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a  b  s  t  r  a  c  t

The  basic  reproduction  number  R0 and the effective  reproduction  number  R are  pivotal  parameters  in
infectious  disease  epidemiology,  quantifying  the  transmission  potential  of an  infection  in  a  population.
We  estimate  both  parameters  from  13  pre-vaccination  serological  data  sets  on varicella  zoster  virus  (VZV)
in 12  European  countries  and  from  population-based  social  contact  surveys  under  the  commonly  made
assumptions  of endemic  and  demographic  equilibrium.  The  fit  to the serology  is  evaluated  using  the
inferred  effective  reproduction  number  R as a model  eligibility  criterion  combined  with  AIC as  a  model
selection  criterion.  For  only  2 out  of  12 countries,  the  common  choice  of  a constant  proportionality  fac-
tor  is  sufficient  to provide  a good  fit to the  seroprevalence  data.  For  the  other  countries,  an  age-specific
proportionality  factor  provides  a  better  fit,  assuming  physical  contacts  lasting  longer  than  15  min  are
a good  proxy  for  potential  varicella  transmission  events.  In  all  countries,  primary  infection  with  VZV
most  often  occurs  in  early  childhood,  but there  is  substantial  variation  in  transmission  potential  with
R0 ranging  from  2.8  in  England  and  Wales  to 7.6 in  The  Netherlands.  Two  non-parametric  methods,  the

maximal  information  coefficient  (MIC)  and a random  forest  approach,  are  used  to  explain  these  differ-
ences  in  R0 in  terms  of  relevant  country-specific  characteristics.  Our  results  suggest  an  association  with
three  general  factors:  inequality  in  wealth,  infant  vaccination  coverage  and  child  care  attendance.  This
illustrates  the need  to consider  fundamental  differences  between  European  countries  when  formulating
and  parameterizing  infectious  disease  models.

©  2015  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ntroduction

One of the key measures of infectious disease transmission is the
asic reproduction number R0: the expected number of secondary
ases per primary case in a “virgin” population (Diekmann et al.,
990). If R0 is larger than 1 the infection may  become endemic

nd the larger R0, the more effort is required to eliminate the
nfection from the population. Although R0 is a useful theoretical

easure, it is rarely observed in practice. The effective reproduction
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number R takes pre-existing immunity into account and thus
reflects the average number of secondary cases that can be observed
in a partially immune population. There are several methods to
estimate R0 and R (Vynnycky and White, 2010). In this article, we
focus on deriving R0 from transmission rates that can be estimated
from serological data under the assumption of endemic equilib-
rium (Anderson and May, 1991). A disease in endemic equilibrium,
or steady state, may  undergo cyclical epidemics, but fluctuates
around a stationary average over time. Whitaker and Farrington

(Whitaker and Farrington, 2004a) have shown that the impact of
regular epidemic cycles, displayed by many childhood infections,
can be ignored when estimating R0. In this equilibrium setting, each
infectious individual infects one other individual on average, hence

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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 is expected to be equal to 1 (Diekmann et al., 1990). Again, if R > 1
he infection will continue to spread in the population whereas if

 < 1 the infection will die out.
We consider pre-vaccination serological data for the varicella

oster virus (VZV) from 12 different European countries (Nardone
t al., 2007). VZV is one of the eight known herpes viruses that affect
umans. Primary infection with VZV results in varicella (chick-
npox) and mainly occurs in childhood. In general, the disease is
enign, however, symptoms may  be more severe in adults and com-
lications may  occur when varicella is acquired during pregnancy.
ZV is highly contagious and transmitted through direct close
ontact with lesions or indirectly through air droplets contain-
ng virus particles. The incubation period following VZV infection
anges from 13 to 18 days and each infected person transmits
he virus for about 7 days. The antibody response following pri-

ary infection with VZV is believed to induce lifelong protection
gainst chickenpox. However, the virus remains dormant within
he body and may  reactivate and give rise to herpes zoster (or shin-
les) after years to decades (Miller et al., 1993). In this article, we
ill focus on primary infection and ignore reactivation leading to

oster.
Estimating transmission rates for an airborne infection such as

ZV requires assumptions on the underlying age-specific mixing
atterns and R0 has been shown to be highly sensitive to these
ssumptions (Greenhalgh and Dietz, 1994). Indeed, serological sur-
eys do not provide complete information about these mixing
atterns, since they reflect the rate at which susceptible individuals
ecome infected, but not who is infecting whom. This indetermi-
acy prevents assessment of the validity of the mixing pattern.
ecently, attempts have been made to deal with this unidentifi-
bility by exploiting knowledge about the route of transmission
Farrington et al., 2001; Unkel et al., 2014). However, this relies on
he strong assumption that infections are transmitted via the same
oute. The extent to which different routes of transmission compete
ay  only be verified by additional data collection. In this article, we

nform the mixing pattern with data from population-based social
ontact surveys and assume that transmission rates are propor-
ional to contact rates. Social contact data have already proven to
e a valuable additional source of information when estimating the

Who Acquires Infection From Whom’  (WAIFW) matrix and R0 (see
.g. Wallinga et al., 2006; Ogunjimi et al., 2009; Goeyvaerts et al.,
010).

We  use the inferred effective reproduction number as a model
ligibility criterion combined with AIC as a model selection cri-
erion. To our knowledge, Wallinga et al. (2001) were the first
o use the effective reproduction number to asses the plausibil-
ty of different mixing patterns. However, this is the first time
hat R is explicitly used as a determinant in the model selection
rocedure. We  evaluate how constant and age-specific propor-
ionality factors affect the fit to the serology and the estimated
0 values. Moreover, we assess the effect of age-specific het-
rogeneity related to infectiousness on model eligibility and fit.
urther, from a selected set of demographic, socio-economic and
patio-temporal factors, we explore which factors best explain the
etween-country heterogeneity in R0 using two  non-parametric
ethods: the maximal information coefficient (MIC) and random

orest.
The article is organized as follows. In Section “Materials

nd methods”, a description of the serological and social con-
act surveys is provided, after which we elaborate on the
ynamic model structure, estimation procedure and methods
sed to determine potential risk factors for varicella. In Section

Results”, we present the estimates of R0 and R under various
odel assumptions, and the results of the risk factor analy-

is. Finally in Section “Discussion”, the models and results are
iscussed.
ics 11 (2015) 14–23 15

Materials and methods

Data

Serological data. In this article, we reanalyze the ESEN2 (Euro-
pean Sero-Epidemiology Network) data on VZV published by
Nardone et al. (2007) together with newly available serology
for Poland and Italy, totaling 13 serosurveys from 12 different
countries including two  samples from Italy (see Table 1). At the time
of sera collection, which varied between 1995 and 2004, none of
the participating countries had introduced a universal VZV vaccina-
tion program. Blood samples were tested using an enzyme-linked
immunosorbent assay (ELISA), thereby classifying the samples as
seropositive or seronegative (equivocal results were included as
seropositive). Classification is based on the observed antibody level
as compared to the cut-off level specified by the manufacturer
of the test. Sample sizes range from 1268 for Poland to 4398 for
Germany, with substantial variability between the surveyed age
ranges.

Social contact survey. The spread of airborne or close-contact
infections in a population is driven by social contacts between indi-
viduals. Recently, several studies were conducted to measure social
mixing behavior, and Read et al. (2012) present a review of the dif-
ferent methodologies employed. The cross-sectional diary-based
surveys that were conducted between May 2005 and September
2006 as part of the POLYMOD project, constituted the first large-
scale prospective study to investigate social contact behavior in
eight European countries (Mossong et al., 2008). Participants were
recruited through random-digit dialing, face-to-face interviews
or population registers, and completed a diary about their social
contacts during one randomly assigned day. Participants were
asked to record the age and gender of each contacted person,
plus location, duration and frequency of the contact. Further, a
distinction between two  types of contact was  made: non-close con-
tacts, defined as two-way conversations of at least three words in
each others proximity, and close contacts that involve any sort of
physical skin-to-skin touching. For an extensive description of the
survey, we refer to Mossong et al. (2008).

Estimating the basic and effective reproduction number

Force of infection and mass action principle. To describe
VZV transmission dynamics, a compartmental MSIR (Maternal
protection-Susceptible-Infected-Recovered) model for a closed
population of size N with fixed duration of maternal protection
A is considered, following Goeyvaerts et al. (2010) and Ogunjimi
et al. (2009). Doing so, we  explicitly take into account the fact that
newborns are protected by maternal antibodies and do not take
part in the transmission process. We  assume that mortality due to
infection can be ignored, which is plausible for VZV in developed
countries, and that infected individuals maintain lifelong immu-
nity to varicella after recovery. Further, demographic and endemic
equilibria are assumed, which means that the age-specific popula-
tion sizes remain constant over time and that the disease is in an
endemic steady state at the population level. Under these assump-
tions the age-specific prevalence �(a) is given by:

�(a) = 1 − e
−
∫ a

A
�(u) du

,

where �(a) is the age-specific force of infection, i.e. the rate at which
a susceptible person of age a acquires infection. There is a wide
range of methods available to estimate �(a) from seroprevalence

data, see Hens et al. (2010) for an historical overview.

Since we  aim to estimate the basic and effective reproduction
number for VZV, we disentangle the force of infection further to
the level of age-specific transmission rates. Let ˇ(a, a′) denote the
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Table  1
Overview of the serological data and demographic parameters.

Country Data collection Age range (years) Sample size Life expectancy (years) Population size

Belgium (BE) 2001–2003 0–71.5 3251 77.6 10,309,722
Germany (DE) 1995/1998 0–79 4398 77.1 82,050,377
Spain (ES) 1996 2–39 3590 77.5 39,427,919
England and Wales (EW) 1996 1–20.9 2032 76.0 51,125,400
Finland (FI) 1997–1998 1–79.8 2471 76.7 5,146,965
Ireland  (IE) 2003 1–60 2430 77.6 3,963,814
Israel  (IL) 2000–2001 0–79 1543 76.2 6,223,842
Italy  (IT’97) 1996–1997 0.1–50 3110 78.2 56,872,349
Italy  (IT’04) 2003–2004 1–79 2446 80.3 5,788,0478
Luxembourg (LU) 2000–2001 4–82 2640 77.2 438,723
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The  Netherlands (NL) 1995–1996 0–79 

Poland (PL) 1995–2004 1–19 

Slovakia (SK) 2002 0–70 

verage per capita rate at which an infectious individual of age a′

akes effective contact with a susceptible person of age a, per unit
ime. The key principle behind the estimation of ˇ(a, a′) is the so-
alled mass action principle. If the mean infectious period D is short
ompared to the timescale on which transmission and mortality
ates vary, the force of infection can be approximated by:

(a) ≈ ND

L

∫ ∞

A

ˇ(a, a′)�(a′)s(a′)m(a′) da′, (1)

here N denotes the total population size, L the life expectancy,
(a) the proportion of people in the population of age a that are
usceptible, and m(a) = exp{−

∫ a

0
�(t) dt} the survivor function at

ge a with age-specific mortality �(a).
Given the transmission rates ˇ(a, a′), following Diekmann et al.

1990), the basic reproduction number R0 can be calculated as the
ominant eigenvalue of the next generation operator given by

(a, a′) = ND

L
m(a)ˇ(a, a′).

The effective reproduction number R takes into account the pro-
ortion of susceptible individuals and is the dominant eigenvalue
f G(a, a′) × s(a).

Mixing assumptions. Since �(a) is a one-dimensional function of
ge and ˇ(a, a′) makes up a two-dimensional function, additional
ssumptions are necessary to estimate the transmission rates from
eroprevalence data using the mass action principle. The traditional
pproach of Anderson and May  (Anderson and May, 1991) strati-
es the population into a small number of age classes and imposes
ifferent mixing patterns upon ˇ(a, a′). This is the approach taken

n the exploratory analysis of Nardone et al. (2007). However, the
hoice of the structure imposed on the WAIFW matrix as well as
he choice of the age classes are ad hoc and impact the estimation
f R0 (Greenhalgh and Dietz, 1994; Van Effelterre et al., 2009). We
ill consider a more recent approach as proposed by Wallinga et al.

2006), by informing ˇ(a, a′) with data on social contacts. This is also
he approach taken by Goeyvaerts et al. (2010) who express ˇ(a, a′)
s

(a, a′) = q(a, a′) · c(a, a′),

here c(a, a′) is the per capita rate at which an individual of age
′ makes contact with a person of age a, per unit of time, and q(a,
′) a proportionality factor that may  capture, among other effects,
ge-specific susceptibility and infectivity.
In this article, we contrast the constant proportionality assump-
ion, commonly used in the literature and referred to as “the social
ontact hypothesis” (Wallinga et al., 2006; Ogunjimi et al., 2009;
elegaro et al., 2011), against a log-linear function of the age of the
1967 77.0 15,493,889
1268 73.2 38,637,184
3515 73.2 5,378,702

susceptible individual, which entailed an improvement of model fit
for VZV in Belgium (Goeyvaerts et al., 2010), that is respectively:

log{q(a, a′)} = �0 and log{q(a, a′)} = �0 + �1a. (2)

The contact rates c(a, a′) are estimated from the POLYMOD
contact survey using a bivariate smoothing approach, considering
those contacts with skin-to-skin touching lasting at least 15 min
since these contacts have been shown to be most predictive for VZV
(Goeyvaerts et al., 2010; Melegaro et al., 2011). For the countries
who participated in the POLYMOD project, the corresponding con-
tact rates were used, whereas for the other countries contact data of
a neighboring country or a country with similar school enrollment
ages were used (cf. Table 3 in Supplementary Material). We  present
a sensitivity analysis in the Supplementary Material to compare
these ad-hoc choices with a more objective selection of contact
data by means of AIC. In this analysis, we  repeat the estimation
procedure for each country seven times, each time for a different
contact matrix, and select, per country, from these seven analyses,
the one that results in the best fit to the serological data. We  observe
that the effect on R0 remains within reasonable bounds, which indi-
cates that the choice of contact data has limited influence on our
estimates.

Estimation procedure. In this article we will estimate the force of
infection using maximum likelihood estimation with the Bernouilli
log-likelihood given by:

�(�; y, a) =
n∑

i=1

yi log(1 − e
−
∫ ai

A
�(u) du

) + (1 − yi)(−
∫ ai

A

�(u) du).

(3)

Here, n denotes the size of the serological data set and yi denotes
a binary variable indicating whether subject i had experienced
infection before age ai. The transmission rates cannot be estimated
analytically since the integral Eq. (1) has no closed form solution.
However, it is possible to solve this numerically by turning to a dis-
crete age framework, assuming a constant force of infection in each
1-year age interval. Now, estimation proceeds as follows: starting
values for the parameters are provided after which the discretized
mass action principle is iterated until convergence and finally, the
resulting estimate of the force of infection is contrasted to the
serology using the log-likelihood (3). To calculate 95% confidence
intervals, non-parametric bootstraps are performed on both the
contact data and the serological data to account for all sources of
variability (Goeyvaerts et al., 2010). The number of bootstrap sam-
ples per country is fixed at 2000 with convergence rates varying

between 62% and 100%.

Since some countries lack serological data on VZV in the older
age groups, the original serology is augmented with simulated data
to avoid excess variability of the bootstrap estimates (Goeyvaerts
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Fig. 1. Estimated basic and effective reproduction numbers with 95% bootstrap
percentile confidence intervals for constant (black), log-linear (gray) and extended
log-linear (light gray) proportionality factor. For each country, sizes of the dots are
proportional to Akaike weights, hence larger dots correspond to smaller AIC values.
The  dotted horizontal line indicates the single eligible value for R under endemic
E. Santermans et al. / 

t al., 2010). These simulations are drawn from a Bernouilli distri-
ution with mean equal to the seroprevalence from the last 5 age
ategories with at least 20 observations available. The size of the
imulated samples is determined by the demography of the popula-
ion. This method is plausible from an epidemiological point of view
ince the VZV seroprofile is not expected to decline after 20 years of
ge. Based on the augmented data, post-stratification weights are
alculated using census data and included in the likelihood. The
ife expectancy L and the age-specific mortality rates � for every
ountry are estimated based on demographic data from the year of
erological data collection (Eurostat, the Office for National Statis-
ics for England and Wales, Israeli Bureau of Statistics for Israel)
sing a Poisson model with log link and offset term (Hens et al.,
012). To ensure flexibility, a radial basis spline is used.

The duration of maternal immunity is fixed at A = 0.5 years, while
he mean duration of infectiousness for VZV is taken as D = 7/365
ears. Lastly, to reduce boundary irregularities induced by sparse-
ess in the contact data for the elderly, the contact surface, and
ence the serological data, are restricted to the 0–69 year age range.

 sensitivity analysis showed little impact on the point estimates
results not shown).

Model eligibility and indeterminacy. The estimated effective
eproduction number R̂ and corresponding confidence interval
llow us to check whether the above mixing patterns (2) con-
orm with the assumption of endemic equilibrium. In this setting,
ach infectious individual infects one other individual on average,
ence R is expected to be equal to 1 (Farrington, 2003). We  use this
roperty to exclude those models for which R is estimated to be sig-
ificantly different from 1. Furthermore, the effective reproduction
umber allows us to make indirect inference about the age-specific
eterogeneity related to infectiousness, assuming

og{q(a, a′)} = �0 + �1a + �2a′, (4)

here a′ is the age of the infective individual. We refer to this model
s the extended log-linear model, in which �2 is referred to as an
nfectiousness component. Direct inference can be troublesome, as
hown by Goeyvaerts et al. (2010), since serological surveys do not
rovide information related to infectiousness. This indeterminacy
an be illustrated as follows: assume for simplicity ˇ(a, a′) = q(a,
′)c(a, a′) = q0q1(a)q2(a′)c(a, a′). Rewriting (1), this implies

0q1(a) = L�(a)

ND
∫ ∞

A
q2(a′)c(a, a′)�(a′)s(a′)m(a′) da′ ,

here �(a), s(a) and c(a, a′) can be estimated from serological data
nd social contact data, respectively. This implies that when q0q1(a)
s flexibly modeled, the effect of q2(a′) on the serological model is
ompletely absorbed and the fit of this model does not change for
arying infectivity curves. However, it does affect the estimated
alue of R0 and R. We  deal with this indeterminacy by letting �2
ary over a fixed interval and assessing the effect on R̂. This way,
he value of �2 can be determined such that R is not significantly
ifferent from 1. This is illustrated in Section “Results”.

lucidating potential risk factors

To address the differences in transmissibility between countries,
 selection of 39 relevant country-specific variables was  made,
omprising data on demography, childcare, population density and
eather (see Table 1 in Supplementary Material). To investigate

ssociations between R0 and these variables, two  different non-
arametric approaches are considered, which are briefly described

elow and more elaborately in the Supplementary Material.

Maximal information coefficient. The maximal information
oefficient (MIC) (Reshef et al., 2011) is a measure of two-
ariable dependence, designed specifically for rapid exploration of
equilibrium, which is one.

high-dimensional data sets. The MIC  is part of a larger family of
maximal information-based non-parametric exploration statistics,

which can be used not only to identify important relationships in
data sets but also to characterize them.

Random forest approach. Secondly, a random forest approach for
regression is used (Breiman, 2001), which is a class of ensemble
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Table 2
Ten factors with the largest MIC  value of association with R0, estimated from the
final model selected for each country, and corresponding Spearman correlation
coefficients �S .

MIC  �S

1. Inequality of income distribution 1.0 −0.64
2.  Poverty rate 1.0 −0.73
3. % infants vaccinated against mumps 0.65 0.64
4.  average square meter living area pp 0.59 0.42
5.  % breast feeding at 3 months 0.47 −0.21
6.  % employed women 25–49 (min. 1 child 0–5) 0.46 0.38
7.  % infants vaccinated against pertussis 0.38 0.46
8.  % infants vaccinated against rubella 0.36 0.51
8 E. Santermans et al. / 

ethods – methods that generate many classifiers and aggregate
heir results – specifically designed for classification and regression
rees. Each tree is constructed using a different bootstrap sample
f the data and each node is split using the best among a subset of
redictors randomly chosen at each node. Compared to many other
lassifiers, this turns out to perform very well and is robust against
verfitting (Breiman, 2001). In addition, it has only two parameters

 the number of variables in the random subset at each node and
he number of trees in the forest – and is usually not very sensi-
ive to their values. We  use the random forest algorithm from the
andomForest package in R with the default number of trees (500).
he number of split variables is selected such that the highest per-
entage explained variance is obtained. The package produces two
easures of importance of the predictor variables: “mean decrease

n accuracy” and “mean decrease in node purity”.
Sensitivity analysis. To test the sensitivity of this risk factor anal-

sis, we applied the MIC  and random forest approach to estimates
f R0 when using the best fitting contact matrix. This sensitivity
nalysis is included in the Supplementary Material. We  can con-
lude that the risk factor analysis is quite robust to changes in the
ontact matrix, as the most important influential factors do not
hange.

esults

Basic and effective reproduction number. We  apply the social
ontact data approach with a constant and age-specific log-linear
roportionality factor, as in (2), to the 13 serological data sets
vailable for VZV. The estimated basic and effective reproduction
umbers for both models are presented in Fig. 1 together with
5% bootstrap percentile confidence intervals (also in Table 3 in
upplementary Material). The size of the dots are proportional
o the Akaike weights (see Supplementary Material), hence larger
ots correspond to smaller AIC values. These estimates are supple-
ented with estimates of the mean age at infection in Table 3 in

he Supplementary Material.
Models are classified as eligible based on the 95% confidence

nterval for the effective reproduction number, and eligible mod-
ls are compared by means of AIC. When the model with lowest
IC value is eligible, this model is selected. This results in the
ge-specific log-linear proportionality factor being preferred for
elgium, Denmark, England and Wales, Ireland, Israel, Italy, The
etherlands and Poland. For Spain and Slovakia, the constant pro-
ortionality factor is sufficient to provide a good fit. For Finland, the

og-linear model is preferred in terms of AIC, but this model is not
ligible, whereas for Luxembourg, both models are not eligible. In
oth cases, the constant and basic log-linear model are not capable
f providing a good fit to the data.

Therefore, we consider the extended log-linear model in (4)
or Finland and Luxembourg. Fig. 2 presents the profile likelihood
stimates of R0 and R as a function of �2. We  observe that by
ncluding an infectiousness component in the proportionality fac-
or, the effective reproduction number R can be estimated closer to
. Note that the estimate of R0 decreases quite substantially with
ecreasing �2, in contrast to an increase in R. This reverse relation
eems counter-intuitive, but is caused by an interplay between q(a,
′) and s(a). Now, by performing a non-parametric bootstrap for
very value of �2 on a specific grid, it is possible to determine
he maximal value of �2 such that 1 is within the 95% bootstrap
onfidence interval of R. This is illustrated in Fig. 3.

The parameter estimates and confidence intervals for the

xtended log-linear model based on these maximal values of �2
re also displayed in Fig. 1. We  observe the following: for Finland,
he extended model has an improved fit compared to the constant

odel and is conform with the endemic equilibrium assumption.
9. % population aged 0–14 0.32 −0.22
10. Total health expenditure 0.32 0.51

For Luxembourg, only the extended model is eligible, and in addi-
tion, it has the lowest AIC value. Note that the estimate of R0 for
Luxembourg decreases considerably.

The estimated seroprevalence curves based on the selected
model for each country are presented in Figs. 4 and 5. The fitted
seroprofiles show a similar pattern across countries, with most
infections occurring during early childhood and the estimated
prevalence approaching one as age increases. However, the preva-
lence does not reach one in all countries and, for example, Italy has
a more particular profile. Looking at the FOI curves, the largest esti-
mate is observed in the Netherlands (0.57 year−1) at the age of 5,
followed by Luxembourg (0.49 year−1). The largest estimate of R0
is obtained for The Netherlands (7.60) and the lowest for England
and Wales (2.75). 11 out of 13 countries have R0 estimated below
6.

Risk factors. There is considerable variation in estimated basic
reproduction numbers, and hence in transmissibility, among the
countries under consideration. Therefore, we  aim to explain these
differences by applying the MIC  and random forest approach on a
selected set of 39 relevant country-specific factors (Tables 1 and 2
in Supplementary Material). Table 2 in the Supplementary Mate-
rial contains the pairs of potential risk factors with the strongest
correlation given by the Spearman correlation coefficient. These
correlations can be used to interpret the relation between R0 and
certain factors.

The ten factors with the largest MIC  of association with R0, are
presented in Table 2 together with the corresponding Spearman
correlation coefficients. This implies, for example, that the higher
the inequality of income, the lower R0. Results of the random for-
est analysis of R0 are summarized in Table 3 where the ten highest
scoring factors for both importance measures are given. Comparing
the results of both analyses, we observe that factors related to the
distribution of wealth (inequality of income and poverty rate), vac-
cination coverage in infants (e.g. mumps  vaccination coverage) and
child care attendance (e.g. the percentage of infants that receive no
formal care) seem to be associated with the transmissibility of VZV.

Discussion

In this article, we  investigated the transmissibility of VZV in 12
European countries using serological survey data and social contact
data. We  contrasted the social contact hypothesis, which is cur-
rently the most used approach in the literature, against an approach
reflecting differences in characteristics related to susceptibility
and infectivity. Furthermore, we  introduced the effective repro-
duction number as a model eligibility criterion and we identified
which country-specific socio-demographic factors are important

in explaining differences in transmission potential between Euro-
pean countries using two non-parametric approaches: the maximal
information coefficient and random forest.
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Fig. 2. Profile likelihood estimates of R0 (left axis) and R (right axis) as a function of �2, the parameter related to infectiousness, for Finland and Luxembourg.

Fig. 3. Profile likelihood estimates of R (dots) with interpolated 95% bootstrap percentile confidence intervals (dashed lines) as a function of �2, the parameter related to
infectiousness, for Finland and Luxembourg. The vertical dotted line indicates the value of �2 for which the upper confidence limit of R equals 1 (horizontal dotted line).

Table 3
Ten best scoring factors obtained by a random forest analysis of R0, estimated from the final selected model for each country, and corresponding Spearman correlation
coefficients �S .

% increase in MSE �S Increase in node purity �S

1. Inequality of income distribution −0.64 Inequality of income distribution −0.64
2.  Poverty rate −0.73 Poverty rate −0.73
3.  Total health expenditure 0.51 Average population density 0.33
4.  % 0–2 that receive no formal care −0.29 % 0–2 that receive no formal care −0.29
5.  % infants vaccinated against mumps  0.64 Unmet medical needs −0.31
6.  % population aged 0–14 −0.22 Total health expenditure 0.51
7.  % employed women (min. 1 child 0–5) 0.38 Enrollment rates children 0–2 0.15
8.  Average square meter living area pp 0.42 Average square meter living area pp 0.42
9.  Average population density 0.33 % 65+ vaccinated against influenza −0.19
10  Enrollment rates children 0–2 0.15 % infants vaccinated against mumps 0.64
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Figs. 4 and 5. Observed age-specific VZV seroprevalence (dots) and the profile estimated from the final model selected for each country (solid line). The corresponding force
of  infection estimates are displayed by the lower solid line.
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Figs. 4 and 5. (Continued).



2 Epidem

V
c
a
e
T
a
m
u
H
s
i
d
d
e

E
d
s
m
a
m
o
u
R
f
e
i
h
S

o
t
v
p
i
b
a
c
t
fi
v
e
h
e

w
m
F
t
s
o
e
i
m
s
c
i
i
w
t
p
M
n
b
o

2 E. Santermans et al. / 

The social contact hypothesis provided a good fit to the
ZV seroprevalence for only 2 out of 12 countries. The other
ountries benefited from an extended approach by assuming an
ge-dependent proportionality factor, which supports and extends
arlier findings of Goeyvaerts et al. (2010) for VZV in Belgium.
his may  reflect the additional importance of age-specific char-
cteristics related to susceptibility and infectiousness, such as the
ean infectious period. Furthermore, the social contact data are

sed as proxies for events by which an infection is transmitted.
ence, the proportionality factor can also be considered as an age-

pecific adjustment factor relating the true contact rates underlying
nfection to the social contact proxies. Alternatively, social data are
ifficult to collect from young children, with parents filling out the
iary on their behalf. It may  well be that they consistently under-
stimate the true number of contacts that young children make.

Our analysis directly improves upon the original analysis of the
SEN2 data on VZV by Nardone et al. (2007) who  used the tra-
itional Anderson and May  approach by imposing a 3-parameter
tructure on the WAIFW matrix (Anderson and May, 1991). Our
ethod of using R as a model eligibility criterion extends the

pproach of Goeyvaerts et al. (2010) by addressing the indeter-
inacy of the infectivity parameter. Our results complement those

f Melegaro et al. (2011) who analyzed part of the VZV serology
sing the social contact hypothesis only. Comparing the estimated
0 values, we notice that our results in general somewhat differ
rom the estimates obtained by Nardone et al. (2007) and Melegaro
t al. (2011). This is not unexpected, since there are differences
n methodology and it is known that transmission assumptions
ave a large impact on the estimation of R0. See Table 4 in the
upplementary Material for a comparative overview of the results.

The results in Fig. 1 indicate that there are substantial epidemi-
logical differences between European countries. This is important
o consider when parametrizing mathematical models. Childhood
accination coverage (for different vaccines), child care attendance,
opulation density and average living area per person were pos-

tively associated with R0, whereas income inequality, poverty,
reast feeding, and the proportion of children under 14 years of
ge showed negative associations. While it seems intuitively logi-
al that greater child care attendance and population density lead
o more rapid spread of varicella, other associations are more dif-
cult to interpret. Less poverty and income inequality, and higher
accination coverages may  be associated with more affluent soci-
ties in which women are more likely to be employed and children
ave more universal access to childcare and kindergarten from an
arly age on, facilitating the spread of VZV.

In our analyses, we relied on a few assumptions. First of all,
e assumed that the serological status of an individual is a direct
easure of his/her current immunity against VZV (Plotkin, 2010).

urther, we considered physical contacts lasting longer than 15 min
o be a good proxy for potential varicella transmission events as
hown by Goeyvaerts et al. (2010) for Belgium. Finally, our use
f R as a model eligibility criterion relied on the assumption of
ndemic equilibrium. This assumption is supported by the similar-
ty in the results obtained for the two samples of Italy. In addition

ost surveys span two seasons, which partly captures any sea-
onal fluctuation. However, there are many factors that can cause
hanges in the age distribution of VZV cases over time, e.g. changes
n demography, medical practice, socio-cultural factors etc. Look-
ng at this more rigorously requires an additional in-depth analysis

hich is the topic of future research. However, to get a sense of
he way R̂ changes when demographic or endemic equilibrium are
erturbed, we present a sensitivity analysis in the Supplementary

aterial. We  observe that R̂  increases when a percentage of the

ewborns would have been vaccinated and when the number of
irths would be increasing. It decreases when the annual number
f births would decrease.
ics 11 (2015) 14–23

Since direct inference for the infectivity parameter is hindered
by the lack of information regarding infectiousness in the serolog-
ical data, we estimated this parameter via indirect inference using
the effective reproduction number. This indeterminacy illustrates
that the use of social contact data does not completely resolve
the identifiability issues encountered when estimating mixing pat-
terns from serological data. Hence, further research is necessary to
obtain additional knowledge about the age-specific susceptibility
and infectivity profiles in order to inform the proportionality factor
in this social contact approach.
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