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Abstract

Background: Many models used in theoretical ecology, or mathematical epidemiology are stochastic, and may also be
spatially-explicit. Techniques from quantum field theory have been used before in reaction-diffusion systems, principally to
investigate their critical behavior. Here we argue that they make many calculations easier and are a possible starting point
for new approximations.

Methodology: We review the many-body field formalism for Markov processes and illustrate how to apply it to a ‘Brownian
bug’ population model, and to an epidemic model. We show how the master equation and the moment hierarchy can both
be written in particularly compact forms. The introduction of functional methods allows the systematic computation of the
effective action, which gives the dynamics of mean quantities. We obtain the 1-loop approximation to the effective action
for general (space-) translation invariant systems, and thus approximations to the non-equilibrium dynamics of the mean
fields.

Conclusions: The master equations for spatial stochastic systems normally take a neater form in the many-body field
formalism. One can write down the dynamics for generating functional of physically-relevant moments, equivalent to the
whole moment hierarchy. The 1-loop dynamics of the mean fields are the same as those of a particular moment-closure.
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Introduction

The structure of biological populations in space, and the effects

of random fluctuations, are well-established to have a significant

influences on the dynamics of those populations. These range from

qualitative differences, like the possibility of coexistence for

competing organisms (e.g. [1]); through to acute quantitative

differences, such as for epidemics where space provides the

principle stratification of the population (e.g. [2,3]). The problem

of understanding these effects and their interplay is made more

difficult by a lack of analytical machinery, which leads to a reliance

on extensive numerical simulation. Even with modern computers,

this can make certain tasks requiring very many realizations too

slow to be useful in situations where rapid answers are required

(e.g. real-time estimation of model parameters during epidemics).

Beyond mean field theory, the main approach which has been

brought to bear is the technique of so-called moment-closure. If

one examines the dynamics of the mean fields in such systems, one

typically finds that they include a dependence on the second

moments. The dynamics of the second moments include a

dependence on the third, and so on. In this way, one obtains a

hierarchy of equations governing the evolution of the moments,

which can be thought of as equivalent to the full stochastic system.

Moment-closure means truncating this hierarchy (almost always at

the second moment) by positing that the moments at a certain

order are some function of the lower order moments. This is an

uncontrolled approximation, and one drawback is that the choice

of closure function must be guided by experience, or by a

posteriori comparison with simulations.

In [4] and [5], it was first noted that certain stochastic systems on

lattices can be rewritten in the language of quantum field theory

(QFT). Since then, this rephrasing has mainly been used to obtain

critical exponents for percolation-like systems, via renormalization

group techniques (see e.g. [7]). Here, we will argue that for the kinds

of model studied in population biology and epidemiology, this field

theoretic description is notationally neater and more manageable

than standard methods, in often replacing sets of equations with single

equations with the same content. The master equation (Kolmogorov

forward equation) takes the form of a Schrödinger equation in

imaginary time. A single Hamiltonian sums up the dynamics

compactly, even when births and deaths allow the population size

to change; and the moment hierarchy is summarized in a single

equation for the dynamics of a moment-generating functional.

The introduction of coherent state path integrals allows access

to much of the functional machinery used in QFT, for example

diagrammatic perturbation theory. We will concentrate on the

effective action. Functional differentiation of the effective action

yields the exact dynamics of the mean fields, including all

stochastic and nonlinear effects. There is a systematic procedure

for iteratively computing the effective action, known as the loop
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expansion. The term loop refers to the diagrams involved in

calculating each iteration. We shall not introduce diagrammatic

technology, but calculate the 1-loop term for the general case and

corresponding dynamics for two specific models.

In the next section, we will describe the two models we study,

and then use them to introduce field theoretic language. We

explain how the spatial distribution functions fit naturally into this

picture. We go on to explain the path integral representation, the

loop expansion of the effective action, and establish a general

result for computing the effective action.We then write down the

actions for our models and compare the 1-loop dynamics with the

usual moment-closure approaches, before summarizing.

Methods

1 Creation and annihilation operators
Reference [8] considers a population of ‘bugs’ which undergo

Brownian motion with diffusion coefficient k, and spontaneously

give birth by binary fission as a Poisson process with rate l. The

ith bug also has a hazard of dying which is the sum of a

background rate m and the quantity
P
i=j

V xi{xj

� �
. V is a

competition kernel which enhances the chances of a bug dying if

it is close to other bugs, and models something like a competition

for resources. The model is therefore one of spatial, stochastic

logistic growth, with diffusion added.

Consider first a non-spatial version for simplicity. The master

equation for the evolution of the probabilities is

dpn

dt
~{ lzmð ÞnzVn2

� �
pnz m nz1ð ÞzV nz1ð Þ2

h i
pnz1

zl n{1ð Þpn{1

ð0Þ

This equation represents the flux of probability between states at

rates defined by the model. We will instead represent the

probabilistic state of the system as a vector

vj T~
X

n

pn nj T

using Dirac notation for vectors (‘‘kets’’ |aæ), their duals (‘‘bras’’

Æa|), and their inner products (‘‘brackets’’ Æa|bæ).
We introduce annihilation and creation operators a and a{

respectively, satisfying the commutation relation

aa{{a{a~1 ð1Þ

and build the space from basis vectors of the form nj T~ a{
� �n

0~nnj
(see Box S1). The reference state |0æ has the property a|0æ = 0

(whence ‘annihilation’ operator), and also that Æ0|0æ = 1 in the

inner-product of the space. The idea is that a{ ‘creates’ bugs, so

the vector a{
� �nj0T represents the probability distribution where

there are definitely n bugs; 0:5 a{ 0j
� �

z a{
� �2j0TÞ corresponds with

a distribution where there are 1 or 2 bugs present each with

probability 0.5; and so on. Thus, we can write our state as

vj T~
X

n

pn a{
� �n

0j T ð2Þ

The commutation relation Eqn.1 for a and a{ implies that

a a{
� �nj0T~n a{

� �n{1j0T, and thus a{a a{
� �nj0T~n a{

� �nj0T. The

operator n~a{a therefore counts the bugs in a definite state, and

is called the number operator.

Also of particular importance is the concept of normal ordering

(denoted :(…):), which means inside the colons, moving operators

with daggers to the left of all those without daggers. For example,

: aaa{ : ~ : aaa{a : ~a{aa, and so on. We will also introduce the

reference state |æ = exp(a+)|0æ. This coherent state (see Box S3) is

useful because a state corresponding to a probability distribution

satisfies the normalization condition Æ|væ = 1, which is equivalent

to
P
n

pn~1. With this notation, expectations can be written in a

quantum-like fashion (e.g. the expected number of bugs in state |væ
is n = Æ|n|væ). The master equation is linear, and can be written in

a Schrödinger-type form

d

dt
vj T~{H vj T ð3Þ

The linear operator, H, which generates the time evolution is

called the Hamiltonian. It is easy to check that for our non-spatial

logistic growth model Eqn. [0], one can write the Hamiltonian in

terms of creation and annihilation operators as

H~ mzlð ÞnzVn2
� �

{ mazVaa{azla{n
� �

ð4Þ

The term in square brackets consists only of number-operators

and corresponds to the first term in Eqn.[0]. The term ma

corresponds to the death term m(n+1)pn+1 of Eqn.[0], with the

annihilation operator a acting to destroy a bug: a|næ = n|n21æ.
The actions seem to ‘‘go the other way’’ to the corresponding

terms in Eqn. [0] because the operators act on the vectors as

opposed to the coefficients.

The gain in simplicity is for the spatial case. Because the

number of bugs can vary, one needs many marginal probability

distributions Fn x1,:::,xnð Þ, conditional on there being n bugs.

These must be symmetrized because the bugs are identical, and

are normalized so that integrating out all the spatial arguments of

each one, and then summing over n gives 1:

X
k

ð
dx1:::dxk:Fk x1,:::,xkð Þ~1

The expectations of observable quantities are similarly sums over

terms in each n-bug sector, and the master equation must be

specified for each n separately and includes clumsy symmetrization

operations (see [8]).

On each count, the field theory version is more succinct. As

above, one introduces local creation and annihilation operators ax

and a{x, this time such that

axa{
y{a{yax~dxy ð5Þ

where dxy is a Dirac delta function (see Box S2). (We work in units

where the area of the spatial domain has value 1. Area factors can

be reintroduced by dimensional analysis.) Our state vector will be

vj T~
X

n

ð
d1:::dn:Fn 1,:::,nð Þ:a{1:::a{n 0j T ð6Þ

which is automatically symmetric.(Here and elsewhere, we avoid

repeated subscripts by writing k for xk.) With the reference state

jT~exp
Ð

dx:az
x

� �
0j T, the normalization condition again reads

Æ|væ = 1. Expectation values are given as above, e.g. the expected
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local number density is n xð Þ~SjnxjvT (for local number operator

nx~a{xax

�
; and the master equation again becomes Eqn.3, this

time with Hamiltonian

H~

ð
dx k+xa{x:+xaxz lzm{la{x

� �
nx{max

� �

{

ð
dxdyVxy axny{nxny

� � ð7Þ

This is simpler because one does not have to specify the dynamics

for each possible number of bugs separately. Each term in the

Hamiltonian has a clear interpretation, and with practice, a

Hamiltonian can be written down straight from the verbal

description of the possible transitions involved in the model.

The term moment hierarchy refers to reduced spatial

distribution functions f nð Þ 1,:::,nð Þ. E.g., f 2ð Þ x,yð Þ is the probability

density of finding a bug at x and another at y at time t, and is given

in terms of a sum over the appropriately symmetrized marginals:

f 2ð Þ x1,x2ð Þ~F2 x1,x2ð Þ

z
X
k~3

k k{1ð Þ
ð

dx3:::dxkFk x1,x2,x3,:::,xkð Þ

That is, one calculates the probability of finding a bug at x and

at y given there are n bugs by integrating out all but two spatial

variables in every possible way, and then sums over all the possible

numbers of bugs n. In the many-body field-theory (MBFT)

formalism we have

f kð Þ 1,:::,kð Þ~Sj : n1:::nk : vj T ð8Þ

where the colons denote normal ordering, as described above. This

automatically takes care of the self-correlation terms one would

otherwise have (see e.g. [6]). For example, if vj T~a
{
1:::a

{
n 0j T,

Sj : nxny : vj T~Sjnxny{dxynx vj T

~
X
i=j

d x{xið Þd x{xj

� �

which avoids the singular ‘self’-terms with i = j.

If one introduces a generating functional, Z, for these

distributions

Z J½ �~
X

n

1

n!

ð
d1:::dn:J1:::Jn:f

nð Þ 1,:::,nð Þ ð9Þ

such that the n-th distribution can be recovered by functionally

differentiating n times and setting J = 0 (see Box S4), then Eqn.8

and the master equation imply that, for a Hamiltonian expressed

in normal ordered terms, H a{,a
� �

,

LtZ J½ �~{H 1zJ,
d

dJ

� �
Z J½ � ð10Þ

This equation is equivalent to the entire moment hierarchy, and

provides a convenient recipe for calculating the dynamics of a

given moment. This is to be compared with taking the master

equation for each of the Fn, and using this together with the

definition of f kð Þ in terms of symmetrized marginals of the Fn to

obtain its dynamics. It is analogous to the recipe for generating

function dynamics of non-spatial continuous time Markov

processes described in [9].

The other model we will consider is a susceptible-infected-

recovered (SIR) epidemic model on a population of Brownian

bugs. The diffusion coefficient will again be k, the recovery rate n,

and the rate at which infection takes place will be modulated by a

spatial kernel V, which implies that proximity of a susceptible to

infecteds increases the likelihood of infection. Now we have 3 types

of creation and annihilation operator, each commuting with the

other: a, b and c for susceptible, infected and recovered respectively

(referred to in vector notation when convenient). The Hamiltonian

reads

H~

ð
dx {k�a�x

{:+2
�a�xzvb{xbx{vbxc{x

� �

zb

ð
dxdyVxy axaxb{yby{axbxb{yby

� � ð11Þ

The non-spatial version is just the usual stochastic SIR model. The

Hamiltonian is

H~ ba{ab{bzvb{bð Þ{ bab{b{bzvbc{ð Þ ð12Þ

1.1 Example: calculation of moment dynamics
In this section we provide a worked example of the application

of Eqn.[10] in obtaining moment-dynamics. Consider a spatial

SIR model without diffusion. Using the Hamiltonian of Eqn.[11]

with k= 0, and writing A,B and C for the fields corresponding to

susceptible, infected and recovered individuals respectively,

Eqn.[10] becomes:

L
Lt

Z½A,B,C�~
ð

dx: Cx{Bxð Þ d

dBx

Z

zb

ð
dxdyVxy Bx{Ay

� �
1zBy

� � d2

dAxdBy

Z

Recall that Z is a generating functional for the physical moments

(Eqn [9]): setting A = B = C = 0 makes both sides zero, as it should.

To obtain the dynamics of the first moments, we must differentiate

once with respect to the fields, before setting the fields equal to

zero. The manipulations in functionally differentiating integrals

with respect to the field A, e.g., are formally analogous to partial

differetiation of sums over indexed variables, with the spatial label

playing the role of an index. Bearing in mind that we will set the

fields zero, only terms which do not contain a factor of A, B, or C

after differentiation will survive. Thus:

L
Lt

dZ 0½ �
dAz

~{b

ð
dxdyVxydyz

d2Z 0½ �
dAxdBy

or in terms of the moments:

L
Lt

SazT~{b

ð
dxVxzSaxbyT

To calculate the dynamics of the second moments, one must

differentiate twice before setting the fields equal to zero. For

Many-Body Population Biology
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example, in calculating SauavT, the non-zero terms read:

L
Lt

d2Z 0½ �
dAudAv

~{b

ð
dxdyVxydyu

d3Z 0½ �
dAvdAxdBy

{b

ð
dxdyVxydyv

d3Z 0½ �
dAudAxdBy

or for the moments:

L
Lt

SauavT~{b

ð
dxVxuSavaxbyT{b

ð
dxVxvSauaxbyT

Other terms are obtained similarly, using a procedure which could

be easily automated with computer algebra software.

2 Functional methods
Path integrals were conceived of by Feynman in the context of

quantum mechanics ([10]), and have since proved especially useful

for QFT and statistical mechanics (see Box S5 and e.g., [11] and

[12]). They are founded on splitting the evolution into many short

time intervals, and inserting a particular resolution of the identity

operator at each step. In the stochastic context, this amounts to the

use of the Chapman-Kolmogorov equation on many time-slices.

The result is an integral over functions, which must be treated as a

limit of an N-fold integral over a discretized version of the

integrand, as NR‘. A path integral can be thought of as giving the

probability of going from one state to another as weighted sum of

all the possible histories between those states.

The idea is that if we treat w(x,t) as an infinite-dimensional

vector, indexed by x and t, functionals (with square brackets) are

the analogues of real-valued functions; functional differentiation is

the analogue partial differentiation; and functional integration the

analogue of volume integration over the vector space.

Coherent states correspond with spatially-varying Poisson

distributions, and are defined by

m xð Þj T~exp

ð
dx:mxa{x

	 

0j T ð13Þ

(e.g. our reference state |æ is a special case). They are eigen-states

(i.e. eigenvectors) of the annihilation operator. We follow the

coherent state conventions of [6] and [7], and ‘shift-trick’ of [7]

(see the supplementary material S1 for more details). Then the

expectation of a normal-ordered operator X for example (for

simplicity, referring to only one time), given an initial coherent

state n0 xð Þj T, has the functional representation

SjX a{,a
� �

n0 xð Þj T~

ð
D ww
h i

:X 1zw,w
h i

:e{S ð14Þ

where the coherent state path integral for a time interval [0,t] is a

sum over field histories which have w x,tð Þ:0 and w x,0ð Þ~n0 xð Þ.
The quantity S is the action, given by

S w,w
h i

~

ð
dt

ð
dx:wLtw{H 1zw,w

h i	 

ð15Þ

if H a{,a
� �

is the Hamiltonian written in normal ordered form. In

the functional formalism, the action plays an analogous role to the

Hamiltonian, in that it encodes the dynamics of the system. Note

that coherent state path integrals are somewhat different to

Feynman path integrals: see [11] for a comparison, and [6] for

more details on the coherent state version.

Normal ordering is naturally built into path integrals, so that,

for example, we have

f kð Þ 1,:::,nð Þ~
ð

D ww
h i

:w1:::wn:e
{S ð16Þ

and therefore

Z J½ �~
ð

D �www
� �

:w1:::wn:e
{Sz

Ð
dx:Jtwt ð17Þ

It is Eqn.17 and its generalizations to unequal times and source

terms for w which serve as the starting point for diagrammatic

perturbation methods. Perturbing an action by a term 2eDS

means that Z changes to exp(eDS[d/dJ]).Z, and terms at each

order in e can be represented, organised and manipulated as

diagrams. We will not pursue this here.

Below, we will see that the action, S, can be considered the zero-

loop approximation to the effective action. Varying this with

respect to the fields (i.e. differentiating with respect to the fields)

provides the most basic approximation to the dynamics, usually

resembling the mean-field equations.

3 The Effective Action
Hereon, we will frequently neglect writing out integrals explicitly,

and use J and w to schematically refer to both barred and un-barred

quantities. Z will now denote the generating functional as above, but

with Jw now representing
Ð

dxdt:Jw, or rather a sum of terms like

this for all fields. W = logZ is the cumulant generating functional.

We define a quantity C by the Legendre transform:

C wm½ �~{W J½ �zJwm ð18Þ

wm~
dW

dJ
ð19Þ

C is the effective action and has the property that

dC

dwm

~J ð20Þ

The significance of this for us is that at J = 0, the effective action

yields the exact equations of motion for the mean fields, including

all stochastic corrections (see Eqn.19 and Eqn.20). Parenthetically,

we note that both W and C have interpretations as sums over

subsets of the diagrams involved in Z.

4 Calculating the effective action
There is a standard method for iteratively calculating the

effective action. Let us introduce the difference between the action

and the effective action D=C2S, and a counting parameter ‘.
Using the definition of C in Eqn.19, the expression for J in Eqn.20

and the functional integral expression for W, one can establish

after a shift and rescaling of integration variables (w?wmzw and

then w
� ffiffi

‘
p

?w) that

e{D=‘~

ð
D w½ �e{Q wm,w½ �zD1 wm½ �w

�
‘1=2{R wm,‘1=2w

h i.
‘ ð21Þ

Many-Body Population Biology
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(For more details see the supplementary material S1 or a textbook

like [13].) Here Q is the quadratic part of the action, expanded as a

functional taylor series around wm; R is the sum of the third and

higher order terms in the action’s taylor series around wm; and an

integer subscript k means the kth functional derivative.
This can be solved recursively and results in a series forC of the form

C~
X
n~0

‘nC nð Þ ð22Þ

Although it would appear from Eqn.21 that there should be non-

integer powers of ‘ in Eqn.22, this is not the case because only even

moments of gaussian integrals are not zero. It turns out that the power

of ‘ corresponds to the number of loops in the diagrams associated with

the shifted theory (Q as the action), and that the number of loops

roughly corresponds to the degree of calculational complexity. Thus

one hopes that the simplest (e.g. the 1-loop term) terms already contain

the bulk of the significant information. In the quantum case ‘ is the

fundamental constant B; for us ‘ is the inverse area of the system.

From Eqn.21 and Eqn.22 the 1-loop expression reads

C wm½ �~S wm½ �{log

ð
D w½ �e{Q wm ,w½ � ð23Þ

Recall that Q is the quadratic part of the action expanded around

wm, and the integral is over fields which are zero at 0 and t.

Very often in the field theory literature, this is restricted to the

stationary, translation invariant case (wm a constant). The result is

the so-called effective potential, which provides information about

equilibrium states. We will later restrict to the translation invariant

case, in common with the biological literature; but maintain the

time-dependence of wm so as to gain information about the non-

equilibrium dynamics. To do this, we need a result on Gaussian

many-body path integrals from the next section.

5 General fluctuation integral
In order to calculate the 1-loop effective action then (and

indeed, higher-loop terms), one needs to be able to calculate the

integral

I~D �aaa½ �e{Q ð24Þ

where the integral has zero limits and

Q~

ð
dt aTLta{aT va{aT fa{aT ga{JT a{KT a
� �

ð25Þ

The quadratic parts here are the quadratic parts of the Taylor-

expanded action, and we use matrix notation to deal with the case

of an arbitrary number of fields. In the supplementary material S1,

we extend the result of [14] to this multi-field, non-Hermitian case

with sources - necessary for stochastic systems - closely following

their methods. Up to an irrelevant constant factor, we find

I~exp

ð
dt Y T JzY T fYz2:tr Xfð Þ
� �� �

ð26Þ

where, with trivial initial conditions, X and Y satisfy

dX

dt
~gzvXzXvTz4XfX ð27Þ

dY

dt
~Kz2XJz vz4Xfð ÞY ð28Þ

This means that up to 1-loop, the effective action is simply

C~S{2

ð
dt:tr Xfð Þ ð29Þ

where X satisfies the differential equation of Eqn.27. The

equations of motion obtained by varying this should be such that

barred fields are identically zero. This must be the case due to the

reference state, and simplifies the resulting equations significantly

(e.g., in varying the 1-loop correction, only tr(Xdf) survives).

However, it is only legitimate to set the barred fields to zero after

variation. We note in passing that constant multiples of Q yield the

same result, because additive constants are irrelevant to C.

6 Eyink’s variational principle
In [15], Eyink showed that Eqn.[3] can be obtained from

varying the quantity

C yR
 T,SyL

� �
~

ð?

0

dt:SyL
 LtzHð Þ yR

 T

subject to the constraint SyL ?ð Þ
yR ?ð ÞT~SyL 0ð Þ

yR 0ð ÞT.

This is analogous to the Dirac action in quantum mechanics,

and for stationary situations, reduces to the Rayleigh-Ritz

variational principle which is known in a wider context. He went

on to show that this is a representation of the effective action, and

that using an Ansatz for |yRæ which is parametrized in terms of its

moments, mi, the variation yields the dynamics:

_mmi~{S1 j m̂miH y mð Þj T ð29:5Þ

where m̂mi is the operator giving the moment: mi~S1 j m̂mi y mð Þj T.

This formalism has already been used at least once to derive a

novel approximation in a biological context [16].

The meaning of this for the population biologist is that if one

chooses the probability distribution to from some family which can

be parametrized by some of its moments (like the Gaussian

distribution, e.g.), the dynamics of those moments is given by the

moment-closure associated with that distribution. So if one has a

reason (such as numerical experiment) for suspecting that the

distribution of interest should look Gaussian, zero-central-moment

is an appropriate closure, and can be thought of as the dynamics

on this family derived from the effective action. Similarly, closures

which have been named due to their form (e.g. the ‘‘Poisson’’

closure), do actually derive from the corresponding distribution in

this sense. This link provides an alternative motivation for

moment-closures, and a less ah hoc way to make an appropriate

choice.

Results

In this section, we apply the methods outlined above to the

example models of the previous section. For more detailed versions

of the calculations in this section, see the supplementary material

S1. In each case, we are interested in the dynamics of the mean

fields at 1-loop. The equations for the barred fields are omitted as

they admit trivial solutions (i.e. barred fields have been set to zero

after variation).

Many-Body Population Biology
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1 Non-spatial versions
For the simple bug model, it will be convenient to introduce the

quantity c=l2m. The action for the system becomes

S~

ð
dt w Lt{c{Vð Þw{lw

2
wzVww2zVw

2
w2

� �
ð30Þ

This yields at 1-loop:

Ltw~ c{Vð Þw{Vw2{2VX

LtX~ lw{Vw2
� �

z2 c{V{2Vwð ÞX

The zero-loop equation is simply the equation for Ltw with X;0.

This is of interest because it differs from the naive mean-field

equations by the presence of the Vw term.

The non-spatial SIR model has the action

ð
dt aTLta{ b b{a

� �
1zb
� �

ab
� �

{nbbznbc
� �� �

This time the zero-loop equations are the same as the mean-field

equations, and therefore the same as the differential equations of the

usual deterministic SIR model. The 1-loop corrections are obtained

following the above recipe, and require appending some differential

equations linear in X. Only 3 of the X differential equations are

relevant to the correction (see supplementary material S1).

2 Spatial versions
In compact notation, the actions for the bug population model

and the epidemic model are

S~�ww Lt{c{k+2
� �

w{l�ww2wz�wwwVwz�wwwV�www ð31Þ

and

S~�aaT Lt{k+2
� �

azv �bb{�cc
� �

b

{b a�bbV�bbbza�bbVb{�aaaV�bbb{�aaaVb
� � ð32Þ

respectively. To clarify, we have omitted all integrals. Where there

are double integrals over space, quantities to the left of the V carry

one argument, and quantities to the right the other. So, for

example: a�aaVb~
Ð

dxdya xð Þ�aa xð ÞV x{yð Þb yð Þ etc.

For these spatial cases, we consider our bugs as residing on a

torus. That is, we assume that ‘space’ is a square with length L, and

with pairwise identification of opposite edges. All functions on this

space are periodic, and so it is natural to represent things in terms

of their Fourier modes, i.e.

Y xð Þ~
X

n

e2pix:n=LYn ð33Þ

where n[F2. We will (as is usual) assume a spatially homogeneous

(translation-invariant) initial state. In this case, the mean fields are

constant in space w(x) = w, and the quadratic part of the action

can be written as a sum of Fourier modes

Q~L2
X

n

wn

T
Ltwn{wn

T
vnwn{wn

T fnwn{wn

T
gnwn

� �
ð34Þ

which do not interact. Up to 1-loop therefore, the effective action

is given by

C~S{2

ð
dt
X

n

trfnXn

_XXn~gnzvnXnzXnvT
n z4XnfnXn ð35Þ

where in our case the quadratic term in Xn is not present after

setting barred fields to zero. This means the 1-loop dynamics are

given by

dS

dw
{2

X
n

tr
dfn

dw
Xn

	 

~0

_XXn~gnzvnXnzXnvT
n ð36Þ

where these are both at w~0, and the S-term gives the mean-field

dynamics.
Although this infinite set of equations may look fearsome, one

can convert it back into real space, where it has the same structure

as the equations one obtains with moment-closure methods.

Indeed they are the same as the closure which results from setting

the third cumulant density identically to zero (zero third central

moment closure).

In the bug model for example, both the zero third central

moment and the 1-loop dynamics have the form (see supplemen-

tary material S1):

Ltw~cw{ �VVw2{corr

corr~2

ð
dx:V xð ÞX xð Þ

with

LtX xð Þ~lwd xð Þ{w2V xð Þ{2w V � Xð Þ xð Þz2 k+2zc{ �VVw
� �

X xð Þ

where V is the integral of V over all space and V*X is the

convolution of V with X.

3 Perturbative expansion around the mean-field solution
In this section we derive a novel approximation to the non-

spatial SIR model, as an illustration of calculations using the

formalism. The probability of being in a state aj T at a time t,

having started in a0j T at time 0 is:

p at=a00ð Þ~Saje{Htja0T

~

ð�aa tð Þ~�aa{1

a 0ð Þ~a0

D �aaa½ �e{S �aa,a½ �zJazK�aajJ~K~0~Zaa0
0½ �

One can expand this path integral around the stationary path for

the action (the mean-field dynamics) to give

Zaa0
J,K½ �~e{S �aa0,a0½ �zJa0zK�aa0

ð0

0

D d�aada½ �e{SQ d�aa,da½ �{Sint d�aa,da½ �zJazK�aa

where
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SQ d�aa,da½ �zSint d�aa,da½ �~S �aa0zd�aa,a0zda½ �{S �aa0,a0½ �

SQ being the quadratic part and Sint the rest. The integral term

contains all information about the (non-Gaussian) fluctuations.

This means, for example, that

SaT~a0zSa:e{SintTQ&a0zSa: 1{SintzS2
int

�
2

� �
TQ

where the expection with respect to the quadratic part of the action

can be computed (perturbatively), since the Gaussian path integral

is tractable. The approximate equality results from a naı̈ve, but

systematically improvable Taylor expansion of the exponential of

the interaction part of the action. This last can be computed using

the results above on the general fluctuation integral. The barred

mean-field solutions are identically zero, so f = 0, in the notation

used above reducing the fluctuation integral to

I~e

Ð
dt:Y T J

_YY~Kz2XJzvY

_XX~gzvXzXvT

v~

bb0 ba0 0

{bb0 {ba0zn 0

0 n 0

0
BB@

1
CCA

g~

0 ba0b0=2 0

ba0b0=2 {ba0b0 0

0 0 0

0
BB@

1
CCA

Differentiating the expression for I shows that only moment of even

numbers of fields are non-zero, and that these are equal to sum over

all possible products of second moments involving these fields. This

is a special case of a more general result known as Wick’s theorem

(see [10]). It is also easy to see that moments are only non-zero if

there are more unbarred fields than barred. It remains to calculate

the derivatives of Y with respect to J and K. This can be done be

differentiating the differential equations for Y and X and then

solving them, and one obtains:

dYt

dKs

~S�aasatTQ~U t,sð Þh t{sð Þ

dYt

dJs

~SasatTQ~2U t,sð ÞXs

d

dt
U t,sð Þ~{vtU t,sð Þ

U s,sð Þ~1

Where h is equal to 1 if t.s and zero otherwise. The value h(0) can

be justified by careful consideration of the discretized version of the

differential equation for Y, or by computation in the operator

formalism. This means that many terms are equal to zero, and the

approximation becomes:

SaTt&a0zb

ðt

0

dt: U11 t,tð Þ{U21 t,tð Þð ÞX12 tð Þ

SbTt&b0zb

ðt

0

dt: U21 t,tð Þ{U22 t,tð Þð ÞX12 tð Þ

Despite the fact that this approximation is poorly-motivated, its

performance is better than that of mean-field theory, though

inferior to third-cumulant-zero moment-closure. Comparisons

were made for population sizes of the order hundreds, where

deviations between the stochastic model and its mean field

description would be fairly pronounced. The Taylor-expansion

approximation shared the problems of moment closure at small

numbers of initial infected individuals, but was less stable with

typically larger deviations from the mean of the stochastic model.

See Figure S1 for representative output.

4 Comparisons
Some comments are in order. The 1-loop equations of motion

have turned out to be the same as those from taking the normal-

ordered third cumulant to be zero. This is because the 1-loop

procedure is essentially a WKB approximation, and Gaussians

have zero third cumulants. In the spatial case, taking the normal

ordered third cumulant to be zero is the physically natural thing to

do. In the non-spatial cases, it is the non-normal ordered moments

which are meaningful. Thus in the non-spatial cases, setting the

normal-ordered third cumulant to zero is distinct from the usual

zero third central moment closure, which is defined with non-

normal ordered moments. As mentioned above, the equations for

the non-spatial bugs model differ at zero-loop from naive mean-

field theory, and in form from those of the spatial bugs model. The

extra term is from normal ordering the Hamiltonian, and the latter

difference is down to the fact that one does not need to worry

about avoiding self-interactions in the non-spatial case.

It should be noted that in these non-spatial cases where the 1-

loop approximation differs from the usual central moment

closures, the performance of the 1-loop approximation in

describing the mean dynamics of the stochastic model is at least

comparable with that of the moment-closure approximation;

suffering from the same sorts of problems, for example when initial

numbers of infecteds are very small in the SIR case. It also should

be noted that the extra term in zero-loop approximation to the

non-spatial bug population model significantly improves its

performance compared with naive mean-field equations.

Discussion

The main aim of this paper was to introduce field-theory as a

natural language for describing spatial stochastic models in

population biology and epidemiology. We feel the Hamiltonian,

which describes the system dynamics, is usually simpler in form than

a traditional master equation, especially when the total population

size is allowed to vary due to the unified treatment of populations

with different sizes. Moreover, with practice, it is straightforward to

write down a Hamiltonian from a verbal description of the

dynamical rules. For example, the laws governing the spatial ‘bug’

population model are fairly easily explained, and yet the master

equation in the traditional form of [8] is formidable in appearance,

and difficult to interpret and manipulate. More manageable

notation should allow and encourage analytical manipulation and

investigation of models - and even formulation of models - where

calculational difficulty has previously got in the way. Table 1

provides some examples of rules for transition rates common in

biological models, and their corresponding contributions to a many-

body Hamiltonian describing the system.

Spatial correlations fit naturally into this framework in terms of

normal-ordered moments, and we showed Eqn.10 provides a

particularly concise description of the dynamics of the moment

hierarchy. If interested in moment-closure, the extra ‘d’ terms

which must be carefully included in the closure relation of some
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approaches (see e.g. [2]) are automatically incorporated in the

dynamics, and one only needs to set the third derivative of logZ to

zero. (A caveat here is that the non-spatial analogue of Eqn.10 still

deals with normal-ordered correlations.).

The approach of Ovaskainen and Cornell [17] provides one of

the most successful new approaches to stochasticity in spatial

population dynamics of recent years. They develop a perturbation

theory in the inverse area of the system (the loop parameter is also

proportional to the inverse area as noted above) with a superior

performance to 1-loop/zero third cumulant moment-closure. We

note however that some of their calculations would be simpler with

the methods presented here. Their transition between moments G

and G* (their Equations 4–6) is precisely a shift to normal-ordered

correlators which we have denoted f. Such a shift is not necessary

above as we work with the f from the start. In their supplementary

material S1, they calculate various moment dynamics and then

transform to Fourier space. This could be avoided by using the

above methods by writing H in terms of Fourier modes, and then

using Equation.10 to calculate the dynamics of the normal-

ordered correlators in Fourier space directly.

Apart from notational elegance and its concomitants, the other

reason for turning to field-theoretic descriptions is that it can provides

access to new tools. We chose to explore the use of effective action,

and extended the result of [14] to the form needed for general

stochastic systems, allowing calculation of the non-equilibrium 1-loop

dynamics. In fact this yielded nothing new for the spatial models, in

the sense that it returned the same equations as third cumulant zero

moment-closure, albeit via an alternative calculation.

We note in passing that Eyink’s variational principle provides a

different understanding of moment closures as resulting from

constrained variation of the effective action using a particular form

of Ansatz. It also provides a method to develop more effective moment-

closures by examining the form of the correlations or other moments

generated by numerical experiment, and choosing a parsimonious

Ansatz which describes their different forms through time.

Our perturbation approximation was inferior to moment-

closure, unsurprisingly perhaps given its crudeness, and included

to provide an example calculation. We note however, that this (or

any other approximation to Zaa9) allows the approximate

calculation of transition probabilities between states, e.g. extinction

probabilities. Such transition probabilities often occur in likeli-

hood-based inference for this kind of dynamical system, and are

not accessible through moment-closure type techniques.

Finally, we note that the methods developed above for handling

and approximating the dynamics of stochastic spatial models are

in no way restricted to population biology, but would also be useful

for other systems of reaction-diffusion type.
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