where the majority of
exchange is likely to originate. In conjunction, these two data sources can be used

to form a quantitative and qualitative description of travel within rural Kenya.
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Methods

Travel survey data. A malariometric community survey was conducted using a
cluster design in the highland districts Kisii Central and Rachuonyo South
(referred to as Kisii and Rachuonyo in this paper), Nyanza province, western
Kenya. For the survey, 23 enumeration areas (EA) (administrative areas with
approximately 100 households or 500 residents) were randomly selected. Each EA
was enumerated and mapped and 12-15 households were randomly selected for

the survey.

The cross sectional surveys took place during February 2009. During this survey,
individual informed consent was sought from all residents of the compound above
the age of 6 months by signature or thumbprint accompanied by the signature of
an independent witness. Consent for children under the age of 18 was provided by
a parent/guardian and children between 14 and 17 years also provided written
assent by signature or thumbprint accompanied by the signature of an
independent witness. Individuals between 15 and 18 years of age who were
pregnant, married, or a parent were considered “mature minors” according to
national policy and were able to consent for themselves. The household was
interviewed to assess household wealth indices and use of anti-malarial measures.
All consenting individuals above the age of 6 months were tested for malaria and
anemia. Individuals in both surveys were asked basic travel questions about
themselves and their children, although the questions varied by survey (see Table
6). In the survey, individuals were asked if they had made any overnight trips to
another district, the total number of overnight trips, when they came back from

their journey, and the reason for traveling.

Mobile phone data. Call data records (CDR) from June 2008 till June 2009 for
14,816,521 subscribers within Kenya were obtained from all months except for
February 2009. For each entry in the CDR, the sender, receiver, date, and location
of the call (or SMS) was recorded by the leading mobile phone provider. In total,
subscribers sent and received approximately 12 billion calls and SMS geolocated at
one of 12,502 mobile phone towers. For each subscriber, we approximated their

daily location based on the location of the mobile phone tower that serviced the
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majority of their calls (or SMS) or the tower that serviced their most recent call (or
SMS) if no call was made. For this analysis, we aggregated tower locations to
districts based on the location of the mobile phone tower. We only considered
subscriber IDs where the majority of their calls were serviced by mobile phone
towers within the service area (3 km) and the district of each study site to
conservatively only consider travel by subscribers whose primary mobile phone
tower location was in the study site. At the time of data collection, this was the
standard service area for mobile phone towers. This data was then restricted to
include the sets of subscribers that overlap with the area of the community survey,
one set in Kisii and two in Rachuonyo (see Figure 1). In total, we considered the
data generated from 16,196 (based at 6 mobile phone towers) and 18,665 (9
mobile phone towers) subscribers in Kisii and Rachuonyo respectively (see Table

3).

We only considered travel that crossed district boundaries outside of the study
area and not local movement within the study site (i.e. no travel between Kisii and
Rachuonyo). Although the study site spans a district border, climate and
topography are similar and we wanted to assess the extent of travel to areas where
disease transmission would be markedly different. Also, there were a number of
mobile phone towers along the borders of these districts making differentiating
travel between the two locations more difficult. To match the time period of the
survey, we only considered travel that occurred between the start of November
2008 till the end of January 2009. The mobile phone data describe the movements
to the entire country of approximately 35,000 subscribers primarily call from one
of 15 mobile phone towers. No other demographic information is available from

cell phone data.

Comparing between the two sources of travel data. To compare between the mobile
phone and survey data, we estimated the number of subscribers using the survey
data and calculated a range for the number of trips taken by these subscribers. To
estimate the number of mobile phone subscribers in the study area from the
survey data, we used the number of individuals in the study area (~20,000),

number of households (776), percentage of households with a mobile phone (47%
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reported in the survey), as well as the average number of individuals per sleeping
structure (3.7). We did not know the number of subscribers per household but
assumed a range of 1-4 subscribers per household to produce a range of ~2,500-

11,500 mobile phone subscribers in the study area from the survey data.

To estimate the number of subscribers who have traveled using only the survey
data, we considered a range of the percentage of subscribers who have traveled.
At the low end, 8% of individuals have reported traveling results in 200-920
subscribers who have traveled. At the high end, adult males living with a
household with a mobile phone were the demographic group with the highest
percentage of travelers (16%). This value would imply that between 400-1,800
subscribers have traveled. As reported in the results section, these estimates are
at least an order of magnitude lower than the measured values from the mobile

phone data.

Quantifying malaria exchange. To further compare both data sets, we quantified a
malaria (P. falciparum) exchange metric using each set of travel data along with
malaria endemicity data. Spatially explicit quantitative malaria endemicity
estimates were obtained from the Malaria Atlas Project [31]. P. falciparum malaria

endemicity data were obtained from the MAP (www.map.ox.ac.uk/) as measured

by the parasite rate in the 2-10 age group (PfPRz-10) [30]. This measure is an
overestimate on the parasite rate since we are quantifying travel by adults, who
generally have lower rates of parasite carriage. We use prevalence in children to
avoid complex adjustments for patterns of prevalence by age, which vary with
transmission intensity and are not straightforward to measure since many semi-
immune individuals have sub-patent infections. Our estimates therefore represent
an upper limit, and are intended to reflect the potential range and extent of spatial

spread of malaria.

We calculated population rescaled travel from Rachuonyo and Kisii to other
districts using the mobile phone and census data. For the mobile phone data, the
population in each district’s coverage area was the number of subscribers (18,665

and 16,196 in Rachuonyo and Kisii) whereas in the survey data it was the total
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number of individuals surveyed (1,297 and 1,352 in Rachuonyo and Kisii). From
the survey data, we separated individuals by their district study site and

considered travel to other districts.

In previous work, we utilized the mobile phone data to quantify the role of travel
for malaria importation within Kenya [15]. However, due to the coarseness of the
travel survey data and inability to describe the duration and exact destinations for
all trips reported in the survey data, we choose to use a simplified malaria-travel
metric that describes malaria exchange between locations [31] (see Table 4,
Supplementary Information for further discussion). This metric, Pfm, is based on
travel between individuals from the study sites (i) to all other districts (j) is

defined as:
_ PfPR; * PfPR
= PfPR, + PfPR;

mei,j

where m; ; is the population weighted travel to other districts.

Statistical analysis. The proportion of people traveling to another district was
calculated for both datasets and summary values compared. Data from the travel
survey data were analyzed to estimate the conditional probabilities of travel
outside the district to provide insight on the demographics of travelers. Statistical
and spatial analyses were carried out using R statistical analysis software (R

v3.0.1, The R Foundation for Statistical Computing).

Geographic analysis. Mapping shown in Figures 1-3 was carried out by one of the

co-authors using ArcGIS v10.1.

Ethical considerations. The community surveys were conducted and approved by
the ethical committees of the London School of Hygiene and Tropical Medicine
(LSHTM) and the Kenya Medical Research Institute (KEMRI) under protocol
number SSC1802. Call data record were provided by the leading mobile phone
provider to one of the co-authors of the paper. All received records were

anonymized and could not be linked to individual users. The de-identified mobile
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phone records analysis was approved as not human subjects researchers by

Harvard University IRB.
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FIGURES

Figure 1: The household survey locations within the study site in western
Kenya.

A) Surveys were taken at households within western Kenya (larger map is highlighted
in the inset, created using ArcGIS v10.1) with their locations mapped as black points.
Households within 3 km of a mobile phone tower are outlined in red. Areas are
colored by their dominant language with DhoLuo (Luo language) in green and Kisii in
blue. In Rachuonyo district, the dominant language is DhoLuo whereas it is Kisii in

Kisii district. B) A zoomed image of the study site along with mobile phone towers.
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Figure 2: The percentage of individuals within a household who reported
traveling. From the travel survey data, the percentage of individuals per household
who reported traveling was quantified . Households within Rachuonyo traveled much
more than those in Kisii (t=-7.401, df = 410.141, p-value < 0.001). This map was
created using ArcGIS v10.1.
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Figure 3: The locations of the most commonly visited districts. From the A)
survey data and B) mobile phone data, the five most commonly visited districts are
colored by their rank with the survey area outlined in black. The most common
districts visited were Nyamira, Nyando, Homa Bay, Nairobi, Kisumu, and Migori, also
primarily nearby districts and those including major population centers (Kisumu and
Nairobi) (in descending order). This did vary slightly between Kisii and Rachuonyo.
Amongst subscribers in Kisii the districts most commonly visited were: Nyamira,
Nairobi, Gucha, and Migori whereas those in Rachuonyo commonly visited Nyamira,

Nyando, Homa Bay, and Kisumu. The map was created using ArcGIS v10.1.
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Figure 4: The number of trips taken by individuals from each data source. The
distribution of the number of trips (between 1 - 60 trips) taken by individuals who
traveled from the mobile phone data (red) and the survey data (blue) is shown.. In
both surveys, individuals rarely reported taking more than one trip, whereas in the
mobile phone data multiple trips were measured from a substantial number of

subscribers (KS statistic: 0.7947, p = 0.0005).
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TABLES

Table 1: Basic survey descriptive statistics. All percentages (sample size) do

not necessarily add to 1 if the survey respondent did not answer the question.

Travel Survey
Number of individuals 2650
% Male 46 (1222)
% Female 53 (1398)
% Adults (15+) 45 (1194)
% Children (0-14) 65 (1456)
Survey Dates February, 2009
Number of households 776
Average household size 3.7

Table 2: The percentage of adults within a household who travel versus the

percentage of those households who own a mobile phone. For households

where 0-100% of the adults in the HH have traveled, the percentage of those HH

who own a mobile phone. In general, the households where a higher percentage of

adults have traveled are more likely to own a mobile phone (t=2.6441, df = 699.45,

p-value = 0.0084).

Percentage of adults within a HH Percentage of those HH who own a
who have traveled mobile phone

0 45 (277)

20 75 (3)

25 100 (2)

33 50 (5)

50 64 (37)

67 100 (3)

100 56 (29)
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Table 3: The basic travel statistics from the mobile phone data.

Kisii Rachuonyo
Number of mobile
phone towers within 6 9
study site
Number of subscribers | 16,196 18,665

Number of travelers,
trips lasting at least 1

day

61% (N=9,880)

95% (N=17,732)

Number of travelers,
trips lasting at least 2

days

36% (N=5,830)

63% (N=11,759)
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Table 4: A comparison between the two data sets. For both data sets, the type
of travel data available and scale (spatial and population) available. In general, the
survey data is able to provide a coarser picture of travel, although refined socio-
demographic data about travelers. The mobile phone data can only provide
estimates on subscriber travel and is not able to provide any socio-demographic
information about travelers. In order to compare between both data sets, we
estimated the number of subscribers and the number of subscribers who have
traveled from the survey data (see Materials and Methods). In comparison to the
actual values quantified using the mobile phone data, the survey data produces

estimates an order of magnitude less than the observed quantities.

Survey Data Mobile Phone Data
Number of trips taken

Yes Yes, for subscribers
by individuals
Primary travel

Yes, district level Yes, mobile phone tower
destination

All destinations visited | No, only the primary
Yes, mobile phone tower
during traveling destination

Duration of travel No Yes

Socio-demographic

information about Yes No
travelers
Mobile phone tower
Spatial scale District level
(~3km)
Estimated Value - Actual Value - Mobile
Survey Data Phone Data
Total Population of
19,744
Survey Site
Number of Subscribers | 2,500—11,500 35,000
Number of Subscribers
200—1,800 28,000

who Travel
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Table 5: The population weighted malaria-travel metric estimated

importation from the survey data and mobile phone data in both study areas.

Top destination district
Population Weighted
Data Source, Location for malaria-travel
Malaria-Travel Metric
metric
Survey, Kisii 0.00014 Butere/Mumias
Survey, Rachuonyo 0.015 Nyando
Mobile Phone Data, Kisii | 0.055 Nyamira
Mobile Phone Data,
0.25 Nyamira
Rachuonyo

Table 6: A brief outline of the travel questions asked in the travel survey.

Travel Question

Have you made any overnight trips to another district in the last 3 months?

How many overnight trips have you made in the last 3 months?

Where did you spend the majority of time during this trip?

When did you get back?

What was your reason for traveling?
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Abstract

Background: Malaria transmission is highly heterogeneous in most settings

resulting in the formation of recognizable malaria hotspots. Targeting these

292



hotspots may represent a highly efficacious way to control or eliminate malaria if
they fuel malaria transmission to the wider community.

Design: Hotspots of malaria will be determined based on spatial patterns in aged-
adjusted prevalence and density of antibodies against malaria antigens apical
membrane antigen-1 and merozoite surface protein-1. The community effect of
interventions targeted at these hotspots will be determined. The intervention will
comprise larviciding, focal screening and treatment of the human population,
distribution of long-lasting insecticide-treated nets and indoor residual spraying.
The impact of the intervention will be determined inside and up to 500 m outside
the targeted hotspots by PCR-based parasite prevalence in cross-sectional surveys,
malaria morbidity by passive case detection in selected facilities and entomological
monitoring of larval and adult Anopheles populations.

Discussion: This study aims to provide direct evidence for a community effect of
hotspot-targeted interventions. The trial is powered to detect large effects on
malaria transmission in the context of ongoing malaria interventions. Follow-up
studies will be needed to determine the effect of individual components of the
interventions and the cost-effectiveness of a hotspot targeted approach where
savings in the number of compounds that need to receive interventions should
outweigh the costs for hotspot-detection.

Trial registration: NCT01575613

Introduction

The transmission of infectious agents is highly heterogeneous in space and time.
For many infectious diseases, a small number of human hosts are most frequently
or most heavily infected while the majority of a local population is much less
affected 1-%. In malaria this heterogeneity of disease transmission often results in
variation in malaria incidence within small areas 5-19. In some settings the non-
random distribution of malaria incidence between households appears to conform
to the “20/80 rule” 2, whereby approximately 20% of a host population
contributes 80% of the cases of an infectious organism >°. The factors underlying
the micro-epidemiology of malaria are not fully understood but include variation
in distance to the nearest mosquito breeding site 5-11, wind direction!2, house

construction features 821314 human behavioural 7813 and genetic factors 7815,
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Heterogeneity in malaria transmission has implications for malaria control.
Individuals who are bitten most often are most likely to be infected and can
amplify transmission by infecting a large number of mosquitoes with malaria
parasites. Estimates of the basic reproductive number (Ro), a central concept in
infectious disease epidemiology defined as the average number of secondary cases
arising in a susceptible population as a result of a single human case over the
course of their infection, are sensitive to assumptions of heterogeneous mosquito
exposure. Rg may increase up to fourfold as a consequence of heterogeneous

mosquito exposure 2416,

The large influence of heterogeneous exposure on malaria transmission also
suggests that interventions targeting areas of comparatively high exposure can be
highly effective. Woolhouse and colleagues suggested that, depending on the costs
of identifying hotspots of transmission, treating the core 20% might be preferable
to non-targeted interventions on economic grounds 2. If hotspots fuel transmission
to a wider geographical region, community protection may be achieved by
targeting those individuals that are most important for disease transmission. This
hotspot targeted approach will only be (cost) effective if the assumption that
hotspots fuel transmission in surrounding areas is correct - and then only if such
hotspots can be reliably detected . Several approaches to identify hotspots of
malaria transmission have been proposed in recent years. Incidence of clinical
malaria is a frequently used indicator of hotspots of malaria transmission 810 but is
affected by a differential acquisition of protective immune responses inside and
outside hotspots 1718, Geographical clustering of asymptomatic parasite carriage
may be a more stable indicator of hotspots of transmission 19 and in areas of
moderate or low endemicity hotspots might be most readily detected using
serological markers of malaria exposure 2101922 [n an area of moderate
endemicity in Tanzania, serological data have been used to identify clinically- and
entomologically-confirmed hotspots of malaria transmission with 96% sensitivity

and 82% specificity °.
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This manuscript describes a methodological approach to identifying hotspots of
malaria transmission and a protocol for the evaluation of a hotspot targeted
intervention. The aim of this intervention study is to determine whether the
simultaneous roll-out of interventions in hotspots of malaria transmission has a
community-wide effect that extends beyond the hotspot boundaries and results in

local elimination of malaria.

Defining the intervention clusters

Study area

The study will be conducted in highland fringe localities (1400-1600 m altitude) in
Rachuonyo South District, Western Kenya (34.75-34.95°E, 0.41-0.52°S). The
predominant ethnicity in Rachuonyo is Luo. Local residents depend upon farming,
cattle and goat herding for subsistence. Compounds comprise an average of 2
houses (IQR 1-3) and are distributed broadly across a rolling landscape intersected
with small streams and rivers. The main malaria vectors in the area are Anopheles
gambiae s.s., An. arabiensis, and An. funestus. Malaria transmission is seasonal, with
two seasonal peaks in malaria cases reflecting the bimodal rainfall pattern, with
the heaviest rainfall typically occurring between April and June and a smaller peak
between October and November each year. Most malaria is caused by Plasmodium
falciparum. Community cross-sectional surveys conducted in 2010 indicated
parasite prevalence averaging 14.8% in the general population but ranging
between 0% and 51.5%. School surveys carried out in primary schools in the same
year indicated an average parasite prevalence of 25.8% in 7-18 year olds (range
for individual schools 0-71.4%). Insecticide Treated Nets (ITNs) have been
promoted by the Ministry of Public Health and Sanitation for many years and
distribution campaigns have taken place through antenatal and child health clinics,
reaching a coverage for under 5s of 82.7%, as determined in surveys in 2010
(unpublished data). In addition, community-wide mass distribution of ITNs was
undertaken by the DOMC in 2011. Indoor Residual Spraying (IRS) was first carried
out in Rachuonyo South in mid-2008 with financial support of the US President’s
Malaria Initiative. Reported house coverage with IRS in Rachuonyo South was

estimated at 70.3% in 2009 and 74.3% in 2010.
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Sampling strategy to identify hotspots of transmission

We will select a 5x20 km (100 km?) area within which results from recent
community and school malaria surveys suggest highly heterogeneous malaria
exposure. The study area will be divided in to 400 cells of 500x500 m that are
further subdivided in four sub-cells of 250x250 m.

All structures in the area have been geo-located using contemporaneous high-
resolution satellite data [Quickbird; DigitalGlobe Services, Inc., Denver, Colorado]
that were acquired and processed using standard digital image processing
techniques [ENVI 4.8, Exelis Visual Information Solutions, McLean, VA USA]. Pan-
sharpened colour images were then imported into a geographic information
system [ArcGIS 9.2; Environmental Systems Research Institute, Redlands, USA] and
all structures were digitized manually giving a total of 8,632 structures with a
median of 45 (interquartile range 35-52) per 500x500 m cell. We aim to obtain
measurements from =50 individuals per 500x500 m cell since estimates of sero-
conversion rates from fewer than 50 observations from all age-groups combined
are likely to be unreliable °. To maximize the discriminative power of serological
markers of exposure, we will sample individuals in pre-defined age strata (<5
years; 6-11 years; 12-15 years; 16-25 years and >25 years). For logistical reasons,

our unit of sampling will be the compound.

To limit the chances of two selected structures belonging to the same compound
an iterative sampling approach will be used that involved randomly selecting a
“seed” structure and then removing all closely neighbouring structures (within 50
m) from the sample universe before proceeding to select a second structure. This
process will be repeated until all possible “non-neighbouring” structures have
been selected. From the resulting list of eligible structures a stratified sample of
16 structures will be chosen from each 500m x 500m cell. To ensure maximum
geographical coverage, at least one compound will be selected from each 250x250
m sub-cell while the number of compounds selected from each of the sub-cells will

be weighted by the structure density in these sub-cells.
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All other structures in which people sleep and which are associated with each
selected compound will be included. The target number of 50 observations per

500x500 m cell is chosen irrespective of the population density of the cells.

Data collection and measurements to identify hotspots of transmission

Enumeration

For planning purposes the field area will be sub-divided into 20 blocks of 5x4 cells
(i.e. 2.5x2 km in size). Teams will be provided with a printed overview map of the
block they are working in (figure 1), as well as detailed high resolution maps
incorporating the QuickBird satellite data for each 500x500 m cell. Each team will
also be provided with a handheld global positioning system (GPS) receiver
[Garmin 62S; Garmin International, Inc., Olathe, KS, USA] that has been pre-loaded
with the selected compound positions, track locations and cell boundaries. An
enumeration team, comprising one field worker, a reporter and a local guide, will
visit selected compounds to explain the study procedures, enumerate inhabitants,
collect information on house characteristics and inform residents that the survey
team will visit later that day. In situations where none of the structures within a
selected compound corresponds with a residential building, the selected
compound will be replaced with the nearest visible inhabited compound. The
location of this replacement will be recorded on the satellite images, mapped using

the GPS and recorded on the enumeration forms.

All compounds where at least one adult (>20 years) and one child (<15 years) are
permanent residents (defined as sleeping in the structure) qualify for enrolment. If
the head of the compound agrees to participate, the geographical coordinates of
the main house of the compound will be recorded and compound and individual
house codes will be written on the doors of all sleeping structures with a
permanent marker. The names and ages of all compound members will be
recorded on study forms and information on compound and house characteristics,
including structure type, ITN coverage, and IRS history, will be collected using a
pre-coded questionnaire (Programmed in Visual Basic, Visual CE v11.0) on a

Personal Digital Assistant (HP Ipaq 210, Windows Mobile 6.1). A personal study
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identification card will be issued to each individual, which has to be shown to the

sampling team when they visit later that same day.

The field workers will carry a checklist to record the cumulative number of
selected individuals for each age category. The order in which compounds are
visited will be randomly selected based on a computer-generated list. After
completing a compound, the enumeration team continues to the next compound
until at least 10 compounds have been enumerated. If the checklist indicates that
age targets are not met at this point, they will continue visiting compounds

according to the list until each age target is met.

Sampling

After enumeration, participating compounds will be visited by a sampling team
consisting of two fieldworkers trained in interviewing and sampling techniques.
Sampling teams will be provided with relevant maps, compound lists, enumeration
forms and ID cards in advance. Compounds will be identified by codes marked on
doors at the point of enumeration; compound occupants will be asked to present
their identification card for formal confirmation. Informed consenting will be
conducted and the name, gender, age, residency history, travel history, ITN use and
sleeping times of each compound member will be recorded. The temperature of
each compound member will be measured by auxiliary thermometer. For all
febrile individuals (>37.2 °C), a rapid diagnostic test [RDT; Paracheck®, Orchid
BiomedicalSystems, India] detecting P. falciparum-specific histidine rich protein-2
will be performed. For all individuals surveyed, a single finger prick sample will be
taken for haemoglobin (Hb) measurement using a HemoCue photometer
[HemoCue 201+, Angelholm, Sweden] and three droplets transferred onto a filter
paper [3MM Whatman, Maidstone, UK] for serum and DNA collection. After
transfer to a field laboratory, filter papers will be dried overnight and stored in
plastic bags with silica gel. Once a week, samples will be transported to the
KEMRI/CDC laboratory in Kisumu and stored at -20 °C until further processing. All
individuals with an Hb <11 g/dL will be given hematenics; individuals with an Hb
< 6g/dL will be accompanied to a nearby health centre for further care. Febrile

individuals who are found parasitaemic by RDT will be given artemether-
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lumefantrine [AL, Coartem®, Novartis, Switzerland]; women of child bearing age
who are RDT positive will be assessed for pregnancy and offered a pregnancy test
if deemed appropriate. Febrile children below 6 months of age and women who
are suspected or found to be pregnant or are unwilling to be tested will be

transported to the nearest health facility for a full assessment and treatment.

Malaria parasite prevalence

A combined extraction of DNA and elution of antibodies will be performed on the
samples collected. Two discs with a diameter of 2.5 mm will be cut from the centre
of a single filter paper bloodspot using a hole-puncher and will be eluted in deep
well plates with addition of 1120 uL of a 0.5% saponin/phosphate buffered saline
solution [Sigma Aldrich]. DNA will be extracted using the protocol described by

Plowe 23; parasites will be detected by nested PCR 2425,

Serological markers of malaria exposure

Total immunoglobulin G (IgG) antibodies against P. falciparum apical membrane
antigen (AMA-1) and merozoite surface protein 1 (MSP-119) will be detected by
ELISA using standard methodology?%2?7. Three serological outcome measures will
be used to determine spatial patterns in malaria exposure: i) the combined
antibody prevalence i.e seropositive for AMA-1 and/or MSP-119; ii) the age-
adjusted logio-transformed optical density (OD) 21.28; iii) the age-dependent sero-

conversion rate (SCR) for combined AMA-1, MSP-119 antibody prevalence 21.26,

Definition of hotspots

SaTScan software?? will be used for the detection of spatial clustering in antibody
prevalence (Bernouilli model) and log10-transformed age-adjusted OD values
(normal probability model). Circular and elliptic shaped windows 2930 will be used
to systematically scan the study area as a whole and segments of the study area
using a 2x4 km rolling window. Hotspots will be allowed to be <1 km in radius and
include <25% of the population of each window scanned. Scanning of segments of
the study area will be done to improve the sensitivity of the scan to detect local
hotspots. Local hotspots may not be detected when scanning the area as a whole

since altitude differences in the study area result in variations in average levels of
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transmission intensity. A hotspot will be defined as an area for which there is
strong evidence (p<0.05) that the observed prevalence and/or density of
combined AMA-1 and MSP-1,9 antimalarial antibodies is higher than expected
values. Expected values are based on average values for the area as a whole and for

the 2x4 km rolling window.

Since malaria antibodies are relatively long-lived and may indicate current as well
as past malaria exposure, parasite prevalence inside and outside hotspots of
malaria exposure will be determined by PCR to confirm ongoing transmission in

serologically defined hotspots.

Selection of hotspots and evaluation areas

Since habitation in the study area is fairly evenly distributed, with every 500x500
m cell having six or more residential structures, clusters are unlikely to be isolated
geographically. To minimise the influence of neighbouring hotspots on malaria
transmission in selected intervention or control hotspots, we will select hotspots
for which there are no other hotspots detected within 1 km in any direction from
the hotspot boundary. The hotspot targeted intervention will be evaluated in the
area surrounding the hotspot (evaluation zones). The evaluation zone will
comprise the area surrounding the hotspot up to 500 m from the hotspot

boundary in each direction.

Components of the intervention

Intervention clusters

Four interventions will be rolled out in the period preceding the long rainy season:
larviciding, focal screening and treatment (FSAT), LLIN distribution and indoor
residual spraying (IRS). The details of interventions, and their timing have been
agreed upon in collaboration with the Kenyan Division of Malaria Control (DOMC(C)
of the Kenyan Ministry of Public Health and Sanitation (MOPHS). Ten per cent of
households will be visited 1-2 weeks after the intervention to assess any short-

term side-effects of the FSAT, LLINs and IRS.
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Larviciding

All permanent aquatic mosquito habitats in hotspots will be mapped using
handheld GPS receivers during the dry season. In the period preceding the long
rainy season (April), and throughout the long rainy season (until September) all
stagnant water bodies (permanent and temporary) inside hotspots will be treated
on a weekly basis with water-dispersible granule formulations of the commercial
strains of Bacillus thuringiensis var. israelensis (Bti), VectoBac, that will be provided
by Valent BioSciences Corp., IL. Larviciding will be carried out using previously
published protocols 31; the entire hotspot area will be examined for water bodies
on a weekly basis, all of which will be included in the intervention. Spot-checks for

surviving anopheline larvae and pupae will be done on a weekly basis.

Focal screen and treatment (FSAT)

All compounds in hotspots will be visited and the temperature of each individual
will be determined. All individuals aged 6 months -15 years regardless of
temperature and all older individuals who are febrile (tympanic temperature
>37.5 °C) will be tested for malaria parasites using HRP-2 and pLDH based RDT
(First Response®, Premier Medical Corporation Ltd. India). If one or more
individuals are found to be RDT positive the entire compound will receive a
curative dose of AL with the exception of pregnant women and children below 6
months of age. Because of the different times at which treatment is initiated, only
the first treatment dose will be supervised by community health workers and
given with fatty food (>1.5g fat) to facilitate absorption. The second daily dose will
be taken without direct supervision but advice on taking the treatment with food
will be given; all empty blisters will be collected by community health workers

after treatment has been completed to monitor adherence.

Long-lasting insecticide treated nets

All compounds in hotspots will receive one LLIN per two house members. LLINs
(Permanet® 3.0) were donated by Vestergaard Frandsen. House members will be
given verbal information and leaflets on proper use of nets and study personnel
will assist in hanging the LLINs within houses. Correct usage and retention of

study nets will be assessed by questionnaire 6 weeks after distribution.
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Indoor residual spraying

Routine annual indoor residual spraying (IRS) with Deltamethrin or lambda
cyhalothrin (ICON) is undertaken at six-monthly intervals in all structures where
people are sleeping. The IRS campaigns are jointly funded by the Government of
Kenya and the US President's Malaria Initiative, and implemented by the Research
Triangle Institute (RTI) with the DOMC and District Health Management Teams.
For this study IRS will continue as normal except that implementation will be
scheduled prior to the rains and start of the malaria transmission season (March-

April) in intervention hotspots.

Control clusters

Control clusters will receive the routine malaria control measures which for 2012
will be the annual IRS programme as detailed above and continued case
management at health facilities. The IRS is scheduled to take place in April- May

2012. No LLIN distribution campaigns are planned for 2012.

Design of the randomized evaluation

Sensitization and recruitment

Prior to the implementation of the interventions, meetings with district
administrative and health representatives in the selected areas will be organised.
Community meetings will be held with local chiefs, community elders and opinion
leaders, school representatives and church leaders. All compound in the selected
intervention areas will be visited prior to the intervention; the procedures of the
interventions and evaluation procedures will be explained to all compound
members present. ID cards will be distributed that will be used for identification
purposes during compound visits and for identification of compound members

who visit health facilities in the area.

Randomization
Hotspots with their surrounding evaluation areas, will be randomized to the
intervention or control arm using computer generated tables. No stratification by

parasite prevalence or altitude will be undertaken.
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Hypotheses and Outcomes

Hypotheses

Hotspot targeted interventions with larviciding, LLINs, IRS and FSAT will reduce
malaria transmission inside and outside hotspots of malaria transmission.

The community effect of hotspot targeted interventions, defined as the impact on
parasite prevalence in the evaluation zone surrounding the hotspot, is a function of

distance to the hotspot boundary.

Primary and secondary outcome measures

The primary outcome measure is:

Parasite prevalence by PCR in the evaluation zone surrounding malaria hotspots in

intervention and control clusters

Secondary outcome measures are:

Parasite prevalence by PCR in the evaluation zone surrounding malaria hotspots in
relation to distance to the boundary of hotspots in intervention and control

clusters

Indoor and outdoor Anopheles mosquito densities inside and outside hotspots of

malaria transmission in intervention and control clusters

The presence of Anopheles larvae in mosquito breeding sites in malaria hotspots in

intervention and control clusters

The number of malaria cases reporting at health facilities, coming from
intervention and control clusters

Reported side effects and acceptability of FSAT, LLINs and IRS

Evaluation
Cross-sectional surveys
Three cross-sectional surveys will be conducted: at baseline prior to the

interventions, during the peak transmission season, and at the end of the peak
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transmission season. For each cross-sectional survey, 25 compounds that are
located inside hotspots, 25 compounds that are located <250 m from the hotspot
boundary and 25 compounds that are located 250-500 m from the hotspot
boundary will be randomly selected. This strategy is expected to give = 100
individual observations from each of these three areas. To minimize confounding
by neighbouring hotspots, an exclusion buffer will be incorporated in the selection
of compounds, ensuring a minimum distance of 2500 m from neighbouring

hotspots.

Study teams will visit selected compounds and, subject to obtaining informed
consent, collect information from inhabitants of all houses that belong to that
compound using PDAs. For individuals older than 6 months, tympanic temperature
will be measured and a finger prick blood sample (~300 uL) will be collected for
assessment of haemoglobin concentration and for collection of nucleic acids and
serum on Whatman 3MM filter paper [Maidstone, UK]. Whole blood will be
collected in BD K2ZEDTA microtainers [BD Becton, Dickinson and Company, UK] in
selected clusters for more detailed molecular analyses. A RDT will be used to
determine malaria infection for all febrile individuals. Those with a positive RDT

will receive AL and/or will be referred to a health centre for further care.

Passive case detection

A passive case detection system will be introduced in government and mission
health facilities to monitor individuals presenting with malaria. Facilities will be
selected to cover intervention and control clusters. For this, the catchment areas of
health facilities in the area have been determined. Individuals from intervention
and control clusters will be asked to present a household card whenever visiting a
health facility. This household card will be linked to geo-located compounds. For
individuals who present without a household card, other information that allows
geo-location will be collected, such as nearest school. Tympanic temperature will
be measured, and an RDT used to determine parasite carriage for each individual

with measured or reported fever.
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Entomological monitoring

In a subset of the control and intervention clusters, larval and adult mosquito
abundance will be monitored. All permanent breeding sites in hotspots will be
mapped and from a random selection of 15 sites per hotspot the presence or
absence of early and late stage anopheline larvae and pupae will be assessed using
a 250 ml mosquito dipper . Five dips will be done in sites smaller than 5 m?; 10
dips in sites larger than 5 m2. This will be carried out at two-weekly intervals.
Adult collections of anophelines will be carried out twice per month in 36
randomly selected houses in each cluster selected in cross-sectional surveys..
Twelve houses will be selected within the hotspots, of which 4 will be sampled by
pyrethrum spray catch (PSC), 4 for indoor light trap collections and 4 for outdoor
light trap collections. Outside the hotspot 24 houses will be randomly selected of

which 8 will be sampled by PSC, 8 for indoor and 8 for outdoor light traps.

PSC will be carried out indoors according to standard WHO protocols 32. CDC
miniature light traps [Model 512; John W. Hock Company, Gainesville, Florida, US]
will be used following previously published procedures to sample mosquitoes
indoors 33 and outdoors 34 The effective range of CDC light traps for outdoor
mosquito sampling has been estimated as 5 m 35. Accordingly, outdoor sampling
will take place 15 m from selected houses to prevent inhabitants acting as
unshielded bait. All traps will be set at 1830 hours and collected at 0630 hours. On
eight randomly selected light traps indoors and/or outdoors, a collection bottle
rotator will be fitted (Model 1512, John W. Hock Company, Gainesville, Florida, US)
which allows collection cups to rotate every 2 hours to estimate vector abundance
at intervals throughout the night. Vector abundance, parity rates and the
proportion of anopheline females unfed, fed, gravid, and infected will be

determined for each species 3¢ and compared between the two study arms.

Statistical considerations

Sample size

All available malaria simulation models indicate that malaria transmission in the
area surrounding intervention hotspots will decrease considerably because

malaria transmission is effectively interrupted in those compounds that seed
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transmission to a larger geographical area 21637. However, there are no published
studies that quantify the impact of hotspot-targeted interventions. We estimated
the predicted impact of targeted interventions in our study area using one of the
leading individual-based simulation models 37 using human, entomological and
parasitological characteristics collected at our sites in Kenya. We modelled three
scenarios in situations with a pre-intervention parasite prevalence in the human
population of 10-20%: i) no additional interventions; ii) targeted distribution of
long lasting insecticide treated nets (LLINs), reaching 90% of the population in
hotspots and iii) targeted LLINs and targeted effective IRS reaching 90% of the
population in hotspots (Figure 2). The impact of larviciding is currently

insufficiently parameterized to be included in the model 37.

Our simulations show that targeted interventions can interrupt transmission
completely, both inside and outside hotspots of malaria transmission, reducing
overall parasite prevalence to <5%, in a manner that appears sustainable in the
following years (see figure 2). These predictions have to be interpreted with
caution since i) the simulation model has not been prospectively tested; ii) there is
no published evidence that quantifies the impact of hotspot targeted interventions
on transmission intensity in the wider community; and iii) the intensity of
transmission will be highly variable between hotspots in our study area. There is
insufficient evidence on which to base power calculations for a cluster-randomized
trial; however, these simulations can give an indication of the size of the effect of
the planned interventions. The primary outcome measure is parasite prevalence in
the evaluation zone. A previous study on the community benefits of insecticide
treated nets in Asembo Bay, western Kenya, indicated that an indirect beneficial
effect on malaria transmission is most pronounced within 500 m from the
intervention area 38. We used this finding to define our evaluation zone
surrounding the hotspots. Assuming a sample of 200 randomly selected
individuals in the evaluation zone of each cluster, a coefficient of variation of true
proportions between clusters within each group (k) of 0.4 and mean parasite
prevalence of 15% and < 5% in the control and intervention clusters respectively,

would require 5 clusters per study arm for 80% power and 5 significance (a). This
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power calculation is based on a comparison between arms and the assumption

that parasite prevalence will remain unaltered in the control arm.

To estimate the impact of the interventions on the hotspots themselves a sample
size of 100 individuals in each of 5 of clusters (hotspots) per study arm, will be
required to detect a similar difference between intervention and control clusters
(£ 5% versus 15% mean prevalence), assuming k=0.5, 80% power and 5%

significance.

Data analysis

The primary analysis will be based on intention to treat whereby all evaluation
areas are included in the analysis, regardless of the level of coverage. The main
outcome measure, parasite prevalence, will be analysed as binary variable. For the
primary study outcome, we will compare parasite prevalence in the evaluation
zones of intervention and control clusters using a logistic multilevel generalised
linear model using Stata version 12 [Stata Corporation, Texas, US] to account for
clustering per compound and random effects to account for differences between
study clusters. For secondary study outcomes, we will relate parasite prevalence to
distance to the hotspot boundary in meters and in bins of 100 m; this analysis will
be done for each of the clusters separately by Generalized Estimating Equations
(GEE), adjusting for correlations between observations from the same compound.
Indoor and outdoor Anopheles densities will be compared between study arms
using GEE models and Poisson or Negative Binomial distributions. The proportion
of productive breeding sites will be compared between intervention and control
hotspots by GEE models, adjusting for correlations between observations from the

same clusters.

Ethics considerations

Ethics approval

The study proposal received ethics approval from Scientific Steering Committee
(SSC), the Ethical Review Committee (ERC) of the Kenya Medical Research Institute
(KEMRI) Nairobi under proposal number SSC 2163, the London School of Hygiene
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& Tropical Medicine ethics committee (#6111), and from Centers for Disease

Control and Prevention (with exempt status).

Informed consent

IRS is to be conducted as part of the routine district-wide malaria control
programme. Consent will be obtained verbally at the compound by community
health workers and spray operators recruited by the Ministry of Public Health and
Sanitation as is consistent with their operating procedures. Ahead of targeted
distribution of LLINs, informed, written consent will be sought at the house level
from the head of the household or representative in the presence of an
independent witness. Larviciding will be done after consulting with and receiving
approval from the DOMC, the Kenyan Pest Control Product Board (PCPB), the
district administrative, fisheries and health teams and after community meetings.
Verbal consent will be sought from owners of or persons responsible for any
privately owned permanent breeding sites in the intervention areas (e.g. fish
ponds). Since most mosquito breeding sites are not restricted to particular
households, consent at household level is not practical and approval from the

community, DOMC and PCPB is considered adequate.

Before FSAT and cross-sectional surveys, informed written consent will be sought
from individuals; and/or their parents/guardians, and confirmed by an
independent witness. Assent forms will be signed by children between the ages of
13 and 17 years and by their parents/guardians. Each assent form will be
accompanied by a consent form signed by the parent/guardian. All consent and
assent forms will be countersigned by the staff member obtaining consent and a

copy will be left at the households.

Trial oversight

Ethical and safety aspects of the study are overseen by an independent monitor.
No data safety and monitoring board (DSMB) will be installed. IRS and LLINs form
part of routine malaria control in Kenya and will be undertaken in collaboration
with the DOMC. Larviciding with Bti has been undertaken previously in

neighbouring districts and has previously been shown to pose no health risk 3°.
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The proposed form of FSAT where household members of parasite carriers are
treated regardless of their parasite status by microscopy is not part of the current
malaria strategy of the Kenyan DOMC although screening and treatment of
asymptomatic parasite carriers is recommended#?. Our FSAT approach is based on
the assumption of a high proportion of submicroscopic infections among
asymptomatic individuals 41, especially among household members of microscopy
positive individuals #2. The drug used throughout the study is the first line

antimalarial treatment in most of East Africa, including Kenya.

Discussion

Targeting interventions to hotspots of malaria transmission is frequently
mentioned as a cost-effective approach for malaria control and elimination 24543
although direct evidence for a community effect of hotspot-targeted interventions
is currently unavailable. The present study aims to determine this effect in a

cluster-randomized intervention trial.

Valuable information on how to quantify community effects of malaria control
interventions comes from trials with ITNs #4. Mortality rates*, incidence of severe
malaria 46, incidence of uncomplicated malaria3846, anaemia38 and high density
parasitaemia 38 have been shown to be reduced in compounds without ITNs that
were in close proximity of compounds with ITNs. Hawley and colleagues found
that individuals living in control villages within 300 m of ITN villages in Kenya
experienced a level of protection similar to that experienced by individuals living
in ITN villages and that this was plausibly due to area-wide effects on vector
densities and sporozoite positive mosquitoes 38. Despite similarities, hotspot
targeted interventions may differ considerably from untargeted ITN campaigns in
their community impact. Mathematical simulation models suggest that the impact
of hotspot targeted interventions may be much larger than that of community-
wide ITN distributions and may lead to local malaria elimination 4. In line with this,
our trial is powered to detect large effects on malaria transmission. However, two
of the major assumptions underlying the optimistic model outcomes are
incompletely understood. Firstly, the stability of hotspots is central to ensure

sustainable community effects. Hotspots of (asymptomatic) parasite carriage are
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generally assumed to be stable #10. However, a recent report that wind direction in
relation to breeding site location may be a key element in determining the location
of hotspots 12, suggests that local environmental factors may also influence the
spatial stability of hotspots. We believe that our approach to define hotspots
serologically may be less susceptible to (short-term) variations in wind direction
or other ecological factors since it effectively bases hotspot-detection on
immunological markers of cumulative malaria exposure 2°. Secondly, a community
effect of hotspot-targeted interventions strongly depends on mosquito mixing
patterns. Mosquito mixing patterns are unlikely to be homogeneous. Reported site-
fidelity where mosquitoes are likely to return to the same compounds 4748 remains
to be confirmed but could considerably reduce the community effect of hotspot-
targeted interventions. The most informative measure of mixing patterns may be
an approach where parasite populations are tracked in human populations, inside

and outside hotspots of malaria transmission.

Research on the impact of community interventions where ‘herd coverage’ is
required to ensure effectiveness raises a number of practical issues. Similar to
mass drug administration campaigns, high community coverage 4°50 is required in
our study to reduce Ro to values below 1. Our intervention is further challenged by
a dependence on community participation in control measures that are only rolled
out in a selected proportion of this community. Gaining community trust is
essential to the study’s success and we expect good participation rates after our
lengthy sensitization process and strong involvement of community leaders and

local workers in all aspects of the study preparation, intervention and evaluation.

Even with excellent participation rates, the nature of our intervention will remain
susceptible to contamination from neighbouring hotspots. An ideal study setting
would comprise a large number of geographically isolated clusters, each being an
independent focus of malaria transmission, with within these clusters clearly
defined hotspots 4. Our real-life setting falls short of this ideal scenario. The
continuous inhabitation in the area makes it unlikely that clusters are
geographically isolated. We aim to minimize contamination from non-targeted

malaria hotspots by incorporating an exclusion zone in our selection of eligible
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hotspots and in the selection of compounds in the evaluation phase. We
nevertheless expect that there will be residual contamination that will be reflected
in a spatial component in the effect of hotspot targeted interventions: the level of
contamination will be highest in areas furthest away from the targeted hotspot and
nearest to untargeted hotspots. Similarly, the effect of the intervention within the
targeted hotspots may be largest in those compounds that are most remote from
the nearest untargeted compound. Mathematical simulation models of are
expected to be valuable as an integral part of the evaluation of our intervention to
assess the plausibility that a change in transmission intensity can be attributed to

the intervention.

The current study is not designed to determine the effect of individual
interventions. While simulations suggest that targeted interventions with LLINs
and IRS will be sufficient to eliminate malaria locally 4, we chose a relatively
comprehensive package of malaria control measures incorporating a wide variety
of available interventions, targeting both the mosquito vector and the malaria
parasite in humans. If findings from the current study prove promising, a next step
will be to determine the optimum package of tools for hotspot-targeted
interventions across a range of settings. This package will differ between different
settings. Larviciding, for example, will be most beneficial in settings where
breeding sites are discrete and well-defined 51->3 while the effects of IRS and ITNs
will be affected by insecticide resistance, amongst other factors #4. Importantly,
follow-up studies should determine the cost-effectiveness of the hotspot approach
to assess whether savings in the number of compounds that need to be targeted
for conventional vector control in the absence of hotspot treatment outweigh the

costs for hotspot-detection and coordination of hotspot interventions.
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FIGURES
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Figure 1 - Overview map of one block in the study area comprising 20 cells.
A map of a part of a 2km x 2.5km part of the study area that comprises 20 500m x
500m cells and 80 sub-cells. Cell numbers are given in black bold letters; grey
crosses indicate structures; green circles with black crosses indicate selected and
numbered households. Rivers and roads are indicated in the map as given in the

legend.
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Figure 2 - Simulation of intervention outcome

The figure presents a simulation of hotspot targeted interventions in areas with a
baseline parasite prevalence of 10% or 20%. ITN coverage is assumed to be 41%
across all age groups (83% in under fives). Plotted is smoothed parasite
prevalence in the total population as a function of time in years since the start of
the intervention. No interventions (solid black line), hotspot-targeted increase in
LLIN coverage to reach 90% effective coverage in hotspots (dashed grey line) and
hotspot-targeted increase in LLIN coverage to reach 90% effective coverage in
hotspots in combination with targeted IRS reaching 90% of households in hotspots
(dashed black line).
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Appendix 1.4 — Model Based Geostatistics: Statistical Methods

This document outlines the underlying statistical methodology of the “Methods”
section in the paper. In the remainder of the document we will refer both to PCR
and seroprevalence as “test”. In Section 1 we describe the geostatistical models
that were fitted to the PCR and seroprevalence data. In Section 2, we give some

details on the metrics used for the sample size calculations.

1 Geostatistical analysis

1.1 Model

Let Y; denote the number of positive counts of the test in the i-th compound, each
associated with sampling locations x;, for i=1, ..., n. Conditionally on the
realization of the random effect T(x;), the response variable Y; follow a Binomial
distribution with expected value E[Yi] = njp; where n; is the number of compound
members and p; is the probability of having a positive test. We use the canonical

logit link function defined as

log { 1 ﬁlp} =T(x;) =d(x) B+ S(w;)+ Ziy i =1,...,n,

(1)
where d(x;) is a vector spatial covariates with associated vector of regression
coefficients f; S(x;) is a stationary isotropic zero-mean Gaussian process with
variance 02 and correlation function p(u) = exp(-u/®) with u being the distance
between two compounds and scale parameter @ > 0; and Z; are mutually
independent Gaussian variables that are used to account for non-spatial variation

within compounds.

The set of spatial covariates d(x;) used in the model were selected using ordinary
logistic regression and that were significant at 5% confidence level; in table 1,
these are reported indicating their includion in the PCR and seroprevalence

models.
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Term PCR Seroprevalence

1 Intercept Yes Yes
2 Mean elevation Yes Yes
3 Maximum NDVI Yes No
4 Mean NDVI Yes No
5 Distance from closest fish pond Yes Yes
6 Tree cover Yes Yes
7 Maximum TWI No Yes
8 Mean TWI No Yes
9 Distance from the 3™ order stream No Yes
10 Distance from the 2" order stream No Yes

Table 1: Identified spatial covariates using an ordinary logistic
regression; third and fourth columns indicate their presence in the

models for PCR and seroprevalence, respectively

1.2 Parameter estimation

We use the Monte Carlo maximum likelihood (MCML) method (Geyer & Thompson,
1992; Geyer, 1994, 1996, 1999) for estimation of the model parameters. This
procedure uses conditional simulations of the random effect T given the data Y to
obtain a computationally efficient approximation to the intractable likelihood
function. More details on the analytical derivation of such an approximation can be

found in Christensen (2004) and Giorgi et al. (2015).

1.3 Prediction

Now, consider the prediction of T"=(T(xn+1), . . ., T(xn+¢))T at q additional prediction
locations forming a regular grid at spacing 100 m over the entire surveyed area. All
relevant explanatory variables, listed in Table 1, were also available at the
prediction locations. We do not include the mutually independent random
variables Z; in 1 as part of our target for prediction, since, in our case, these are

interpreted as non-spatial variation within compounds.
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Using a Monte Carlo Markov chain algorithm proposed by Christensen et al.
(2006), we obtain 104 samples from the distribution of T" given Y by simulating
110000 samples and retaining every 10t sample after a burn-in of 104 simulations.
Let t(1)(Xn+), - - ., tao*)(Xn+), denote the simulated samples for the i-th grid locations
Xn+. Predicted prevalences are obtained by transforming the sampled values
t)(xn+) to pg)(xn+i) = exp{tg(xn-i)}/ (1+exp{ts(xn+)}) fori=1, ..., g and j=1,..., 104
We then summarize the resulting set of predicted prevalence surfaces with the
following indices.

10* 4 e -
. . . i 0y (@ng) /104 fori=1,...,q.
«  Point-wise mean are obtained as ' >—79 @/ !

* Exceedance probabilities are obtained as .Z.Jl'(.:l/[W){,”<¥>,(Tf."”),}ﬂo4’, fori=1,...,q
where c is a pre-defined prevalence threshold (¢ = 0.28 for PCR and ¢ = 0.70
for seroprevalence) and I 1){p} is an indicator function that takes value 1 if

c<p<1and 0 otherwise.

2 Computational details of the sample size calculations
Let A denote the surveyed region of interest in R?, u(x) = d(x)7p the fixed effect part
of the linear predictor in (1) and define Sp(x) to be the kriging predictor of S(x)
obtained by a sample corresponding to (100 x p)% of the total population. The
integrated mean-square error (IMSE) and the discrimination index (DI) are the
defined as follows (Fanshawe & Diggle, 2013)
IMSE = /A E{[exp(u(l’) + S(x)) — exp(u(z) +Sp<x))f} dz,
: - (2)

DI /4 {p (u(z) + 8, (x) > z) o.s} d, -
where E{-} is the expected value with respect to the distribution of S(x) and [ =
log(c/(1 - c)), with c given prevalence threshold as specified in Section 1.3. The
IMSE index in (2) quantifies the overall mean-square error in A of the odds ratio
spatial predictor. In (3), DI measures how well the design of a given sample size
discriminates hotspots; under ideal circumstances all the predictive probabilities

would be either O or 1.

In order to compute the intractable integrals in (2) and (3), we impose the

spatially continuous process S(x) to be piecewise constant over a regular grid (x, ..

322



., xn) in 4 at spacing 220 m. For a given proportion p of the total population, we

then compute the IMSE and DI metrics using the following Monte Carlo procedure.

1. Select randomly a set of locations corresponding to (100 x p)% of the total

digitized structures aggregated to the compound level, with the distance

between any two sampled locations no less than 20 m in order to guarantee

a good spatial coverage in A.

2. Simulate 104 surfaces of S(x) over the regular grid in 4, setting the

covariance parameters equal to the respective MCML estimates (see Section

SO = (Sw(@),- ., S (@n o
1.2). Letnow " (@) 50 () pe the j-th simulated surface.

i)

iii)

References

For each of the randomly chosen locations obtained from 1, select
Sw(x) where x is the closest grid point, and add Gaussian noise Z,
corresponding to non-spatial variation between compounds with
variance equal to the respective MCML estimate.

Compute the kriging predictor for S(;), denoted by

Sy, denoted by ST = (Si)(#1), ., Sy (Fn))

Repeati) andii) for/=1,..., 10* and finally approximate (2) and (3)

as
1 10t N R 2
IMSE ~ ——— > {GXP(H(??J]') + S (#5)) — exp(u(F;) + S (-’f‘j))} ;
° i=1 j=1
1 107 N
. - 2
DI =~ TN % 10% ZZ {]{#(wj) + S0 (#) > 1} - 0'5} )

Where I(a > 1) is an indicator function that takes value 1 ifa>1/and 0

otherwise.
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Appendix 2 — Survey Questions

Appendix 2.1 - School Survey

Part I-Household Information-Fill out once for each house

(NB. Translations for questions in Kisii, DhoLuo and Swahili (K, L, S respectively)

are given only for those questions directed to household members and not for

observational questions or for answers as all interviewers speak English)

9.

N o 1k w N

District

Division

Location

Enumeration Area

Village Name
Head of Household

For the head of household, what is the highest level of education
completed?

K: Omonene bwe’nyomba eye ngayi asomete agaika

L: Wuon odni osomo nyaka klas adi?

S: Ni kiwango kipi cha juu zaidi cha masomo ambacho mwenye nyumba ame

hitimu?
a. NONE
b. PRIMARY
c. SECONDARY
d. HIGHER

What type of wall was used for the construction of this house?
CLAY OR MUD
b. BRICK OR STONE
c. CEMENT/PLASTERED
d. CEMENT/PAINTED
e. OTHER
What type of roof was used for the construction of this house?
a. GRASS THATCH
b. IRON SHEET
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c. TILES

d. OTHER
10. How many windows have glass?

a. NONE

b. SOME

c. ALL
11. Are the eaves open or closed?

A. OPEN

b. CLOSED

c. PARTIALLY OPEN
12. What is the main material of the floor?

EARTH/SAND

b. DUNG

c. WOOD PLANKS

d. PALM/BAMBOO

e. PARQUET OR POLISHED WOOD
VINYL OR ASPHALT STRIPS
CERAMIC TILES
CEMENT
CARPET
j.  OTHER)

-

= o

-

13. What animals are found in your compound?
K: Ntugo ki ere ase omochie oyo
L: Jamni mage ma un godo e dalau ka?
S: Wanyama wapi kati ya hawa wanapatikana kwenye ua la nyumba yako?
a. COWS: YES/NO
b. GOATS: YES/NO
c. SHEEP: YES/NO
14. What is the main type of fuel used by your family for cooking?
K: Inko ogotumeka koruga ase omochioyo botambe
L: En ang’o ma jo odni tiyogo kuom chweko e tedo mapile?
S: Unatumia aina gani ya nguvu au moto kupika?

a. ELECTRICITY OR GAS/

326



b. KEROSENE

c. CHARCOAL
d. FIREWOOD
e. DUNG

f. OTHERS (SPECIFY)
15. At any time in the past 12 months, has anyone sprayed the interior walls of
your dwelling?
K: Ase emetienyi ikomi nebere yaetire, monto’nde onya gosiara chinyasi
chiaime chienyomba yao eriogo riogoita chivmbu?
L: E dweche 12 ma osekalo, bende osekir yath e kor odni gi iye?
S: Katika jumla ya miezi kumi na miwili iliyopita, kuna yeyote amenyunyizia
dawa kwenye kuta za nyumba yako?
a. YES
b. NO
c. DON'T KNOW
16. How many months ago was the house sprayed? (IF LESS THAN ONE
MONTH, RECORD ‘00’ MONTHS AGO)
K: Ingaki ki yaetire korwa enyomba eye esiarerwa eriogo?
L: Ma ne otimore dweche adi ma okalo?

S: Ni miezi mingapi imepita tangu nyumba yako inyunyiziwe dawa?

17. Who sprayed the house?

K: Ning”o osiarete eriogo

L: Ng”ano mane okiro yath e odni?

S: Ni nani aliyeinyunyizia dawa nyumba yako?
a. GOVERNMENT WORKER/PROGRAMME
b. PRIVATE COMPANY
c. HOUSEHOLD MEMBER
d. OTHER (specify)
e. DON'T KNOW

18. Have any of the following been used in your house over the last week?
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K: Kemo kiebi kianya gotumeka nyomba mwao ase amatuko atano nabere
aetire?
L: Bende usetiyo gi achiel kuom magi e otka e juma ma okaloni?
S: Kuna chochote kifuatacho ambacho kimetumiwa kwenye nyumba yako
wiki iliyopita?

a. MOSQUITO COILS?

b. INSECTICIDE SPRAYS (e.g. DOOM)?

c. REPELLENTS?

19. Does your household have any mosquito nets that can be used while

sleeping?
K: Enyomba yao nebwate eneti ye chiumbu egotumeka ekero mokorara?
L: Bende odi ka nitiere e net ma itiyogo ka ji nindo?
S: Una neti ya kujifunikia wakati wa kulala ili kujizuia mbu?

a. YES

b. NO

Part II-Household Listing-Fill out questionnaire for each person who stayed
in house previous night. For children, pose the questions to the primary
caretaker
1. Name of person)
2. Is (NAME) male or female?
a. MALE
b. FEMALE
3. Does (NAME) usually live here?

K: [X] noo amenyete aiga?
L: Bende [X] odak ga ka?
S: Mtu huyu [X] anaishi hapa?
a. YES
b. NO
4. Did (NAME) stay here last night?
K: [X] Naraire aiga botuko bwaetete?
L: Bende [X] ne onindo ka otieno mokalo?

S: [X] Amelala hapa jana usiku?
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a. YES
b. NO
What is the date of birth of (NAME)? )
K: [X] mwaka ki aiboire?
L: [X] nonyuol e higa ane?
S: Tarehe ya [X[ ya kuzaliwa?

. What s [X]'s date of birth?
K: [X] mwaka ki aiboire?

L: [X] nonyuol e higa ane?

S: Tarehe ya [X[ ya kuzaliwa?

Has (NAME) been ill with a fever at any time in the last 2 weeks?

K: [X] Onya koigwa riberera ngaki ende ase chichuma ibere chiaetire?

L: Bende [X] osebedo gi del ma ore e jumbe ariyo ma osekalo?

S: Katika wiki mbili zilizopita, [X] amekuwa mgonjwa na kusikia maumivu na

joto mwilini?

a. YES
b. NO
c. NOT SURE

Did [X] seek advice or treatment for the fever from any source?
K: [X] naetwe riogo rinde gose nachiete nyagitari koegwa eriogo rieriberera?
L: Bende ne omanyo ng”ado rieko, kata thieth kuom del maore kamor amora?
S: [X] alitafuta huduma ya afya au matibabu popote?
a. YES
b. NO
. Where did you seek advice or treatment? (Check all that apply)
K: Ase ng”o aetwe obosemi gose kogwenigwa korwa?
L: Ng”ado rieko kata thieth ne omanyo kanye?
S: Alienda kutafuta wapi huduma au matibabu hayo?
a. GOVT. HOSPITAL
b. GOVT.HEALTH CENTER
c. GOVT.HEALTH POST
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d. MOBILE CLINIC
e. FIELD WORKER
OTHER PUBLIC
PVT. HOSPITAL/CLINIC
PHARMACY
PRIVATE DOCTOR
j.  MOBILE CLINIC
k. FIELD WORKER
l. OTHER PVT. MEDICAL)
m. SHOP
n. TRAD. PRACTITIONER
o. OTHER)
3. Has [X] had a fever in the last 24 hours?

-

= o

-

K: [X] otwarire riberera korwa igoro?
L: Bende [X] osebedo gi del maore nyoro kata kawuono?
S: [X] amekuwa na maumivu na mwili wake kuwa na joto masaa ishirini na
manne yaliyopita?
a. YES
b. NO
c. DON'T KNOW
4. Has (NAME) taken any drugs in the last 2 weeks? (Check all that apply)
K: [X] onyure riogo rinde ase chichuma ibere chiaetire?
L: Bende [X] osemwonyoe yath e jumbe ariyo ma osekalo?
S: [X] ametumia dawa yoyote wiki mbili zilizopita?
a. SP/FANSIDAR
b. CHLOROQUINE
c. AMODIAQUINE
d. QUININE
e. COARTEM
OTHER ANTIMALARIAL (SPECIFY)
ASPIRIN
ACETAMINOPHEN/PARACETAMOL
IBUPROFEN

-

= o

-
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j. OTHER (SPECIFY)
k. DON'T KNOW

We are now going to ask some questions about where [X] has lived in the past, and
where he has travelled to in recent months. The reason we are asking these
questions is to find out whether [X] might have been at risk of getting malaria in
other places.’
K: Inkogenda tore koboria amaborio igoro ya’se [X] amenyire ase matukoaetire,
nase atarete gochia ase omotienyi oyo. Etokoboria ribori eri erinde torore gose [X]
nabase kobwatwa na malaria ase ensemo ende
L: Koro adwaro penjo kuom kama [X] osebedo ka odakie e thuolo ma okalo, to gi
kama osedhie wuoth e dweche matin mokalo. Penjagi konyowa ng’eyo ka onyalo
yudo tuo mar malaria Kuonde moko opogore gi ka.
S: Tutakuuliza maswali kuhusu pale [X] ameishi tena pasipo hapa na kule
ametembelea miezi iliyopita ya karibuni. Tunataka kuweza kujua kama [X]
angeweza kupata malaria pahali pengine
5. Has (X) always lived in (THIS DISTRICT)?

K: Tatiga ensemo eye [X] omoniyre ensemo endo ase emetienyi etano nomo

yaetire?

L: Kopogore gi (this district) ka bende nitiere district mne ma [X] osedake

moloyo dweche auchiel?

S: Badala ya (X) ali ishi kwa wilaya ingine kwa zaridi ya miezi sita?

a. YES (Skip to question #)
b. NO
6. IfNO,

Which other district have did [X} live in most recently?

K : Insemo ki ende [X] amenya bwango iga ase engaki entambe

L: District mane ma osedakie mang’enye moloyo

S: [X] ameishi katika wilaya gain tena hivi majuzi?

7. For how long did you live in (X)?
K: Engaki engana inaki [X] eberete ase omochi oyo

L: [X] osedak e districtni kuom thuolo maromo nade
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10.

11.

12.

S: Ameishi huko siku ngapi? (jina la wilaya)

Has [X] lived in any other districts?
K: [X] onya komenya insemo ya omochie onde goetania emetienyi etato
nomo?
L: Bende osedak e district moro amora kuom thuolo moloyo dweche auchiel?
S: [X] ameishi katika wilaya zingine?
a. YES (Repeat previous 2 questions)
b. NO (Skip to question #23)
Has [X] travelled outside (THIS DISTRICT) in the last 3 months?
K: [X] onyagotarera insemo ya mochie onde ase emetienyi etato yaetire arare
aroro?
L: Bende sagar moro oseyudi mininde oko kuom dweche adek mose kalo?
S: [X] ametembelea wilaya nyingine (jina la wilaya) miezi mitatu iliyopita?
a. YES
b. NO (Skip to question #36)
c. DON'T KNOW (Skip to question #36)
How many trips has [X] made outside (THIS DISTRICT) in the last 3
months?
K: Chisabari irenga [X] agenda isiko ya omochie oyo chiokorara (erieta ria
omochie) ase engaki yemetienyi etato
L: Edweche a dek ma osekalo osedhi wuoth oko mar district ni di di?

S: Ameenda huko (jina la wilaya) mara ngapi?

When did [X] come back from your most recent trip?
K: Indi [X] airanete korwa esabari egendete bwango iga yokorara?
L: Oduogo ka ang’o koa e wuoth magik mane odhi oko mar district ni?
S: Alirudi lini kutoka safari yake ya mwisho?
a. <2 WEEKS AGO
b. 2-4 WEEKS AGO
c. >4 WEEKS AGO
Which district did [X] spend most time in during that trip?
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K: Imochie ki [X] aberete amatuko amange ase chisabari achire chiokorara?
L: E wuodhe ma ogik mane odhie oko mar districtni, ne odhinyo dak e district
mane?

S: Ni wilaya ipi aliweza kukaa sana katika safari yake?

13. What was the main reason for taking the trip?
K: Ngeto ki kiagerete x akagenda chisabari echi chiokorara?
L: Ang”o maduong” mane omiyo odhi e wuodh ni?
S: Kwa nini alienda kwenye safari hii?
a. WORK/LOOKING FOR WORK
b. BUYING/SELLING AT MARKET
c. ATTENDING SCHOOL OR UNIVERSITY
d. VISITING RELATIVES OR FRIENDS
e. OTHER (SPECIFY)

14. Are there any other persons who live in this house that we have not listed?
K: Monto onde nare orarete nyomba aiga totararika rieta riaye?
L: Bendo nitiere ji mamoko manindo e odini mapodi ok andiko nying gi?

S: Kuna watu wengine wanaoishi kwenye nyumba hii ambao hatuna majina

yao?
a. YES (Go back to QUESTION 1 and fill out this form for that person)
b. NO

15. Are there any other people who may not be members of your family, such
as domestic servants, lodgers or friends who usually live here?
K: Omogeni nare oraa otari monto oino buna omokori egasi omomenyi gose
omosani oino orarete nainwe aiga?
L: Bende nitiere ji mamoko ma ok jodala ka mapile, kaka jotich, wede, kata
osiepe ma mane onindo ka otieno manyoro?
S: Kuna watu wengine wanaoishi kwenye nyumba hii kama marafiki, wafanyi
kazi au watu wanaolipia malazi yao ambao hatuna majina yao?
a. YES (Go back to QUESTION 1 and fill out this form for that person)
b. NO (Go to net roster).
Part III-Net roster-Fill out questionnaire for each net in the house.

1. Net Number
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Observed
a. YES
b. NO
How long ago did you obtain the net?
K: Indi enyomba eye yanyorete/yaetwe chineti chiechiumbu?
L: Nedni ichako bedogo karango?

S: Mliipata neti hii wakati mgani?

Observe the brand of net:
a. PermaNet
b. Olyset
c. SupaNet
d. SupaNet Extra
e. Other

Since you got the mosquito net, was it ever soaked or dipped in a liquid to
repel mosquitoes or bugs?
K: koru onyora eneti ye chiumbu, yanyagosibigwa neriogo riamache
riogoseria chiumbu ne chinsuri?
L: Nyaka ichak bedo gi nedni, bende oselwoke kod yath mageng’o suna?
S: Tangu ulipoinunua neti hii, ume wahi kuiweka kwenye maji yaliyo na dawa
ya kuuwa au kuwafukuza mbu na wadudu?

a. YES

b. NO (Go to question #7)

c. NOT SURE (Go to question #7)
How long ago was the net last soaked or dipped? (If less than 1 month,
enter ‘00")
K: Amatuko arenga aetire korwa eneti yaoo esibigwa neriogo riamache
riogoita chiumbu?
L: Olwoke gi yadh suna ndalo adi ma osekalo?

S: Ni wakati mgani umepita tangu uiweke neti kwenye maji yaliyo na dawa

. Was this net hanging last night?

K: Eneti iyasungire obotuko bwaigoro?
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L: Bende ne nedni oyar e otieno mapiny orugo kwauono?
S: Neti hii ilitumika jana usiku kujikinga na mbu?
a. YES
b. NO (Skip to last question)
8. Listall people who slept under this net last night:

a. Personl1

b. Person 2

c. Person 3

335



Appendix 2.2 — Health Facility Survey
SECTION 1 - PATIENT DATA
1. Select health facility:

( drop down menu with

a. Agawo
b. Ober

c. Omiro
d. Othoro
e. Tala)

2. Patient ID Number: HF22- -
(-First two digits should be automatically populated using the first 2
letters of the Health Facility Name selected in Question 1 e.g. AG.
-Last 3 digits should be an autogenerated number increasing from
from 001 to 500 based on the order of sampling.)

Date of sample:__ __

Sex:

Year of birth
Age:

N o 1ok W

Axillary Temperature

SECTION 2 - AREA OF RESIDENCE

We would like to ask you some questions about the compound where you slept last
night.

L:Wadwaro penji penjo ewi dala kamani ninde nyoro gotieno

S:Tungetaka kukuuliza maswali kadhaa kuhusu boma ulimolala jana usiku

8. Name of head of compound (3 names):
L:Nying wuon dala
S:Jina la mwenye Boma

9. Name of head of house (3 names):

L:Nying wuon ot
S:Jina la mwenye nyumba

10. District:

L:district
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S:Wilaya
(drop down menu with district list)

11. Location:

L:lokeson
S:Lokesheni
12. EA Name:

L: Gweng

13. What is your clan?

L: Un jo dhoot mane?
S: Unatoka ukoo gani?

14. What is the nearest health facility to this compound?

L: Kar thieth mane mani machiegni gi dalau ka?
S: Kituo cha afiya gani iko karibu na boma lenu?

15. What is the nearest primary school to this compound?

L: Sikul mane mani machiegni gi dalau ka?
S: Shule gani iko karibu na boma lenu?

16. What is the nearest market to this compound?

L: Chiro mane mani machiengi gi dalau ka

S: Soko lipi liko karibu na boma lenu?

17. What is the nearest Church to this compound:
L:Kar lamo machiegni
S:Kanisa iliyo karibu

18. Names of head of compound for 3 nearest neighbors:

L:Nyinge weg mieche adek mokiewo kodu.

S;Majina ya wenye boma matatu majirani wakaribu kabisa

d.

b.

C.
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GEOLOCATING QUESTIONNAIRE

Show the patient/guardian the provided map of the health facility
catchment area. Using the geolocation questions and key features that have
been located on the map, help the patient/guardian locate where their

compound is on the map as accurately as possible and record the results.

19. Map details

d. Able to locate residence on map?

Drop down - Yes/No

If Yes, move to b and c. If No, skip to section 3
e. Block number:

Number pad- 2 digits
f. Cell number

Number pad - 2 digits

SECTION 3 - PATIENT INTERVIEW
20. Has [X] had a fever in the last 24 hours? YES/NO/DON’T KNOW

21.

22.

23.

L: Bende [X] osebedo gi del maore nyoro kata kawuono?
S: [X] amekuwa na maumivu na mwili wake kuwa na joto masaa ishirini na
manne yaliyopita?

Why is [X] visiting the clinic today?

L: Ango’ momiyo [ X] obiro ei osiptal ni kawuono?
S: Kwanini [X] ametembelea hospitali hii leo?
What symptoms does [X] have now?

L: Gin ranyisi mage mag tuo ma [X] nigodo sani?

S: Ni dalili zipi za ugonjwa [X] anazo sasa hivi?

Has (X) been ill with a fever at any time in the last 2 weeks?

L: Bende [X] osebedo gi del ma ore e jumbe ariyo ma osekalo?

S: Katika wiki mbili zilizopita, [X] amekuwa mgonjwa na kusikia maumivu
na joto mwilini?

a. YES
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24,

25.

26.

b. NO (SKIP TO 8)

c¢. DON'T KNOW

Has [X] had a fever in the last 24 hours?

L: Bende [X] osebedo gi del maore nyoro kata kawuono?

S: [X] amekuwa na maumivu na mwili wake kuwa na joto masaa ishirini na
manne yaliyopita?

a. YES

b. NO

c. DON'T KNOW

Did [X] seek advice or treatment for the fever from any source?
L: Bende ne omanyo ng”ado rieko, kata thieth kuom del maore kamoro
amora?

S: [INAME] alitafuta huduma ya afya au matibabu popote?

a. YES

b. NO

c. DON'T KNOW

Where did you seek advice or treatment? (Check all that apply)
L: Ng”ado rieko kata thieth ne omanyo kanye?

S: Alienda kutafuta wapi huduma au matibabu hayo?

a. GOVT. HOSPITAL

b. GOVT.HEALTH CENTER

c. GOVT.HEALTH POST

d. MOBILE CLINIC

e. FIELD WORKER

OTHER PUBLIC

PVT. HOSPITAL/CLINIC

PHARMACY

PRIVATE DOCTOR

j.  MOBILE CLINIC

k. FIELD WORKER

l. OTHER PVT. MEDICAL

m. SHOP

n. TRAD. PRACTITIONER

-

= o

-
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o. OTHER

27.Has (X) taken any drugs in the last 2 weeks? (Check all that apply)
L: Bende [X] osemwonyoe yath e jumbe ariyo ma osekalo?
S: [X] ametumia dawa yoyote wiki mbili zilizopita?
a. SP/FANSIDAR
b. CHLOROQUINE
c. AMODIAQUINE
d. QUININE
COARTEM
OTHER ANTIMALARIAL (SPECIFY)
ASPIRIN
ACETAMINOPHEN/PARACETAMOL
IBUPROFEN
j. OTHER (SPECIFY)
k. NO
l. DON'T KNOW

®

-

SR

-

28.Did [X] sleep under a net last night?
L: Be ng’ani noninde e bwo net gotieno manyoro?
S: Je huyu alila chini ya neti jana usiku?
a. YES
b. NO
c¢. DON'T KNOW
29. At any time in the past 12 months, has anyone with a back pack come and
sprayed the interior walls of your dwelling with an insecticide to kill
mosquitoes? YES/NO/DON'T KNOW
L: E dweche 12 ma osekalo, bende osekir yath e kor odni gi iye?
S: Katika jumla ya miezi kumi na miwili iliyopita, kuna yeyote amenyunyizia

dawa kwenye kuta za nyumba yako?
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We are now going to ask some questions about where [X] has lived in the
past, and where he has travelled to in recent months. The reason we are
asking these questions is to find out whether [X] might have been at risk of
getting malaria in other places.’

L: Koro adwaro penjo kuom kama [X] osebedo ka odakie e thuolo ma okalo, to gi
kama osedhie wuoth e dweche matin mokalo. Penjagi konyowa ng’eyo ka onyalo
yudo tuo mar malaria Kuonde moko opogore gi ka.

S: Tutakuuliza maswali kuhusu pale [X] ameishi tena pasipo hapa na kule
ametembelea miezi iliyopita ya karibuni. Tunataka kuweza kujua kama [X]

angeweza kupata malaria pahali pengine

30. Apart from “EA Name” has (X) lived in any other EA for more than 6

months?
L: Bende [X] osedak e EA moro ma opogore gi (Y) e thuolo mohingo

dweche auchiel?
S: Tofauti na hii “EA Name” [X] amewahi kuishi kwa EA ingine kwa muda
wa inazidi miezi 67

a. YES (specify)

b. NO

c. DON'T KNOW

31.Has (X) made any overnight trips outside of “EA Name” in the last 3

months?

L: Be [X] osedhi e gweng moro e dweche adek mokalo?

a. YES (specify)
b. NO (skip to results)
c. DON'T KNOW (skip to results)

32.Final diagnosis

33. Treatment provided
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Appendix 2.3 — Community Surveys and Focal Mass Drug Administration

(FMDA)

(NB. Translations for questions in DhoLuo and Swalhili (L, S respectively) are given

only for those questions directed to household members and not for observational

questions or for answers as all interviewers speak English)

Part I-Household Information-Fill out once for each house

1) House code

2) Head of Compound
3) Clan
4) Nearest Market

5) Nearest Primary School

6) Nearest Health Facility

7) What is the main occupation of the household head?
L: Tich mane ma wuon odni timo
S: Ni kazi ipi mwenye nyumba hufanya?
a) WORKS FOR PAY
b) INCOME FROM SPOUSE OR OTHER RELATIVE
c) UNPAID FAMILY BUSINESS
d) WORKS ON FAMILY FARM
e) UNEMPLOYED (ACTIVELY SEEKING WORK)
f) RETIRED
8) For the head of household, what is the highest level of education completed?
L: Wuon odni osomo nyaka klas adi?
S: Ni kiwango kipi cha juu zaidi cha masomo ambacho mwenye nyumba
ame hitimu?
a) NONE
b) PRIMARY INCOMPLETE
c) PRIMARY COMPLETE
d) SECONDARY INCOMPLETE
e) SECONDARY COMPLETE
f) HIGHER INCOMPLETE
g) HIGHER COMPLETE
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h) UNKNOWN
i) OTHER
9) How many windows have glass?
a) NONE
b) SOME
c) ALL
d) NO WINDOWS PRESENT
10) What is the main type of fuel used by your family for cooking?
L: En ang’o ma jo odni tiyogo kuom chweko e tedo mapile?
S: Unatumia aina gani ya nguvu au moto kupika?
a) ELECTRICITY OR GAS/
b) KEROSINE
c) CHARCOAL
d) FIREWOOD/STRAW
e) DON'T KNOW
f) OTHERS (SPECIFY)
11) What is the main source of drinking water in your house?
L: Ere kama jo odni goloe pi mar modho?
S: Uneyatoa wapi maki yako ya nyumbani ya kunywa?
a) PIPED WATER IN RESIDENCE
b) PUBLIC TAP/PUMP/PIPE
c) WELL IN OWN COMPOUND
d) PUBLIC WELL
e) RAIN WATER
f) RIVER/STREAM/SPRING OR OTHER SURFACE WATER
g) OTHER
h) DON'T KNOW

12) Observe/ask whether there are the following in this house

a) ELECTRICITY - YES/NO/DON'T KNOW
b) SOLAR POWER' - YES/NO/DON'T KNOW
Q) TV ~ YES/NO/DON'T KNOW
d) MOBILE PHONE - YES/NO/DON'T KNOW
e) MOTORBIKE ~ YES/NO/DON'T KNOW
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f) BICYCLE ~ YES/NO/DON'T KNOW

g) RADIO ~ YES/NO/DON'T KNOW
h) 2 SEATER ~ YES/NO/DON'T KNOW
i) CUSHIONS ~ YES/NO/DON'T KNOW

Part II-Person Questionnaire-Fill out questionnaire for each person who

stayed in house previous night. For children, pose the questions to the

primary caretaker

1) Name of person
2) Is (Name) listed on the house list?

a) Yes

b) No
3) Person ID number
4) Is (NAME) male or female?

a) MALE

b) FEMALE
5) Is (NAME) available for interview?

a) YES (If yes, skip to 7)

b) NO (If no, go to 6)
6) Will (NAME) be available for interview at another time?

a) YES, WHEN

b) NO
7) What is [NAME]'s date of birth?

L: [NAME] nonyuol e higa ane?
S: Tarehe ya [NAME ] ya kuzaliwa?
a) YEAR
b) MONTH

8) Does (NAME) usually sleep here?
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L: Bende [NAME] odak ga ka?
S: Mtu huyu [NAME] anaishi hapa?
a) YES
b) NO
9) Did (NAME) sleep here last night?
L: Bende [NAME] ne onindo ka otieno mokalo?
S: [INAME] Amelala hapa jana usiku?
a) YES
b) NO
10) Is (NAME) attending school?
L: Bende [NAME] dhi ga sikul?
S: Je [NAME] anaenda shule?
a) YES
b) NO
c) DON'T KNOW
11) Which school is (NAME) attending? (include whether primary or secondary)
L: Sikul mane ma [NAME] some?

S: Ni shule gani [NAME] anasoma?

12) Which class is (NAME) in?
L: To [NAME] nie kilass adi?
S: [INAME] yuko darasa la ngapi

13) What is the name of (NAME)'’s class teacher?
L: Nying japuonj mar (NAME) en ango’?

S:Jina ya mwalimu wa (NAME) ni nani?

14) Has (NAME) been ill with a fever at any time in the last 2 weeks?
L: Bende [NAME] osebedo gi del ma ore e jumbe ariyo ma osekalo?
S: Katika wiki mbili zilizopita, [NAME] amekuwa mgonjwa na kusikia
maumivu na joto mwilini?
a) YES
b) NO (SKIP TO 16)
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c) DON'T KNOW
15) Has [NAME] had a fever in the last 24 hours?
L: Bende [NAME] osebedo gi del maore nyoro kata kawuono?
S: [INAME] amekuwa na maumivu na mwili wake kuwa na joto masaa
ishirini na manne yaliyopita?
a) YES
b) NO
c) DON'T KNOW
16) Has (NAME) taken any drugs in the last 2 weeks? (Check all that apply)
L: Bende [NAME] osemwonyoe yath e jumbe ariyo ma osekalo?
S: [INAME] ametumia dawa yoyote wiki mbili zilizopita?
a) SP/FANSIDAR
b) CHLOROQUINE
c) AMODIAQUINE
d) QUININE
e) COARTEM
f) OTHER ANTIMALARIAL (SPECIFY)
g) ASPIRIN
h) ACETAMINOPHEN/PARACETAMOL
i) IBUPROFEN
j) OTHER (SPECIFY)
k) DON'T KNOW

17) Did this person sleep under a net last night?
L: Be ng’ani noninde e bwo net gotieno manyoro?
S: Je huyu alila chini ya neti jana usiku?
a) YES
b) NO
c) DON'T KNOW
18) If NO, why not? (Check all that apply)
L: Ka da, nang’o?
S: Kama la kwanini?

a) ITISTOO HOT UNDER THE NET
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b) THERE IS NOT ENOUGH SPACE UNDER THE NET/I FEEL TOO
¢) CLOSED IN

d) IT DOES NOT PROTECT AGAINST MOSQUITOES/INSECTS

e) NO MOSQUITOES AROUND

f) IT IS FOR ONLY CHILDREN/PREGNANT WOMEN

g) BEDNET USED BY PARENTS

h) BEDNET USED BY SIBLINGS

i) BEDNET BEING WASHED

j) BEDNET OLD

k) BEDNET KEPT FOR VISITORS

I) IT IS TOO EXPENSIVE/CANNOT AFFORD ENOUGH NETS FOR
EVERYONE

m) IT IS NOT THE RAINY/MALARIA SEASON

n) CANNOT HANG IT OVER MY SLEEPING PLACE/SLEEPING

0) OUTSIDE

p) CHANGE MY SLEEPING PLACE TOO OFTEN

q) DO NOT KNOW

r) OTHER

We are now going to ask some questions about where [X] has travelled to in
recent months. The reason we are asking these questions is to find out
whether [X] might have been at risk of getting malaria in other places.’
L: Koro adwaro penjo kuom kama [X] osebedo ka odakie e thuolo ma okalo,
to gi kama osedhie wuoth e dweche matin mokalo. Penjagi konyowa ng’eyo
ka onyalo yudo tuo mar malaria Kuonde moko opogore gi ka.
S: Tutakuuliza maswali kuhusu pale [X] ameishi tena pasipo hapa na kule
ametembelea miezi iliyopita ya karibuni. Tunataka kuweza kujua kama [X]
angeweza kupata malaria pahali pengine
19) Has (NAME) made any overnight trips outside of “EA Name” within the last 3
months?
L: Be [NAME] osedhi e gweng moro e dweche adek mokalo?

a) YES
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b) NO (skip to 25)
c) DON'T KNOW
20) During the trips taken in the last 3 months outside “EA Name”, which districts
did (NAME) travel to? (check all that apply)
L;Ei dweche adek mokalo mane idhi e wuoth oko gi, ni dhi ei distrik mane?
ulienda wilaya gani?
a) Suba, Homa Bay, Kuria or Migori
b) Trans Mara, Kisii, or Gucha
c) Nyamira, Bomet or Buret
d) Rachuonyo
e) Nyando, Kisumu, or Bondo
f) Kericho, Nandi, or Vihiga
g) Siaya, Butere, or Busia
h) Mumias or Kakamega
i) Bungoma or Teso
j) Other (Specify)
21) How many nights did (NAME) spend away the last three months?
L: [NAME] ne oduogo ka oa e woudhe manonindoe oko mogik karang’o
S: Ni usiku ngapi [NAME] amechukua akiwa kwa safari yake ya mwisho
Number_____ (Don’t know=-1)
22) Has (NAME) made any overnight trips outside of “EA Name” in the last 1
month?
L: Be [NAME] osedhi e gweng moro e dweche 1 mokalo?
a) YES
b) NO (skip to 25)
c) DON'T KNOW
23) Which districts did (NAME) travel to during the trip(s) outside “EA Name”
during the last month? (check all that apply)
L;Ei dwe achiel mokalo ni, (NAME) ne odhi e wuoth ei distrik mage?
S:Katika mwezi moja ipitayo, (JINA) alitembelea wilaya gani?

a) Suba, Homa Bay, Kuria or Migori
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b) Trans Mara, Kisii, or Gucha
c) Nyamira, Bomet or Buret
d) Rachuonyo
e) Nyando, Kisumu, or Bondo
f) Kericho, Nandi, or Vihiga
g) Siaya, Butere, or Busia
h) Mumias or Kakamega
i) Bungoma or Teso
j) Other (Specify)
24) How many nights did (NAME) spend away during the last month?
L: [NAME] ne oduogo ka oa e woudhe manonindoe oko mogik karang’o
S: Ni usiku ngapi [NAME] amechukua akiwa kwa safari yake ya mwisho
Number

(Don’t know=-1)

If there are more people to interview that have been enumerated click yes to
return to the start of the person questionnaire. If you have finished all of the

people that have been listed ask the head of compound:

25) Are there any other people who may or may not be members of your family,
such as domestic servants, lodgers or friends who usually sleep in this house?
L: Bende nitiere ji mamoko ma ok jodala ka mapile, kaka jotich, wede, kata
osiepe ma nindo kae pile?
S: Kuna watu wengine wanaoishi kwenye nyumba hii kama marafiki,
wafanyi kazi au watu wanaolipia malazi yao ambao wanalala hapa kila siku?
a) YES (Go back to person questionnaire start)

b) NO (Go to Results Section)
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