
The Journal of Nutrition

Nutrition and Disease

Elevated Hepcidin Is Part of a Complex Relation
That Links Mortality with Iron Homeostasis and
Anemia inMen andWomenwith HIV Infection1–3

Peter A Minchella,4 Andrew E Armitage,5 Bakary Darboe,6 Momodou W Jallow,6 Hal Drakesmith,5

Assan Jaye,6 Andrew M Prentice,7 and Joann M McDermid4*

4Department of Nutritional Sciences, Cornell University, Ithaca, NY; 5Weatherall Institute of Molecular Medicine, John Radcliffe Hospital,

University of Oxford, Oxford, United Kingdom; 6Medical Research Council Unit (UK), Fajara, The Gambia; 7International Nutrition Group,

Department of Nutrition and Public Health Intervention Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom; and
8Division of Infectious Diseases & International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA

Abstract

Background: Early andchronic inflammation is ahallmark ofHIV infection, and inflammation is known to increasehepcidin expression.

Consequently, hepcidin may be a key determinant of the iron homeostasis and anemia associated with poorer HIV prognoses.

Objective: The objective of this study was to understand how hepcidin is related to anemia, iron homeostasis, and

inflammation at HIV diagnosis and to investigate associations between hepcidin and all-cause mortality in HIV infection.

Methods: In a retrospective cohort, baseline plasma hepcidin wasmeasured by competitive enzyme immunoassaywithin

3 mo of HIV diagnosis in 196 antiretroviral-naive Gambians. Iron homeostasis [hemoglobin, plasma transferrin, ferritin,

iron, soluble transferrin receptor (sTfR)] and inflammation [a1-antichymotrypsin (ACT)] from the same plasma sample were

available, as were absolute CD4 cell counts, age, gender, body mass index (BMI), and HIV type.

Results: Anemia was common across the spectrum of immunosuppression [CD4 cell counts (prevalence of anemia):

>500 cells/mL (68%), 200–500 cells/mL (73%), and <200 cells/mL (89%); P = 0.032] and in men (81%) and women (76%).

Increasing hepcidin was associated with iron homeostasis biomarkers (higher ferritin and lower transferrin, hemoglobin,

and sTfR), inflammation (higher ACT), and key health indicators (lower CD4 or BMI, advancing age, and male gender; P <

0.001 except for hemoglobin, P = 0.021). Elevated hepcidin was associated with greater all-cause mortality in a dose-

dependent manner [intermediate vs. lowest tertile: unadjusted HR (95% CI), 1.95 (1.22, 3.10); upper vs. lowest tertile:

3.02 (1.91, 4.78)]. Principal components analysis identified 2 patterns composed of hepcidin-ferritin-transferrin, with or

without ACT, and iron-sTfR-hemoglobin that may distinguish inflammation and erythropoiesis iron functions.

Conclusions: Elevated hepcidin is independently associated with greater mortality in men and womenwith HIV infection,

and hepcidin is also part of a complex relation linking iron homeostasis, anemia, and HIV. Understanding the mechanisms

and role of hepcidin modulation may further guide evidence-based interventions needed to counter detrimental iron

homeostasis and anemia in HIV infection. J Nutr 2015;145:1194–201.

Keywords: Africa, cohort, ferritin, hemoglobin, HIV-2, inflammation, nutrition, survival, transferrin receptor, transferrin

Introduction

Anemia and abnormal iron distribution are associated with
increased morbidity and mortality in HIV infection (1–5).

Nutritional causes of anemia include iron, folate, and vitamin
B-12 deficiencies, which are considerable in regions affected by
poverty (6, 7). People living in these regions are frequently
burdened by infectious diseases, and the associated chronic
immune activation and inflammation they experience fuel
anemia of inflammation (AI)9 (8). Because iron homeostasis is
affected by immunologic, infectious, clinical, and nutritional
contributors, it acts as a barometer of overall health status.
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Early and chronic immune activation and inflammation are
hallmarks ofHIV infection. Under inflammatory conditions, dietary
iron is blocked from enterocyte release, whereas circulating iron is
redistributed into cellular storage locations that include macro-
phages. This affects iron delivery needed for erythropoiesis, and
additional HIV-associated consequences, including myelosuppres-
sion, impaired erythropoietin production, and opportunistic infec-
tions, further contribute to anemia in HIV infection (9, 10). These
processes may explain why anemia is such a common hemato-
logic disorder before antiretroviral therapy (ART) is initiated (11).
Although ARTreduces the prevalence of anemia for many people, a
considerable proportion experience unresolved anemia or develop
anemia after ART initiation (Supplemental Table 1).

Hepcidin is a protein integrally involved in iron homeostasis
and anemia through its interaction with the only known vertebrate
cellular iron exporter, ferroportin [reviewed in (12)]. Inflammation
or excess iron stores lead to upregulation of hepcidin expression
and synthesis, whereas erythropoiesis and hypoxia are negative
regulators (13). Hepcidin inhibits iron efflux from duodenal
enterocytes and increases intracellular iron retention in iron-
recycling macrophages. Recent reports indicate that hepcidin may
influence multiple HIVoutcomes because higher hepcidin concen-
trationswere associatedwith increased in vitroHIV-1 transcription
(14), as well as with greater immunosuppression and tubercu-
losis among HIV-positive Indonesians (15). These outcomes were
previously linked with other iron-related biomarkers (16–18),
suggesting that hepcidin is just one contributor to the complex iron
biology in HIV infection. Despite the importance of hepcidin and
the iron regulation associated with anemia, and the link between
hepcidin and inflammation that was shown other clinical condi-
tions (19–21), the role of hepcidin in the context of HIV infection
andHIV-related anemia remains undetermined. Consequently, this
study was designed to characterize hepcidin concentrations at HIV
diagnosis in relation to anemia, iron homeostasis, and inflamma-
tion and to investigate hepcidin as an independent risk factor for
mortality in HIV infection in a region where both infectious and
nutritional contributors are common.

Methods

Study setting. Participants were recruited from a larger prospective

cohort study (22) and a substudy (16, 23) in HIV-positive Gambians.
Eligibility criteria included age $18 y and an existing baseline plasma

aliquot archived within 3 mo of first HIV diagnosis. Cohort participants

were provided free clinical care at the Medical Research Council Unit in

The Gambia in accordance with national HIV guidelines in effect at the
time of participation, including cotrimoxazole prophylaxis, measurement

of immunosuppression according to absolute CD4 cell counts (FACScan;

Becton-Dickinson), and symptom management. Viral load analysis was

unavailable for routinemonitoring at the time of sample collection. Ethical
approval for this study was granted by the Joint Gambian Government/

Medical ResearchCouncil Ethical ReviewCommittee, The London School

of Hygiene and Tropical Medicine, and Cornell University.

Follow-up and all-cause mortality ascertainment. Participants (n =

196) enrolled between 5 August 1992 and 22 August 2001, with follow-up

observation continuing until 1 June 2002. All-cause mortality was
ascertained at study clinic visits scheduled every 3 mo. Participants who

missed appointments were considered lost to follow-up if their mortality

status could not be determined by medical records or at home visits.

Participants were censored on the last date theywere knownwith certainty
to be alive, defined as the last date of clinic attendance or the last date seen

by a fieldworker or the end of the study observation period. As is common

in this region of Africa, cause-specific mortality was unavailable because

autopsies, including verbal autopsies (24), were not routine.

Hepcidin, anemia, iron homeostasis, and inflammation. All assays
were performed by using a single heparinized plasma aliquot that was

stored at 280�C. This single plasma sample was thawed and then
subdivided into multiple microvials and refrozen at 280�C. A single

microvial was obtained from the freezer and thawed for a second time

until batch processing of each analyte. The period between refreezing

and hepcidin analysis was longer than for other analytes. Although the
long-term stability of hepcidin is unknown due to the relatively recent

commercial availability of this assay, the presence of 4 disulfide bonds in

the folded structure suggests that the peptide should maintain long-term

stability (25). Assay quality controls provided by the assay manufacturer
were used and performed within manufacturer-defined limits, and

pooled plasma obtained from a local blood bank was used to assess

quality assurance. Hepcidin concentrations were measured in duplicate
by using a competitive enzyme immunoassay (Bachem) according to the

manufacturer�s protocol (26, 27). Samples were diluted on the basis of

known ferritin concentrations in supplied standard diluent (peptide-

cleared human serum) and analyzed by using a 9-point, 2-fold serial
dilution (maximum concentration: 25 mg/L) standard curve. Hepcidin

concentrations were interpolated from 4-parameter logistic standard

curves generated by Readerfit (www.readerfit.com). The lower limit of

detection of 0.40 mg/L was interpolated at 3 SDs from the all-plate mean
(e.g., wells containing diluent in lieu of hepcidin standard or sample).

The 11 undiluted samples with limits of detection <0.40 mg/L were

imputed with a value of limit of detection/2. Samples with concentra-
tions outside the linear region of the curve, or those with an intra-assay

CV >15%, were reanalyzed with the use of appropriate dilutions.

Soluble transferrin receptor (sTfR; R&D Systems) and ferritin

(Immuno-biological Laboratories) were measured by ELISA, and limit of
detections were <3 and >80 nmol/L and <2.5 and >1000mg/L, respectively;

samples with values outside of these ranges were imputed with the limit

of detection value. Plasma iron was assessed by using an endpoint assay

(ABX Diagnostics) and transferrin was assessed by turbidimetry (ABX
Diagnostics). Hemoglobin concentrations were measured with a hema-

tology analyzer by using routine procedures in the clinical laboratory

(Coulter MD II; Coulter Corporation) and values obtained from study

databases. a1-Antichymotrypsin (ACT), as an indicator of inflammation,
was measured by using a nephelometric assay (DakoCytomation).

Statistical analysis. STATA/MP 11.1 (StataCorp) was used for statis-
tical analyses. Values in the text are presented as means 6 SDs or as

medians (IQRs); P values <0.05 were considered significant for statistical

tests. Data transformation included categorization of hemoglobin,

ferritin, sTfR, and iron according to clinical reference ranges. Inspection
of raw data suggested that the use of only the clinical reference range

would obscure meaningful transferrin associations, and transferrin was

reported according to both clinical reference limits and tertiles. In the
absence of an established clinical reference range for hepcidin, hepcidin

was classified into tertiles. ACT is primarily a research analyte, and

a clinical reference range was not provided by the manufacturer or

recommended by others (28); however, for this statistical analysis, a
frequently cited cutoff range was used (29).

Scatterplots and boxplots were used to graphically present bivariate

associations between hepcidin and hemoglobin, iron homeostasis, and

inflammation biomarkers, as well as the a priori–considered potential
covariates (BMI, age, absolute CD4 cell count, gender, HIV type).

Pearson correlation coefficients, Wilcoxon rank sum, ANOVA, Student�s
t test, Spearman rank correlation coefficient, or chi-square test were used
to test these associations. A Kaplan-Meier survival curve was used to

graphically represent the probability of survival from HIV diagnosis

according to hepcidin tertiles and compared by using the log-rank test.

Univariable and multivariable Cox regression models with all-cause
mortality as the main outcome were analyzed.

Principal components analysis (PCA) was chosen as a variable

reduction technique given the potential redundancy (e.g., correlation) in

the measured iron homeostasis (transferrin, ferritin, iron, hemoglobin,
sTfR) and inflammatory (ACT) variables. Essentially, the goal of PCA

was to reduce the number of observed variables to allow concentration

on only those that principally contribute to variation in a meaningful

way. This was done by statistically identifying groups of variables that
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‘‘travel together’’ in components (e.g., patterns), while disregarding those

variables that only contribute in a negligible way. Identified patterns

represent distinct groups that are uncorrelated from other patterns.
Decisions regarding which components were meaningful to retain was

based on the a priori criterion of eigenvalue-1 (patterns with eigenvalues

>1 were considered to contribute principally).

PCA was conducted with iron and inflammatory variables categorized
in tertiles and also as continuous variables; because similar results were

obtained, only tertile models are reported. After identifying principal

patterns of iron and inflammation groupings, principal component (PC)

scores were calculated for each individual. These scores represent a linear
algebraic equation accounting for the weighting of each observed variable.

PC scores were modeled as a continuous variable and analyzed in

unadjusted and adjusted Cox regression. An iron homeostasis index was
also calculated for each participant on the basis of the PCA-identified

pattern groupings. The iron homeostasis index conceptually represents

the magnitude of iron deviation and combined impact on mortality. It

was calculated by using the observed concentrations measured for each
iron and inflammatory variables classified into tertiles. A value of 1 was

assigned to the lowest HR associated with each biomarker. In these

data, the lowest HRs were associated with the lowest tertile of hepcidin,

ferritin, sTfR, and ACT and the highest tertiles of transferrin, iron, and
hemoglobin. All intermediate tertiles were assigned a value of 2; and all

remaining tertiles were assigned a value of 3 (e.g., those associated with

the greatest HRs). Values were summed for each individual, providing
an overall iron homeostasis index specific for each individual and

each PCA-identified pattern. The iron homeostasis index was modeled

as a single continuous variable and analyzed by using unadjusted and

adjusted Cox regression.

Results

Subjects. The characteristics of the 196 cohort participants are
summarized in Table 1. During the 10-y cohort follow-up period,
64%of participants died (n = 125), 19% (n = 37)were censored at
the last date with known certainty to be alive, and 17% (n = 34)
were alive at study closure. Participants censored before death or
study closure were more likely to have greater absolute CD4 cell
counts such as commonly observed in resource-restricted
regions without universal ART access (31) and, in this study,
were also more likely to be younger and female.

Hepcidin and association with iron homeostasis, anemia,
and inflammation in HIV. Hepcidin was positively correlated
with ferritin and ACTand inversely correlated with hemoglobin,
transferrin, and sTfR but not plasma iron (Supplemental Figure
1). Higher hepcidin concentrations were correlated with lower
absolute CD4 cell counts or BMI and advancing age, but there
was no apparent association with HIV type (Supplemental
Figure 2). Although men [52.4 (16.7, 96.9) mg/L] had higher
hepcidin concentrations than women [11.9 (2.4, 58.6)mg/L] (P <
0.001), men also experienced greater immunosuppression at
HIV diagnosis [CD4 cell count in men: 191 (136, 255) cells/mL;
CD4 cell count in women: 292 (218, 399) cells/mL; P < 0.001].

Table 1 summarizes participant characteristics according to
anemia classification. Anemia was associated with a lower mean
BMI and more advanced immunosuppression, as expected, but

TABLE 1 Characteristics of cohort participants at HIV diagnosis1

Overall (n = 196) Anemia (n = 110) No anemia (n = 30) P2

Cohort person-years 1.8 (0.6, 4.1) 1.2 (0.5, 3.3) 4.1 (1.7, 7.9) ,0.001

Age, y 34.3 6 9.8 33.0 6 8.8 34.6 6 10.1 0.42

Female, % 55 53 60 0.48

HIV status, % 0.65

HIV-1 60 65 60

HIV-2 39 35 40

HIV-dual3 1 0 0

Absolute CD4, cells/μL (n = 182) 250 (92, 503) 233 (77, 498) 408 (243, 699) 0.003

BMI, kg/m2 (n = 178) 19.7 6 4.0 19.2 6 3.5 21.6 6 5.1 0.005

BMI ,18.5 kg/m2, % 37 33 33

a1-Antichymotrypsin, g/L 0.41 (0.31, 0.58) 0.43 (0.39, 0.46) 0.32 (0.28, 0.36) 0.003

Hepcidin, μg/L 22.1 (3.3, 85.9) 32.2 (2.2, 88.7) 6.8 (2.1, 53.3) 0.06

Minimum/maximum 0.2/402.2 0.2/598.4 0.2/235.1

Ferritin, μg/L 161 (37, 534) 158 (36, 643) 90 (28,191) 0.09

Minimum/maximum 2.5/1001 2.5/1001 2.5/1001

Transferrin, g/L 1.80 6 0.64 1.75 6 0.67 2.00 6 0.50 0.06

Minimum/maximum 0.21/3.15 0.21/3.36 1.26/3.15

Iron, μmol/L 9.0 (6.4, 14.4) 8.5 (6.4, 12.6) 15.0 (10.0, 18.8) ,0.001

Minimum/maximum 1.1/41.8 3.0/41.8 3.8/31.7

sTfR, nmol/L 24.4 (17.0, 35.5) 25.3 (21.5, 28.2) 19.8 (16.6, 23.0) 0.02

Minimum/maximum 5.7/81.0 5.7/81.0 6.3/62.1

sTfR/log10 ferritin 11.1 (7.1, 19.0) 11.3 (7.3, 18.7) 10.4 (6.5, 24.1) 0.55

Minimum/maximum 2.0/203.5 2.0/203.5 2.4/102.9

Hemoglobin, g/L (n = 140) 10.5 6 2.3 9.6 6 1.7 13.8 6 1.1 ,0.001

Minimum/maximum 5.3/16.1 5.3/12.9 12/16.1

1 For normally distributed continuous variables, values are presented as means 6 SDs; nonnormally distributed continuous variables are

presented as medians (IQRs) and lower/upper minimum/maximum limits; categorical variables are presented as frequencies (%). All assays

were performed with the use of plasma. Anemia was defined according to the WHO definition: men, hemoglobin ,13 g/dL; women,

hemoglobin ,12 g/dL (30). Hemoglobin values were available for 140 participants; therefore, the sum of participants with ‘‘anemia’’ and

‘‘no anemia’’ was equal to 140. sTfR, soluble transferrin receptor.
2 P values were calculated by comparing group means (Student�s t test for normal distribution, continuous, and Wilcoxon�s rank-sum test

for nonnormal distribution, continuous) and or frequencies (chi-square test) between anemic and nonanemic groups.
3 Given the small number of HIV dual diagnoses, HIV-2 was combined with the HIV-1 group for subsequent analyses.
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it was also common across the spectrum of immunosuppression.
Prevalences of anemia were 81% in men, 76% in women, and
68%, 73%, and 89% in participants with CD4 cell counts of
>500, 200–500, and <200 cells/mL, respectively. Anemia was
associated with a greater degree of inflammation as indicated
by greater ACT concentrations (anemia vs. no anemia: 0.43 vs.
0.32 g/L; P = 0.003), as well as an inflammation-induced iron
redistribution profile typified by comparatively greater hepcidin
and ferritin and lower transferrin and iron concentrations (P <
0.09). Although sTfR concentrations were higher in the anemic
group, suggesting the presence of iron deficiency or coexisting
iron deficiency plus AI, the sTfR:log10 ferritin ratio was not
significantly different between those with or without anemia.

Hepcidin and mortality in HIV. Figure 1 shows a dose-
response relation between greater hepcidin at HIV diagnosis and
increasing probability of all-cause mortality. This relation is
further supported in unadjusted Cox regression analysis;
however, the adjusted association was attenuated and not
statistically significant (Table 2). Like hepcidin, all other iron
homeostasis and inflammatory associations were attenuated in
regression models adjusting for HIV type, age, gender, BMI, and
immunosuppression at HIV diagnosis, with or without addi-
tional adjustment for ACT. Anemia, very elevated ferritin, and
the lowest transferrin tertile remained statistically significant
in adjusted analyses.

PCA of iron homeostasis and inflammation in HIV. With
the use of PCA (Table 3), 2 unique patterns were identified that
accounted for considerable cumulative variance (68%) in a PCA
model with all iron homeostasis variables (PCA1). The first
pattern (PCA1.1) was greatly influenced by the trio of hepcidin-
ferritin-transferrin, which together explained 43% of the total
variance. The second pattern (PCA1.2) was primarily influenced
by plasma iron-sTfR-hemoglobin, which explained 25% of
the variance. Notably, the identified patterns were driven by
nonoverlapping PCs (e.g., the observed variables did not
contribute in a meaningful way to both patterns). In a second
model (PCA2) that included all iron homeostasis variables plus
ACT, similar grouping patterns were identified. In this model,
which accounted for 66% of the variance, the first pattern
(PCA2.1) explaining 45% of the variance was dominated by the

quartet of hepcidin-ferritin-transferrin-ACT, and the second
pattern (PCA2.2) explaining 21% of the variance was again
primarily influenced by plasma iron-sTfR-hemoglobin. In both
PCA models, the PC eigenvectors (e.g., the relative weighting
attributed to each of the variables within a specified pattern)
between hepcidin, ferritin, and transferrin with or without ACT
were of comparative magnitude, whereas iron was compara-
tively more influential than sTfR or hemoglobin.

Mortality associations that used predicted PC scores, as well
as an iron homeostasis index based on PCA-identified patterns,
are presented in Table 3. PC scores derived from weightings
assigned to variables in patterns PCA1.1 (hepcidin-ferritin-
transferrin) or PCA2.2 (hepcidin-ferritin-transferrin-ACT) were
significantly associated with mortality in unadjusted and ad-
justed analysis, whereas the PC scores derived from variables that
grouped together in patterns PCA1.2 or PCA2.2 (both included
iron-sTfR-hemoglobin) were not. Analysis of the iron homeo-
stasis index showed that as the degree of iron deviation typified
by the combination of elevated hepcidin, elevated ferritin, and
lower transferrin (PCA1.1) or elevated hepcidin, elevated ferritin,
lower transferrin, and elevated ACT (PCA2.1) increased, so did
the mortality HR in unadjusted and adjusted models, although
adjusted associations were attenuated. Like the PC scores model-
ing, the iron homeostasis index reflecting lower iron, higher sTfR,
and lower hemoglobin was associated with increased likelihood of
mortality. In both the PC score and iron homeostasis indexmodels,
the associations with hepcidin, ferritin, and transferrin, with or
without ACT, were comparatively stronger than for iron, sTfR,
and hemoglobin.

Discussion

This study characterized hepcidin at the time of HIV diagnosis in
relation to iron homeostasis, inflammation, and all-cause mor-
tality in men and women with HIV infection. The findings show
that hepcidin is integrally linked with the complex iron distribu-
tion that is associated with inflammation in HIV infection, a key
cause of AI. This study also provides the first indication that
elevated hepcidin is a risk factor associated with mortality in HIV
infection by using unadjusted regression, although it is unclear
whether the mechanism is mediated through its association with
negative causes and/or consequences of inflammation, malad-
aptive iron distribution, or a reason yet to be identified.

Although data regarding hepcidin in HIV infection remain
limited, the findings from this study support those of an
Indonesian study that reported that serum hepcidin was posi-
tively correlated with ferritin and inversely correlated with
hemoglobin and absolute CD4 cell counts (15). Wisaksana et al.
(15) also observed that elevated hepcidin at study entry was
associated with an increased probability of starting tuberculosis
treatment within 1–2 mo. Increases in macrophage iron stored
in ferritin due to elevated hepcidin expression in an already
immunocompromised host may alter the host-pathogen compe-
tition for iron and increase susceptibility to macrophage-tropic
pathogens such as Mycobacterium tuberculosis. Although
increased susceptibility to opportunistic infections such as tuber-
culosis may explain in part the poorer mortality prognosis
associated with elevated hepcidin in the current study (35), the
unavailability of cause-specific mortality data prevents testing
this hypothesis with these data. Additional possible mechanisms
linking elevated hepcidin and increased mortality are presented
in Figure 2. The inverse association between hepcidin and
absolute CD4 cells observed in this study and others (15)

FIGURE 1 Kaplan-Meier survival curves according to hepcidin

tertiles in men and women at HIV diagnosis. Lowest hepcidin tertile:

#7.8 mg/L (n = 65; 33%); intermediate tertile: .7.8 to ,57.6 mg/L

(n = 66; 33%); highest tertile: $57.6 mg/L (n = 65; 33%).
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suggests that elevated hepcidin may be attributable to advanced
disease stage and corresponding elevated levels of inflammation.
Although increased hepcidin expression may be a consequence
of inflammation, higher systemic hepcidin and the resulting
transfer of iron from the bloodstream into macrophages may
also contribute to HIV progression via enhanced HIV propaga-
tion and destruction of CD4 cells. In an in vitro study, iron
export by ferroportin in the absence of hepcidin was associated
with decreased HIV-1 transcription (14). Adding hepcidin
counteracted the iron efflux, leading to increased intracellular
iron and altered HIV production in CD4 cells and macrophages.

Hepcidin expression is regulated by inflammation (upregu-
lation), erythropoiesis, and hypoxia (downregulation) and

hepcidin concentrations are correlated with iron homeostasis
biomarkers (e.g., ferritin, transferrin), although the relative
hierarchy and biological importance of each under normal and
clinical circumstances remain to be established (26, 37–39). By
using statistical techniques designed to reduce redundancy of
multiple correlated factors, further insight into the iron and
infection relation is possible. In this study, PCA revealed 2
distinct patterns, each dominated by a different group of
variables. Given the specific variables statistically assigned to
each pattern, it is possible to conceptually speculate that the first
pattern is associated with inflammation (hepcidin-ferritin-
transferrin, with or without ACT) and the second with eryth-
ropoiesis (iron-sTfR-hemoglobin). Although both patterns may

TABLE 2 Cox regression models of hepcidin, iron homeostasis, and inflammation in men and women at HIV diagnosis and
associations with all-cause mortality1

HR (95% CI)3

Plasma biomarker and tertile at HIV diagnosis n (%) Clinical cutoff or tertile limits2 Univariate model Adjusted model4 Adjusted model plus ACT5

Hepcidin, μg/L

Lowest 65 (33) #7.8 Reference Reference Reference

Intermediate 66 (33) .7.8 to ,57.6 1.95 (1.22, 3.10) 0.96 (0.56, 1.63) 0.97 (0.56, 1.67)

Highest 65 (33) $57.6 3.02 (1.91, 4.78) 1.07 (0.61, 1.87) 1.11 (0.59, 2.08)

Ferritin, μg/L

Lower than normal 23 (12) ,12 0.62 (0.31, 1.21) 0.61 (0.29, 1.25) 0.58 (0.28, 1.21)

Normal 98 (50) —6 Reference Reference Reference

Elevated 45 (23) —6 2.10 (1.37, 3.23) 1.57 (0.97, 2.51) 1.90 (1.14, 3.18)

Very elevated 30 (15) .1000 3.91 (2.44, 6.28) 2.09 (1.19, 3.67) 2.78 (1.49, 5.17)

Transferrin, g/L

Highest 65 (33) $1.89 Reference Reference Reference

Intermediate 66 (33) .1.47 to ,1.89 2.42 (1.37, 4.24) 0.78 (0.39, 1.57) 0.79 (0.40, 1.58)

Lowest 65 (33) #1.47 4.36 (2.85, 6.66) 1.92 (1.12, 3.31) 2.13 (1.21, 3.75)

Lower than normal 133 (68) ,2.0 2.81 (1.81, 4.37) 1.02 (0.57, 1.84) 1.03 (0.57, 1.88)

Normal7 63 (32) 2.0–3.6 Reference Reference Reference

Iron, μmol/L

Lower than normal 92 (47) ,20 1.24 (0.87, 1.77) 1.02 (0.68, 1.53) 1.02 (0.68, 1.54)

Normal8 100 (51) 20–55 Reference Reference (n = 168) Reference (n = 168)

Elevated 4 (2) .55 0.93 (0.22, 3.82) 0.91 (0.60, 1.37) 0.78 (0.18, 3.27)

sTfR, nmol/L

Lower than normal 6 (4) ,10.6 0.87 (0.35, 2.16) 0.52 (0.2, 1.35) 0.52 (0.20, 1.35)

Normal9 123 (63) 10.6–29.99 Reference Reference Reference

Elevated 67 (34) .29.9 1.05 (0.73, 1.53) 0.91 (0.60, 1.38) 0.90 (0.58, 1.38)

Hemoglobin, g/L

Anemic 111 (79) —10 3.26 (1.75, 6.07) 2.75 (1.31, 5.76) 2.72 (1.29, 5.72)

Nonanemic 29 (21) —10 Reference Reference Reference

ACT, g/L

Lower than normal 2 (1) ,0.2 0.74 (0.10, 5.33) 0.95 (0.12, 7.38) NA

Normal11 151 (77) 0.2–0.6 Reference Reference NA

Elevated 43 (22) .0.6 1.89 (1.27, 2.80) 1.00 (0.60, 1.66) NA

1 All assays were performed using plasma. Unadjusted model sample size, n = 196, except for hemoglobin models (n = 140); adjusted models, n = 168, except for hemoglobin

models (n = 119) due to missing data. ACT, a1-antichymotrypsin; NA, not applicable; sTfR, soluble transferrin receptor.
2 There is no established clinical reference range for hepcidin, and distribution of raw transferrin data indicated tertile classification was informative and therefore both tertiles and

clinical cutoffs were included for transferrin.
3 The category with the lowest risk of mortality served as the reference category.
4 Adjusted for HIV type (HIV-1 plus HIV-dual or HIV-2), age, gender, BMI, and absolute CD4 cell count (.500, 200–500, or ,200 cells/mL) at HIV diagnosis. Gender was not

included in regression models in which gender was used to establish clinical cutoffs (anemia, ferritin); age was not included when age was used to classify ferritin categories.
5 Adjusted for ACT (continuous) plus all variables in footnote 4.
6 Ferritin normal reference ranges: age 18–44 y: men, 12–200 mg/L; women, 12–150 mg/L; age $45 y: men, 12–300 mg/L; women, 12 to 200 mg/L (32).
7 Transferrin normal reference range: 2.0–3.6 g/L (33); no participants had above-normal transferrin concentrations.
8 Iron normal reference range: 20–55 mmol/L (33).
9 sTfR normal reference range: 10.6–29.9 nmol/L for living at low altitude and black (34).
10 Anemia: hemoglobin ,13 g/L for men and ,12 g/L for women (30).
11 ACT normal reference range: 0.2–0.6 g/L (33). A normal reference range was not provided by the assay manufacturer, and given assay method sensitivity and inconsistencies

regarding the existence of a ‘‘normal’’ reference range for ACT, the normal limits should be interpreted with these considerations (28).
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be influencing aspects of anemia and iron homeostasis, the
regression analyses suggest that the inflammation-associated
iron homeostasis pattern may be of greater relative importance
in HIV. An understanding of the possible hierarchical nature of
factors mediating hepcidin expression has not been elucidated
for any infection. Early observations by Jonker et al. (38) suggest
that they are complex. In a study in severely anemic Malawian
children living in a region with high malaria and generalized
infectious disease burdens, low hepcidin concentrations were
observed. Because infection-induced inflammation was likely
contributing to increased hepcidin expression, the very low
hepcidin concentrations seem counterintuitive. The authors
speculated that under conditions of severe anemia-associated
hypoxia and resulting increased erythropoiesis, infection-
associated inflammatory signals that usually upregulate hepcidin
may be overridden or downregulated.

At this time, guidelines for anemia intervention in global
settings include screening for malaria, treating helminth
infection, and providing iron/folate supplements; however,
self-treatment with the use of iron supplementation is common
(40). This study provides support that elevated hepcidin is
associated with anemia, and given the link with inflammation,
screening to distinguish the type of anemia (e.g., AI and/or
iron-deficiency anemia) would help to select the most appro-
priate anemia intervention. The evaluation of hemoglobin
alone can determine neither the likely cause of anemia nor the
best timing of interventions. Hepcidin concentrations have
been shown to predict nonresponsiveness to oral iron therapy
(41); and in combination with other iron biomarkers such as
ferritin and/or transferrin, hepcidin may guide in whom and

when iron-based anemia interventions may be ineffective (27,
42, 43). Many hepcidin interventions are in development,
including hepcidin antagonists that mediate effects through
inhibiting hepcidin production (e.g., anti-inflammatory agents
such as anti–IL-6/IL-6R, anti–TNF-a), neutralizing hepcidin
peptides (e.g., anti-calins, anti-hepcidin monoclonal anti-
bodies), or interfering with hepcidin-ferroportin binding
(e.g., thiol modifiers, anti-ferroportin monoclonal antibodies)
(44, 45). Although lowering hepcidin may be of benefit for iron
homeostasis related to anemia, it could also negatively alter the
host-pathogen competition for iron (38). Iron supplementa-
tion during active infection may overcome the universal iron
sequestration mechanism mediated by the innate immune
response. If this occurs while simultaneously intervening to
lower hepcidin concentrations, a flood of iron dumped into the
periphery could negatively alter the host-pathogen competition
for iron (46), making infection control a prerequisite to iron-
based anemia interventions.

The role of ART in mitigating hepcidin and iron homeostasis
mechanisms remains to be elucidated (Figure 2), and this study
is limited by the use of biological archives collected before
widespread ART usage. Although generalizability is limited to
similar populations, the study findings have broad relevance
because many people in developing countries present for HIV
diagnosis with baseline characteristics similar to those in this
study, others are diagnosed and lost to follow-up before ART is
initiated, and some drop out of medical follow-up after ART
initiation. For these groups, and as a reference for future studies
seeking to identify and treat the subgroup of ART-treated
individuals with residual or incident anemia (Supplemental

TABLE 3 PCAs of iron homeostasis and inflammatory variables in men and women at HIV diagnosis and Cox regression analyses of
all-cause mortality1

HR (95% CI)

PCA model

Grouping
pattern identified

by PCA

Total variance
explained by
pattern, %

PCs contributing
to grouping pattern

PC
eigenvector2

PC score,3

unadjusted
PC score,3

adjusted4

Iron homeostasis index5

Unadjusted Adjusted4

PCA16 Pattern 1 (PCA1.1) 43.4 Hepcidin 0.54 1.72 (1.49, 1.99) 1.31 (1.07, 1.61) 1.37 (1.26, 1.50) 1.13 (1.00, 1.27)

Ferritin 0.54

Transferrin 0.53

Pattern 2 (PCA1.2) 24.7 Iron 0.63 1.08 (0.93, 1.27) 1.00 (0.83, 1.20) 1.15 (1.03, 1.29) 1.08 (0.80, 1.45)

sTfR 0.54

Hemoglobin 0.49

PCA27 Pattern 1 (PCA2.1) 44.8 Hepcidin 0.48 1.64 (1.44, 1.87) 1.26 (1.05, 1.51) 1.28 (1.19, 1.37) 1.08 (0.99, 1.89)

Ferritin 0.48

Transferrin 0.46

ACT 0.45

Pattern 2 (PCA2.2) 21.3 Iron 0.61 1.06 (0.90, 1.24) 0.98 (0.82, 1.18) 1.158 (1.03, 1.29) 1.088 (0.80, 1.45)

sTfR 0.56

Hemoglobin 0.46

1 Unadjusted models sample size, n = 196; unadjusted with hemoglobin, n = 140; adjusted, n = 168, adjusted with hemoglobin, n = 119, due to missing data. ACT,

a1-antichymotrypsin; PC, principal component; PCA, principal components analysis; sTfR, soluble transferrin receptor.
2 Ordered by relative loading (impact) of eigenvector where more important variables are assigned greater weights. Only meaningful (e.g., eigenvector .0.40) variables are

presented.
3 PC scores represent a linear algebraic combination of all variables in the model and are weighted by eigenvectors.
4 Adjusted for HIV type (HIV-1/HIV-dual, HIV-2), age, gender, BMI, absolute CD4 cell count (.500, 200–500, or ,200 cells/mL).
5 The iron homeostasis index represents the combined impact on mortality of PCA-identified patterns. Observed concentrations were classified into tertiles: a value of 1 was

assigned to tertiles with the lowest HR (in Table 2) including the lowest hepcidin, ferritin, ACT, and sTfR tertiles and the highest transferrin, iron, and hemoglobin tertiles.

Intermediate tertile = 2; otherwise = 3 (e.g., the greatest mortality HR in Table 2). Values were summed for individuals representing an overall iron homeostasis index, which was

modeled as a single continuous variable.
6 Six-dimensional model including all iron homeostasis variables entered in tertiles.
7 Seven-dimensional model including all iron homeostasis variables plus ACT entered in tertiles.
8 The iron homeostasis index for PCA1.2 and PCA2.2 is equivalent because the same PC pattern (e.g., iron-sTfR-hemoglobin) was identified in both PCA models.
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Table 1), the current data are important. Medication usage
(ongoing or newly initiated) around the time of individual plasma
samples was unknown and should be considered for future studies.
Although these findings point to the importance of hepcidin inHIV
infection, a portion of the statistical inferences were based on data-
derived tertile categorizations of hepcidin and further research to
identify clinically relevant cutoff points is needed. Last, although
elevated hepcidin was associated with mortality in unadjusted
regression models, the association was not statistically significant
in models adjusted for a number of known mortality covariates
(e.g., CD4, BMI, gender, age). Further studies may help to clarify
the independent hepcidin association.

In summary, hepcidin is a piece of the complex and dynamic
relation that links HIV-associated anemia, iron homeostasis,
inflammation, and mortality in HIV infection. Higher hepcidin
concentrations at HIV diagnosis are associated with a greater
likelihood of mortality in men and women, and an understand-
ing of how hepcidin evolves and influences iron homeostasis
throughout early and chronic HIV infection is needed. This is
especially important because many people with HIV suffer from
anemia before ART initiation, and because ART may not fully
resolve inflammation or anemia. Overall, this study provides
additional insight for the development of effective evidence-
based decisions to prevent and manage HIV-associated anemia
and maladaptive iron homeostasis occurring at all stages of
HIV infection.
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