Santolamazza, Federica; Caputo, Beniamino; Nwakanma, Davis C; Fanello, Caterina; Petrarca, Vincenzo; Conway, David J; Weetman, David; Pinto, Joao; Mancini, Emiliano; della Torre, Alessandra; (2015) Remarkable diversity of intron-1 of the para voltage-gated sodium channel gene in an Anopheles gambiae/Anopheles coluzzii hybrid zone. Malaria journal, 14 (1). 9-. ISSN 1475-2875 DOI: https://doi.org/10.1186/s12936-014-0522-1
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Abstract
BACKGROUND: Genomic differentiation between Anopheles gambiae and Anopheles coluzzii--the major malaria vectors in sub-Saharan Africa--is localized into large "islands" toward the centromeres of chromosome-X and the two autosomes. Linkage disequilibrium between these genomic islands was first detected between species-specific polymorphisms within ribosomal DNA genes (IGS-rDNA) on the X-chromosome and a single variant at position 702 of intron 1 (Int-1702) of the para Voltage-Gated Sodium Channel (VGSC) gene on chromosome arm 2 L. Intron-1 sequence data from West and Central Africa revealed two clearly distinct and species-specific haplogroups, each characterized by very low polymorphism, which has been attributed to a selective sweep. The aim of this study was to analyse Int-1 sequence diversity in A. gambiae and A. coluzzii populations from the Far-West of their range, in order to assess whether this selective-sweep signature could persist in a zone of high interspecific hybridization. METHODS: A 531 bp region of VGSC Int-1 was sequenced in 21 A. coluzzii, 31 A. gambiae, and 12 hybrids from The Gambia and Guinea Bissau, located within the Far-West geographical region, and in 53 A. gambiae s.l. samples from the rest of the range. RESULTS: Far-West samples exhibit dramatic Int-1 polymorphism, far higher within each country than observed throughout the rest of the species range. Moreover, patterning of haplotypes within A. coluzzii confirms previous evidence of a macro-geographic subdivision into a West and a Central African genetic cluster, and reveals a possible genetic distinction of A. coluzzii populations from the Far-West. CONCLUSIONS: The results suggest a relaxation of selective pressures acting across the VGSC gene region in the hybrid zone. Genetic differentiation in the Far-West could be attributable to a founder effect within A. coluzzii, with subsequent extensive gene flow with secondarily-colonizing A. gambiae, potentially yielding a novel insight on the dynamic processes impacting genetic divergence of these key malaria vectors.
Item Type | Article |
---|---|
Faculty and Department |
Faculty of Infectious and Tropical Diseases > Dept of Disease Control Faculty of Infectious and Tropical Diseases > Department of Infection Biology |
Research Centre | Malaria Centre |
PubMed ID | 25604888 |
ISI | 348875400001 |
Related URLs |