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Abstract
Research on genetic influences on human fertility outcomes such as number of children

ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and fami-

ly-designs that suffer from problematic assumptions and practical limitations. The current

study exploits recent advances in the field of molecular genetics by applying the genomic-

relationship-matrix based restricted maximum likelihood (GREML) methods to quantify for

the first time the extent to which common genetic variants influence the NEB and the AFB of

women. Using data from the UK and the Netherlands (N = 6,758), results show significant

additive genetic effects on both traits explaining 10% (SE = 5) of the variance in the NEB

and 15% (SE = 4) in the AFB. We further find a significant negative genetic correlation be-

tween AFB and NEB in the pooled sample of –0.62 (SE = 0.27, p-value = 0.02). This finding

implies that individuals with genetic predispositions for an earlier AFB had a reproductive

advantage and that natural selection operated not only in historical, but also in contempo-

rary populations. The observed postponement in the AFB across the past century in Europe

contrasts with these findings, suggesting an evolutionary override by environmental effects

and underscoring that evolutionary predictions in modern human societies are not straight

forward. It emphasizes the necessity for an integrative research design from the fields of ge-

netics and social sciences in order to understand and predict fertility outcomes. Finally, our

results suggest that we may be able to find genetic variants associated with human fertility

when conducting GWAS-meta analyses with sufficient sample size.

Introduction
Recent research within both biology [1–4] and demography [1,5,6] demonstrates a genetic
component of human fertility, namely the number of children ever born (NEB) and the age
at first birth (AFB) of women, explaining up to 40–50 percent of the observed, respectively

PLOSONE | DOI:10.1371/journal.pone.0126821 June 3, 2015 1 / 14

OPEN ACCESS

Citation: Tropf FC, Stulp G, Barban N, Visscher PM,
Yang J, Snieder H, et al. (2015) Human Fertility,
Molecular Genetics, and Natural Selection in Modern
Societies. PLoS ONE 10(6): e0126821. doi:10.1371/
journal.pone.0126821

Academic Editor: John R.B Perry, Institute of
Metabolic Science, UNITED KINGDOM

Received: November 27, 2014

Accepted: April 8, 2015

Published: June 3, 2015

Copyright: © 2015 Tropf et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data were collected
and maintained by third parties. For ethical and legal
reasons we are not allowed to distribute them.
However, it is possible to contact the TwinsUK and
LifeLines studies directly to request access to data as
specified on their respective websites: The TwinsUK
data is available on request by contacting the Twin
Research Unit at www.twinsuk.ac.uk/data-access/
submission-procedure. The data cannot be released
without assessment by a steering committee with
transfer agreements as the phenotypic data can be
sensitive and may in some cases lead to the
identification of the twins involved in the study. These

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126821&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.twinsuk.ac.uk/data-access/submission-procedure
http://www.twinsuk.ac.uk/data-access/submission-procedure


phenotypic variance in these traits. The well-established negative relationship of late AFB with
lower NEB [7,8] appears to be partly genetic, suggesting that natural selection favored a youn-
ger age at first birth over the Twentieth century [2–4]. Genetic studies examining the relation-
ship between NEB and AFB, however, have been solely based on twin [2,9] or other family
designs [3,4] that use data on expected genetic differences among relatives to estimate the ge-
netic component underlying these traits. Although these studies pervade in behavioral genetics,
they can only draw indirect inferences about genetic contributions and suffer from problematic
assumptions and practical limitations (critical discussions on, for example, the equal environ-
ment assumption (EEA) can be found in ref [10–12]). This approach is limited for further
reasons. First, by virtue of their design, twin studies inherently require pairs of siblings and
therefore exclude individuals from low fertility families, particularly only children, which may
be problematic for the generalization of results. Second, dizygotic twinning is in contrast to
monozygotic twinning genetically based [13,14], which means that dizygotic twins potentially
carry genes important for high fertility. Therefore, the use of monozygotic and dizygotic twins
to investigate fertility questions in the classic twin design leads to a non-random genetic strati-
fication and might bias variance estimates. Finally, a practical limitation of family designs is
that they require data from multiple family-members, which are obviously more difficult to
gather than data on unrelated individuals.

An ideal design to examine the genetics of fertility would be a direct estimate using single
nucleotide polymorphisms (SNPs) across the entire genome for unrelated individuals who do
not share the same micro environment, which was first applied to height as a model complex
trait [15,16]. This type of data and the corresponding statistical tools for genome-wide complex
trait analyses (GCTA, see ref [17]) have recently become available and are already well-estab-
lished in the fields of genetic epidemiology [18], psychology [19,20] and sociogenetics [21,22].

The current study exploits recent advances in the field of molecular and quantitative genet-
ics by applying genomic-relationship-matrix restricted maximum likelihood (GREML) meth-
ods to quantify for the first time the extent to which common genetic variants influence both
the NEB and the AFB of women. We applied both uni- and bivariate models to these traits pro-
ducing unbiased estimates of their common SNP heritability and the extent to which the asso-
ciation between earlier AFB and higher lifetime fertility (NEB) is due to a (negative) genetic
correlation between AFB and NEB [23]. This not only helps us to understand the relationship
between the AFB and NEB, but also allows an assessment of whether genes are associated
with a reproductive advantage, indicating natural selection in contemporary, industrialized
populations.

In contrast to twin and family designs, the GREML approach is free of confounding from
shared environmental effects between close relatives because the method can be applied in a
sample of unrelated individuals [15,16]. The GREML analyses make use of the genetic similari-
ty between pairwise unrelated individuals as captured by all common SNPs and correlate the
genetic similarity with the phenotypic similarity between individuals (see material and meth-
ods). To ensure accurate and well-powered estimates, particularly for the bivariate model [24],
we pooled data sources to estimate the genetic influence on all outcomes of interest (see materi-
al and methods). We utilize two large cohorts, one from the Netherlands (NL, N = 4,338) and
one from the United Kingdom (UK, N = 2,420, for descriptive statistics see Table 1). In both
populations, resemblance in fertility outcomes has been reported for relatives [25–27] using
intergenerational comparisons with survey data. However, no distinction between genetic and
environmental effects responsible for this pattern could be made so far. After quality control
of the merged genetic data files, we used more than 1 million SNPs to estimate the genetic
relationships among the individuals (see material and methods) and subsequently the genetic
variance components.
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The most successful and popular design to detect the approximate location of genetic vari-
ants associated with a complex trait is the meta-analyses of genome-wide association studies
(GWAS) from multiple samples. In lieu of this, our assessment of the genetic effects of com-
mon SNPs based on the pooled samples shape the expectations to find individual variants
when conducting a GWAS. We account for population stratification effects by adjusting for
the first 20 principal components in our GREML models. Population stratification refers to al-
lele frequency differences due to systematic ancestry differences. Population stratification can
cause spurious associations if not adjusted properly (for additional information see [28]). We
furthermore correct for country and birth cohort effects as well as dizygotic twinning. From
the twin data only singletons are included, so that close relatives do not contribute to
the estimates.

This study has several important implications for research in demography, genetics and bi-
ology. We know surprisingly little about genetic effects on human fertility on a population
level, yet it is crucial for our understanding of fertility, the interpretation of related social sci-
ence research in this field [21,22,29–31], and broader questions of modern human evolution
[3,4,32,33]. We first discuss the importance of adopting an integrative multidisciplinary ap-
proach to understand human fertility before proceeding with an introduction of the methods
and the presentation and discussion of our findings.

Towards an integrative approach in human fertility research
The term ‘fertility’ takes on different meanings in demography, reproductive medicine and bi-
ology [7]. In demography, fertility refers to performance, specifically the two interrelated as-
pects of the tempo of childbearing (in our case age at first childbirth, AFB) and the quantum or
number of children ever born (NEB) in a certain period [34]. In reproductive medicine, fertility
defines the ability/inability of couples to conceive and have children given unprotected inter-
course [35]. In biology, AFB and NEB have become central indicators for individual fitness as
the successful transmission of genes to the next generation in post-industrial societies [4,33],
with particularly NEB shown to be nearly perfectly correlation with alternative measures
[2,36]. Due to improvements in hygiene and the reduction in prenatal, infant and child mortal-
ity in industrialized societies, NEB has emerged as the gold standard to measure lifetime repro-
ductive success indicating biological fitness [33].

In the last decades, industrialized societies have experienced massive changes in both the
postponement of AFB and drop in the total number of offspring, which cannot mainly be at-
tributed to genetic or biological factors [7,37]. Rather, human reproduction is influenced by
three analytically distinct but empirically interrelated factors: 1) genetic and biological

Table 1. Descriptive statistics of the female TwinsUK and Lifelines samples.

TwinsUK LifeLines

Mean SD Min-Max N Mean SD Min-Max N

Birth year 1951 13 1919–1987 2420 1960 11 1920–1989 4338

AFB 25.70 4.74 15–44 1951 26.83 4.26 16–43 4016

NEB 2.07 1.21 0–9 1990 2.25 1.20 0–9 2875

Note that the N for the age at first birth (AFB) is different from the N for number of children ever born (NEB). The reason for this is that only women older

than 45 have been included in the analysis of NEB. For example, a 35 years old woman with a first child is part of the analysis for AFB but not for NEB.

Therefore in the Lifelines cohorts the N for AFB is larger than for NEB, because it contains a large proportion of women younger than 45. This also implies

that the average AFB in the more recent birth cohorts is younger than in the overall population.

doi:10.1371/journal.pone.0126821.t001
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fecundity (i.e., length of reproductive period, infertility diseases), 2) the environment (i.e., insti-
tutional and family structures); and, 3) reproductive choice of individuals (i.e., planned behav-
ior, latent individual and partner characteristics).

Previous research has successfully demonstrated that there is a genetic component to repro-
duction with over 70 genome-wide association studies (GWAS) published for 32 traits and dis-
eases associated with reproduction found in [14]. This includes identification of genes such as
those related to age at menarche [38,39] and menopause [40–43], and endometriosis [44]. En-
vironmental factors, such as women’s gains in education and labor market participation, gen-
der equity and economic uncertainty have been demonstrated to strongly impact the tempo
and quantum of fertility (for reviews see ref [7,37]). Studies of reproductive choice have exam-
ined the predictive power of fertility intentions on behavior and often position reproductive
choice in a socio-psychological framework that consists of attitudes (perceived costs and bene-
fits), norms (influence social network) and perception of control over individual choice
[45,46].

A bivariate twin model in a study by Rodgers and colleagues [47] suggests an interrelation
between reproductive choice and genetic factors, providing evidence for shared genetic effects
on the decision to have a first child and the number of children during lifetime. It is therefore
likely that biological fecundity, the environment and reproductive choice not only interact with
each other, but that genes also influence reproductive choice. Genetic endowment in social sci-
ence fertility research has been virtually ignored [37], yet may be of major importance when
drawing conclusions about observable associations.

If the quantum of fertility in the form of NEB is at least partly genetically influenced, this
implies that certain SNPs have a higher chance to be successfully transmitted to the next gener-
ation than others, and by extension that the allele frequency might change due to natural selec-
tion, indicating evolution. If the negative relationship between AFB and NEB is partly genetic,
this would indicate that the AFB was under natural selection during the Twentieth century and
that more recent birth cohorts may carry a higher genetic predisposition for an earlier AFB.

Using a family-design, findings from the Framingham Heart Study demonstrated that the
same genes influencing NEB are negatively correlated with the AFB [4]. The authors subse-
quently predict that selective changes in the disposition for the timing of the first child predict
the decrease in the AFB for subsequent generations. The study design, however, is based on
correlations between relatives and the estimates can therefore be inflated by shared environ-
mental factors such as family norms that are important for fertility [48]. Family designs cannot
robustly discriminate between the case that the correlation between NEB and AFB is environ-
mentally caused, and natural selection, in which case the correlation is genetically caused and
the allele frequencies of the genome might change [33]. This limitation leaves a less desirable
practical solution “. . .to note the issue and remain modest in drawing conclusions” ([33]
p. 614). In the current study, our design does make it possible to directly draw conclusions
about modern natural selection based on information derived from the field of molecular ge-
netics. When the trait of interest, here the age at first birth, does not genetically covary with fer-
tility, a genetic response to selection will not occur [49].

Material and Methods

Ethics Statement
Written informed consent has been given by each TwinsUK and Lifelines participant. This re-
search was approved by the Department of Sociology’s Departmental Research Ethics Review
Committee both at the University of Groningen and the University of Oxford. All data had
been anonymized before we received it.
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Samples
For the Netherlands, we use data from the LifeLines cohort study, a multi-disciplinary prospec-
tive population-based cohort study examining in a unique three-generation design the health
and health-related behaviours of 167,729 persons living in the North of The Netherlandsin-
cluding genotype information from more than 13,000 unrelated individuals [50]. It employs a
broad range of investigative procedures in assessing the biomedical, socio-demographic, beha-
vioural, physical and psychological factors which contribute to the health and disease of the
general population, with a special focus on multi-morbidity and complex genetics.

For the UK, we use data from TwinsUK, the largest adult twin registry in the country with
more than 12,000 respondents [50]. Due to our analytical strategy, we randomly selected only
one twin for analysis and controlled for dizygotic twinning as a genetically related process. We
recognize that for generalizability a population-based sample such as LifeLines is more desir-
able for the models we present. The descriptive statistics of the phenotypic variables in the gen-
otyped subsamples with full fertility information are shown in Table 1.

Genotypes
Since genotyping had been performed using different chips in the UK and the Netherlands, we
use imputed data to aid the alignment of both datasets. The HapMap3 imputation panel has
been shown to be reliable for GREML analysis [26].

We received genotype data from TwinsUK and Lifelines, which we imputed according to
the 1000 genome panel after which we selected HapMap3 SNPs with an imputation score larg-
er than 0.6. For quality control (QC), we excluded the SNPs with a larger missing rate than 3%,
lower minor allele frequency than 1% and which failed the Hardy-Weinberg equilibrium test
for a threshold of 10−6 for both datasets. We merged the TwinsUK and the Lifelines samples
and quality controlled the merged dataset in the same way again. On average 1,017,420 SNPs
could be utilized to estimate the GRM between individuals. We used the software Plink [51] for
the quality control and merging of the two dataset.

Phenotypes
Number of children ever born. Number of children ever born measures the number of

children a woman has given birth to including stillbirths. This has been asked directly in the
twinsUK (“How many children have you given birth to?”) or we constructed it using questions
about the year of childbirth of each child. In Lifelines, respondents have been asked to list the
birth and death date of children from their current and previous partner with up to 6 children
in both categories. For the Lifelines and part of the TwinsUK questionnaires information for
the date of death of the children was given. In both datasets less than 0.2% of the children had
not reached reproductive age and the correlation of number of children ever born and number
of children reaching reproductive age was>0.98.

Since fertility is strongly age dependent, we focus on women with completed fertility history
in reference to the phenotype. In general the end of the woman’s reproductive lifespan occurs
around the age of 45 [52], thus, we only included women aged 45 or older in our analysis of
NEB. Furthermore, in vitro fertilization (IVF)—often related to twinning and multiple births—
can bias results if IVF compensates genetically based infertility. However, in our TwinsUK
sample, only 60 women reported using IVF who we did not include in the final analyses.

Age at first birth. To calculate the AFB, we used information on the year of childbirth of
the first child and year of birth of the mother. In TwinsUK, information from an additional be-
havioral questionnaire directly asking for the age at first birth in 2005 was available. Childless
individuals have been set to missing in the analysis.

Genetics and Human Fertility
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Heritability estimates. The genetic component underlying a trait is commonly quantified
in terms of heritability (h2) as the proportion of the genetically caused variance ðs2

GÞ over the
overall phenotypic variance of the trait (phenotype, VP)) [9]:

h2 ¼ ðs2
GÞ

ðs2
PÞ

Whereas the phenotypic variance is the sum of genetic and environmental s2
e

variance components.

s2
P ¼ s2

G þ s2
e

The methods we applied have been detailed elsewhere [15–17]. Briefly, we applied a mixed
linear model

y ¼ g þ e

where y is an Nx1 is vector of dependent variables, N is the sample size, g is the Nx1 vector
with each of its elements being the total genetic effect of all SNPs for an individual, and e is an
Nx1 vector of residuals.

We have g~ Nð0; s2
GAÞ and e~ Nð0; s2

e IÞ, where s2
G is the genetic variance by all SNPs, A is

the genetic relationship matrix (GRM) estimated from SNPs, s2
e is the residual variance and I is

an identity matrix. The variance components are estimated using the restricted maximum like-
lihood (REML) approach. The NEB is not normally distributed (see S1 Fig). This might bias
the inference, whereas simulation studies show that there is no bias even for binary traits [18].
Still, we base our p-values on likelihood-ratio tests, comparing the full model with one contra-
ining genetic effects to be zero [53].

The estimates of heritability obtained using GREML can be interpreted as the proportion of
variance of a trait based on a large set of common genetic variants genotyped. The method is
based on the genetic relatedness among individuals measured on about one million of SNPs.

This analysis has been extended to a bivariate approach by Lee and colleagues [23] to esti-
mate unbiased genetic correlation based on a standard bivariate linear mixed model combined
with the genome-wide genetic relatedness matrix.

Genetic correlation. The genetic correlation (r(G)) is an estimate that standardizes the ge-
netic covariance between two traits Cov(Gt1,t2) by the genetic variance of both traits:

rðGt1;t2Þ ¼
CovðGt1;t2Þffiffiffiffiffiffiffiffi
VGt1

p � ffiffiffiffiffiffiffiffi
VGt2

p

If the genetic correlation between two traits is 1, all genetic variance in trait 1 and 2 has a
common base. If the genetic correlation is 0, the genetically based variance between trait 1 and
2 are independent.

Phenotypic and genetic correlation analysis. The phenotypic correlation between two
traits r(Pt1,t2) is the sum of genetic and environmental influences shared across traits and can
be estimated like this:

rðPÞ ¼
ffiffiffiffiffiffiffi
ht1

2
p

� rðGt1;t2Þ �
ffiffiffiffiffiffiffi
ht2

2
p

þ
ffiffiffiffiffiffiffi
et12

p
� rðEt1;t2Þ �

ffiffiffiffiffiffiffi
et22

p

whereas h2
ti is the heritability of trait i in the model and e2ti is the environmental or residual vari-

ance contribution for the trait, standardized for the overall variance

e2 ¼ s2
e

s2
P

¼ 1� h2
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and r(Et1,t2) is the environmental or residual correlation between the traits (for the estimates of
environmental effects see S3 Table. We can solve this to compute the fraction of the phenotypic
correlation explained by the genes (or the environment respectively the residuals). For the
transformation of standard errors, the delta-method has been applied [54].

Results
Table 1 shows the descriptive statistics for both traits in the TwinsUK and the Lifelines cohorts.
Overall the AFB is around one year later in the Dutch (26.83) than in the UK cohort (25.70)
and the UK women are about 9 years older. These characteristics are interrelated, since Europe
experienced a massive postponement in the AFB during the second half of the Twenties centu-
ry [7], so the larger proportion of younger individuals leads to a later average AFB in the data.

To combine the cohorts, both fertility measures, AFB and NEB, have been standardized by
country (Z-transformation) and the NEB has been log transformed to approach normal distri-
bution (see S1 Fig for distributions and S1 Table for the model estimation of all alternative
transformations—estimates are robust across transformations).

The correlation between AFB and NEB
In line with previous studies, women who had their first child at a later age had a lower number
of children ever born (Fig 1) in both the British and Dutch sample. The observable correlation
for individuals with full information on both traits (therefore excluding all childless individu-
als, individuals younger than 45 and individuals without information about the AFB) between
AFB and NEB is -0.32 (N = 1,521) in the UK cohorts, -0.26 (N = 2,553) in the Dutch cohorts
and -0.28 (N = 4,074) for the standardized measures in the pooled cohorts (-0.27 if estimated
from the residuals of all covariates, not listed).

Fig 1. The association between age at first birth and number of children ever born in the British and the Dutch cohorts.

doi:10.1371/journal.pone.0126821.g001
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SNP heritability of AFB and NEB
Table 2 depicts the SNP based heritability (h2SNP) estimated from the univariate models for
AFB and NEB. Both traits have a significant genetic component, with h2SNP for NEB of 0.10
(SE 0.05) and for the AFB of 0.15 (SE 0.04). These results suggest that additive effects of com-
mon SNPs explain 10% of the variance in the NEB and 15% of the variance in the AFB
of women.

Bivariate GREML analysis of AFB and NEB
Table 3 shows the results for the bivariate GREML model of AFB and NEB, including the ge-
netic correlation between both traits. The genetic correlation would be—1.00/1.00 if all genetic
effects of AFB and NEB are shared and 0 if the genetic effects of AFB and NEB would be
completely independent. The genetic correlation estimate is -0.62 (SE 0.27) and significantly
different from 0 (p-value = 0.02), meaning that genes that lead to a later age at AFB are indeed
negatively associated with the NEB. Based on these estimates, genetic effects lead to a pheno-
typic correlation of -0.07 (0.03) between AFB and NEB, whereas the overall correlation esti-
mated from the fitted model is -0.38 (SE = 0.02). Therefore around 20% of the phenotypic
correlation is associated with shared genetic effects across the traits while still the main part is
associated with common environmental/residual effects of the AFB and the NEB. The pheno-
typic correlation estimated from the genetic model is larger than the observed correlation be-
cause the bivariate GREML analysis does not require both traits measured on exactly the same

Table 2. Heritability estimates of NEB and AFB for the pooled sample of women from the UK and the
Netherlands using information from about 1 million SNPs.

h2
SNP (SE) p-valuec N

Number of children ever borna 0.10 (0.05) 0.02 4865

Age at first birthb 0.15 (0.04) 0.0004 5967d

a: standardized by country and log transformed to adapt the distribution

b: standardized by country

c: p-values are based on likelihood-ratio tests, the reference model constraints genetic effects to be 0;

Please find estimates of untransformed variables in S2 Table

d: The N for age at first birth is larger than for number of children ever born. The reason is that only women

with completed fertility history are included for the latter (for discussion see material and methods and

Table 1.).

doi:10.1371/journal.pone.0126821.t002

Table 3. Estimates of the bivariate genetic model for NEB and AFB for the pooled sample of women from the UK and the Netherlands using infor-
mation from about 1 million SNPs.

h2
SNP NEB (SE) h2

SNP AFB (SE) r(G)SNP AFB-NEB (SE) p-valuea Phenotypic correlation NAFB/NEB

Overall (SEb) Due to genetic effects (SEb)

0.08 (0.05) 0.15 (0.04) -0.62 (0.27) 0.02 -0.38 (0.02) -0.07 (0.03) 5967/4865 c

NEB: standardized by country and log transformed to adapt the distribution; AFB: standardized by country

a: p-values are based on likelihood-ratio tests, the reference model constraints genetic effects to be 0;—one-tailed (default in GCTA)

b. Standard errors have been transformed using the delta method([54])

c: The N of age at first birth is larger than for number of children ever born. The reason is that only women with completed fertility history are included for

the latter (for discussion see material and methods and Table 1). For the full model, including environmental/residual effects see S2 Table.

doi:10.1371/journal.pone.0126821.t003
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set of individuals so that it makes use of additional information, e.g. childless individual for the
estimates of NEB. If we only include individuals with full information on both traits in the ge-
netic model—as we do when computing the phenotypic correlation directly—the phenotypic
correlation estimated based on the genetic model (-0.29 SE = 0.02) is not significantly different
from the observed value based on Pearson correlation (-0.27) and the component due to genet-
ic effects estimated from the GREML model (-0.08 SE = 0.05) is not significantly different from
that using all available information (-0.07 SE = 0.03), whereas the inference would be weaker
(see S3 Table for the model excluding all individuals with missing information).

Discussion
Using recently developed analytical techniques from molecular genetics we provide direct evi-
dence for a genetic component underlying the AFB and NEB of women in the UK and the NL
born during the Twentieth century. Moreover, genetic effects on the tempo (AFB) and quan-
tum (NEB) of human reproduction co-vary, which partly explains why women who start re-
producing at an earlier age, have higher fertility.

This genetic association between AFB and NEB can have different origins. Both traits might
simultaneously be influenced by the same genetic effects (pleiotropy) or genetic effects on the
NEB could be mediated via the AFB—as well as a combination of both. To further examine the
causal relations between these factors, actual measured genotypes important for these traits
might be integrated in the statistical models [55] in applications such as Mendelian randomiza-
tion [56]—although this has been challenged [57]. Whatever the underlying cause of the genet-
ic association between NEB and AFB is, as the consequence of this genetic association we
expect natural selection acting in modern, industrialized societies, implying that women born
in more recent cohorts may be genetically inclined to have an earlier AFB. This prediction of a
decrease in AFB, however, is somewhat of a ‘population paradox’ because it strongly contra-
dicts observed fertility trends over the last 50 years. Instead, there has been a massive postpone-
ment in the AFB of an average of 4–5 years in nearly all European countries and the US since
the 1970s [7].

Although our results seem to raise a paradox, they are well in line with studies on natural
fertility populations, such as from Milot and colleagues [3] who observed a decrease in AFB as
a response to natural selection in a contemporary population. One probable explanation is that
natural selection works in addition to environmental forces and in the opposite direction; with
the latter being stronger. Natural fertility populations are assumed to have set fertility norms to
maximize reproductive success. With the absence of contraption, the full reproductive poten-
tial can be expressed [3]. In European and many industrialized societies, in contrast, environ-
mental changes across the past century such as the use of contraceptives and women’s
educational expansion and entry into the labor market have had a strong impact on fertility be-
havior [7,8,48]. This which has led to a postponement in the AFB even though more recent
populations in the Netherlands and the UK are genetically predisposed to an earlier AFB. In
that sense, the environment has achieved an evolutionary override.

The discrepancy between observed changes and those predicted by evolutionary processes
show parallels to the case of human height. Although natural selection has disinclination for
taller individuals at least in US populations [4,58], people still, on average, grow up to be taller
than their parents [59]. This is also largely attributed to environmental factors, such as better
nutrition and improved health care [60]. Natural selection, however, may also work as tandem
with environmental factors: a recent study suggests that, in the Netherlands, natural selection
favored taller heights, and thus reinforced the effects of improved environmental quality over
the last 150 years [61].

Genetics and Human Fertility

PLOS ONE | DOI:10.1371/journal.pone.0126821 June 3, 2015 9 / 14



A second potential—and largely interrelated—explanation for the fact that AFB is post-
poned despite selection towards genes favoring earlier birth is that genes and the environment
interact across birth cohorts. Previous twin studies have in fact shown differences in heritability
estimates across cohorts and environments in both NEB [6] and AFB [2,31,62,63]. Therefore,
independent of additive environmental effects leading to postponement in the AFB, genetic
variants important for the AFB may differ across cohorts and populations, so that large
changes due to natural selection are not necessarily implied.

The genetic effects estimated in this study represent narrow sense heritability estimated
from SNP data. As can be expected [64], they are lower than the estimates of narrow sense heri-
tability (~0.20–0.30) obtained from family designs. Potential reasons for this are, on one hand,
the inflation of estimates by shared environmental factors in family designs, but on the other
hand true genetic effects of variants that are not captured through linkage disequilibrium with
SNPs used in GREML analysis. In order to engage in a more rigorous examination of genetic
effects as well as gene-environment interplay, replication in larger datasets and across popula-
tions is required. The provision of data with genetic and environmental information continues
to grow, as do more advanced analysis techniques [65]. Nonetheless, it becomes obvious that
human fertility is both a genuinely biological process as well as a social undertaking. We con-
clude from our findings that an integrative approach between the social and biological sciences
is necessary to better understand the changing patterns in, or even predict future levels of
human fertility.

Despite the significant advances in the estimation techniques and sample size of this study,
there are two limitations that need to be made explicit. First, the interpretation of NEB in an
evolutionary manner implies an interpretation of NEB as ameasure of fitness. It would be bet-
ter to have information on the number of children who entered reproductive age or even more
appropriate, the number of grandchildren entering reproductive age to have a more precise
measure of how far genes have been successfully transmitted across generations. However, the
NEB has been shown to be a good measure of reproductive success (see also [33]) due to dimin-
ishing mortality during the reproductive lifespan. Recent genetically-informed research fur-
thermore demonstrates that the same genes important for the NEB also influence the number
of grandchildren born and therefore have a long-term effects [32]. Second, as opposed to com-
mon research in demography [66], it is still uncommon to deal with right censored information
(i.e., those who have not yet had a child by the time of observation) in genetic studies. In our
case, we have set individuals who remained childless as missings when estimating genetic influ-
ences for the AFB, since they did not yet have a child [4,63]. Childless individuals, however, are
of great interest for demographic research as well as from an evolutionary perspective—since
they are the ones who do not transmit their genes to the next generation. While the structural
equation modelling in twin studies provides alternative solutions such as Tobit [67] or ordered
models [2] to integrate censored information, there remains no possibility to consider this in
current applications of GREML. In general, the observable association can be expected to be
stronger when including childless individuals, because all childless women are right-censored
cases. However, it has been shown in twin models that it is more difficult to predict the effect
on the genetic analysis. Therefore, the extent of empirical differences between our model and
survival models must be tackled in future research [67].

To date, thousands of genetic variants have now been successfully linked to physical or psy-
chological traits in the past years [68,69], as well as complex ‘socio-genetic’ traits like educa-
tional attainment [29] and also traits related to reproduction [14]. We conclude that our study,
based on the same genetic data as in GWAS studies, raises confidence that we will find genetic
variants associated with human fertility when conducting GWAS-meta analyses of sufficient
sample size.
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