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Abstract 

Background: Motivated by the success in malaria control that was documented over the last decade Ethiopia is 
aiming at malaria elimination by 2020 in selected districts. It is currently unknown if asymptomatic, submicroscopic 
malaria parasite carriage may form a hurdle to achieve elimination. The elimination effort may further be complicated 
by possible glucose-6 phosphate dehydrogenase (G6PD) deficiency which would hinder the use of 8-aminoquino-
lines in the elimination efforts.

Method: In February 2014 a community-based cross-sectional survey was conducted in Malo, southwest Ethiopia. 
Finger-prick blood samples (n = 555) were tested for presence of Plasmodium falciparum and Plasmodium vivax with 
microscopy, rapid diagnostic test (RDT), and nested polymerase chain reaction (nPCR). Multiplicity of P. falciparum 
infections was determined based on genotyping the polymorphic merozoite surface protein-2 (MSP-2) gene. Indi-
viduals were also genotyped for mutations in the gene that produces G6PD.

Results: All study participants were malaria infection negative by microscopy and RDT. Nested PCR revealed P. falci-
parum mono-infection in 5.2% (29/555), P. vivax mono-infection in 4.3% (24/555) and mixed infection in 0.2% (1/555) 
of individuals. All parasitemic individuals were afebrile (axillary temperature <37.5°C). None of the study participants 
carried mutations for the G6PD African A-(202GA) and Mediterranean (563CT) variants. All infections, except one, were 
single-clone infection by MSP-2 genotyping.

Conclusion: The detection of a substantial number of subpatent malaria infections in an apparently asymptomatic 
population without evidence for malaria transmission by conventional diagnostics raises questions about the path to 
malaria elimination. It is currently unknown how important these infections are for sustaining malaria transmission in 
the study sites. The absence of G6PD deficiency indicates that 8-aminoquinolines may be safely deployed to acceler-
ate elimination initiatives.
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Background
Over the last decade, several malaria-endemic countries 
have made major progress in their fight against malaria. 
Between 2000 and 2013 estimated malaria mortality 
rates fell by 47% worldwide and by 54% in sub-Saharan 
Africa [1]. In Ethiopia confirmed malaria cases declined 
by 66% in 2011 compared to the pre-intervention period 
in 2001–2005 [2]. This success has mostly been attributed 
to the scale-up of conventional malaria control inter-
ventions such as widespread availability of insecticide-
treated nets, indoor residual spraying and the availability 
of artemisinin combination therapy.

Encouraged by the remarkable success, several malaria-
endemic countries have adopted elimination strategies 
[3]. To achieve successful malaria elimination, strate-
gies have to consider all malaria-infected individuals for 
interventions. Populations of interest for malaria elimina-
tion efforts include asymptomatic infections since these 
can sustain an ongoing malaria transmission [4]. In set-
tings where recent malaria control efforts have been 
successful, low density submicroscopic infections are 
particularly prevalent [5]. There is debate about the rela-
tive importance of these submicroscopic infections for 
onward malaria transmission [4], although current evi-
dence indicates that these low density infections need to 
be considered in strategies that aim at malaria elimina-
tion and require diagnostics that are more sensitive than 
microscopy and rapid diagnostic test (RDT) [6].

In its current national malaria strategic plan (2014–
2020), Ethiopia declared to achieve elimination in low 
malaria transmission settings by the end of 2020 [7]. 
Three quarter of the country, where 68% of the total pop-
ulation is living in, is malarious [8]. The transmission pat-
tern of the disease is highly heterogeneous in space and 
time owing to variation in altitude and rainfall. Recent 
reports indicated that most part of the country has low 
malaria transmission [9–11]. However, the magnitude 
of asymptomatic and submicroscopic infections has not 
yet been studied well and may form a stumbling block to 
achieve the set goals.

The aim of this study was to assess the degree of 
asymptomatic and submicroscopic malaria parasite car-
riage in two low endemic settings of Malo-Koza district 
in southwest Ethiopia. To support future policy consid-
erations that may involve treatment with primaquine 
for both Plasmodium falciparum gametocytes and Plas-
modium vivax liver-stages [12], glucose 6-phosphate 
dehydrogenase (G6PD) genotype was also assessed. Pri-
maquine administration in G6PD deficient individuals is 
associated with a dose-dependent risk of 8-aminoquino-
lines-induced haemolysis that could be life-threatening in 
specific cases [13].

Methods
Study sites
The study was conducted in Malo (6°26′0″ N latitude and 
36°38′0″ E longitude), a mountainous area in southwest 
Ethiopia that is located 650  km from the capital, Addis 
Ababa. Inhabitants of Malo occupy the middle Omo river 
basin. The study was conducted specifically in two vil-
lages: Salayish Mender 4 (SM4) and Tatta-qirchiqircho 
(TQ). Malaria transmission in both sites is seasonal with 
peaks in transmission in September to mid-November 
and April to May following the major (kiremt) and minor 
(belg) rainy seasons, respectively.

SM4, which is a government-sponsored settlement 
area, is located at an elevation of c 1,100–1,300  m and 
constitutes ethnically and culturally heterogeneous pop-
ulation groups. The households are mostly designed with 
grass thatch roof, bamboo walls (sometimes wood or 
mud) and earth floor without cement; the floor and wall 
are plastered with animal dung. TQ is a midland area sit-
uated in the escarpments of two perennial rivers (Mitsil-
ito and Tullo rivers).

Ethical considerations
Project approval was granted by the Institutional 
Research Ethics Review Board of the College of Natural 
Sciences, Addis Ababa University. Prior to sample collec-
tion informed written consent was obtained from adult 
participants and parents/legal guardians for children 
below the age of 18 years.

Sample collection
This community-based survey was conducted in Febru-
ary 2014, in the dry season. Community members resid-
ing in the study sites for at least 2 years were invited to 
participate and members who gave their informed writ-
ten consent were included in the study. No formal sam-
ple size calculation was performed and the objective was 
to sample the largest possible fraction of the population. 
Finger-prick blood samples were collected for malaria 
microscopy, RDT (First Response® malaria Antigen 
pLDH/HRP2 P.f. and Pan Combo Card Test; Premier 
Medical Corporation Ltd, Dist. Valsad, India) and dried 
blood spots on Whatman 3MM filter papers (Whatman, 
Maidstone, UK). Thick and thin blood smears were pre-
pared, Giemsa-stained and microscopically scanned for 
malaria parasites. A slide was declared malaria-negative 
when Plasmodium was not detected in 100 high power 
fields examined by oil immersion (100×); all slides were 
read by two independent microscopists with a third 
reader being consulted in case of discordant results. Body 
temperature was measured for all individuals. Those 
with an axillary temperature ≥37.5°C and a positive 
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blood slide or RDT were defined as symptomatic malaria 
patients.

DNA extraction and parasite genotyping
DNA was extracted using Saponin-Chelex extrac-
tion as previously described [14] from two punches of 
2.5  mm diameter. DNA was eluted in 100  µL of a 6% 
Chelex in DNase/RNase free water solution and stored 
at −20°C until further use. Nested polymerase chain 
reaction (nPCR) assays were performed to detect the 
presence of the small ribosomal subunit (18S) of P. fal-
ciparum and P. vivax [15]. The limit of detection of this 
method was ≥1 parasite/µl of blood in our laboratory, 
estimated based on serial dilutions of cultured NF54 
parasites (Baidjoe, unpublished observations). Pooled 
DNA isolates from P. falciparum NF54 cultures (Rad-
boudumc, Nijmegen, The Netherlands) and P. vivax 
Malaria Reference Laboratory positive control (Lon-
don School of Hygiene and Tropical Medicine, London, 
UK) were included on every PCR plate as positive con-
trols, alongside a negative water sample control. Sam-
ples were visualized on a 2% agarose ethidium bromide 
gel by electrophoreses and results were subsequently 
visualized on UV-imager.

For all 18S P. falciparum-positive samples, the com-
plexity of infection was determined based on the poly-
morphic merozoite surface protein-2 (MSP-2) [16]. In 
brief, 5  µl of DNA was added to a primary master mix 
and run in 50 µl final volume. Subsequently, 1 µl of the 
primary PCR product was mixed with a second PCR 
mixture containing two fluorescent-labelled specific 
primers and a non-template directed primer. Five units of 
FIREPol DNA polymerase (Solis BioDyne, Estonia) were 
used for each reaction. Reactions were run at the follow-
ing cycling conditions: 5  min at 94°C, 30 and 35 cycles 
(for the first and second reactions of the nPCR, respec-
tively) of 30 s at 94°C, 45 s at 45°C and 90 s at 70°C and 
a final elongation at 70°C for 10  min. The nPCR prod-
ucts were run on a 1.5% agarose gel. Based on relative 
intensity samples were diluted (1:100, 1:40 and 1:10) and 
mixed with a GeneScan™ 500 ROX™ dye Size Standard 
(Applied Biosystems). Samples were air dried overnight 
and sent to the Genomics Core Laboratory of the Medi-
cal Research Council Clinical Science Centre in London 
for fragment sizing by capillary electrophoresis  on an 
automated sequencer. Highly deionized formamide was 
added to each sample, and after denaturation, samples 
were analysed on a 3730xl DNA Analyser (Applied Bio-
systems Ltd, USA).

G6PD A‑ and Mediterranean genotyping
Extracted DNA samples were genotyped for SNPs 
in G6PD: 202GA (rs1050828) and G6PD:563CT 

(rs5030868). For the 202GA allele the forward primer 
was 5′-CTGGCCAAGAAGATCTACCC-3′ and the 
reverse primer was 5′-GAGAAAACGCAGCAGAGCA-
CAG-3′ [17]. For the 563CT allele the forward primer 
was 5′-TGATCCTCACTCCCCGAAGA-3′ and the 
reverse primer was 5′-GCTTGGCCCCACCTCAG-
CAC-3′ [18]. All primers were from Sigma-Aldrich (Gill-
ingham, UK). Briefly, 5 µl of DNA was amplified in a total 
reaction volume of 30  µl according to a protocol pub-
lished by Fanello et al. [17] using the GoTaq Flexi DNA 
Polymerase (Promega, USA). For 563CT, the annealing 
temperature of the first cycle of the touchdown PCR was 
71.5°C, decreased by 0.5°C for the next 14 cycles and the 
annealing temperature for the last 24 cycles was 64.5°C. 
The fragments amplified with the 202GA primers were 
digested for 4–16 h at 37°C with the restriction enzyme 
NlaIII (NEBioLabs, USA). The fragments amplified with 
the 563CT primers were digested overnight at 37°C with 
the restriction enzyme MboII (NEBioLabs, USA). The 
digested DNA was analysed with 2.5% MetaPhor Agarose 
(Lonza, USA) gel electrophoresis.

Data analysis
Statistical analysis was conducted using STATA 12 (Stata-
Corp, TX, USA). MSP-2 data were analysed using Peak 
Scanner (Applied Biosystems, CA, USA, version 1.0). 
Analyses focused on describing prevalence of subpatent 
infection, multiplicity of infection and risk factors such 
as G6PD deficiency. Two-sample Wilcoxon rank-sum 
(Mann–Whitney) test was used to test the differences in 
continuous variables between the two study sites. Fisher’s 
Exact tests were used to test for differences in parasite 
prevalence between populations. The significance level 
was set at P < 0.05.

Results
Socio‑demographic characteristics
For SM4, there was a local census report published 
in 2013 indicating the presence of 432 households 
with an estimated total population of 1,633 inhabit-
ants. Of these, 156 households and 298 individuals 
(18.2% of the total population) participated in the 
study; the mean family size was 4.8 (range: 1–15). 
In TQ, 78 households were included with a total of 
259 participants (20.75% of the total population); the 
mean family size was 3.7 (range: 1–12). In the SM4 
area the average age of participants was 20.2  years 
(range: 0.6–95 years) and participants of the TQ area 
had an average age of 14.3 years (range: 0.4–76 years). 
The male to female ratio was 0.89 and 1.7 for TQ 
and SM4 sites, respectively (p = 0.10). Study partici-
pants in TQ were significantly younger than in SM4 
(P < 0.001).
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Malaria prevalence and complexity of Plasmodium 
falciparum infections
No cases of symptomatic malaria defined as axillary tem-
perature ≥ 37.5°C and a positive blood slide or RDT were 
detected. In the TQ site P. falciparum and P. vivax prev-
alence by nPCR was 5.8% (15/257) and 7.4% (19/257), 
respectively (Table  1), whereas, in the SM4 site infec-
tion prevalence was 4.7% (14/298) and 1.7% (5/298) for 
P. falciparum and P. vivax, respectively. Only one case 
of co-infection with both P. falciparum and P. vivax was 
observed in TQ. nPCR was repeated on the positive sam-
ples for confirmation. P. vivax parasite prevalence was 
significantly higher at the TQ site (p =  0.001) while P. 
falciparum parasite prevalence was not significantly dif-
ferent between sites (p = 0.57). Plasmodium falciparum 
parasite prevalence (p ≥ 0.13) and P. vivax parasite prev-
alence (p ≥  0.61) were not significantly associated with 
age in categories.

All samples that were positive for P. falciparum were 
genotyped for the MSP-2 gene. The success rate of MSP-2 
genotyping, that may be less sensitive than the 18S nPCR 
[19], was 58.6% (17/29). The total number of detected 
alleles within MSP-2 block was four: two different alleles 
for each of the 3D7 and Fc27 family, 3D7_263  bp and 
3D7_330 bp, and Fc27_365 bp and Fc27_424 bp, respec-
tively. The vast majority of infections were single-clone 
infection by MSP-2 genotyping (94.1%; 16/17) with only 
one sample (5.9%) from TQ site having two MSP-2 alleles.

G6PD A‑ and mediterranean genotyping
G6PD A- (202GA) variant that predominates in sub-
Saharan Africa [20] was successfully genotyped in the 
present study for 553/555 study participants. Of the 
genotyped individuals, 0/553 carried this A- variant. In 
addition, the Mediterranean (563CT) variant was tested 
since previous studies have reported marked differences 
between regions in G6PD mutations [20]. The genotyping 

was successful for 553/555 participants, also with 0/553 
individuals carrying this variant.

Discussion
In the current study, a substantial number of submicro-
scopic P. falciparum and P. vivax infections were detected 
in two Ethiopian villages while conventional diagnostics 
did not detect any malaria infections. Genotyping for P. 
falciparum MSP-2 gene suggested that most infections 
were single-clone in nature. No evidence was observed 
for G6PD deficiency (G6PDd) in the study populations.

The presence of submicroscopic infections in low 
endemic settings is increasingly well documented [21]. 
The current study was extreme in the sense that malaria 
infections were not detected by microscopy despite >5% 
parasite prevalence by nPCR for both P. falciparum and 
P. vivax. Similar results were reported for P. falciparum 
from Solomon Islands [22] where 13 cases were detected 
by nPCR while only one of them was found positive by 
microscopy. In line with the findings in the present study, 
reports from low [23, 24] and high endemic [25] settings 
in Ethiopia indicated a marked number of nPCR-positive 
subpatent cases. A recent meta-analysis of PCR surveys 
suggested that submicroscopic infections form the source 
of 20–50% of all human-to-mosquito transmissions [5]. 
This study also indicated the importance of negative con-
trols and rigorous nPCR testing to avoid false positive 
results. An evaluation of microscopy-confirmed cases 
in Ethiopia revealed a substantial rate of false positive 
results, under-reporting of mixed infections and a sig-
nificant number of species mismatch [26]. In the present 
study, in order to avoid the possibility of false positive 
results from the nPCR, all 18S positive results were re-
tested. Furthermore, confirmation was obtained with 
MSP-2 genotyping that revealed a high proportion of 
single-clone infections, which is expected in low trans-
mission settings [27]. It is possible that clones have been 

Table 1 Percentage distribution of participants by age and malaria prevalence

RDT rapid diagnostic test, nPCR nested polymerase chain reaction, Pf Plasmodium falciparum, Pv Plasmodium vivax. N refers to the total number of participants and n 
refers to the ones that belong to the classification or positive for the test. ‘–‘ refers to the negative cases.

Age (years) % of total (n/N) Microscopy% of  
positive (n/N)

RDT% of positive (n/N) nPCR

Pf% (n/N) Pv% (n/N)

TQ site ≤5 40.5 (104/257) – – 7.7 (8/104) 9.6 (10/104)

6–15 21.4 (55/257) – – 3.6 (2/55) 5.5 (3/55)

>15 38.1 (98/257) – – 5.1 (5/98) 6.1 (6/98)

Total 5.8 (15/257) 7.4 (19/257)

SM4 site ≤5 20.5 (61/298) – – 9.8 (6/61) 1.6 (1/61)

6–15 28.9 (86/298) – – 3.5 (3/86) 2.3 (2/86)

>15 50.7 (151/298) – – 3.3 (5/151) 1.3 (2/151)

Total 4.7 (14/298) 1.7 (5/298)
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missed since the assay may miss minority clones and 
any genotyping assay is affected by parasite sequestra-
tion patterns that may cause clones to be undetectable 
at certain time points [28]. However, clonal complexity is 
clearly low in this setting.

It is widely acknowledged that asymptomatic individu-
als that carry microscopically detectable infection often 
harbour gametocytes and therefore play an active role in 
ongoing transmission [4]. However, the relative contri-
bution of submicroscopic parasitaemia to transmission 
is not clearly known in low endemic settings. Evidence 
is instead indirectly generated from studies in high 
endemic African settings indicating that the underlying 
gametocyte prevalence plays a role in defining the infec-
tious reservoir [29]. Thus, for malaria elimination efforts 
to have a better chance of sustained long-term success, 
more information is needed about the distribution and 
infectiousness of the subpatent reservoir. In addition to 
that, community interventions that target elimination of 
malaria, such as mass anti-malarial drug administration 
or mass screening and treatment (MSAT), need to be 
critically evaluated and tailored into the local context. A 
recent MSAT campaign that used RDTs for screening has 
failed in Zanzibar [30] possibly due to the contribution 
of infections that were not detected by RDTs. Therefore, 
the high prevalence of asymptomatic subpatent malaria 
carriage in low endemic or pre-elimination transmission 
settings may pose challenges for the nationally adopted 
strategy of malaria elimination in Ethiopia as well as in 
other low endemic settings.

The other prevailing challenge in Ethiopia, unlike most 
of Africa, is the high prevalence of P. vivax. Plasmodium 
vivax contributes towards 40% of reported malaria cases 
in Ethiopia next to P. falciparum (60%) [31]. In 2011 
Ethiopia reported the highest number of P. vivax cases 
globally (665,813) [32]. The coexistence of the two spe-
cies makes elimination efforts complicated in Ethiopia. 
Its unique biological characteristics: existence of hypno-
zoites, production of gametocytes very early in infections 
and efficient sporogonic development within the mos-
quito at a large range of temperatures, make P. vivax a 
difficult malaria species to eliminate [33]. There are even 
concerns that intervention methods might inadvertently 
favour one species over another resulting in selection for 
the more transmissible genotypes of the suppressed para-
sites [34]. Elimination of P. vivax will require a different 
strategy than P. falciparum.

Deployment of drugs such as primaquine which is the 
only licensed drug that is active against the mature trans-
mission stages of P. falciparum [35] and which is also the 
only available drug that can prevent multiple relapses of 
P. vivax [36] is crucial in the elimination efforts that are 
underway. However, prior understanding of the presence 

of G6PDd in the target population is required as pri-
maquine administration in G6PDd individuals is asso-
ciated with a dose-dependent risk of haemolysis [37]. 
In the Ethiopian population, no molecular information 
exists to indicate which variants may be responsible for 
the G6PDd. Few studies reported G6PD A- (202GA) fre-
quency estimates considerably lower than those generally 
found in sub-Saharan Africa [38] ranging from 0 to 1% 
[39, 40] confirming a recent geostatistical model-based 
map that predicted a 1.0% prevalence [41]. In agree-
ment with previous reports from neighboring countries 
[42], the African A- (202GA) and the Mediterranean 
(563CT) variants revealed no mutations in the present 
study. G6PDd due to the two most common mutations 
appears absent or of very low prevalence in the region. In 
contrast, a recent study reported a 7.3% absence of G6PD 
enzyme activity in southwest Ethiopia [43] with a signifi-
cant degree of variation among different ethnic groups 
that was also reported in other studies [44, 45]. The 
approaches in the current study may have missed rare 
variants of G6PD.  These findings highlight the need for 
detailed studies on G6PD enzyme activity in combination 
with G6PD genotyping that may need to look beyond the 
mutations determined in the current study. The currently 
available evidence suggests that primaquine may be used 
in Ethiopia without considerable safety concerns [46]. 
This is supported by the notion that primaquine was used 
in Ethiopia for over 25 years up until 1990 [47] with no 
reports of adverse effects.

Conclusion
The current report indicates a considerable proportion 
of submicroscopic P. falciparum and P. vivax infections 
in low endemic regions in Ethiopia. The importance 
of these infections for onward disease transmission is 
unknown. The apparent absence of G6PDd suggests that 
primaquine may be used in combination with schizonti-
cidal treatment to clear P. vivax hypnozoites and P. falci-
parum transmission stages.
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