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a b s t r a c t

Studying the emergence of novel infectious agents involves many processes spanning host species, spatial
scales, and scientific disciplines. Mathematical models play an essential role in combining insights from
these investigations and drawing robust inferences from field and experimental data. We describe nine
challenges in modelling the emergence of novel pathogens, emphasizing the interface between models
and data.
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While humankind continues to battle ancient adversaries such
s tuberculosis and malaria, there is constant concern about the
mergence of new human pathogens from sources in non-human
nimals (Jones et al., 2008). At the very least, this concern is jus-
ified by devastating pandemic emergences of HIV-1, HIV-2, and
panish influenza. We have also seen the near-establishment of
ARS-Coronavirus, and a relentless series of zoonotic threats com-
eting for our attention and public health resources. At the time
f writing, influenza A H7N9 in China (Centers for Disease Control
nd Prevention, 2013) and MERS-Coronavirus in the Saudi Arabian
eninsula (Penttinen et al., 2013) are both causing substantial num-

ers of cases, and deaths, and health authorities are searching for
ffective responses.

This article focuses on challenges in modelling the emergence of
athogens that newly appear in human hosts, such as MERS-CoV or
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zoonotic influenza strains. We consider problems at the interface of
models and data that pertain to interpreting patterns in observed
outbreaks, and contributing to rational and robust assessment
of risks posed by putative emerging pathogens. We assume that
candidate zoonotic pathogens are circulating in some non-human
reservoir population or populations, from which they can spill over
to infect humans. Humans infected directly by animals are known
as spillover or primary cases. If human-to-human transmission
occurs, then subsequent cases infected by humans are termed
non-primary.

In assessing pathogen emergence, it is useful to delineate what
is known about a pathogen’s ability to spread between humans.
A crucial distinction exists between pathogens that are capa-
ble of sustained human-to-human transmission in some settings
(i.e. R0 > 1 in humans), and those that exhibit inefficient spread,
with subcritical dynamics (i.e. 0 < R0 < 1). This latter group includes
many pathogens viewed as significant future threats, such as
influenza A H5N1, influenza A H7N9, MERS-CoV and monkey-
pox virus. Another group includes microbes detected by ‘pathogen

discovery’ in various non-human animal populations (Lipkin and
Firth, 2013), including many that are previously unknown to sci-
ence (e.g. Anthony et al., 2013), the relevance of which is often
unknown.

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).

dx.doi.org/10.1016/j.epidem.2014.09.002
http://www.elsevier.com/locate/epidemics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2014.09.002&domain=pdf
http://creativecommons.org/licenses/by/3.0/
mailto:jlloydsmith@ucla.edu
dx.doi.org/10.1016/j.epidem.2014.09.002
http://creativecommons.org/licenses/by/3.0/


3 Epide

1
n

d
‘
r
c
o
I
i
h
m
p
s
i
N
(
(
v
r

f
(
s
i
t
a
i

2
f
i

t
a
i

S

b
o
g
s
m
c
w
t
r
u
O
i
p
m
h
s
s

a
c
T

6 J.O. Lloyd-Smith et al. /

. Better capture the disease dynamics in proximal
on-human species

One can imagine two extreme conceptual models for the
ynamics of emergence from non-human hosts into humans. In

static reservoir emergence’, the dynamics of the pathogen in the
eservoir do not change from their long-term pattern. Because of
hance or some change in human behaviour, the pathogen spills
ver from this static reservoir system to cause human infection.
n ‘dynamic reservoir emergence’, the ecology of the pathogen in
ts non-human hosts changes substantially prior to emergence in
umans; changes could include transmission into domestic ani-
als, or gains in transmissibility due to evolutionary changes in the

athogen. However, while the conceptual differentiation between
tatic and dynamic reservoir emergence is attractive, key case stud-
es point much more towards dynamic emergence. For example,
ipah virus caused outbreaks in pigs prior to infecting humans

Parashar et al., 2000) and outbreaks of Sin Nombre virus infection
including the first identified outbreak) have been linked to ele-
ated rodent population densities following periods of increased
ainfall (Hjelle and Glass, 2000).

Current assessments of emergence risks from novel pathogens
ocus heavily on the frequency of particular pathogen genotypes
Russell et al., 2012) or predicted (static) distributions of reservoir
pecies (Fuller et al., 2013), and do not include dynamic factors
n reservoir ecology. Therefore, an important, broad challenge is
o use models in conjunction with available data to help detect
nd characterize potentially dangerous changes in the ecology of
nfectious diseases in key wildlife or livestock reservoirs.

. Expand models for cross-species spillover transmission
rom general principles to specific, mechanistic frameworks
ntegrating all relevant data types

Characterization of the spillover force of infection is crucial
o emergence dynamics. Very general frameworks have been
dvanced, for instance to decompose the spillover force of infection
nto (Lloyd-Smith et al., 2009):

pillover FOI = prevalence in reservoir

× reservoir-human contact rate

× P(infection|contact).

We need a new generation of approaches that take advantage of
roader developments in infectious disease dynamics and epidemi-
logy. For instance, ecologic, economic or environmental factors
iving rise to interactions among the three terms should be con-
idered, and their dynamical consequences explored. Constructing
ore mechanistic models of spillover transmission will raise spe-

ific challenges, but may also present new solutions. For instance,
hen human infection occurs via environmental reservoirs, or

hrough food, it may be possible to integrate many complexities of
eservoir ecology into their impact on environmental burden, then
se dose–response relationships to understand risk to humans.
therwise, there can be many challenges associated with find-

ng a relevant characterization of prevalence in the reservoir,
articularly when the system involves multiple host species and
ultiple pathogen strains, each possibly posing different risks to

umans. Transmission dynamic models that incorporate data from
equence-based or niche modelling approaches may help to predict
pillover risk more generally.
Epidemiology has well-developed frameworks for risk factor
nalysis, which can be applied to spillover because primary cases
an be viewed as independent outcomes (at least approximately).
hus there are opportunities to integrate a biostatistical approach
mics 10 (2015) 35–39

to primary cases with a stochastic model of subsequent transmis-
sion, creating a joint inference framework. For example, primary
infection with Nipah virus in Bangladesh is associated with drink-
ing date-palm sap, while on-going transmission is associated with
close contacts among humans (Gurley et al., 2007). A joint frame-
work that links these co-factors using a mechanistic model may
aid in distinguishing between primary and non-primary cases (see
Challenge 4). Studies of age-based mixing patterns have shed light
on transmission dynamics of endemic pathogens (Mossong et al.,
2008); there could be similar benefits to linking spillover risk factor
information to data on mixing patterns in relevant human pop-
ulations. Analogously, the coupling between spatial distribution
of spillover risk and spatial factors influencing human-to-human
transmission may govern the risk of a major outbreak (for instance,
risk will be lower if spillover occurs chiefly in remote settlements
than if it happens in crowded urban areas).

3. Harness pathogen genetic data across the human–animal
interface to map transmission and detect adaptation

Pathogen sequence data could shed light on central questions
in zoonotic emergence, by reconstructing transmission connec-
tions or looking for adaptation in a new host. However, numerous
challenges persist. Because of historic interdisciplinary divisions,
isolates from animals and humans have often been grown, detected
or analyzed using different approaches, which effectively precludes
useful inference. Pathogen isolates are often rare, particularly
in difficult-to-culture genera, so isolates from linked cases are
unusual. Animal sources of human spillover cases are often gone
(dead, eaten, or moved away) by the time the human cases are
detected and investigated, so that sequences come from other ani-
mal individuals that may not be closely linked. Any inferences
about pathogen evolution must include uncertainty arising from
(typically poorly known) transmission and evolutionary processes
in animal hosts. This situation is particularly challenging if mul-
tiple species are involved in circulation of the pathogen, as for
avian influenza. Many current examples are based on coarse sam-
pling and use appropriately coarse analyses, such as phylogenies,
but higher-resolution methods (preferably not sensitive to miss-
ing samples) will be needed as isolate detection improves. These
methods will need to explicitly link transmission mechanisms to
sequence evolution.

Challenges also arise when trying to assess whether evolution-
ary adaptation played a role in a past emergence event, and when
any adaptive mutations occurred (Pepin et al., 2010). Often, there is
no baseline surveillance prior to emergence, so ancestral genotypes
cannot be assessed, or available samples are separated by sub-
stantial gaps. There is typically poor information about pathogen
diversity in animal hosts, let alone in individual animals.

4. Improve methods to analyze stochastic dynamics after
pathogen introduction, accounting for heterogeneities and
imperfect observation

Substantial progress has been made on modelling the stochas-
tic dynamics of early generations of transmission after a novel
pathogen is introduced to a population, yet major challenges
remain.

Particular challenges arise from heterogeneities (typically
uncharacterized) in host contact patterns, host susceptibility and
infectiousness, environmental factors, and possibly pathogen phe-

notypes. Which of these matter for a given outbreak, and how can
this be determined? Further challenges arise from host popula-
tion structure at scales from households to cities, and the resulting
possibility that local pools of susceptibles will be depleted. These
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ffects are often neglected for emerging pathogens, with the ratio-
ale that many hosts are available, but this assumption fails easily
Cross et al., 2007). Non-stationary dynamics are also challeng-
ng: any changes through time arising from control measures or
ehaviour change will be entangled with non-stationarities driven
y contact network effects (whereby the most connected indi-
iduals are infected early) or superspreading effects (whereby
ransmission rates revert to the mean after outbreaks are kicked
ff by superspreaders).

These factors combine to shape the dynamics of early trans-
ission chains, and the resulting data form the basis for inference

bout outbreaks of emerging infections. Outbreaks are often small,
o data are commonly pooled from multiple introduction events at
ifferent times and locations, introducing further heterogeneities.
uch ‘mixed distributions’ have been used to estimate reproduc-
ive numbers for post-elimination measles, for instance, though
t is recognized that the largest outbreaks occur in populations

ith unusually low vaccination rates, where different parameters
ould apply (King et al., 2004). Furthermore, imperfect observa-

ion causes cases and outbreaks to be missing from data sets, likely
n non-random ways. We need models that can account for these
roblems, and ideally correct for them, to enable robust inference
f parameters of interest.

A particular set of challenges arises for subcritical pathogens,
hose epidemiology is characterized by a mix of spillover events

nd self-limited chains of human-to-human transmission (so-
alled ‘stuttering chains’). An essential and pervasive challenge is
o disentangle contributions from these two sources. There has
een recent progress in methods to estimate R0 based on the dis-
ribution of chain lengths (Blumberg and Lloyd-Smith, 2013a) or
atio of primary to non-primary cases (assuming these can be
istinguished) (Cauchemez et al., 2013). These approaches have
omplementary strengths and weaknesses, so hybrid or alternative
pproaches would be valuable. Also, little attention has been paid to
he joint characterization of temporal variation in spillover hazard
nd human-to-human transmissibility. In some scenarios it may be
ossible to extract the contribution of subcritical human-to-human
ransmission, leaving a robust description of the spillover hazard
tself – or conversely to extract the contribution of spillover and see
he human-to-human transmission more clearly (Kucharski et al.,
014).

. Improve data collection and analysis to learn from the
requency of singleton (sporadic) cases

For many zoonotic infections, particularly those with low trans-
issibility among humans (or high variation in transmissibility),
any primary cases fail to transmit and thus appear as singleton

ases. Most attention is focused on larger disease outbreaks, when
ransmission in the human population raises concern. Sporadic sin-
leton cases are viewed as low priorities for surveillance. Singletons
re fundamentally more difficult to detect and data on singletons
re even sometimes dropped from analyses (discussed in Blumberg
nd Lloyd-Smith, 2013b).

Data on singletons are needed to achieve correct estimates of
otal spillover rates, as well as infection fatality rates (see Chal-
enge 8), and also to study risk factors for primary infection. They
omprise an important component of the distribution of outbreak
izes, which can be used to estimate R0 (Farrington et al., 2003).
he frequency of singleton cases has surprising influence when
0 and other parameters are estimated from chain size distribu-

ions (Blumberg and Lloyd-Smith, 2013b). If R0 can be estimated
hrough other means, then measuring the frequency of singleton
ases allows heterogeneity in transmission to be estimated (Lloyd-
mith et al., 2005). An important challenge for the field is to improve
mics 10 (2015) 35–39 37

reliability of singleton case data, and hence to incorporate these
data into epidemiological analyses – or else to develop robust meth-
ods for parameter estimation that account for missing or biased
data on singletons.

6. Develop theory and case studies for the role of
intermediate hosts in pathogen emergence

Many recent zoonotic outbreaks feature an intermediate host
species, acting as a transmission bridge between the ‘true reser-
voir’ where the pathogen is maintained, and the human ‘target’
population. Prominent examples include Nipah virus passing from
flying foxes to pigs to humans in Malaysia, Hendra virus passing
from flying foxes to horses to humans, and SARS-CoV passing from
fruit bats to palm civets to humans. These intermediate hosts might
contribute strictly via contact, by bridging between two host popu-
lations with no direct contact, or they might have a more biological
role, e.g. as an ‘amplifying host’ that can generates high pathogen
titres, or by facilitating pathogen evolution that increases transmis-
sion in the human host.

There is no general framework to define, compare, or contrast
these various roles for intermediate hosts in emergence events,
and modelling has been ad hoc and system-specific. We need to
identify general principles and defining characteristics of the dif-
ferent scenarios and then to apply them to case studies. Such a
model framework could also guide decisions about allocation of
surveillance or control effort.

7. Expand models for emerging infections to account for
host immunity

Most models of emerging infections assume a completely sus-
ceptible host population, but this is not valid if parts of the
population have been exposed to low doses of the pathogen or to
less virulent ancestors or related pathogens. Those in frequent con-
tact with animals may have been exposed to zoonotic pathogens
such as SARS-CoV or influenza, and more elderly sub-populations
might have historic exposures.

These partially immune groups can cause profound dynamic
effects. Having a population fraction immune, or partially immune,
can facilitate disease persistence by reducing the chance of extinc-
tion in the post-epidemic trough (Pulliam et al., 2012). If those most
at risk of exposure to a zoonotic pathogen are those with the high-
est levels of immunity (because of multiple previous exposures),
they could form an effective barrier preventing an infection from
spreading to the rest of the population; such a pattern is seen for
influenza antibodies in numerous studies of swine industry work-
ers (Myers et al., 2006). Data from this scenario might also lead
to underestimation of the reproduction number of the pathogen if
it spreads into a population that is truly naive. Models could help
distinguish between pathogens that fail to spread because their
transmissibility is low in all humans, versus those that fail because
of low transmissibility in the human population in contact with the
reservoir. We need to understand when these effects matter, and
how to identify them.

8. Devise approaches to measuring infection fatality rates

When a new infection emerges there is great concern to know
its ‘case fatality rate’. This is formally defined as the number of
deaths from infection divided by the number of cases – but this

clear-sounding definition hides a deep source of confusion in the
definition of a ‘case’. Often only severely ill cases are counted,
leading to overestimation of case fatality rates. A basic tenet of
infectious disease biology is that infection does not always lead
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o disease, and case fatality rates calculated with ‘cases of disease’
s the denominator can differ greatly from those calculated using

cases of infection’. Such differences have led to widely varying esti-
ates of case fatality rates for new emerging infections, with some

orresponding alarmism, e.g. for pandemic H1N1 swine flu when it
rst emerged in 2009 (Garske et al., 2009).

Valuable progress has been made by focusing on case fatality
ates in hospital-admitted cases or symptomatic cases only (Yu
t al., 2013). However, to make sensible projections of the total
xpected mortality from novel infectious diseases, we need to
ove beyond hospital case fatality rates towards infection fatality

ates that explicitly use the number of infections as the denomina-
or. Estimating this quantity is challenging if many infections are
symptomatic or cause only mild illness. One possible solution is
o use serology to estimate numbers infected; this was deployed
n Hong Kong during the first wave of the 2009 H1N1 epidemic
Riley et al., 2011), though challenges could arise from unknown
ackground seroprevalence and delayed availability of serological
ata. An alternative is to estimate total numbers of infections from
nalyses of pathogen sequence data, which is possible in princi-
le during the exponential phase of an outbreak (Frost and Volz,
010). Since pathogen sequences are often deposited in the public
omain in real time during pandemics this might provide very early
stimates of the numbers of infections, including those that are
symptomatic. Mathematical modelling could clarify what can be
xpected from such an approach. Given the numerous assumptions
nvolved, would estimates of the numbers infected ever be accu-
ate enough to make this approach useful? How many sequences
re needed? Could we correct for sampling bias and heterogenous
ransmission? (see the challenges in phylodynamic inference, in
his volume, Frost et al., 2015). With the widespread availability
f viral sequence from the 2009 H1N1 pandemic and a ‘gold stan-
ard’ estimate of infection rates from published serology, that event
ould be a testing ground for new methods for calculating infection
ates and thus infection fatality rates.

. Design robust and efficient approaches to empirical
tudies of novel pathogens aimed at risk assessment

Massive effort is going into surveying for possible zoonotic
athogens in various wildlife and domestic animal popula-
ions. Wide application of sensitive technologies identifies many
athogens, but it is unclear how these results map onto public
ealth risk, especially when based on detection of pathogen nucleic
cid rather than pathogen isolation. Further work aims to assess
isks from particular pathogens by focused laboratory or infection
xperiments.

In the distant future, one might be able to detect a pathogen,
equence it and then know enough to make a reasoned estimate
f the risks associated with its emergence. Far too many gaps exist
ow for that to be feasible. However, modelling studies can help
y forcing definitions of emergence in clear, quantitative frame-
orks, and keeping the focus on key processes. In particular, models

an define what properties of novel pathogens need to be mea-
ured. Pathogen phenotypes are often assessed in animal models
nd modelling should be used to analyze such studies and shed
reater light on their optimal design. For example, some influenza
esearch has focused on infectiousness per unit time rather than
he duration of infectiousness. Is this design sufficient to charac-
erize risk? Another essential contribution would be developing

odelling approaches to link data from experimental infections to

ata attainable in the field.

Models can also help to design surveillance programmes for
merging pathogens. Model-guided fieldwork (MGF) has been
dvanced recently as a useful tool for all of disease ecology (Restif
mics 10 (2015) 35–39

et al., 2012), and could find useful application here. MGF approaches
can help empirical scientists to focus on particular sample types
(seroprevalence versus infection prevalence or incidence) and sub-
populations, rather than following ad hoc or unfocussed data
collection plans. Careful modelling can help define the best sen-
tinel groups, how they should be surveyed, and with what sample
sizes. MGF can also help to identify animal species (or groups of
species) that act as disease reservoirs (a notoriously tough problem
(Buhnerkempe et al., 2015; Viana et al., 2014)).

Summary

Research on emerging pathogens has highlighted the essential
need to integrate insights from many disciplines, and to link pro-
cesses acting at multiple scales (there are obvious connections to
other articles in this issue, Frost et al., 2015; Buhnerkempe et al.,
2015; Gog et al., 2015; Wikramaratna et al., 2015). This drives home
the need for focused modelling efforts, to link these disparate data
types, explore case studies, and define priorities in data collection.
There is a general pattern of serious challenges arising from missing
information – and from not adequately addressing these data gaps.
At the same time, expanded sampling efforts and new technologies
are bringing a flood of data that must be analyzed with a focus on
mechanistic principles and possible imbalances in sampling design.
The long-term goal is to draw robust conclusions about past events
and make appropriate assessments of risk (and uncertainty!) about
pathogens that appear to be threatening.
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