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ABSTRACT

Tuberculosis (TB) caused by bacteria of the Mycobacterium tuberculosis complex
(MTBC) is the second major cause of death from an infectious disease worldwide.
Recent advances in DNA sequencing are leading to the ability to generate whole
genome information of clinical isolates of MTBC. The objectives of this work include
developing bioinformatic tools for processing and making accessible MTBC genomic
data, as well as the identification of informative genetic markers, both strain-specific
and associated with drug resistance (DR), to barcode MTBC isolates in research and

clinical settings.

SpolPred software was developed to accurately predict the spoligotype from raw
sequence reads, and used to bridge the gap between classical genotyping and high-
throughput sequencing. A genome variation discovery pipeline was implemented to
derive genomic polymorphisms from MTBC raw sequence data. This pipeline was
applied to >1,500 publicly available isolates and the characterised genomic variation
hosted in PolyTB, a web-based tool where genetic variants can be investigated using a
genome browser, a world map showing their global allele distribution, and an
additional phylogenetic view. An extensive repertoire of strain-specific mutations was
identified, of which a subset was proposed to accurately discriminate known MTBC
circulating strains. A curated list of DR associated mutations was compiled from the
literature and their diagnostic accuracy for predicting phenotypic resistance assessed.
In addition, potentially novel genes involved in DR were discovered by applying
genome-wide association approaches to a global population of more than 2,500 MTBC

strains.



Whole genome sequencing (WGS) promises to be transformative for the practice of
clinical microbiology, and the rapidly falling cost and turnaround time mean that this
will become a viable technology in clinical settings. In this new paradigm, the
presented work will facilitate the transition to and applications of WGS in clinical

settings as an important tool for TB control.
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Chapter 1

Introduction



1 INTRODUCTION

1.1 Tuberculosis disease and etiological agent

Tuberculosis (TB) is the second most common cause of death from an infectious

disease worldwide, only behind the Human Immunodeficiency Virus (HIV) pandemic.

According to the latest estimates from the World Health Organisation (WHO), there

were 8.6 million new TB cases in 2012 and 1.3 million deaths, of which 0.3 million were

HIV-associated (World Health Organization 2013). The majority of cases in 2012

occurred in Asia (58%) and Africa (27%), while smaller proportions occurred in the

Eastern Mediterranean region (8%), Europe (4%) and the American continent (3%)

(Figure 1.1). South-East Asia and Africa accounted for 75% of the total TB deaths. India

and South Africa accounted for one third of TB deaths worldwide (World Health

Organization 2013).
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Figure 1.1 Estimated TB incidence rates in 2012
Figure reproduced from the Global Tuberculosis Report 2013(World Health Organization 2013)
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Since 1990, estimated TB mortality rates have fallen by 45%. The WHO forecasts that a
50% decline in TB mortality will be achieved by 2015, compared to the baseline levels
in 1990. Although incidence and mortality rates have been falling for the last decade
due to the availability of efficacious treatments, TB remains a major global health
threat. The emergence and spread of DR forms of TB further hinders TB control. The
WHO classifies TB resistant to isoniazid (INH) and rifampicin (RMP), the two most
effective first-line anti-TB drugs, as multi drug-resistant TB (MDR-TB). Globally, it is
estimated that 3.6% of new TB cases and 20.2% of previously treated cases are MDR-
TB (World Health Organization 2013). The highest levels of MDR-TB are reported in
Eastern Europe and Central Asia (Figure 1.2). Globally, only a small proportion of TB
cases are tested for MDR (5% of newly diagnosed TB cases and 9% of previously
treated ones in 2012), of which not all cases are properly treated (World Health

Organization 2013).

of cases
[ ] 0-29 .

[ 359

] 6119

I 12-17.9

=18 ZL

[ ] Nodata o ﬁ

Subnational data only

I:| Not applicable

Yeg, N, R\
o AL L2 Y 3 X L
. ‘ 7 | B . Percentage - o °

= Figures are based on the most recent year for which data have been reported, which varies ameng countries.

Figure 1.2 Percentage of new TB cases with MDR-TB in 2012
Figure reproduced from the Global Tuberculosis Report 2013(World Health Organization 2013)
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Diagnosis and treatment of MDR-TB cases remain major challenges and are far from
being fully achieved (Dheda et al. 2014). Extensively drug-resistance (XDR) strains,
presumably emerged from MDR-TB strains and resistant to the second-line drugs
fluoroquinolones (FLQ) and aminoglycosides (AMI), have been reported in 92 countries
and, on average, 9.6% of MDR-TB cases are estimated to be XDR-TB (World Health

Organization 2013).

Human TB is caused by bacteria belonging to the M. tuberculosis complex (MTBC),
which is transmitted between people by inhalation of aerosol droplets that contain
bacteria. TB cases are predominantly caused by M. tuberculosis (Mtb) followed by M.
bovis and M. africanum, with occasional cases of infection with M. caprae, M. microti,
M. pinnipedii, M. orygis and M. canettii reported. They are slow growing, lipid rich
gram-positive actinomycetes with characteristic cell walls conferring natural resistance
to many antibiotics (Brennan 2003). Members of the MTBC are indistinguishable in
their 16SrRNA and rpoB genes, inter-strain recombination has not been reported and

they have approximately the same genome length (Garcia-Betancur et al. 2011).

Once in the lungs, Mtb is phagocytised by macrophages, which are thought to be its
preferential host cell during most of its life cycle, although this intracellular bacterium
can infect different cell types in the host (Wolf et al. 2007; Randall et al. 2014). Uptake
by macrophages triggers an initial innate immune response leading to the recruitment
of inflammatory cells in the lungs (Cooper et al. 2011). Mtb is disseminated to the
lymph nodes, where dendritic cells present bacterial antigens to naive T-cells which

then differentiate into antigen-specific effector T cells (Chackerian et al. 2002; Wolf et

18



al. 2008). Migration of these T cells to the infected lung stimulates the formation of
granulomas which are composed of other cell types such as macrophages,

lymphocytes and fibroblasts (Flynn et al. 2011) (Figure 1.3).

Mycobacterium tuberculosis
host-to-host transmission

Reactivation and
dissemination in 10% of
infected individuals

Initial infection

a!\ﬂacmphage

j Innate immune phase

Eradication?
=

Caseating granuloma

T cell immunity?
Innate factors?

Adaptive immune phase.
Containment of infection

in 90% of individuals

\ A
Mycobacterium
tuberculosis control?

Figure 1.3 TB pathogenesis

Figure reproduced from (Nunes-Alves et al. 2014). Infection starts after inhalation of droplets containing
Mtb bacteria. Phagocytosis of Mtb by macrophages triggers an innate immune response and
recruitment of inflammatory cells. Recruitment of antigen-specific T cells and other immune cells leads

to the formation of granulomas, where Mtb can remain latent.
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Although this immune response controls the infection, Mtb can survive within the
macrophages for months or even years in a clinically asymptomatic state, referred to
as latent TB (Nunes-Alves et al. 2014). It has been estimated that one-third of the
global human population may be latently infected by TB of which 5-10% may develop
active disease sometime during their lives (Barry et al. 2009). Although most infection
episodes will result in latent TB, the granuloma will break down in a small proportion
of infected individuals, leading to active disease in which individuals become infectious

and can transmit the infection (Barry et al. 2009).

Effective TB control relies on early diagnosis of the disease, access to treatment with
anti-TB drugs and advances on vaccine development. Sputum smear microscopy has
been the principal diagnostic test for TB during decades, and is still widely employed in
low and middle income countries (Davis et al. 2013). Bacterial culture is the reference
standard in TB diagnosis but results availability can take weeks due to the slow growth
rate of MTBC bacteria. The rapid molecular test Xpert® MTB/RIF is considered an
important breakthrough in TB diagnosis. This automated PCR assay can detect both
MTBC bacteria and RMP resistance, normally within two hours and directly from
sputum (Steingart et al. 2014). Xpert® MTB/RIF was endorsed by the WHO in 2010 and
has been rapidly adopted by countries since then (World Health Organization 2013).
Detection of resistance to anti-TB drugs relies on bacterial culture followed by drug
susceptibility testing (DST). Solid culture generally takes between four to eight weeks
and liquid culture, though more rapid than solid culture, still takes days and is more

prone to contamination (Dheda et al. 2014).
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Laboratory confirmation of TB and DR is crucial to ensure that infected people are
given appropriate treatment. Standard regimens of first-line drugs applied for several
months can usually eliminate TB. First-line therapies consist of combinations of drugs
that were discovered more than 50 years ago and include INH (discovered in 1952),
RMP (1966), ethambutol (EMB) (1961), pyrazinamide (PZA) (1952) and streptomycin
(STR) (1943). MDR-TB strains are now widespread throughout the world, with about
half a million cases reported in 2012 (World Health Organization 2013). To cure this
type of strains, a switch to second line treatments is advised. Resistance to additional
drugs such as EMB or STR further compromises treatment (Tahaoglu et al. 2001,
Migliori et al. 2009). Second-line regimens use drugs such as FLQ and AMI, which are
associated with multiple toxic effects and lower cure rates. These treatments have
longer duration (for example, current regimens recommended by WHO entail at least
20 months) and may cost up to 100 times more than first-line treatments (Dheda et al.
2014). Increased resistance is associated with decreased patient survival and the
emergence of resistance to first and second line drugs is a substantial threat to disease
control. To date, resistance has been reported to all drugs used to treat TB (Dheda et
al. 2014). New drugs are urgently needed to tackle the increasing problem of MDR and
XDR-TB. Several new anti-TB drugs and regimens are currently under development
(Zumla et al. 2014). Bedaquiline became the first new TB drug to be approved for use

in 40 years (Andries et al. 2005).

An effective TB vaccine would be a powerful tool to eradicate TB. The use of Bacille
Calmette-Guérin (BCG) (an attenuated form of M. bovis) has been widely implemented
against human TB. However, its efficacy is variable between human populations and
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confers low protection in developing countries (Fine 1995). More than 12 candidate
vaccines are currently being tested in clinical trials (Ottenhoff & Kaufmann 2012).
These vaccines aim to induce T cell-mediated immunity required to prevent
progression into active pulmonary disease (Nunes-Alves et al. 2014) and ultimately
stop transmission, either alone or following BCG vaccination. The current
understanding of protective immunity against Mtb after infection is incomplete, which

hinders vaccine development (Kaufmann et al. 2014).

1.2 Impact of WGS on TB research and clinical applications

There is an urgent need for better treatments and vaccines, which in turn require a
deeper understanding of the biology of Mtb. Knowledge of the genomic variability
among Mtb isolates could result in such biological insights (Comas & Gagneux 2009),
given the increasing evidence that strain genetics may play a role in disease outcome,
transmission, variation in vaccine efficacy (Lopez et al. 2003) or emergence of DR (Ford

et al. 2013).

The application of genomics to the study of TB has greatly improved our understanding
of this disease. Thanks to the still growing use of genome sequencing and comparative
genomics, the TB research community has gained new insights into the origins
(Galagan 2014; Comas et al. 2013), within-host microevolution (Pérez-Lago et al. 2014;
Casali & Nikolayevskyy 2012), epidemiology (Pérez-Lago et al. 2014; Bryant, Harris, et
al. 2013; Walker et al. 2013; Gardy et al. 2011) and DR genetic determinants of Mtb

(Casali et al. 2014).
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The first Mtb genome to be fully sequenced was that of the H37Rv laboratory strain in
1998 (Cole et al. 1998). The complete genome sequence was determined in order to
improve the understanding of Mtb biology and aid in the development of new
therapies and vaccines. The circular genome comprising 4.4 million base pairs (Mb)
was found to contain around 4,000 genes and to have a relatively high GC content
(65%). Unlike other bacterial genomes, Mtb genome was found to encode a large
number of enzymes involved in lipid metabolism. Some of these produce multiple and
diverse lipophilic molecules, ranging from simple fatty acids to very-long-chain and
highly complex mycolic acids, the predominant lipid component of the mycobacterial
cell wall (Brennan 2003). Other enzymes are used to degrade host-cell lipids,
particularly fatty acids and cholesterol, and used as energy sources during intracellular
growth and persistence (Ouellet et al. 2011). Two protein families (PE and PPE genes)
were found to comprise about 10% of the coding potential of the genome. These
proteins have a repetitive structure, are highly polymorphic and their function remains
largely unknown. Although initially suggested to be involved in antigenic variation,
their possible function as variable surface antigens and their role in immune evasion is
still an area of active research (Copin et al. 2014; Comas et al. 2010). Since its
publication in 1998, the H37Rv reference genome has been functionally annotated
with information from the scientific literature (Lew et al. 2011) and nowadays contains

a total of 4,018 protein genes, 13 pseudogenes and 80 RNA loci.

Whole-genome sequencing (WGS) of multiple strains has also enabled more reliable
reconstructions of the phylogenetic history of MTBC (Comas et al. 2013). Both
archaeological findings and comparative genome analyses conflict with a zoonotic
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origin of human-adapted TB. According to the zoonotic hypothesis, an ancient M. bovis

strain could have been transferred from cows to humans during animal

domestications.

A new scenario of the evolutionary history of MTBC has emerged. There is mounting

evidence that MTBC originated from a common ancestor in the Horn of Africa, most

likely from a smooth tubercle bacillus (STB) like M. canettii (Figure 1.4).
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Figure 1.4 MTBC evolutionary history

Figure reproduced from (Galagan 2014).

While STB strains are genetically diverse and show evidence of extensive

recombination and horizontal gene transfer (HGT), MTBC seems to have arisen as a

clonal expansion from a single STB progenitor (Supply et al. 2013), and displays low
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genetic diversity as a consequence of this clonal population structure. After MTBC
emerged in Africa, it spread with the first human migrations (Blouin et al. 2012; Comas
et al. 2013; Supply et al. 2013) and differentiated into six major global lineages

associated with a restricted geographical area (Gagneux et al. 2006).

In addition to the study of macroevolutionary episodes of TB, WGS has also been
applied to investigate the microevolution events occurring within individual patients
and between different patients along transmission chains. WGS can differentiate
between relapse and re-infection in cases of recurrent TB with greater resolution and
accuracy than standard fingerprinting techniques (RFLP and MIRU-VNTR) (Bryant,
Harris, et al. 2013). WGS has proved to be successful in delineating community
outbreaks of TB, inferring chains of transmission between cases and identifying super-
spreaders (Gardy et al. 2011; Walker et al. 2014; Walker et al. 2013; Roetzer et al.
2013), i.e. particularly infectious individuals leading to many secondary cases. The
genetic determinants of recurrence and transmissibility can additionally be examined
using WGS and gain insight into their biological basis. The mutation rate (also referred
to as substitution or evolutionary rate) can be determined using longitudinal samples
from the same patient (Walker et al. 2013; Bryant, Harris, et al. 2013) or dated samples
from different individuals of the same outbreak (Roetzer et al. 2013). All these studies
reported similar estimates of the substitution rate, 0.3-0.5 mutations per genome per
year. This mutation rate is 10-fold lower than that of methicillin-resistant
Staphylococcus aureus (Nibel et al. 2010) and explains, in part, the limited sequence
diversity of MTBC (Schiirch et al. 2010). The substitution rate is a valuable measure as
it can be used to estimate the common ancestor originating date of outbreak-
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circulating strains (Roetzer et al. 2013). The choice of a minimum number of SNPs to
establish epidemiological links between TB infected patients has been more
controversial. The recent finding that the genetic diversity accumulated within a
patient can be as high as that observed between patients (Pérez-Lago et al. 2014)

poses challenges for establishing thresholds and inferring transmission events.

The application of WGS to the study and diagnosis of DR TB holds great promise
(Rodwell et al. 2013; Sharon J. Peacock 2013; Garcia-Sierra et al. 2011; Lin et al. 2013).
Efforts to reduce the prevalence of DR TB are focused on rapid detection of DR cases,
effective treatment of those and prevention of ongoing transmission. These activities
rely on antimicrobial susceptibility testing and bacterial genotyping, which may take
several months to be accomplished because of the slow growth rate of MTBC. In this
context, WGS has the potential of being applied as a tool for high-discriminatory
genotyping and DR diagnosis. The DR mutations in patient-isolated Mtb strains can be
used to predict which drugs might be more clinically effective for a particular patient.
Cases of developed resistance, i.e. arisen spontaneously during drug treatment, could
also be distinguished from cases of transmitted resistance, i.e. due to re-infection with
a resistant strain (Clark et al. 2013), based on the presence of phylogenetically
informative mutations. However, WGS cannot replace phenotypic susceptibility testing
for all antibiotics, given the incomplete understanding of the genetic causes of
resistance (Sharon J. Peacock 2013) of some of them (Bhuju et al. 2013; Brossier et al.
2011). In this regard, WGS can be a powerful research tool to dissect the genetic

determinants of antibiotic resistance (H. Zhang et al. 2013; Farhat et al. 2013).
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1.3 Next-generation sequencing technologies

Second generation sequencing technologies (SSTs), also refer as to next-generation
sequencing (NGS), were designed to parallelise the sequencing process to deliver high-
throughput sequences at lower cost than standard capillary sequencing (Sboner et al.
2011). Table 1.1 summarises the main features of the most established SSTs platforms

compared to traditional Sanger capillary sequencing (Liu et al. 2012; Glenn 2011).

Table 1.1 Commercially available second generation sequencing platforms

lllumina SOLiD 454 Sanger
llumina Illumina SOLiDv4 GS Junior GS FLX+ 3730xI
GAllx HiSeq2000 System System
Sequencing Sequencing by synthesis | Ligation and Pyrosequencing Dideoxy chain
method 2-base coding termination
Maximum 95 Gb 600 Gb 120 Gb ~35 Mb ~700 Mb 1.9~84Kb
Output
Maximum read 2x 100 2x 150 50 + 35 400 bp 700 bp 900 bp
length
Millions of 320 3000 840 0.1 1 0.000096
reads per run
Run time 14 days 8 days 12 days 10 hours 23 hours 2h
Cost per Mb $0.12 $0.10 $0.11 S22 $10 $1500
Instrument cost | $250,000 $690,000 $475,000 $108,000 | $500,000 $376,000
Main High throughput Low error Read length, fast High quality,
advantage rates long
read length
Main Short read assembly Short read High cost, low High cost low
disadvantage assembly throughput throughput
Primary Transcriptome Re- De novo microbial De novo
applications characterization, de sequencing, genomes, microbial and
novo large genomes, re- transcript transcriptome large
sequencing, transcript counting and characterization and genomes,
counting, mutation mutation metagenomics mutation
detection, and detection detection
metagenomics
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Current lllumina sequencers, e.g. lllumina Genome Analyser Il and HiSeq2000, can
sequence hundreds of bacterial genomes of a few mega bases (Mb) to at least 50-fold
coverage in a single run (www.illumina.com). Because of the short length of
sequencing reads (50-250 bp), these platforms have been extensively employed in re-
sequencing projects, i.e. when a complete genome from a close strain or species is
already available. Despite differences in read lengths, depth of coverage (DOC) and
other features there is an increasing overlap for the same applications among different
platforms (Table 1.1). A broad spectrum of bioinformatic algorithms has flourished to

meet the needs of sequence data analysis, management and interpretation.

1.4 Whole genome sequence analyses

Current high throughput sequencing machines produce tens of millions of sequences
in a single run. Raw sequence data is generally stored in files of FASTQ format (Cock et
al. 2010), a text-based format for storing both the nucleotide sequence and its
corresponding quality scores. Quality control and filtering are firstly applied to raw
reads in order to minimise the artefacts arising during the sequencing reactions,
including base calling errors, poor quality reads or primer contamination. After
removing poor quality reads and samples, sequenced reads are typically mapped to a
reference genome.

The first step in most sequence analysis pipelines involves the mapping or alignment of
reads against a reference genome, a requisite stage for downstream analyses. With

the introduction of NGS platforms, traditional alighnment software became obsolete
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and had to be replaced by new algorithms designed to map millions of short reads (35-

150 bp) (Li & Homer 2010).

. . ﬂF 2_6180:1:2102:12869:50429%1/1
@title and optional ACCTTAGGGTCGCCGTTAAGT TCGGAGACGACCGLGT TCCACACTGTGGTGAAGCC TGAACCGGGGTCATCGGT
BFEFEEEEQEACCODEEEEQDEEEEFFF=FFDF=EBF FFFBEFEFECEEEEFCFFFFAFQBEFFFBFFEFEDAFQ
@HS2_6180:1:1208:12342:184192#1/1
GGATCGCGAGCCGTTGCCGGTAGGTTGCGGCTGGTTATCCACGGGACCGTCCCCATTTGTGGATAAACCAGGGGE

DCF‘F&QL’E?LLuLtUtEtUFF‘PHAD#UQ&&EJ ,SO%2788(((,)3*/*(14)&/*%(".*.7/(((&1
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Figure 1.5 FASTQ format
Some implementations incorporate paired-end information, i.e. the constraints
imposed by mate pairs in terms of distance and orientation, to resolve read mapping
at repetitive regions and correct for alignment errors. Base quality in reads has also
been exploited by programs like MAQ (Li et al. 2008) and BWA (Li & Durbin 2010) to
further improve alignment accuracy. These programs output both aligned and
unaligned reads in Sequence Alignment/Map (SAM) format (H. Li et al. 2009), a
standardised format widely supported by downstream bioinformatic tools (e.g. variant
callers, alignment viewers). SAM and BAM files (i.e. the compressed, indexed and
binary form) contain all reads initially stored in FASTQ file(s) plus their mapping
information, including their position with respect to the reference, mapping quality,
pair-end information, etc. The development and improvement of efficient short-read
alignment algorithms made the fast processing of data produced by SSTs feasible
which, initially, entailed a bottleneck in the analysis of such high-coverage sequence

datasets.
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In addition to the mapping approach, de novo assembly can be used to reconstruct the
target sequence not assisted by the comparison to previously resolved reference
sequences. It follows a bottom-up strategy by which reads are grouped into contigs
and those into scaffolds covering, ideally, the whole chromosome length. Despite the
limitations initially imposed by NGS data, high coverage currently achieved (e.g. 100x
by lllumina HiSeq2000), growing read lengths (150 bp by Illumina HiSeq2000) and
paired-end information makes it feasible to obtain relatively low fragmented
assemblies from bacterial genomes (Magoc et al. 2013). De Bruijn graph assemblers,
such as Velvet (Zerbino & Birney 2008) or SOAPdenovo, are among the most commonly
used and have become the programs of choice when processing short reads produced

by lllumina and SOLID platforms (25-150 bp range) (W. Zhang et al. 2011).

Most of software tools for variant detection and calling require as input alignment files
obtained by mapping software, commonly in SAM/BAM format. Single nucleotide
polymorphisms (SNPs) can be distinguished from sequencing errors thanks to the high
DOC achieved by SSTs. True SNPs are expected to occur as mismatches across multiple
reads at the same reference position whereas mismatches found at spurious locations
are likely to be sequencing errors (Figure 1.6). SNP calling tools (Nielsen et al. 2011)
make use of this information to calculate statistical significance and filter out false
positive SNPs. Small indels, namely those shorter than the read length, can also be

called since mapping algorithms allow for gapped alignments.
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Figure 1.6 Alignment visualisation with a SNP and sequencing errors

Alignment of sequencing reads to a region of the Mtb reference genome. Reads are displayed as
rectangles in gray if matching the reference sequence. Mismatches are colour-coded by nucleotide: A
green, C blue, G yellow and T red. A mismatch is found across most of the reads centred in the figure
(probable SNP). Spurious mismatches are likely to be sequencing errors.

Structural variation (SV) refers to relatively large polymorphisms that alter the
chromosome structure (e.g. indels, inversions and copy number variants (CNV)) (Alkan
et al. 2011). New tools have been developed to detect unusual patterns of reads, or
pairs of reads, left by structural variants. Such signatures can be broadly grouped into
three categories: signatures based on discordant mapping of read pairs, signatures

based on read splitting and signatures based on DOC (Alkan et al. 2011). SV programs
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implement algorithms aiming to identify such signatures, or combinations of them,

from sequence alignment files (Layer et al. 2014; Rausch et al. 2012).

The most powerful variation calling approach would be to perform de novo assembly
of each genome and identify polymorphisms by alighment of genome sequences. This
would enable unbiased detection of all types and lengths of SVs. It is expected that de
novo assembly of genomes followed by subsequent pair-wise comparison to the
reference genome will become the standard method of SV detection. This approach
has not been reliable to resolve all genomic regions, especially regions with repeats
and duplications, due to limited read lengths and differences in coverage between
regions. Nevertheless, with increasing read lengths and DOC obtained by the latest
generation of sequencers it will be possible to produce relatively low fragmented

assemblies from bacterial genomes (Utturkar et al. 2014).

1.5 Research aims and objectives

The overall aim of this work is to address the bioinformatic challenges that are
associated with the analysis and interpretation of WGS data derived from Mtb clinical
isolates and advance towards a more complete understanding of the genomic diversity

of Mtb. Each of the specific objectives are summarised in the following points:

1. Design and implementation of bioinformatic pipelines to derive genomic variants
from MTBC raw sequence data, making use of the state-of-the-art mapping and de

novo assembly bioinformatic tools.

32



2. Development of an open-access web-based resource of MTBC genetic

polymorphisms derived from publicly-available WGS projects.

3. Development of in silico genotyping approaches to bridge the gap between classical

genotyping and high throughput sequencing.

4. Define a set of lineage and sub-lineage specific markers that can be used to

discriminate known circulating strains, both accurately and robustly.

5. Study the diagnostic performance of known DR mutations as markers for predicting

phenotypic resistance from WGS data.

6. Discovery of new genes involved in DR.

In summary, the objectives of this work involve developing bioinformatic tools for
processing and making MTBC genomic data accessible, as well as identifying
informative genetic markers, both strain-specific and DR-associated, to barcode MTBC

strains in the context of epidemiological, diagnostic and clinical studies.

1.6 Description of the thesis and contributions

The content of this thesis corresponds to that of five research papers (Table 1.2), in
addition to the Introduction (Chapter 1) and Discussion and Further Work (Chapter 6),
which are produced specifically for this thesis. Chapters 2, 4 and 5 are composed of
one research paper each, while Chapter 3 comprises the content of two research

papers (Table 1.2).
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Table 1.2 Research papers included in this thesis in chronological order

Research
Paper Authors Title Status, journal
Number and year
(Chapter)
Francesc Coll, Kim Mallard, Mark D. SpolPred: rapid and Published.
1 Preston, Stephen Bentley, Julian accurate prediction of Bioinformatics
(Chapter 3) Parkhill, Ruth McNerney, Nigel Mycobacterium tuberculosis | (2012)
Martin and Taane G. Clark spoligotypes from short
genomic sequences.
Francesc Coll, Mark D. Preston, José PolyTB: A genomic variation | Published.
Afonso Guerra-Assungao, Grant Hill- map for Mycobacterium Tuberculosis
Cawthorn, David Harris, Jodo tuberculosis. (2014)
Perdigdo, Miguel Viveiros, Isabel
h 2 Portugal, Francis Drobniewski,
(Chapter 2) Sebastien Gagneux, Judith R. Glynn,
Arnab Pain, Julian Parkhill, Ruth
McNerney, Nigel Martin and Taane
G. Clark
Francesc Coll, Ruth McNerney, José A robust SNP barcode for Published.
3 Afonso Guerra-Assuncdo, Judith R typing Mycobacterium Nature
(Chapter 3) Glynn, Jodo Perdigdo, Miguel tuberculosis complex communications
Viveiros, Isabel Portugal, Arnab Pain, | strains. (2014)
Nigel Martin and Taane G Clark.
Francesc Coll, Ruth McNerney, Mark Rapid determination of anti- | Submitted
D Preston, José Afonso Guerra- tuberculosis drug resistance
Assuncdo, Andrew Warry, Grant Hill- | from whole-genome
4 Cawthorne, Kim Mallard, Mridul sequences
(Chapter 4) Nair,'ANnabeI'a Mirar\de'\,loéo
Perdigdo, Miguel Viveiros, Isabel
Portugal, Zahra Hasan, Rumina
Hasan, Judith R Glynn, Nigel Martin,
Arnab Pain and Taane G Clark.
Francesc Coll, Grant A. Hill- A whole genome association | In preparation
Cawthorne, Kim Mallard, Rumina approach reveals insights
Hasan, Zahra Hasan, Nerges Mistry, into global Mycobacterium
Rob Warren, Keertan Dheda, Patricia | tuberculosis drug resistance
Sheen, David Moore, Jaime Robledo,
Maxine Caws, Stefan Pantaiotov,
5 Richard Anthony, Saad Alghamdi,
(Chapter 5) | Joao Perdigao, Miguel Viveiros,
Isabel Portugal, Andy Ramsey, Bouke
de Jong, Leen Rigouts, Theolis Bessa,
Tomoshige Matsumoto, Anabela
Miranda, Noram Mocillo, Christophe
Sola, Ruth McNerney, Arnab Pain
and Taane G Clark.

Chapter 2 corresponds to Research Paper 2, titled ‘PolyTB: A genomic variation map

for Mycobacterium tuberculosis’. Chapter 2 describes the implementation of the
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genome variation discovery pipeline (Research Paper 2). It is applied across
independent WGS data sets - sourced from epidemiological, DR and evolutionary
studies - as a first step for phylogenetic, population genetic and other downstream
analyses. PolyTB is also presented, a repository hosting the discovered genomic
variants, annotated and integrated with strain type and geographical metadata. TGC
and | conceived and designed this study, which was jointly supervised by TGC and NM.
| developed and tested the genomic discovery bioinformatic pipelines with input from
JAG, MDP and TGC. | developed PolyTB using as a starting point PlasmoView - a project
coded by MDP to display malaria genomic data (Preston et al. 2014) - with input from
all other authors and technical advice from MDP, TGC and NM. | drafted, wrote and
finalised the manuscript with contributions from all other authors, and produced all
tables and figures in the manuscript, including all summary statistics and phylogenetic
analyses. DH, JP, MV, IP, FD, SG, JRG, AP, JP and RM contributed to the sequencing of
samples and metadata. Research Paper 2 was published in Tuberculosis on the 8" of

February 2014.

Chapter 3 is composed of two research papers, research papers 1 and 3 (Table 1.2),
both related to Mtb typing from whole genome sequences. Approaches that can
predict traditional genotypes from WGS data are investigated, leading to the
development of SpolPred, a software tool for accurate determination of Mtb
spoligotype patterns from WGS data (Research Paper 1). TGC and | conceived and
designed this study. | developed and tested Spol/Pred software with the contribution of
MDP, who helped me optimise the performance and speed of the tool. KM carried out
the experimental spoligotyping, whose results were compared to SpolPred predicted
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ones. TGC, NM and RM jointly supervised the project. RM provided the samples and SB
and JP contributed to the sequencing of these. RM, TGC and | drafted and finalised the
manuscript with contributions from all other authors. Research Paper 1 was published

in Bioinformatics on the 29" of August 2012.

Given the limitations of traditional genotyping techniques and the growing consensus
on the use of SNPs as robust and highly discriminatory phylogenetic markers (Comas et
al. 2009), a new SNP-based classification system for MTBC strains is proposed in
Chapter 3 (Research Paper 3). TGC and | designed this study. JAG, JRG, JP, MV, IP, and
AP contributed to the construction of the data set. RN, NM and TGC jointly supervised
the research. | conducted all analyses, including the bioinformatic pipelines to derive
high quality genomic variants and phylogenetic and population genetic analyses, and
produced all tables and figures. RM, TGC and | wrote the paper with contributions
from all other authors. Research Paper 3 was published in Nature Communications on

the 1°' of September 2014.

Chapter 4 corresponds to Research Paper 4 titled ‘Rapid determination of anti-
tuberculosis drug resistance from whole-genome sequences’. To assess the potential
benefits of a whole genome approach to detect DR TB, an updated library of mutations
predictive of DR has been curated from the literature. TB profiler, an online tool for
analyzing raw sequence data and predicting resistance, has been implemented. The
prediction of strain type, based on strain-specific mutations, has been added to
enhance the usefulness of this tool. RM, AP, TGC and | conceived and designed the

study. MDP and | developed and tested the online tool TB profiler; JAG and AW
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developed additional software which were not core to the final work. GH-C, MN and
KM performed laboratory experiments and curation of meta data for sequencing. AM,
IP, MV, IP, ZH, RH, JRG contributed biological samples, sequencing or phenotypic data.
| searched the literature and curated the database of DR-associated mutations. |
conducted the bioinformatic analyses to derive high quality genomic variants,
performed comparisons of experimentally determined phenotypes with predicted
ones, and performed the statistical analysis under the guidance of NM and TGC. |
produced all tables and figures in the manuscript. AP led the sequencing efforts. RM,
TGC and | drafted, wrote and finalised the manuscript with contributions from all other
authors. Research Paper 4 was submitted for publication to Genome Biology on
December 2014.

Chapter 5 corresponds to Research Paper 5, in which phenotype-genotype association
analyses are performed and novel loci associated with resistance identified. |
conducted the bioinformatic analyses required to obtain a high quality data set of
genomic variants, and performed the phylogenetic and genome-wide association
analyses under the guidance of TGC. GA-CH, KM, and AP coordinated the sequencing.
RH, ZH, NM, RW, KD, PS, DM, JR, MC, SP, RA, SA, JP, MV, IP, AR, BdJ, LR, TB, TM, AM,
NM and CS contributed DNA samples and meta data, including strain-typing and drug

susceptibility testing data. RM, AP, and TGC are joint PIs on the project.

The final Chapter ‘Discussion and Further Work’ does not correspond to a research
paper, but summarises the main findings, places the research into a wider TB context,

discusses the limitations of the thesis and outlines opportunities for future research.
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1.7 Description of the data sets

Multiple MTBC populations from independent studies have been used throughout this
work. Table 1.3 provides a brief description of each of these studies. The population
name is given based on the geographical source of the samples. Only two studies
consisted of samples from multiple sources: the Global key strains (Comas et al. 2013)
and WHO-TDR studies (Vincent et al. 2012). For studies with publicly-available WGS
data, the European Nucleotide Archive (ENA) accession number is provided. The
sequencing centre, sequencing technology, sample size, read length and median DOC
of each study are also provided. The availability of phenotypic DR testing is additionally
indicated. Table 1.4 describes the composition of each data set used in the chapters,

namely which studies they are composed of.

Table 1.3 Summary of all WGS TB studies

. ENA accession Sample Read DR
Population (reference) . DOC .
number Size length available

Samara, Russia (Casali & ERP000192° 329 49° 61 Yes
Nikolayevskyy 2012) (42/329)
Midlands, UK (Walker et al. 2013) ERP000276° 390 75° 112 No
Kampala, Uganda (Clark et al. 2013) ERP000520° 51 75° 257 Yes
Global key strains (Comas et al. ERP001731° 171 75/100 97 No
2013) b
Bilthoven, Netherlands (Bryant, ERP000111° 213 75/100 39 No
Schiirch, et al. 2013) b
Vancouver, Canada (Gardy et al. SRP002589° 36 50° 37.5 Yes
2011)
Lisbon, Portugal (Perdigdo et al. ERP002611° 84 100° 104 Yes
2013)
Karonga, Malawi (A) (Guerra- ERP000436° 353 75° 183 Yes
Assungdo et al. 2014)*
Karonga, Malawi (B) (Guerra- ERP000436° 1662 75° 102 Yes
Assuncgado et al. 2014)
China (H. Zhang et al. 2013) SRA065095 161 75° 113 Yes
Djibouti (Blouin et al. 2012) ERP001885° 7 75° 75 No
Ethiopia (Firdessa et al. 2013) ERP001567" 4 75° 95 No
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b

Porto, Portugal - 128 100 157 Yes
Karachi, Pakistan -e 42 100° 448 Yes
Brazil -© 108 100° 110 Yes
Bulgaria -© 17 100° 155 No
Colombia -e 15 100° 111 Yes
India -e 17 100° 59 No
Japan - 4 100° 283 No
Netherlands -e 14 100° 389 Yes
Peru -e 104 100° 290 Yes
South Africa -e 174 100° 188 Yes
Vietnam -e 50 100° 192 Yes
WHO-TDR -e 190 100° 123 No

®Sequenced using lllumina HiSeq2000, bSequenced using lllumina Genome Analyzer I, CSequenced at
the Wellcome Trust Sanger Institute, dSequenced at Simon Fraser University, °Sequenced at the King
Abdullah University of Science and Technology (KAUST), fSequenced at the Beijing Genomics Institute
(BGI), Sequenced at the Institut de Génétique et Microbiologie, Université Paris Sud, hSequenced at
the Center for Public Health Research, University of Valencia.*Karonga, Malawi (A) is a sub-set of
Karonga, Malawi (B)

Table 1.4 Composition of the four WGS data sets

Data set name Populations included
WGS data set 1 Samara, Russia; Midlands, UK; Kampala, Uganda; Global key Chapter 2
strains; Bilthoven, Netherlands; Vancouver, Canada;

Lisbon, Portugal; Karonga, Malawi.
WGS data set 2 WGS data set 1 + China, Djibouti and Ethiopia. Chapter 3
WGS data set 3 China; Karachi, Pakistan; Karonga, Malawi; Lisbon, Chapter 4
Portugal; Porto, Portugal; and Samara, Russia.
WGS data set 4 Brazil; Bulgaria; China; Colombia; Vancouver, Canada; India; Chapter 5
Japan; Karachi; Karonga, Malawi; Lisbon, Portugal;
Netherlands; Peru; Porto; Samara, Russia; South Africa;
Kampala, Uganda; Vietnam; WHO-TDR
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2 IDENTIFYING AND VISUALISING GENOMIC VARIATION

An increasing number of WGS samples have become publicly available during the past
few years - sourced from epidemiological, DR and evolutionary studies in Mtb - and
deposited as raw sequence files. The aim of the work presented in this chapter is to
process this wealth of data, mine the genetic variation in it and present it to the TB

community in an integrated and intuitive manner.

2.1 INTRODUCTION

SNPs, indels and other genetic polymorphisms derived from WGS provide enough
discriminatory power to assess natural variation in populations. These include variants
associated with the host-pathogen relationship, including virulence factors, drug
susceptibility determinants and immune modulator factors with importance on the
clinical manifestations (Ford et al. 2012). Due to the low mutation rate (Bryant,
Schiirch, et al. 2013) and limited genomic diversity of MTBC, the application of WGS in

clinical settings is particularly effective for Mtb (Koser et al. 2012).

After the first Mtb genome was sequenced in 1998 (Cole et al. 1998), another 26
complete ‘reference’ genomes have been sequenced and made publicly available
(NCBI 2014). Databases like the Mycobacterial Genome Divergence Database (MGDD)
(Vishnoi et al. 2008), the Single Nucleotide Polymorphism Database (dbSNP) (Smigielski
et al. 2000), and Tuberculosis Database (TBDB) (Reddy et al. 2009) curate genomic
variants across some of these available complete genomes. The Pathosystems

Resource Integration Center (PATRIC) houses genomes of different bacterial pathogens
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including MTBC strains (Wattam et al. 2014), 449 to date. In terms of gene annotation,
Tuberculist provides exhaustive and updated functional information such as operon

annotation or protein information (Lew et al. 2011).

The TB community has a number of available web-based databases and tools to exploit
the existing molecular epidemiological data (Shabbeer et al. 2012), SNP repositories
(Stucki & Gagneux 2012) and manually-annotated genomes (Sandgren et al. 2009).
Nevertheless, there is no tool harbouring genetic polymorphisms derived from WGS
projects integrated with geographic distribution, strain type information and
population structure visualisation. Despite the number of WGS data sets stored in
public repositories like the ENA or SRA (Short Read Archive), users cannot browse,
compare and contextualise the genomic variants resulting from these studies.
Clinicians, epidemiologists and researchers working on TB would benefit from a
resource allowing the investigation of genetic variation at genes of interest and
geographic distribution of strains and clinically important genetic variants such as DR

markers.

To fill this gap, PolyTB was developed, a web-based tool to display MTBC genetic
polymorphisms derived from publicly available WGS datasets. A catalogue of SNPs,
small indels and large deletions was compiled by employing the state-of-the-art
variation discovery software (Alkan et al. 2011). Variants can be investigated through a
genome browser reporting their chromosome coordinates, and a world map showing
their global allele distribution. Additionally, the construction of phylogenetic trees

based on SNPs provides an additional tool to investigate the population structure.
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Strain genotype information is incorporated, allowing the visualisation of associations
of strain types with particular polymorphisms and/or geographical locations as well as
aiding correlation with public health epidemiological data. The integration of such data
into tools like PolyTB is required to fully exploit genomic variation, and potentially
boost TB control research through the discovery of new drug targets, vaccine antigens

and diagnostics.

2.2 METHODS

2.2.1 Genomic variation discovery pipeline from lllumina paired-end sequence data

MTBC isolates from the WGS dataset 1 described in Section 1.7 were downloaded from
the ENA (http://www.ebi.ac.uk/ena/). All isolates (n = 1,627) had been sequenced
using lllumina paired-end technology (lllumina-GAll or HiSeq 2000). For each of the
samples, Trimmomatic software version 0.27 (Lohse et al., 2012) was used to clean the
raw data, removing low quality reads and low-quality 3’ ends of reads, and keeping
only reads at least 36 base pairs long, with nucleotides above Q20. Filtered sequences
were then aligned to the H37Rv reference genome (Genbank accession number:
NC_000962.3) using the BWA mem algorithm (version 0.7.9a-r786) (Langmead et al.
2009). Default options were used but the ‘minimum score to output’ which was
increased to 50 (-T option), resulting in one alighnment file of BAM format per sample
(Figure 2.1). SAMtools/BCFtools (SAMTOOLS) (Li et al. 2009) version 0.1.18 was used to
call SNPs and small indels using default options but the minimum read depth (set to
10) and the maximum read depth (set to 2000). GATK (McKenna et al. 2010) version

2.8-1 was also used to call both SNPs and small indels using the Unified Genotyper
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mode and ploidy equal 1. The overlapping set of variants from the resulting VCF files
were retained for further analysis. The GEM mappability program version 1.315 (Lee &
Schatz 2012) was used to calculate mappability values along the whole reference
genome using a k-mer length of 50bp and 0.04% of allowed substitutions while
mapping. Non-unique SNP sites (mappability values greater than one) were filtered

out.

/ Reads (fastq) /

l

Reference | Mapping
(fasta) (BWA)

/

/ Alignments (bam) /

Variant calling Large SV discovery

‘ (SAMTOOLS & GATK)

|

SNPs and small
indels (vcf)

——= Discordant pairs (Breakdancer)
— Split Read (Pindel, CREST)

Depth of coverage (CNVnator)

——> Combined approach (Delly)

Post-processing
(SAMTOOLS, Velvet, AGE)

Y

/ Large deletions /

Figure 2.1 Genome variation discovery pipeline

Schematic of the genomic discovery pipeline implemented to compile a catalogue of SNPs, small indels
and large deletions from Illumina paired-end sequence data.

Alleles were additionally called at SNP sites using a coverage-based approach. A

missing call was assigned if the total coverage at a site did not reach a minimum of 20
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or none of the four nucleotides accounted for at least 80% of the total coverage. The
sorted proportion of missing calls was plotted for all isolates and a clear inflection
point found at around 15%, which was then used as a quality threshold to filter

samples (Supplementary Figure 1).

Large deletions (>100bp) were determined using a combination of tools based on
paired-end, split-read and DOC approaches. In particular, Breakdancer (Chen et al.
2009), CREST (Wang et al. 2011), Pindel (Ye et al. 2009), Delly (Rausch et al. 2012) and
CNVnator (Abyzov et al. 2011) were employed followed by a de novo assembly-
validating strategy. Reads at putative deletions (-/+ 300bp) predicted by all five tools
were extracted from alignment (BAM) files and subsequently de novo assembled using
Velvet (Zerbino & Birney 2008). If a derived contig happened to be split into two parts
when mapping it back to the reference (Abyzov & Gerstein 2011; Camacho et al. 2009)
with high similarity (>95%), the contig was considered a cross-junction contig (CJC)
(Wang et al. 2011). Deletions without at least one CJC were considered to be false
positives and were therefore discarded. Deletions in PE/PPE genes were filtered out
due to the complexity of such regions. These genes are an important source of false

positives (Roetzer et al. 2013).

All validated deletions were merged when having a mutual overlap greater than 95%.
Also, only validated deletion sites predicted by at least two tools or occurring in at
least two isolates were retained. The bioinformatic pipeline is summarised in Figure

2.1.
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2.2.2 Genomic variation discovery pipeline from complete genomes

A set of 16 publicly available complete Mtb genomes were downloaded
(Supplementary Table 1). All genomes were aligned against the H37Rv reference
genome (NC_000962.3) using BWA MEM (Li & Durbin 2010). Once again, SNPs and
small indels were identified using SAMTOOLS and GATK, and the overlapping set of
variants retained. Large deletions in complete genomes were derived with an
implemented pipeline consisting of nucmer, show-diff (Kurtz et al. 2004) and AGE

software (Abyzov & Gerstein 2011).

2.2.3 Population structure

Strain spoligotypes for all isolates were derived from FASTQ files using SpolPred
(Section 3.2.2). The best-scoring maximum likelihood phylogenetic tree was computed
with RAXML v7.4.2 (Stamatakis et al. 2008) using all 74,039 SNP sites spanning the

whole genome.

2.2.4 PolyTB software architecture

PolyTB has been built using primarily a combination of PHP, HTML and JavaScript code.
These three core technologies have become a popular set of tools to develop dynamic
web pages because they all are free, open-source and easily combined. PHP is the
scripting language working on the server side, normally enclosed inside HTML pages
and passed to the PHP parser on the server, which automatically processes it. PHP
output is always HTML eventually sent to and displayed by the web browser.

JavaScript, on the other hand, is used as the client-side (i.e. Web browser) language. It
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provides the means by which elements in an HTML document (such as text boxes,
bottoms, lists, etc) can be accessed, monitored and changed on-the-fly. JavaScript can
gather information from the client and pass it to a PHP script on the server to

interactively generate dynamic pages.

Raw data has been initially pre-processed to be stored in the form of PHP and CSV
files. Raw files contain information about the samples and populations, genomic
polymorphisms (VCF files) and genome annotation. Although PHP has methods to
open and read from existing files, having the data already as PHP variables decreases
the time required to retrieve it from the server upon request. Such PHP files, hereafter
referred to as data PHP pages, have no functionality attach to them, and only contain
variable assignments. They are located in a server’s directory and will be included into,
and their variables content used by, another group of PHP pages, the ones actually
performing actions on the server, here named functional PHP pages. On the other
hand, CSV files include data accessible by JavaScript code. The way both groups of PHP
pages communicate and the role of JavaScript will be further discussed in the following

paragraphs.

The genome browser is the main view of the project; where genetic polymorphisms
are displayed for the chromosome region and samples selected by the user. Figure 2.2
shows the web-page structure. JavaScript plays a key role in controlling HTML
elements content and layout. The JavaScript code implemented in browser.js file
contains specific functions to load CSV documents content into browser.php HTML

elements. For instance, sample names and locations are added as drop-down list
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options in this page. JavaScript also monitors changes made by the user on HTML
elements (options selected, text written, ticked boxes, etc) and sends the collected
information (samples selected, chromosome range, labels ticked, etc) as parameters to
browserparameters.php. This PHP page acts as a central node by accessing all data (in
the form of data PHP files, shown in orange and green in Figure 2.2) and keeping the
subset meeting the parameters restrictions. For instance, only genes falling within the

chosen chromosome range are kept.

uniquenessChromosome.php

browser.css
(Style sheet) referenceChromosome.php

genesChromosome.php

genesAnnotation.csv

samples_attributes.php

locations.csv .
locations.php

sample_attributes.csv

]

browserimagegenes.php
browser.js
(Javasert Jt) browser.php browserparamaters.php browserimagelocations.php
pt) € ’ (HTML)
browserimage.php

—

browserimagespol.php

browservariantmatrix.php browsertabledistances.php

browsertablesamples.php

browserimagedistances.php

Figure 2.2 Genome Browser View web architecture

Flowchart representing the Genome Browser View architecture. Documents with background colour
(PHP and CSV) contain processed data: related to sample metadata (green background), chromosome
annotation (orange background) and genetic polymorphisms (sample.php files in gray background). This
data is accessed by PHP files implementing most of the functionality (white background) including image
and table generation. The brower.js page implements the JavaScript code which controls the HTML
elements in browser.php.
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The PHP code in functional PHP pages (shown in red borders) is executed upon request
by JavaScript and their output, HTML tables and PHP images, append it to browser.php
page. For instance, browserimage.php creates an image with colour-coded genetic

variants.

The Map View shows allelic frequencies for the chosen variant at the geographical
regions from where sequenced samples were collected, either alone or combined with

spoligotype frequencies.

' mapSNPs \mapINDEI.s | lmapDE,_s
j indelX.csv | | delX.csv I
genesAnnotation.csv ' SpolSNPs \ SpoIINDEI.s SpolDELs |

locations.csv | I|
) ‘

7” populations.csv

.

map.js

(JavaScript) <«

map.css
(Style sheet)

map.php
Google APl loader (HTML)

(JavaScript)
—

Maps JavaScript API

(JavaScript) \/

Figure 2.3 Map View web architecture

Flowchart representing the Map View architecture. Documents with background colour (CSV) contain
processed data: related to sample metadata (green background) and chromosome annotation (orange
background). Allele frequencies across each population are stored in small CSV files (snpX.csv, indelX.csv,
delX.csv files in gray background). This data is accessed by JavaScript function in map.js which
implements most of the functionality and controls the HTML elements in map.php.
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Figure 2.3 shows the web-page structure. In this case, JavaScript functions in map.js
implement most of the functionality. Allele frequencies for SNPs, indels and large
deletions across geographical populations are stored in CSV files in mapSNPs,
mapINDELs and mapDELs folders respectively. For a given selected variant, allele
frequencies at all populations are read from its corresponding file and drawn as pie
charts on the map. Additionally, spoligotype frequencies within each allele portion can

also be displayed in the form of concentric pie charts.

The construction of phylogenetic trees based on whole genome polymorphisms has
been implemented as an additional tool to investigate the population structure. The
aim is to build phylogenies for the samples selected by the user on the fly and draw
the resulting trees in a reasonable amount of time, namely in seconds. Due to the
large number of samples and polymorphisms to consider, distance-matrix methods
have been chosen for that purpose because of their efficiency. Other methods based
on parsimony or maximum likelihood would be more time-consuming when dealing
with whole-genome data. However, prior to running the distance method the distance
matrix needs to be calculated from multiple alignments, the most computationally

expensive step.

As shown in Figure 2.4, the Phylogenetic View keeps the same structure as the
Browser View (Figure 2.2). JavaScript functions in phy.js collect the samples and
parameters specified by the user required for building both the distance matrix and
phylogenetic tree and passed them to createtree.php. The phylogenetic analysis page

required the integration of compiled executables on the server-side and specific
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JavaScript libraries. A genetic distance matrix was pre-computed using PHYLIP dnadist
program from all SNP sites (Felsenstein 1989). Trees are computed on the server upon
request by distance-based programs from the PHYLIP package and then displayed on

the browser making use of jsPhyloSVG JavaScript library (Smits & Ouverney 2010).

spol_colour.php

populations.csv

phy.css loc_colour.php
(Style sheet)

samples_attributes.php

samples_attributes.csv locations.php

locations.csv

PHP variables

raphael-min.js

JavaScript
(et
jsphylosvg-min.js
(JavaScript) — Distance matrix
l():¥"c||£')) (dismat.php)
createtree.php
v Phylogenetic tree
e_’a (Newick tree format)

phy.js
(JavaScript)

PhyloXML converter

/ Phylogenetic tree

(PhyloXML format)

Figure 2.4 Phylogenetic View web architecture

2.3 RESULTS

A high quality SNP dataset (n = 74,039) was attained by filtering the list of SAMTOOLS
and GATK consensus variant calls using genomic mappability criteria. Isolates having
less than 15% SNP missing calls were retained (1,470/1,627). Both the spoligotypes
and lineages were inferred in silico, using SpolPred software (Coll et al. 2012) (Section

3.2.2).
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All major modern MTBC lineages are represented, including lineage 1 (East African-
Indian (EAI) spoligotype family, 95 isolates, 6.46%), lineage 2 (Beijing, 246 isolates,
16.73%), lineage 3 (Central Asian (CAS), 170 isolates, 11.56%) and lineage 4 (715
isolates, of which 119 X, 273 T, 266 LAM, 7 S and 50 H). Ancestral lineages represented
include seventeen M. africanum cases, 7 from lineage 5 (West African 1 family), 10
from lineage 6 (West African 2 family) and 6 cases of M. bovis. Nearly 15% of isolates
(n=218) had orphan spoligotypes, i.e. they were not previously described, but were

often closely related to known spoligotypes.

Lineage 2 ;
AFRI
@ oov
@ Baijing
CAS
® EA
H
T
LAM
X
®s

Orphan

Lineage 1

Manu
Zero

M. bovis/Lineage 6

Figure 2.5 RAxML phylogenetic tree built for all 1,470 MTBC isolates (colour-coded by
spoligotype)
Radial phylogram representation of the best-scoring maximum likelihood phylogenetic tree constructed

using RAXML software. Samples are colour-coded by spoligotype strain showing a clear correlation of
SNP and spoligotype clustering.
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Figure 2.5 shows a radial phylogram for all samples, rooted on M. bovis. All major
MTBC lineages are separated, with M. bovis, lineage 1, 2, 3, 5 and 6 isolates clustered
within discrete clades, thereby demonstrating the usefulness of SNPs for strain
classification. All isolates belonging to lineage 4 are grouped together, although H, T
and LAM samples are dispersed among different clades as already observed (Filliol et

al. 2006).

To highlight the presence of site-specific lineages, edges in the tree were colour-coded

by geographical location (Figure 2.6).

Samara clade ;™

@ Migia
® Samala, Ru

San Francisco, USA

Shangha, China

Sierra Leone (West Afrca

® Torzana

The Gambla (West Africa
® Uganda

Vancouver, Canada
@ Ve

Figure 2.6 RAxML phylogenetic tree built for all 1,470 MTBC isolates (colour-coded by
geographical location)

Radial phylogram representation of the best-scoring maximum likelihood phylogenetic tree constructed
using RAxML software. Samples are colour-coded by geographical location to highlight the presence of
site specific strains.
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The majority of studies (7 out of 8) include isolates belonging to all genetic lineages. In
contrast, samples from the Vancouver (SRP002589) study are grouped within the same
clade (X spoligotype) suggesting they all resulted from the clonal expansion of the
same ancestor (Gardy et al. 2011). Similarly, a well-delineated group of Beijing isolates
is found to belong exclusively to the ERP000192 study carried out in Samara, Russia
(Casali & Nikolayevskyy 2012). The geographical clustering of this sub-group of Beijing
isolates corresponds to the “East European” subtype of the Beijing lineage dominant in

that region.

2.3.1 Polymorphisms detected and incorporated into PolyTB

Of the 74,039 high quality SNPs identified, nearly half (48.9%) were found to be

private, namely observed in only one isolate (Figure 2.7).
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Figure 2.7 SNP frequency bar plot

In general, there were few common SNPs with only 4.6% of SNPs (n = 3,418) present in

at least 5% of samples. Most of SNPs were found in coding regions of the genome
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(median 88.7%) consistent with these regions comprising 91.4% of Mtb genome. The
majority lead to non-synonymous (NS) changes in amino acids (median 63.0%). Overall,
1,050 SNPs were found per sample on average (range 0 — 2,261 SNPs), corresponding
to a median SNP density of 1 SNP per 4.9 kb. SNP density in coding genes (median
0.20, range 0 — 0.50 SNPs/kb) was found to be lower than that in intergenic regions

(median 0.27, range 0 — 0.81 SNPs/kb).

Figure 2.8 shows the SNP density calculated across all gene functional categories as
annotated in Tuberculist (http://tuberculist.epfl.ch/). As expected, the highly
polymorphic PE/PPE gene families have more SNP density than the average coding

regions.
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Figure 2.8 Box-and-Whisker SNP density plots by gene functional categories

A total of 4,820 indel loci of size ranging between 1 and 40 bp were identified, with the
majority found in single isolates (47.5%) (Figure 2.9). An average number of 85 small
indels were detected per sample (range 0 — 199 indels). Both insertions and deletions
accounted for an approximately equal proportion of events, 48.8 and 51.2%

respectively.
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Figure 2.9 Indel frequency bar plot

Indel density was found to be five times smaller in coding genes (median of 1 indel per

83.2 kb) than in non-coding regions (median of 1 indel per 15.7 kb). As was the case

with SNPs, the PE/PPE gene families have on average greater indel density than across

the rest of coding regions (Figure 2.10).
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Figure 2.10 Box-and-Whisker indel density plots by gene functional categories

A total of 800 large deletion loci (median size of 541 bp, range 100 — 28,862 bp) were

identified after applying a combination of SV detection approaches (pair-end, split-

read and DOC) followed by de novo assembly and re-alignment validation process of
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candidate regions. The average number of deletions per isolate was 18 (range 0 - 38)
corresponding to a median density of 1 deletion per 232 kb. Deletion density in coding
regions, including those covering whole genes or partially, was 17 times smaller (1
deletion per 576 kb) than that calculated for non-coding regions (1 deletion per 34.3
kb).

The validity of polymorphisms was evaluated by considering known variants extracted
from a set of publicly available Mtb whole genome sequences (Supplementary Table
1). A total number of 12,887 SNPs, 6,749 small indel and 95 large deletion loci were
identified from whole genome comparisons of 16 complete Mtb genomes against the
H37Rv reference. The WGS-derived polymorphisms were compared against this
validated dataset finding an overlap of 4,814 SNP, 319 indel and 26 deletion loci,
namely WGS-derived variant loci present in at least one of the Mtb complete genomes
too. These overlapping polymorphisms were found to be more frequent (17.2%, 18.4%
and 43.4% of samples for SNPs, indels and deletions) than those not shared with
complete genomes (0.3%, 0.6% and 1.0%). Overall, these results indicate set of WGS-
extracted polymorphisms encompass the known variants at the high stringency

imposed in the calling procedure.

2.3.2 PolyTB and its applications

PolyTB is a web-based resource (http://pathogenseq.lshtm.ac.uk/polytb) that has been
designed to facilitate the exploration of MTBC genetic variation (74,039 SNPs, 4,820
indels and 800 deletion sites) at a genome and global scale. The tool consists of

complementary and integrated genome browser, map and phylogenetic views. The
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genome browser shows SNPs, small indels and large deletions, colour-coded and
displayed at their respective genomic coordinates for the chromosome region and

isolates selected by the user.

PolyTB Browsed Region Information Select Samples Rv0001 (dnaA) 2] (<< <] >][>>
Browser View # Samples |60 [# SNP loci [168 [18 [50 100 options ® 759500 | 767700 =)0l
Help # Populations |2 [# Indel loci [1 |n_ [sDel | |1_ iDel ][] Show Search
759546 761100 762285 764353 765084 766198 767673

Double Click for Map View [}
Sample Information
Sample [ERR038748

[Uganda, Kampala
b [polgoype fr2 |
Coverage  [233 II
Locus Information
Position [761155 n I 1 1
Reference  [C I
Non-Synonymous SNP
Base change [C->T []
1 Codon change [TCG -> TTG 1 I

|AA change S->L
Gene Information

Locus tag IRV0667 [}

Gene name  |rpoB 1

Region 759807 - 763325

Figure 2.11 Polymorphisms at the rpoB-rpoC region (Browser View)

o -

Genetic variants are shown at the rpoB and rpoC genes, loci known to be associated with RMP
resistance. Synonymous SNPs (sSNPs) are coloured in black, non-synonymous SNPs (nsSNPs) in red and
small insertions and deletions in blue and green, respectively. Cursor movement over variants displays
an information box with further annotation including nucleotide, codon and amino acid changes for
SNPs, and length and sequence for indels. Location and Spoligotype tracks are placed as colour-coded
vertical bars at the left hand side of the genomic plot and provide information for samples. Sixty isolates
are shown, 30 from Malawi (colour-coded in red in the Location bar) and 30 from Uganda (shown in
green). Patterns of SNP differences can be observed when comparing isolates from different
populations: Kampala isolates harbour many more nsSNPs at rpoB gene than Malawian isolates. The
observed nsSNPs are likely to be the underlying cause of RMP resistance (Clark et al., 2013). In fact,
rpoB-516 (A>T SNP at 761,110 bp), rpoB-526 (G>T 761,139 bp and A>G 761,140 bp) and rpoB-531
(C>G 761,155 bp) mutations are observed in Ugandan isolates, and correspond to nsSNPs already
reported as RMP resistance markers (Sandgren et al. 2009).

Browsing options allow the user to navigate to the genes or regions of interest, with
annotation tracks (top) and sample descriptions (left side) providing context for the
variation. Search functionality has been implemented to enable the investigation of
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polymorphisms at genes of interest given their locus tag, functional annotation,
description key words or association with anti-TB DR (Sandgren et al. 2009). Figure
2.11 shows differences on polymorphism patterns between isolates from two different
populations in the neighbouring rpoB and rpoC genes, a region associated with RMP
resistance. Known RMP resistance markers including rpoB-516 (corresponding to the
observed 761,110 bp A>T SNP), rpoB-526 (761,139 bp G>T and 761,140 bp A=>G)
and rpoB-531 (761,155 bp C>G mutation) are observed in Ugandan isolates. They all
correspond to nsSNPs included in diagnostic tests (Bergval et al. 2012). Across all
populations there are 65 (44 nsSNPs) and 85 (nsSNPs) SNP loci in rpoB and rpoC genes,

respectively.

Users may also consider surveying genomic variants in genes with great importance for
the evolution of infection and treatment outcome such as those associated with

virulence, nitric oxide production and apoptosis among other possibilities.

Overall, the browser view aims to provide a visualisation tool for the identification of
differential variation patterns among isolates and populations at the same region or

between different regions under study.

The map view shows the global allele distribution for a polymorphism of interest.
Allelic frequencies for the chosen polymorphism are displayed as pie charts at the
geographical regions from where sequenced samples were collected, either alone or
combined with spoligotype frequencies as concentric pies. In the latter, outer arc-
sections illustrating strain types are placed on the top of allele frequencies to visually

inform of strain type associations with variants at the geographical region investigated.
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Figure 2.12 shows an informative SNP (position 4,411,016) found to be associated with
lineage 1 (EAl spoligotype family) across studies (only Tanzanian and Karonga-
Malawian populations shown). The main purpose of the map view is to provide a tool
to assess the spread and frequency of WGS-derived genomic variants at a global scale
as well as to enable the identification of population- and strain specific

polymorphisms.

Select Gene Select variant
P0|yTB Rv3912 < DEL | < | 4400992 Go
Map view Search SNP | < | (4411016 Go || >
Reference allele _ Help & spoligotype INDEL | < | 4408944 —
SNP at: 4411016. Intergenic
Map | Political
~
< >
v
irundi
+

/ .

/ Map data ©2013 Google - Terms of Use

Figure 2.12 SNP associated with lineage 1 (EAI) in Tanzanian and Karonga-Malawian
populations (Map view)

Allele frequencies are shown for the chosen polymorphic position as pie charts, either alone or
combined with in silico inferred spoligotypes (Coll et al., 2012) to allow the visual detection of
relationships between certain alleles and strain types. Reference allele frequency portions on pie charts
are coloured in blue while alternative allele (i.e. non-reference) frequencies are shown in red. Outer
chart portions representing relative strain type frequencies are colour-coded by main spoligotype
families (AFRI, BOV, Beijing, CAS, EAl, LAM, Manu, S, T and X). In this particular case, the SNP at
4,411,016 bp position is found to be associated with lineage 1 (EAI) strains in Tanzania and Karonga
(Malawi) populations, visualised as the red portion of the inner pie chart linking with the purple portions
of the outer pie in both settings.
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The phylogenetic view allows the user to construct phylogenies for a subset of isolates
using whole-genome spanning SNPs. Spoligotypes are included to investigate whether
clustering based on SNPs correlates with a strain-type. Figure 2.13 shows the resulting
SNP-based neighbour-joining phylogenetic tree constructed for 140 isolates belonging

to four different locations.

POIyTB | Create Tree Export Tree | = Size | + | | Help
Phylogenetic analysis ) k] | — 1P ——

Spoligotype
AmbiguousT3T2

I

81
79

ERR234]
ERR234;

ERRO40138
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ERR036218
ERR036204

ERR234127
ERR234107
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X3
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China, Shanghai

Germany, Hamburg

ERR040142
ERR038745
LeLscouua
yvL8E0u¥E

RR036203 LAM11ZWE (Malawi, Karonga)

Figure 2.13 SNP-based neighbour-joining phylogenetic tree of 140 isolates belonging to
four different locations (Phylogenetic view)

A neighbour-joining phylogenetic tree based on pre-calculated SNP distances is built in real time for the
set of 140 isolates from Shanghai (China), Hamburg (Germany), Karonga (Malawi) and Kampala
(Uganda). Spoligotype lineages and locations are colour-coded as bar charts around the tree (outer bar
representing locations and the inner one spoligotypes) to enable the visual identification of correlations

between spoligotype/location and phylogenetic clustering. A table summarising all colour codes will be
shown at the left hand side of the page.

Other PHYLYP distance-based methods (Fitch-Margoliash, UPGMA and Least Squares)
are available too. Lineages and locations are shown as colour-coded bar charts around
the tree to highlight the correlation between lineage and location with phylogenetic
clustering. The aim of the phylogenetic view is to assess the genetic relatedness of
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isolates within and across populations as well as comparing genetic clustering with

spoligotype and geographical assignation.

The PolyTB views are linked. For example, the map view is opened for a specific variant
position when such a position is double-clicked on the browser view. Likewise, PolyTB
is linked to external databases. DR genes were extracted from TBDreamDB (Sandgren
et al. 2009), a database describing common mutations associated with DR in Mtb.
Furthermore, if a particular gene is double-clicked on the top annotation track in the
browser view, the user will be forwarded to its Tuberculist (http://tuberculist.epfl.ch/)

entry page containing further annotation information.

2.4 DISCUSSION

Although the TB community has available web-based databases to exploit the existing
genotyping data for MTBC (Lew et al. 2012), there is no such tool gathering the
increasing amount of genetic polymorphisms derived from WGS projects (Stucki &
Gagneux 2012). Given the magnitude of the genomic data being generated on a
routine basis, efforts must be focused on analysing and presenting this data in a robust
and useful manner for the research and public health communities. In this sense, the
present release of PolyTB makes it the largest open-access repository of genetic
polymorphisms derived from WGS projects. The expandable database goes beyond
SNPs, and includes small indels and large deletions derived by employing the state-of-
the-art variation discovery software. Robust quality control and standardised
procedures applied across samples ensures that the datasets are directly comparable.

Overall small indel and large deletion densities in coding genes were 5 and 17 times
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smaller than in non-coding regions respectively. This considerable reduction in
polymorphism density at coding regions can be explained in terms of the potential
deleterious effects of these variants in the genome, leading to their selective removal

by purifying selection.

Although MTBC strains were historically confined to their endemic geographical
locations, migration has led to a more global distribution. Modern modes of transport
mean that TB is now easily spread across regions and continents. It is possible to
monitor the spread of lineages through phylogenetic markers as well as track DR
markers, which emerge de novo and independently of strains, with a discriminatory
power never achieved before. In this context, the map view provides a tool for the
epidemiological surveillance of TB through the geographic distribution of strains and
clinically important genetic variants, such as those driving DR. Indeed, knowledge of
transmission across lineages and continents is essential to those who need to devise
national prevention and control programmes. Similarly, the main purpose of the
phylogenetic view is to assess the genetic relatedness of isolates within and across
studies as well as comparing genetic clustering with traditional spoligotypes and

lineages.

Recently, other tools similar to PolyTB have been published. The tbvar tool contains
469 isolates and 29,000 SNPs (Joshi et al. 2014). Genomic variants (limited to SNPs) are
displayed through a table and genome browser views. SNPs are annotated, their
functional impact predicted using the SIFT score (Ng & Henikoff 2003) and DR

mutations reported. One of the strengths of this tool compared to PolyTB is the
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‘annoTB’ feature, which enables users to upload their own samples in the form of SNP
files. SNPs found in the database are annotated and DR status retrieved based on DR
associated mutations in TBDreaMDB. The main limitation of tbvar compared to PolyTB
is the lack of sample metadata. Samples lack any lineage or geographical origin
information that could help users put the samples into context. Thus, the geographical

distribution of SNPs and samples cannot be studied.

Table 2.1 Comparison table of TB WGS genomic databases

Resource tbvar (Joshi et al. 2014) Genome-based PolyTB (Coll et al. 2014)
(reference) Mycobacterium
Tuberculosis Variation
(GMTV) (Chernyaeva et
al. 2014)
Number of samples 469 1,084 1,470
Number of studies 37 1 8
Number of 29,000 SNPs 45,655 SNPs and 74,039 SNPs, 4,820
polymorphisms 23,975 indels indels and large 800
deletions
Variants annotated Yes Yes Yes
Views Tabular and Genome Genome Browser and Genome Browser, Map
Browser views Map views and Phylogenetic views
Samples metadata None DR data, strain type Strain type and
(most of samples) and geographical data
medical data (minority
of samples)

The Genome-based Mycobacterium Tuberculosis Variation (GMTV) database harbours
a total of 1,084 MTBC samples and 69,000 variants (SNPs and indels) from Russia.
Unlike tbvar, this resource contains a broad spectrum of metadata attached to each
sample, including TB clinical outcome, year and place of isolation and DR profiles.
Genetic polymorphisms can be investigated through a browser and map views, like in
PolyTB. The main limitation of GMTV is that available data is restricted to only one
study and therefore only certain lineages are represented. Overall PolyTB harbours

more samples (1,470) with representatives of all major lineages and more types of
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genetic variants (SNPs, indels and large deletions). Furthermore, PolyTB includes a
phylogenetic view, which enables the study of phylogenetic relationships among
samples of the same study and, more importantly, of samples across independent
studies. Future extensions of PolyTB will incorporate new samples from recently
published WGS studies (H. Zhang et al. 2013; Casali et al. 2014; Pérez-Lago et al. 2014;
Bryant, Harris, et al. 2013) and enhance current functionality, particularly the ‘Search’

feature to allow for complex sample and polymorphism queries.

Current efforts on discovery, visualisation and accessibility of genetic variants from
WGS studies must be accompanied with efforts on annotation of these variants (Stucki
& Gagneux 2012). This involves identifying strain-specific mutations, which can serve
as phylogenetic markers for strain classification, DR-conferring mutations, which are
crucial for the development of new and faster diagnostic methods to detect DR, and
mutations affecting the bacterial phenotype in various ways, which may have an
impact on the outcome of TB infection and disease. In the following chapters these
points will be addressed. Strain-specific and DR-associated mutations in MTBC will be
identified and their potential use as markers for accurate strain classification and

prediction of DR assessed in Chapters 3 and 4 respectively.
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3 STRAIN TYPING USING WHOLE GENOME SEQUENCES

Despite the growing consensus for the use of SNPs as robust phylogenetic markers, a
SNP classification system that can discriminate all known circulating strain types has
not been developed. Classical genotyping methods are still broadly employed and
results from these are not easily comparable with WGS data. In this regard, this
chapter describes the development of approaches for extracting classical genotypes
from WGS data and the discovery of strain-specific SNPs that can be used to accurately

discriminate circulating MTBC strains.

3.1 INTRODUCTION

Infection with bacteria of the MTBC results in a variety of outcomes including latent
infection and/or progression to pulmonary or extra-pulmonary manifestations of
disease. Such diversity has been historically attributed to host and environmental
factors, and the MTBC was previously considered genetically monomorphic in nature
(Lin & Flynn 2010). However, the development of typing methods that discriminate
strains into distinct lineages and sub-lineages has demonstrated previously
unrecognized diversity. It has been shown that strain type may play a role in disease
outcome, variation in vaccine efficacy (Lopez et al. 2003) and emergence of DR (Ford et
al. 2013). Different strains of MTBC have produced distinct biological responses in
experimental models and can affect clinical presentation (Nahid et al. 2010; Thwaites
et al. 2008; Caws et al. 2008). Strain type may also influence disease epidemiology as
in some settings it is associated with the presence or absence of clustering due to

recent transmission (Kato-Maeda & Kim 2010). Lineage-specific differences in the
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virulence of clinical isolates have been reported across independent experimental
systems with modern lineages, such as Beijing and Euro-American Haarlem strains
believed to exhibit more virulent phenotypes compared to ancient lineages, such as
East African Indian and M. africanum strains (Reiling et al. 2013). The molecular
mechanisms and genetic factors responsible for the described differences in
pathogenesis and virulence remain largely unknown. Their investigation requires

transparent, easily applied, reliable methods for determining stain type.

The incorporation and standardisation of PCR-based genotyping techniques entailed a
turning point in the detection and differentiation of MTBC, allowing the comparison of
isolates between laboratories and regions worldwide. Over the last two decades,
molecular typing methods such as 1S6110-RFLP (Yuen et al. 1995), spoligotyping
(Kamerbeek et al. 1997) and MIRU-VNTR (Supply et al. 2001) have been applied and
revolutionised epidemiology of TB, by providing insights into the genetic diversity and
population structure of MTBC (Schiirch & van Soolingen 2012). Six major global MTBC
lineages have been defined (1 Indo-Oceanic, 2, East-Asian including Beijing, 3 East-
African-Indian, 4 Euro-American, 5 West Africa or M. africanum 1, 6 West Africa or M.
africanum 1), distinct from a M. bovis clade. Lineages 1, 5 and 6 are considered
“ancient”, and 2 to 4 “modern”. A novel phylogenetic lineage of MTBC which appears
to be intermediate between the ancient and modern has been described recently in
Ethiopia and the Horn of Africa (Firdessa et al. 2013; Tessema et al. 2013), referred to

as lineage 7.
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Genotyping has been used extensively with epidemiological data to further
understanding of TB (Demay et al. 2012). For example, at the individual level, cases of
recurrence or treatment failure can be explained in terms of reactivation with the
same strain, exogenous re-infection or due to polyclonal infection (Ford et al. 2012). At
a population level, the origins and transmission dynamics of outbreaks can be
determined (Walker et al. 2013; Gardy et al. 2011; Bryant, Schiirch, et al. 2013), whilst
at a global level, TB genotypic lineages have been defined and used to monitor their

geographical distribution (Demay et al. 2012).

While providing valuable information, standard genotyping methods have several
limitations. First, the repetitive nature of genetic polymorphism used by molecular
techniques makes them highly prone to convergent evolution (Comas et al. 2009),
reducing their usefulness as phylogenetic markers. Second, the discriminative power
differs between methods, meaning that results from different techniques are not
always comparable (Comas et al. 2009). Furthermore, isolates with identical DNA
fingerprints have been reported to harbour significant genomic diversity (Niemann et
al. 2009). Therefore standard genotyping tools, which are based on less than 1% of the
genome, may not be able to accurately resolve transmission chains and distinguish
disease relapse from exogenous re-infection conclusively. On the contrary, SNPs and
large sequence polymorphisms (LSP) are ideal markers for defining phylogenetic
relationships. The low mutation rate (Schirch et al. 2010) and resulting limited
sequence diversity in MTBC (coupled with the apparent lack of horizontal gene
transfer) make independent mutations at the same site very unlikely. Several studies
have already proposed particular sets of SNP (Comas et al. 2009; Homolka et al. 2012;
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Feuerriegel et al. 2014; Abadia et al. 2010; Stucki et al. 2012) and LSP (Gagneux et al.
2006) markers to construct reproducible and unambiguous phylogenies in MTBC.
Given the predominantly clonal population structure of MTBC, they all produce largely
congruent phylogenies (Gagneux & Small 2007). Spoligotype strain classification is also
comparable to that assigned by LSP and SNP markers. Indeed, spoligotype families
often appear to be sub-lineages within the main six lineages (Kato-Maeda & Gagneux
2011). The effectiveness of the proposed systems is compromised by the limited
genetic variation, small numbers of strains or a lack of sub-lineage strain diversity used

in their construction.

Given the growing consensus on the use of SNPs as robust and highly discriminatory
phylogenetic markers, a new SNP-based classification system is required that can
overcome the limitations of current genotyping methods. At the same time, in silico
genotyping approaches are required to bridge the gap between classical genotyping

and high throughput sequencing.

3.2 METHODS

3.2.1 Whole genome datasets and sequence analysis

The raw sequence data of 1,804 MTBC isolates (WGS data set 2) available in the public
domain were downloaded from the ENA (http://www.ebi.ac.uk/ena/). The analysis of
the raw sequence data used is explained in Section 2.2.1. In brief, all isolate sequence
data were mapped to the H37Rv reference genome using BWA (Langmead et al. 2009).
SAMtools/BCFtools (Li et al. 2009) and GATK (McKenna et al. 2010) were employed to

call SNPs and mappability values (Derrien et al. 2012) used to filter out non-unique SNP
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sites resulting in 91,648 SNP sites. Isolates having less than 15% SNP missing calls were

retained (n = 1,601).

3.2.2 In silico determination of spoligotypes patterns from short genomic sequences

The popular spoligotyping approach is a genotyping technique that exploits the
polymorphism harboured at the direct repeat locus of Mtb (Kamerbeek et al. 1997). It
is based on the PCR amplification of 43 short unique sequences (termed spacers)
found between well-conserved 36-bp direct repeats and the subsequent hybridisation
of the products onto a membrane with oligonucleotides complementary to each
spacer. Since strains vary in the occurrence of particular spacers, each sample
produces a distinctive spot pattern then translated into a numerical code of 15 digits,

known as octal code (Figure 3.1).

The strategy implemented to derive the spoligotype patterns (i.e. octal codes) from
sequence data consisted of screening raw reads and avoided time-consuming post-
processing steps like de novo assembly to reconstruct the genome sequence.
Effectively, even the shortest reads produced by early lllumina sequencing instruments
(which were 35-pb long) are expected to span the 25-bp long spacer sequences if they
are present in the sequenced genome. In that regard, a C++ program, named SpolPred,

was developed to predict the spoligotype octal code from files of FASTQ format.

By making use of a 2-bit per nucleotide coding strategy to speed up performance,
every 25-bp unique spacer is queried against each read allowing up to one mismatch
(loerger et al. 2009). The read length can be changed to support data from different

sequencing platforms, such as Sanger-capillary, 454 or AbiSolid. The appearance of all
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43 queries is eventually translated into the octal code which is then matched to a

spoligotype in SITVITWEB database (Demay et al. 2012) (Figure 3.2).

(1) 1 2 3 4

PCR

(3) PCR product —Oligo Hybridisation

|
CGCGATAGAGGGTCGOOGGCTCTGGATCA G CCTATCCAG CACCACCCAGCACCACCCAG CACCAC....
]
[l ATAGAGGGTCGCCGGCTCTGGATCA H

Spacer 1

(4) 10334867 890101 M0 17189 BDMBN T BB NY TBuwOna o

-HHHHHH

B 3 34 38

-H
SE000000/ 0DBNRNRT  BRBNRINIINS [ TRRT 1T
Octal code: 777777477760771
\l/ Database (SITVITWEB)

H37Rv

Figure 3.1 Experimental spoligotyping technique

Experimental steps in spoligotype determination. (1) Structure of the direct repeat locus in Mtb
genome. (2) PCR amplification using primers complementary to the conserved direct repeat region. (3)
Hybridisation of an amplified DNA fragment onto the membrane containing spacer sequences as probes.
(4) Resulting hybridisation pattern and derived octal code. Spoligotypes (i.e. strain types) are derived
using the latest international spoligotype database (SITVITWEB)(Demay et al. 2012).

SpolPred was initially applied to 51 Ugandan Mtb isolates which underwent sequencing
using Illumina—GAll 76-bp paired-end technology at the Sanger Institute (Study
accession: ERP000520), and for most of which (44/51 isolates) experimentally
determined spoligotype was available. SpolPred output was compared against the
experimental results in order to determine its prediction accuracy. Furthermore,
SpolPred performance was tested on a 64 bit Ubuntu Linux computer with a 3.07GHz

processor and 8Gb of RAM. As expected, running time per FASTQ file increased
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proportionally with read coverage. Nevertheless, processed reads per unit of time
remained constant (approximately 500,000 reads per minute). Once Spolpred software
accuracy and performance were tested, the tool was run for each of the samples in the

global collection (n=1,601) to determine their octal codes and associated spoligotypes.

(1) 1 2 3 4
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Figure 3.2 In silico spoligotyping

(1) Structure of the direct repeat locus in Mtb genome. (2) Illustration of a few reads (in blue) containing
25bp spacers (in red). (3) Read-spacer binary alignment performed by SpolPred. (4) Resulting number of
read-spacer matches and corresponding octal code. Spoligotypes are derived using the latest
international spoligotype database (SITVITWEB)(Demay et al. 2012).

3.2.3 In silico determination of lineages by regions of difference

Lineage-specific LSPs or RDs types were identified from (Gagneux et al. 2006) (Table
3.1). This system makes use of 19 phylogenetically informative and lineage-specific
deletions to define the global population structure of MTBC, which is often regarded as
the gold-standard classification system for MTBC lineages. All samples in the global

collection were also genotyped based on this system. Reads covering RDs (+/- 300bp)
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were extracted from alignment (BAM format) files and subsequently de novo
assembled using Velvet (Zerbino & Birney 2008). If an assembled contig was split into
two parts when mapping it back to the reference, with high similarity (>95%) and
leaving a gap of length equal to the expected RD length, the contig was considered a

cross-junction contig (Wang et al. 2011) and the presence of the RD deletion reported.

Table 3.1 Phylogenetically informative deletions

Deletion Lineage
RD Start End Genes involved Lineage name number
length
(1-6)
105 79567 83034 3467 | Rv0071-Rv0074 East-Asian 2
Americas-Europe/Euro- 4
115 453364 455971 2607 | Rv0376c-Rv0378 American
Americas-Europe/Euro- 4
122 669793 670964 1171 | Rv0576 American
142 | 1332182 1335033 2851 | Rv1189-Rv1192 East-Asian 2
150 | 1896862 1899349 2487 | Rv1671-Rv1674c East-Asian 2
West-Africa/Euro- 4
174 | 2237049 2240699 3650 | Rv1992c-Rv1997 American
181 | 2535429 2536140 711 | Rv2262c-Rv2263 East-Asian 2
Americas-Europe/Euro- 4
182 | 2545194 2551674 6480 | Rv2270-Rv2280 American
Americas-Europe/Euro- 4
183 | 2585853 2588770 2917 | Rv2313c-Rv2315¢c American
Americas-Europe/Euro- 4
193 | 2704306 2704807 501 | Rv2406c-Rv2407 American
207 | 3120521 3127920 7399 | Rv2814c-Rv2820c East-Asian 2
Americas-Europe/Euro- 4
219 | 3448504 3451396 2892 | Rv3083-Rv3085 American
239 | 4092077 4092919 842 | Rv3651 Indo-Oceanic
702 216795 218516 1722 | Rv0186 West-African-2 6
711 | 1501713 1503655 1943 | Rv1333-Rv1336 West-African-1
Central-Africa/Euro- 4
724 | 2265112 2266239 1128 | Rv2018-Rv2019 American
West-Africa/Euro- 4
726 | 3904958 3906706 1749 | Rv3485c-Rv3487c | American
750 | 1710767 1711556 790 | Rv1519-Rv1520 East-African-Indian 2
South-Africa/Euro- 4
761 | 1502787 1503881 1094 | Rv1334-Rv1336 American
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3.2.4 Phylogenetic analysis

The best-scoring maximum likelihood phylogenetic tree was computed using RAXML
v7.4.2 (Stamatakis et al. 2008) based on 91,648 sites spanning the whole genome.
Given the considerable size of the dataset (1,601 samples x 91,648 SNP sites), the rapid
bootstrapping algorithm (N=100, x=12345) combined with maximum likelihood search
was chosen to construct the phylogenetic tree. The resulting tree was rooted on M.
canettii (Genbank accession number: NC_019950.1) and nodes were annotated.
Subsequently, the ancestral sequence at all internal nodes was computed using
DnaPars from the Phylip package (Felsenstein 1989). The main lineage and sub-lineage
defining nodes were initially identified by integrating the topology of the SNP-based
phylogenetic tree with the presence of particular RDs and spoligotype composition of
the clade. Bootstrap values were computed to assess the confidence of each clade and
ensure that all lineage-defined nodes were highly supported (95-100%). For
comparison, RAXxML trees were constructed for the 1601 samples from alignments

using other proposed lineage-informative SNPs (Filliol45, Comas93 and Homolka71).

3.2.5 Identification of clade-specific SNPs and selection of the minimal informative

set

For each lineage and sub-lineage, the dataset was split into two populations: one
containing all samples descending from the clade-defining node and the other with
remaining samples. The Fs; measure (Weir & Hill, 200) was then calculated for each
SNP to identify markers with complete between-population allele differentiation (Fsr

>0.99). Similarly, the ancestral reconstructed sequence for the clade-defining node was
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compared to its closest ancestral node, and the SNP differences derived. A high-
confidence set of clade-specific SNPs was obtained by selecting those at the clade-
defining internal node and having Fsr values of >0.99 in between group comparisons.
To ensure that clade-specific SNPs were also suitable markers for their use in strain
typing assays, the following filtering criteria were applied: (1) only synonymous SNPs
were retained as they are generally under lower selection pressure, (2) SNPs at non-
coding regions were discarded since indels are usually more frequent. The density of
small indels and large deletions is five and seventeen times smaller, respectively, in
coding regions of the genome compared to non-coding (Coll et al. 2014) (Section

2.3.1), and (3) only essential genes were used (Stucki et al. 2012).

The set of DR associated genes was compiled from TBDreamDB
(www.tbdreamdb.com) and recent studies (H. Zhang et al. 2013). The list of known
epitopes in H37Rv was extracted from the Immune Epitope Database (www.iedb.org).

The gene functional categories were extracted from Tuberculist (tuberculist.epfl.ch).

3.3 RESULTS

3.3.1 Inssilico prediction accuracy of spoligotype patterns

SpolPred was initially applied to 51 Ugandan Mtb isolates for which WGS data and
experimentally determined spoligotypes (44/51 isolates) were available. SpolPred-
inferred octal code patterns (and their SIT numbers) matched the experimental ones

for 39/44 samples (88.6%) (Supplementary Table 2).
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Figure 3.3 Dendogram for 51 Ugandan isolates constructed using 7k SNPs

Showing from left to right: isolate number, experimentally determined and SpolPred inferred SIT
numbers (in square brackets) and SpolPred predicted spoligotype. Isolates with no laboratory data are
pointed by black arrows and unknown SIT numbers indicated by dash symbols. Isolates with no
matching experimental and in silico SIT number are pointed by white arrows.

The five non-matched in silico and experiment results were due to the increased in
silico sensitivity of the detection of spacer 15 in the five samples and, additionally,
spacer 26 in one sample. When the original hybridization blots were checked, an
irregular signal distribution for spacer 15 across all samples was noted. Some signals
were either too faint or just not detectable to be manually assigned as being present.
Although predicted spoligotypes remained unchanged for samples 26 and 48, the

other three (25, 40 and 49), which had octal codes not previously reported in the
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SITVITWEB database, were re-assigned to different spoligotypes. These three isolates
were consistently clustered in the SNP-based dendogram, i.e. within a clade of samples
having the same experimental type. Similarly, all samples with no laboratory data were
clustered with isolates of the same predicted spoligotype (Figure 3.3). These results
demonstrate that SpolPred can be employed to accurately and quickly confirm
experimentally determined spoligotypes, infer them from sequenced isolates with no

laboratory data and reveal unexpected cases of wrongly assigned types.

3.3.2 Population structure of the global collection of MTBC strains

Genomic analysis was performed on whole-genome sequences of 1,601 MTBC isolates
from eleven independent sequencing studies from different areas of the world (WGS
data set 2), with representation of all seven major lineages (1, n=121, 7.6%, 2, n=390,
24.3%, 3, n=189, 11.8%, 4, n=856, 53.5%, 5, n=17, 1.1%, 6, n=11, 7, n=6), as well as
M. bovis (n=11) (Supplementary Table 3). A total of 91,648 SNPs were identified,
54.6% were observed in a single sample (Supplementary Figure 2), 89.2% were in
coding regions, and 63.5% resulted in non-synonymous changes in amino acids. The
SNP-based phylogenetic tree demonstrated a clustering largely congruent with
published MTBC phylogenies (Figure 3.4). MTBC main lineages (1-7 and M. bovis) and
sub-lineages were subsequently identified based on the spoligotype and RD
composition of the clades in the SNP-based phylogeny (see Section 3.2.4). The
phylogeny revealed the presence of new clades for which RDs do not discriminate. In
particular there were gaps in the Euro-American lineage for which molecular

fingerprint classifications are less accurate (Comas et al. 2009).
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Figure 3.4 Global phylogeny of 1,601 MTBC isolates
A total of 91,648 SNPs spanning the whole genome were used to reconstruct the phylogeny of 1,601
MTBC isolates. All seven main MTBC lineages are indicated at the inner area of the tree. The main sub-

lineages are annotated at the outer arc along with lineage-specific regions of difference (RDs). Identified
clades are colour-coded.

Although estimates of genetic diversity may be influenced by sampling bias, the

greatest nucleotide diversity was observed in lineages 1 (nucleotide diversity n

0.0103) and 6 (T = 0.0093), and the least within lineage 2 (m = 0.0039) and 3 (&
0.0040) strains (Table 3.2). Although spoligotypes tended to cluster within specific
clades, there was some evidence of homoplasy, particularly in lineage 4
(Supplementary Figure 3). These anomalies arise from convergent evolution of CRISPR-

based spoligotyping polymorphisms (Comas et al. 2009).
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Table 3.2 Lineage characteristics

Lineage 1 2 3 4 5 6 7
n 121 390 189 856 17 11 6
Description East- East- Indo- Euro- West West Lineage 7
African- Asian Oceanic | American Africa | Africa 2
Indian
Spoligotypes EAI Beijing CAS T, H, AFRI_2, AFRI_1 Unknow
LAM, X,S | AFRI_3 n
Total SNPS 14,661 22,490 9864 38,033 4761 4560 2458
Avg. SNPs/ 1970 1322 1314 746 1955 2064 1962
genome (range) (1573 - (1041 - (1046 - (15-962) (1831- (1932- (1921-
2094) 1403) 1389) 2030) 2157) 1997)
Mean SNPs to 93 69 53 43 185 207 90
MRCA
Diversity it 0.0102 0.0039 0.0040 0.0077 0.0058 0.0093 0.0035
RDs present 239 105, 207, 750 182, 183, 711 702 None
181, 150, 193, 122,
142 726, 219,
761, 115,
174,724
No. Sub- 8 6 5 36 0 0 0
lineages
No. Informative 473 106 262 114 372 220 898
SNPs
Coding SNPs (% 419 91 (69.2) 231 100 (69) 336 196 808
NS) (62.3) (64.1) (65.2) (58.2) (64.1)

Abbreviations. MRCA: most recent common ancestor; RD: region of difference; NS: non-synonymous.

All previously reported lineage-specific LSPs or RDs (Gagneux et al. 2006) were
detected, and their distribution was consistent with clades in the SNP-based phylogeny
(Figure 3.4). There was no evidence of homoplasy events using LSPs, further

demonstrating their robustness as phylogenetic markers.

As expected, isolates from lineage 1 harboured the RD239 deletion and had EAl-like
spoligotypes. Two natural sub-lineages designated 1.1 and 1.2 contained distinctive
spoligotype compositions (Table 3.3). The Beijing-specific RD105 deletion was
restricted to lineage 2, whilst others (RD207, RD181, RD150 and RD142) were observed

downstream from the common ancestor (Figure 3.4), defining sub-lineages within
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lineage 2.2. Isolates belonging to lineage 3 harboured the CAS-specific RD750 deletion,
and included sub-lineages for CAS1-Delhi (33.9%), CAS1-Kili (53.4%), CAS (6.3%) and
CAS2 (5.3%) spoligotypes. All non-CAS1-Delhi samples were grouped into the same
clade (sub-lineage 3.1), which was sub-divided into two clades harbouring CAS1-Kili
and CAS/CAS2 samples respectively. The Euro-American lineage has been the most
poorly characterized historically (Filliol et al. 2006), and as expected using spoligotypes
there was evidence of non-homogeneous sub-lineages (in particular T, H and LAM
families) (see Supplementary Figure 3), potentially due to homoplasy events (Filliol et
al. 2006). The phylogeny revealed 36 distinctive clades for lineage 4. All 10 Euro-
American lineage RDs were consistently located within one of these clades, further
sub-division was achieved and clades with unreported RD were identified (e.g. sub-
lineages 4.2, 4.4, 4.7 and 4.9) (Figure 3.4). Representatives of Haarlem (sub-lineage
4.1.2.1), Cameroon (4.6.2), LAM (4.3), S-type (4.4.1.1), TUR (4.2.2.1), Uganda (4.6.1),
Ural (4.2.1) and X-type (4.1.1) strains were all identified (Table 3.3). Consistent with
previous phylogenetic studies, strains belonging to M. africanum were split into West-
African lineages 1 and 2, where the latter is phylogenetically closer to the M. bovis
lineage. Members of the recently described phylogenetic lineage 7 were located as

expected at an intermediate location between the ancient and modern lineages.

Table 3.3 MTBC lineages and sub-lineages

Lineage No.
Num. lade-
or Sub- Lineage name n Main spol. um. RD ce .e.
lineage Countries specific
SNPs
1 Indo, Oceanic 121 EAI 18 239 473
1.1 Indo, Oceanic 82 EAI4, EAIS, EAI6, 13 239 38
EAI3
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1.1.1 Indo, Oceanic 10 EAI4, EAIS 4 239 57

1.1.1.1 Indo, Oceanic 5 EAI4 1 239 138

1.1.2 Indo, Oceanic 30 EAI5, EAI3 9 239 154

1.1.3 Indo, Oceanic 42 EAI6 2 239 66

1.2 Indo, Oceanic 39 EAIL, EAI2 9 239 5

1.2.1 Indo, Oceanic 11 EAI2 5 239 87

1.2.2 Indo, Oceanic 28 EAI1 4 239 95

2 East, Asian 388 Beijing 14 None 106

2.1 East, Asian 4 Orphan and Manu 3 None 245

ancestor

2.2 East, Asian 386 Beijing 13 105, 207 123

2.2.1 East, Asian 376 Beijing 13 105, 207, 181 33

22.1.1 East, Asian 16 Beijing 4 105, 207, 181, 25

150
2.2.1.2 East, Asian 2 Beijing 2 105, 207, 181, 53
142

2.2.2 East, Asian 10 Beijing 3 105, 207 80

3 East, African, 189 CAS 18 750 262
Indian

3.1 East, African, 121 Non-CAS1, Delhi 7 750 1
Indian

3.1.1 East, African, 102 CAS1, Kili 5 750 101
Indian

3.1.2 East, African, 17 CAS2, CAS 3 750 14
Indian

3.1.2.1 East, African, 10 CAS2 3 750 24
Indian

3.1.2.2 East, African, 7 CAS 1 750 188
Indian

4 Euro, American 856 S, T, X, LAM, H 22 None 114

4.1 Euro, American 226 T, H, X families 14 None 81

4.1.1 Euro, American (X, | 138 X family 8 None 35
type)

41.1.1 Euro, American (X, 47 X2 3 183 59
type)

4.1.1.2 Euro, American (X, 20 X1 2 None 85
type)

4.1.1.3 Euro, American (X, 69 X3, X1 6 193 106
type)

4.1.2 Euro, American 77 T1, H1 9 None 17

4.1.2.1 Euro, American 63 T1, H1 182 87

(Haarlem)
4.2 Euro, American 54 LAM7, TUR, H3, 6 None 165
H4, T1

4.2.1 Euro, American 26 H3, H4 2 None 43
(Ural)

4.2.2 Euro, American 28 LAM7, TUR, T1 None 34

42.2.1 Euro, American 11 LAM7, TUR None 97
(TUR)

4.3 Euro, American 304 LAM 11 None 95
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(LAM)

43.1 Euro, American 9 LAM9 2 None 92
(LAM)
4.3.2 Euro, American 24 LAM3 3 None 102
(LAM)
43.2.1 Euro, American 4 LAM3 1 761 70
(LAM)
4.3.3 Euro, American 38 LAMY, T5 8 115 55
(LAM)
43.4 Euro, American 232 LAM11, ZWE, 9 174 55
(LAM) LAM9, LAM1,
LAM4
43.4.1 Euro, American 28 LAM1 5 174 30
(LAM)
4.3.4.2 Euro, American 204 LAM11, ZWE, 7 174 35
(LAM) LAM9, LAM1,
LAM4
43421 Euro, American 142 LAM11, ZWE 5 174 18
(LAM)
4.4 Euro, American 40 S, T1, T2 None 54
4.4.1 Euro, American 22 S, Tl None 52
4.4.1.1 Euro, American (S, 11 S 4 None 81
type)
4.4.1.2 Euro, American 11 T1 3 None 119
4.4.2 Euro, American 18 T1, T2 3 None 114
4.5 Euro, American 24 H3, H4, T1 3 122 143
4.6 Euro, American 26 LAM10, CAM, T2 6 None 16
4.6.1 Euro, American 16 T2, Uganda, T2 3 724 108
(Uganda)
46.1.1 Euro, American 3 T2, Uganda 1 724 67
4.6.1.2 Euro, American 13 T2 3 724 64
4.6.2 Euro, American 10 LAM10, CAM, T3 3 726 52
4.6.2.1 Euro, American T3 1 726 230
4.6.2.2 Euro, American 8 LAM10, CAM 3 726 144
(Cameroon)
4.7 Euro, American 6 T1,T5 2 None 11
(mainly T)
4.8 Euro, American 142 T1,T2,T3,T4,T5 11 219 25
(mainly T)
4.9 Euro, American 32 T1 4 None 88
(mainly T)
5 West, Africa 1 17 AFRI_2, AFRI_3 5 711 372
6 West, Africa 2 11 AFRI_1 4 702 220
M. bovis M. bovis 11 BOV_2,BOV_1 3 None 47
M.bovis M. bovis and 22 BOV_2,BOV_1 6 None 167
and 6 West, Africa 2 and AFRI_1
7 Lineage 7 6 None 898
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3.3.3 Identification of lineage and sub-lineage specific SNPs and selection of
the minimal informative set

From the 91,648 SNPs, 6,915 lineage and sub-lineage informative markers were
identified (list available in http://pathogenseq.Ishtm.ac.uk/tbmolecularbarcodedata).
The distribution of functional categories of genes containing the 91,648 and 6,915 SNP
sets did not differ (Figure 3.5A). Using the informative SNPs (n=6,915), there was
evidence of difference in the distribution of functional categories between lineages,
namely a greater proportion of lipid metabolism non-synonymous polymorphism in
lineage 2 (Figure 3.5A), consistent with the greater virulence of the Beijing strain
(Kato-Maeda et al. 2012). Only 88 SNPs were found in DR candidate regions (2
promoters, 21 genes) (Supplementary Table 6). 22 non-synonymous SNPs were found
in 16 M. tuberculosis antigenic genes with known epitopes (Supplementary Table 7). A
disproportionate number are Haarlem specific (25%, Rv3873/4), potentially indicative

of its high virulence.

Robust SNPs in essential genes with mutations that lead to synonymous amino acid
changes were chosen (n=413, 6%), therefore less likely to be under selective pressure.
Redundancy of markers was observed for most of the clades, and one representative
per group was randomly selected, leading to a minimum set of 62 SNPs for MTBC
classification (Supplementary Table 4). Re-construction of a phylogenetic tree using the
62 SNPs for all 1601 samples resulted in a tree with the same number of delineated

clades (Supplementary Figure 4).
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Figure 3.5 Distribution of lineage-specific SNPs across gene functional categories

(A) Summary of functional categories for 3 sets of SNPs: all (n=91648, left), lineage, specific (LS-SNPs)
(n=6915, middle) and filtered/diagnostic lineage, specific (fLS-SNPs) (n=413, right) (B) LS-SNPs
distribution for each of the main six MTBC lineages across gene functional categories (1, 7).
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3.3.4 Validation of the proposed SNP-typing system and comparison to other
SNP sets

To validate the proposed SNP classification system, it was applied to 27 complete
reference genomes representing all MTBC lineages and M. bovis, when it was found to
predict 100% their reported strain-types (Supplementary Table 5). Furthermore, the
scheme was used to classify 850 samples from Samara, Russia, not included in the
1601 samples, and found the same reported lineage proportions (Casali et al. 2014).
More importantly, unclassified samples from lineage 4 in this study could be assigned
to Euro-American sub-lineages by the barcode. A few probable cases of mixed
infections were also identified, all combinations of common circulating strain types in

that population (Supplementary Table 8).

Lineage-informative SNP sets previously proposed were investigated, denoted here as
Filliold5 (45 SNPs (Filliol et al. 2006)), Comas93 (93 SNPs (Comas et al. 2009)) and
Homolka71 (71 SNPs (Homolka et al. 2012)). The proportion of these SNPs found
among the phylogenetic informative sets differed (Filliol45 29%; Comas93 76%;
Homolka71 49%) and some of them were non-segregating across the 1601 samples
(Filliol45 17.8%, Comas93 4.3%; Homolka71 39.0%) indicating limitations in their
variant and sample ascertainment. Comas93 and Homolka71 sets unambiguously
separated the six of the seven main MTBC lineages and the resolved sub-lineages were
largely compatible with the ones described in this study (Table 3.4). Still, not all known
RD sub-lineages (Gagneux et al. 2006), particularly for lineage 4, could be resolved

using these classification systems. Phylogenetic trees constructed for the 1601 samples
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using these SNP sets (Supplementary Figure 5, Supplementary Figure 6 and
Supplementary Figure 7) highlighted the lack of resolution at the sub-lineage level. The
proposed set of 62 SNPs are informative for all 7 main MTBC lineages, indicating at
least parity in performance with RD typing. Further, the superior number of sub-
lineages classified when compared to other SNP systems demonstrates improved

strain-type resolution (Table 3.4).

Table 3.4 SNP typing systems comparison

No. RD
Lineage classified lineages
SNP set and (Number of sub-lineages classified) covered
reference
M.
1 2 3 4 5 6 7 . Total
bovis
;2';:::5“ Yes Yes Yes Yes Yes Yes Yes Yes 7 19
(8% | (67 | (57) | (36°) | (0) (0) (0) (0) | (55)
(Homolka et al. Yes Yes Yes Yes Yes Yes No Yes 6 NA
2012)71SNPs | (1% | (0 | © | 7% | ") | (0) () ) | (10)
(Comas et al. Yes Yes Yes Yes Yes Yes No Yes 6 gh
2009) 93 SNPs (1" | (9 (0) (5°) (0) (0) () (0) (7)
(Filliol et al. No No No No No No No No 6 NA
2006) 45 SNPs () () () () () () () () ()

®See Table 3.3 for a complete description of lineages and sub-lineages; bIineage 1.2.1, “lineages 2.1 and
2.2; dIineages 46.2.2,4.1.2.1,4.3,4.4.1.1,4.2.2.1,4.2.1 and an ambiguous “Ghana”; ®lineages 4.6.2.2,
4.6.1,4.1.1,4.1.2.1 and 4.3; 'West Africanum la & Ib; ®RD239, 105, 207, 181, 150, 142, 750, 182, 183,
193, 122, 726, 219, 761, 115, 174, 724, 711, 702; 239, "RD105, 207, 750, 726, 724, 182, 711, 702 and 7;
NA not reported; RD regions of difference

3.4 DISCUSSION

Accurate discrimination between strains of pathogenic bacteria is essential, especially
if certain strain types exhibit more virulent phenotypes than others. From an
epidemiological point of view, robust, reproducible and highly discriminatory typing
systems are required to unambiguously classify clinical isolates, facilitate inter-study

comparison and contribute to the control of infectious diseases. Traditional genotyping
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methods in TB have been extensively applied in multiple settings, from local outbreak
investigations to analysis of the global population structure of MTBC. The introduction
of WGS to the study of TB clinical isolates highlighted that significant genomic diversity
had been neglected by classical genotyping (Niemann et al. 2009). In addition, cases of
homoplasy, namely unrelated strains being clustered together due to convergent
evolution of their genotyping markers, became apparent. SNPs and other genetic
polymorphisms derived from WGS provide enough discriminatory power to
unequivocally differentiate strains and are suitable markers for defining phylogenetic

relationships.

Although SNPs and other genetic variation derived from sequencing projects are likely
to become the genotyping markers of choice, classical genotyping techniques are still
widely used and their strain type nomenclature (e.g. Beijing or LAM) broadly employed
in the literature. Thus, in silico genotyping approaches are required to bridge the gap
between experimental and high-throughput sequencing. SpolPred achieved high
prediction accuracy in the validating dataset; in silico derived spoligotypes matched
the experimental ones for 39 out of 44 samples. Furthermore, the newly assigned
spoligotypes for samples with unknown experimental spoligotype were clustered with
other isolates having coincident experimental and in silico predicted lineages (Figure
3.3). Interestingly, the absent sequence spacer responsible for the few discrepancies
observed, namely spacer 15, was the same across all five problematic isolates. The
ambiguous distinction of this spacer has already been reported (Abadia et al. 2011)
and explained in terms of the presence of a 4-nt deletion adjacent to the amplified
sequence (van Embden et al. 2000), which would not allow a proper primer
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hybridization. Other ambiguities caused by the insertion of IS6110 copies in the direct
repeat region have also been reported (Filliol 2000). These results demonstrate that
SpolPred can be employed to accurately and quickly confirm experimentally
determined spoligotypes, infer them from sequenced isolates with no laboratory data
(Rashdi & Jadhav 2014) and reveal unexpected cases of wrongly assigned types. Other
causes of TB misclassification such as laboratory cross contamination, PCR

contamination or ambiguous hybridization patterns could also be clarified.

In order to characterise genome-wide strain specific markers, a genomic analysis was
performed on a global collection of 1,601 MTBC isolates. A high-resolution map of
polymorphisms consisting of more than ninety thousand SNPs was derived. This
genomic variation was used to infer phylogenetic relationships both inter- and intra-
lineage to an unprecedented level of resolution, and led to the development of an
extendable nomenclature for sub-lineages. All known main MTBC lineages, including
the recently discovered lineage 7, and sub-lineages could be identified by integrating
spoligotype and RD information with the SNP-based phylogeny. This way the herein
described groups can be linked to known RD and/or spoligotype lineages described
elsewhere (Table 3.3). An extensive repertoire of 7k lineage and sub-lineage specific
SNPs was characterised. The specific genomic variation of known circulating strain-
types is likely to contain the genetic factors responsible for lineage-specific phenotypes

such as virulence and transmissibility.

A panel of 62 robust SNP markers (of 413 suitable alternatives) was proposed. These

markers can be used to construct high-resolution and reproducible phylogenies, be
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incorporated in diagnostic assays and assess genotype-phenotype associations. This
new genome-wide SNP-typing system entails an advance with respect to previous
molecular barcodes for MTBC. These systems are limited due to the small number of
genes studied (Homolka et al. 2012) or small sample sizes consisting of groups of
related strains used in their construction (Filliol et al. 2006). The SNP-based
phylogenetic tree had higher resolution, and resolved 33 sub-lineages within the
historically poorly characterised Euro-American lineage, and added further
discrimination within EAl and CAS lineages. There was a high degree of compatibility
with this approach and the “gold standard” RD MTBC classification system (Gagneux et
al. 2006) at the lineage and sub-lineage level (e.g. Haarlem group, lineage 2.1.2.1,
RD182; T strains, lineage 4.8, RD115). However, the RD system is incomplete. RD-
defined clades (e.g. RD174) harboured multiple SNP-defined groups demonstrating
that although phylogenetically robust, LSPs lack resolution. Similarly, some SNP-
defined clades, including sub-lineages 4.2 (Ural family) and 4.4 (S-type), lacked a
known RD. Spoligotype families (Demay et al. 2012) were largely consistent with SNP-
based lineages and sub-lineages, but unlike the RD system, cases of homoplasy events
were observed in LAM, T and H strains leading to anomalies (Supplementary Figure 3).
The integration of spoligotype and RD data improved the positioning of traditional

strain types (e.g. Haarlem, LAM) into SNP-defined sub-lineages within the global

phylogeny.

Future work should focus on other types of lineage-specific polymorphisms (e.g.
insertions, deletions and large structural variants), which are less common than SNPs,
but may have major functional consequences. The proposed system has the flexibility
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to incorporate novel strain types should they be reported. The usefulness of the
barcode, as an important tool for TB control and elimination activities worldwide, will

be enhanced by the incorporation of anti-TB DR mutations, which will be covered in

the following chapter (Chapter 4).
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4 A WHOLE-GENOME SEQUENCING APPROACH FOR DRUG
RESISTANCE PROFILING

The usefulness of WGS for accurate and highly discriminatory strain typing in TB has
been repeatedly proved in recent reports (Comas et al. 2009; Roetzer et al. 2013;
Bryant, Harris, et al. 2013) and is reinforced by the results presented in the previous
chapter (Chapter 3). Although WGS could simultaneously provide other clinically
relevant information, the potential use of this technology for detection of DR forms of
TB has been largely unexplored. In this regard, this chapter aims to assess the potential

of a whole-genome approach to detect DR-TB.

4.1 INTRODUCTION

4.1.1 Drug resistance: a threat to disease control

Resistance has been reported to all drugs used to treat TB (Dheda et al. 2014).
Increased resistance is associated with decreased patient survival and the emergence
of resistance to first and second line drugs is a substantial threat to disease control.
The WHO classifies TB resistant to INH and RMP, the two key first-line anti-TB drugs, as
multi drug-resistant (MDR-TB), and a switch to second line treatment is advised.
Resistance to additional drugs such as EMB, or STR further compromises treatment
(Tahaoglu et al. 2001; Migliori et al. 2009). MDR strains that have developed resistance
to the FLQ and AMI used in second line treatment are classed as extensively drug
resistant (XDR-TB). The term total drug resistance (TDR-TB) has been used to describe
strains found resistant to all drugs for which tests are available, but there is not yet an

agreed definition of TDR-TB (Dheda et al. 2014). Treatment of these forms of DR
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disease is difficult and expensive, and outcomes are poor (Pooran et al. 2013;
Abubakar et al. 2013; Lange et al. 2014). Treatment is long, in some cases years, and
involves drugs of heightened toxicity. Adverse reactions are common and may be
severe and irreversible (Yee et al. 2003). Poor tolerance leads to reduced compliance,
which in turn reduces cures rates and can result in amplification of resistance (Shean et

al. 2013).

4.1.2 Review of mechanisms of drug resistance in Mycobacterium tuberculosis

The primary cause of resistance in Mtb is the accumulation of point mutations and
indels in genes coding for drug-targets or drug-converting enzymes. INH is a pro-drug
activated by the catalase-peroxidase enzyme KatG. The active form of this drug blocks
the substrate of InhA, an enzyme involved in mycolic acid biosynthesis, essential
components of the mycobacterial cell wall, leading to the disruption of the cell wall
and resulting in a loss of cellular integrity. Altered or diminished catalase-peroxidase
activity caused by nsSNPs in katG is the most frequent mechanism of INH resistance
(INH®). Small indels (commonly frameshift mutations) and missense mutations have
been observed at relatively low frequency in INH clinical isolates and are responsible
for high levels of INH® (Slayden & Barry 2000). Down-regulation of katG has also been
suggested to be a mechanism of INH® and mutations in the furA-katG intergenic region
(the putative katG promoter) to be responsible for such resistance (Ando et al. 2011).
An alternative genetic strategy by Mtb to diminish INH interference consists in
mutations in the binding site of InhA or over-expression of this enzyme by point
mutations in its promoter region (Slayden & Barry 2000). Indeed, the presence of

mutations in the inhA promoter together with mutations in the inhA coding region can
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lead to the development of high-level INH® (Machado et al. 2013). Mutations in other
loci such as ahpC and kasA have also been linked to INH®. The former gene is co-
expressed with katG in response to oxidative stress. It is not clear though whether an
increased expression of ahpC is a consequence of the loss of functional katgG, i.e.
compensatory mutations, or a cause of resistance. Similarly, it is unclear whether the
KasA enzyme involved in mycolic acid synthesis is also a direct target of activated INH
and therefore mutations in its binding site a cause of resistance. On the other hand,
the observed kasA mutations in INH® isolates could be in fact compensatory mutations
due to the inactivation of the actual target (i.e. InhA) involved in the same metabolic

pathway.

In contrast to the multiple reported mechanisms of INH?, RMP resistance (RMP") is
determined by mutations in the rpoB gene. RMP and other rifamycins have high
affinity to the RNA polymerase encoded by rpoB and rpoC in Mtb. While nsSNPs and
indels in the coding region of rpoB, mostly in the 81-bp RMP resistance-determining
region (RRDR), are the main cause of RMPR, compensatory mutations in the rpoC

originate to restore the fitness cost caused by rpoB mutations (de Vos et al. 2013).

The genetic causes of resistance to other first-line drugs are not fully characterised.
STR is known to inhibit protein synthesis by interfering in the small 30S subunit of the
ribosome, precisely in the 16S ribosomal RNA encoded by rrs gene and the S12
ribosomal protein encoded by rpsL gene in Mtb. Mutations in the rrs gene have been
linked to intermediate levels of resistance and account for 20% of STR-resistant strains.
rpsL mutations are generally associated with high levels of STR resistance and are

found in 50% of resistance cases (Zhang & Vilcheze 2009). However, strains without
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mutations in either of these two genes, frequently presenting low-levels of resistance,
have also been reported and thought to harbour mutations in secondary targets such

as gidB or unknown genes (Moure et al. 2013).

PZA, like INH, is a pro-drug which has to be catalysed to be activated, in this case by
the pyrazinamidase encoded by pncA gene (Scorpio & Zhang 1996). Mutations in the
pncA coding region or its putative promoter are associated with PZA resistance (PZA")
and both SNPs and indels have been described (Stoffels et al. 2012a). However, not all
mechanisms of resistance are currently characterised as PZA® clinical strains lacking
pncA mutations are extensively reported. Despite recently uncovered PZA potential
targets, particularly rpsA (Shi et al. 2011) and panD (S. Zhang et al. 2013), the overall

mode of action remains elusive (S. Zhang et al. 2013).

Resistance to EMB remains poorly understood despite the multiple genes identified to
date. Mutations in the embCAB operon, which encodes for enzymes involved in the
biosynthesis of arabinan components of mycobacterial cell wall, are responsible for
EMB resistance (EMB®) (Telenti et al. 1997). However, many clinical strains have
mutations in these genes while remaining susceptible to EMB. It is becoming evident
that EMB® develops through mutations in multiple loci, including embA/B/C genes and
other currently unknown genes, resulting in a range of different levels of resistance

(Safi et al. 2013).

Ethionamide (ETH) is a second-line anti-TB drug indicated to treat MDR-TB. Like INH
and PZA, ETH is a pro-drug that needs to be activated, in this case by the EthA enzyme
(Baulard et al. 2000), whose expression is negatively regulated by EthR, a

transcriptional repressor that interacts directly with the ethA promoter region
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(Engohang-Ndong et al. 2003). ETH is a structural analogue of INH and shares the same
molecular target, namely the InhA enzyme involved in the synthesis of mycolic acids
(Banerjee et al. 1994). Resistance to ETH has been reported to result from mutations in
the ETH-converting enzyme EthA, mutations in the coding region of InhA (resulting in
cross-resistance to both ETH and INH), mutations in the inhA promoter region leading
to an over-expression of the target and cross-resistance to INH; and mutations in the
EthR transcriptional regulator (Engohang-Ndong et al. 2003). Mutations in these four
loci account for 80% of ETH-resistant cases and therefore other mechanisms of ETH

resistance remain to be discovered (Brossier et al. 2011).

FLQ are currently used to treat TB when resistance to first-line drugs has developed.
This family of drugs kill Mtb by binding to and interfering with the DNA gyrase, which
consists of two sub-units encoded by gyrA and gyrB genes (Takiff et al. 1994).
Resistance to FLQ arises from mutations in the quinolone resistance-determining
region (QRDR) located within gyrA and gyrB. In most of studies, more than 90% of FLQ-
resistant strains have mutations in the QRDR (Maruri et al. 2012). QRDR mutations
confer cross-resistance within the FLQ, albeit not at the same level. For the same
mutations, moxifloxacin (MOX) normally presents the lowest minimum inhibitory
concentration (MIC) values in the group followed by levofloxacin (LEVO), and in
contrast with the higher levels of resistance observed for ofloxacin (OFX) and
ciprofloxacin (CIP) (Malik et al. 2012). These differences explain the better clinical
efficacy of MOX (Feasey et al. 2011) and LEVO compared to CIP and OFX (Angeby et al.

2010).
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AMI drugs kanamycin (KAN), capreomycin (CAP) and amikacin (AMK) are second-line
injectable antibiotics used to treat MDR-TB. AMI are ribosome-binding antibiotics that
target the 16S rRNA encoded by rrs gene. Mutations in the 1,400-bp region of rrs
confer cross-resistance to all AMI members albeit not at the same level. Mutations in
the eis promoter region have been associated with KAN resistance. Additionally,
mutations located throughout the whole tlyA gene are only associated with CAP

resistance.

4.1.3 Available diagnostic tests for drug resistant tuberculosis

Early detection of DR is crucial for access to effective treatment and prevention of
onward transmission. Knowledge of the full drug susceptibility profile would enable
tailored treatment to improve efficacy and reduce exposure to ineffective toxic drugs.
Current testing for resistance to most anti-TB drugs involves isolation and culture of
the bacteria followed by exposure to the drug, a process that takes weeks or months
and requires high levels of microbiological safety. Rapid molecular assays are now
available for some key drugs that test directly from sputum and in 2013 the Xpert
MTB/RIF (Cepheid, Sunnyville, USA) was granted US FDA approval for detecting
resistance to RMP, conditional on confirmatory testing by a reference laboratory. This
easy-to-use semi-automated PCR-based test has also been endorsed by WHO, as have
Line Probe Assays (LiPA) for resistance to RMP and INH (GenoType MTBDRplus Assay),
where, following amplification of bacterial DNA samples are interrogated with a panel
of oligonucleotide probes (Ling et al. 2008). LiPA to detect resistance to other drugs,
including FLQ and AMI have also been developed (Genotype MTBDRsl Assay) (Ajbani et

al. 2012), but have yet to be endorsed by WHO. Though undoubtedly useful, both
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technologies are limited in the number of loci they examine and they lack capacity to
differentiate silent mutations from those that effect drug efficacy (Alonso et al. 2011;

lin et al. 2013; Aubry et al. 2014).

4.1.4 Whole-genome sequencing for the detection of drug resistance

WGS has the potential to overcome such problems and extend rapid testing to the full
range of anti-TB drugs. Sequencing technologies are evolving rapidly and benchtop
analyzers have been developed capable of sequencing a bacterial genome in a few
hours. Costs have been greatly reduced with the introduction of high throughput
technology (Sboner et al. 2011). NGS currently assists patient management for a
number of conditions (Berg et al. 2011; Koser et al. 2012; Harismendy et al. 2013). The
relatively small genome of Mtb (4.4 Mb) and its inherent stability render it a suitable
candidate for genomic analysis but the complexity of data interpretation has, thus far,
restricted whole genome analysis to the research laboratory. Recent reports of
sequencing M. tuberculosis from sputum from suspected XDR-TB patients suggest this
will soon change. However, data analysis remains a bottleneck, requiring specialist
expertise not readily available in clinical laboratories. To address this issue and
progress sequencing towards real time management of patients a rapid, online tool for
analyzing raw sequence data and predicting resistance was developed. Accuracy data
is presented for eleven anti-tuberculosis drugs from using the tool to interrogate raw
whole genome sequence data from clinical isolates, compared to their phenotype
obtained by conventional DST. To assess the potential benefits of a whole genome

approach a new library of mutations was curated and its performance compared to
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those used in three commercial molecular tests, the Xpert MTB/RIF (Cepheid Inc, USA),

and the MTBDRplus and MTBDRsl (Hain Life Science, Germany).

4.2 METHODS

4.2.1 Mutation library

Following review of available data a library of mutations predictive of DR was compiled
(see list in http://pathogenseq.Ilshtm.ac.uk/rapiddrdata). Drugs included were AMK,

CAP, EMB, ETH, INH, KAN, MOX, OFX, PZA, RMP and STR.

Table 4.1 Summary of mutations included in the curated drug resistance mutation

library

Drug Loci # of variable sites (SNPs, indels)
INH katG 241 (286, 25)
katG promoter 3(3,0)
inhA 14 (17, 0)
inhA promoter 9(11,0)
ahpC 8(8,0)
ahpC promoter 13 (14, 0)
kasA 8(11,0)
RMP rpoB 89 (135, 19)
rpoC 8(8,0)
EMB embB 124 (154, 1)
embA 5(5,0)
embA promoter 3(3,0)
embC 26 (27, 0)
embR 22 (24, 0)
STR rrs 21(25,0)
rpsL 14 (19, 0)
PZA pncA 215 (270, 64)
pncA promoter 4 (6, 0)
rpsA 3(4,0)
ETH ethA 33 (29, 5)
ethR 3(4,0)
inhA promoter 3(3,0)
inhA 4(5,0)
FLQ gyrA 16 (23, 0)
gyrB 22 (29, 0)
AMK rrs 8(9,0)
CAP rrs 3(4,0)
tlyA 26 (18, 10)
KAN rrs 3(4,0)
eis promoter 9(10,0)

100



First of all, two databases were consulted, TBDreaMDB (Sandgren et al. 2009) and
MUBII-TB-DB (Flandrois et al. 2014). Lineage specific mutations and polymorphisms
without sound phenotypic data supporting their association with resistance were
discarded. In addition, recent literature was consulted to extract new DR mutations
from review papers (Nebenzahl-Guimaraes et al. 2014; Laurenzo & Mousa 2011;
Maruri et al. 2012; Georghiou et al. 2012), papers on TB DR tests (Liu et al. 2013;
Moure et al. 2013; Shi et al. 2013; Wang et al. 2013; Zimenkov et al. 2013; Sekiguchi et
al. 2007; Engstrom et al. 2012; Helb et al. 2010; Jin et al. 2012; Ajbani et al. 2012),
papers on gene mechanisms of DR (Slayden & Barry 2000; Jagielski & Grzeszczuk 2013;
Ando et al. 2010; Safi et al. 2013; Morlock & Metchock 2003; DeBarber et al. 2000;
Brossier et al. 2011; Tan et al. 2013) and other recent studies (H. Zhang et al. 2013;
Boonaiam et al. 2010; Jnawali et al. 2013; Lin et al. 2013). As presented in Table 4.1,
the library comprised 1276 polymorphisms at 946 nucleotide positions from 25 loci, 6
promoters and 19 coding regions, involved in resistance to 11 drugs. In addition to
examining individual drugs the cumulative loci for MDR and XDR-TB was considered.
Circos software was used to construct circular genomic region variation maps

(Krzywinski et al. 2009). The R software package was used for statistical analysis.

4.2.2 Sequence data and drug susceptibility testing

The precision of the curated library for predicting resistance was assessed through
analysis of new and published sequence data so that in silico inferred resistance
phenotypes could be compared to phenotypes derived from conventional culture-
based susceptibility studies. Only sample collections with raw sequencing data

(minimum read length 50bp) and drug susceptibility data from recognized testing
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protocols (Stop TB Partnership 2014) were considered. A total of 792 isolates from six
geographically distinct data sets were used (WGS data set 3) as described in Section
1.7. Isolates were filtered as described in Section 2.2.1. Of the 792 isolates 365 (46%)
were phenotypically resistant to at least one drug, 262 (33%) were MDR-TB, 54 (6.8%)
XDR-TB and 426 (54%) were susceptible to the drugs tested. Two RMP mono resistant
samples were reported and 99.2% of RMP resistant samples were MDR-TB. In silico
genotyping using SpolPred (Section 3.2.2) revealed all major modern MTBC lineages
were represented, including Lineage 1 (EAI family, n=68, 8.6 %), Lineage 2 (Beijing,
n=182, 23 %), Lineage 3 (CAS, n=86, 10.9 %) and Lineage 4 (456 isolates, 57.5 %, of
which 35 X, 97 T, 298 LAM, 4 S, 18 H, 4 other). Where conventional susceptibility data
was not available samples were excluded from analysis for that drug. Sensitivity,
specificity, accuracy, 95% confidence intervals (CI) for the statistical performance of

each test (i.e. DR mutation list) were estimated using the following formula (Altman

1990):
S itivity = e
ensitivity = 5=
e TN
Specificity = TN T FP
TP+TN

A =
CCUracy =Tp {FN+TN + FP

where TP represents the number of true positives (phenotypic resistant isolates
harbouring DR mutations), FN false negatives (phenotypic resistant isolates lacking DR
mutations), TN true negatives (phenotypic susceptible isolates lacking DR mutations)
and FP false positives (phenotypic susceptible isolates harbouring DR mutations). The
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corresponding 95% confidence intervals for sensitivity and specificity were estimated

using:

where pis either sensitivity or specificity, zis equal to 1.96 and n is the denominator in

either the sensitivity (n = TP + FN) or specificity (n = TN + FP) formulas.

To compare the performance of a pair of genotypic tests (i.e. DR mutation lists), the
difference between the underlying discordant results (i.e. number of samples being
positive for test 1 and negative for test 2 (b) versus negative for test 1 and positive for
test 2 (¢)) was calculated. The statistical significance of this difference was determined
using the common proportion difference test for binomial variables based on the

following p-value:

o[ 1 ( (b - C)
Pvatue = pnorm /—( C)

)

where pnorm is the cumulative probability function of the standard normal

distribution.

4.2.3 Rapid mutation detection and the TB Profiler Online tool

To rapidly characterise mutations from WGS files (FASTQ format), raw sequences were
mapped to a modified version of the H37Rv reference genome using the Snap
algorithm (Zaharia et al. 2011), and SNPs and indels of high quality called using

SAMtools/BCFtools (Q30, 1 error per 1000bp) as previously described in Section 2.2.1.
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Figure 4.1 The TB profiler tool

(A) Screenshot of TB profiler input page where FASTQ files and run Id are selected by the user (B)
Screenshot of TB profiler output page with DR and lineage information (http://tbdr.Ishtm.ac.uk).
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The modified Mtb reference genome was created by concatenating the nucleotide
sequence of all DR candidate loci (+/- 300 bp) plus positions harbouring strain-specific
SNPs (+/- 700 bp). This resulted in a sequence of 187 kb, i.e. 4% of the original genome
size. Subsequently, DR status and strain type are derived based on the presence of DR
mutations in the curated list and strain-specific SNPs (Section 3.3.3) respectively. Other
mutations (SNPs and small indels) in DR candidate genes not present in the curated list

are also reported.

The online TB Profiler tool (http://tbdr.Ishtm.ac.uk/) was developed in Perl/PHP. It
inputs raw sequence data (FASTQ format), identifies DR and strain-specific mutations,
and displays related outputs (see screenshots in Figure 4.1). A per/ script was used to

implement the Snap software and SAMtools/BCFtools based bioinformatic pipeline.

4.2.4 Comparison with existing tools

To examine the potential analytical advantage of WGS over current molecular
technology for detecting DR, comparison was made with three commercial tests: (i)
the Xpert MTB/RIF (Cepheid Inc, USA) which targets the rpoB gene for RMPF; (ii) the
LiPA MTBDRplus for MDR-TB (Hain Lifescience, Germany) which targets rpoB, katG and
inhA for resistance to RMP and INH and (iii) the LiPA MTBDRs| (Hain Lifescience,
Germany) which targets gyrA, rrs and embB for resistance to the FLQ, AMI and EMB
respectively. Using the polymorphisms exploited within these assays (Helb et al. 2010;
Jin et al. 2012; Ajbani et al. 2012), in silico versions were developed, and their
performance was compared to the curated mutation library. In particular, in silico

analysis of the six data sets was performed and analytical sensitivities and specificities
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of the inferred resistance relative to the reported phenotype were compared (Figure
4.4 and Supplementary Figure 10). The cumulative effect on sensitivity and specificity

of DR mutations were calculated for all drugs, MDR and XDR (Supplementary Figure 9).

4.3 RESULTS

4.3.1 Validation of mutation library

The mutation library was validated using new and publically available sequence and
phenotypic data. In silico inferred resistance from WGS data was compared to the
reported resistance phenotype from conventional culture-based testing. Results are

summarised in Table 4.2.

Sensitivity and specificity of the whole genome analysis varied across drugs and with
the geographic origin of the sample collections. For the drugs that contribute to MDR-

TB correlation of mutation analysis with the reported phenotype was high.

Mutations predictive of resistance were found in 96.2% and 92.8% of samples resistant
to RMP and INH, respectively. Of the 22 INH resistant samples predicted as
susceptible, 14 were from China, 7 of those had mutations in known candidate loci
(katG and ahpC promoter), which would explain resistance but were not previously

reported (Table 4.3).
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Table 4.2 Accuracy of whole genome drug resistance analysis compared to reported

resistance phenotype

Drug #R Sen Spe China Pakistan Malawi Portugal Russia Canada
(tested) (%) (95%Cl) | (95%Cl) | Sen/Spe Sen/Spe Sen/Spe Sen/Spe Sen/Spe | Sen/Spe
INH 305 92.8 100 88/100 100/100 92.6/100 94.6/100 100/100 -/100
(693) (44) | (89.9- | (100-

95.7) 100)
RMP 264 96.2 98.1 95.7/97.7 | 97.3/100 | 100/98.2 | 96.9/100 90.9/90 -/100
(694) (38) (93.9- (96.8-

98.5) 99.4)
EMB 150 88.7 74.6 83.6/71.3 | 100/42.7 100/80 85.7/68.1 100/80 -/100
(484) (31) | (83.6- | (69.9-

93.8) 79.3)
STR 225 87.1 87.1 86.8/91 95.8/44.4 | 61.5/95.6 | 86.8/81.5 100/100 -/100
(487) (46.2) | (82.7- (86-

91.5) 93.4)
PZA 110 70.9 93.9 NT 51.3/- 66.7/94.8 | 80.6/100 100/60 -/100
(307) | (35.8) | (62.4- | (90.6-

79.4) 97.2)
ETH 155 73.6 93.3 38.9/97.3 | 66.7/90.3 NT 84.9/84.6 NT NT
(334) | (46.4) | (66.7- | (89.6-

80.5) 97)
MOX 10 60 68.7 NT NT NT 83.3/56.2 25/100 NT
(42) (23.8) (29.6- (52.6-

90.4) 84.8)
OFX 117 85.5 94.4 77.8/95.1 -/100 NT 92.1/93.2 NT NT
(313) | (37.4) | (79.1- | (91.2-

91.9) 97.6)
AMK 76 82.9 98.3 NT 86.5/100 NT 79.5/98.2 NT NT
(193) | (39.4) | (74.4- (96-

91.4) 100)
CAP 89 60.7 90.7 50.0/97.0 | 85.7/21.7 NT 57.7/98.0 | 100/91.7 NT
(358) (24.9) (50.6- (87.2-

70.8) 94.2)
KAN 118 87.3 934 71.4/97.0 83.8/- NT 98/88.7 80/33.3 NT
(316) | (37.3) | (81.3- | (89.9-

93.3) 96.9)
MDR 262 91.2 98.4 86.3/100 97.3/100 100/98.2 95.8/100 90.9/90 -/100
(693) (37.8) | (87.8- (97.2-

94.6) 99.6)
XDR 54 75.9 98.4 60.9/99.1 -/100 -/100 96.3/88.9 25/100 -/100
(601) (9) (64.5- | (97.3-

87.3) 99.5)

Abbreviations: NT, Not Tested; Sen, Sensitivity; Spe, Specificity
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Figure 4.2 Mutations associated with MDR-TB found in phenotypically MDR strains

Colour-coded bars in the Circos plot represent genes described to be involved in DR (See Section 4.1.2
and Table 4.1). On top of each of these bars a grey histogram shows the mutation density derived from
the curated list of DR-associated mutations. These grey areas highlight the presence of DR-associated
regions in candidate genes, which in some cases span the whole gene (e.g. katG) or are confined to a
certain region (e.g. rpoB). Vertical black lines indicate the frequency of mutations observed in
phenotypically resistance isolates. Internal black lines show co-occurring mutations both within and
between genes. The thickness of these lines is proportional to the frequency of the mutations appearing

together.

Ten isolates reported as susceptible to RMP by conventional testing had mutations

predictive resistance (98.5% specificity), six of which were from Malawi.
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Figure 4.3 Mutations associated with XDR-TB found in phenotypically XDR strains

See footnote in Figure 4.2 for a description of this plot.

Correlation was lower for other first line drugs. For PZA, 32 of 110 samples with a
resistant phenotype harboured no mutations in known DR genes, including 18 of 37
samples from Karachi. However, specificity for this drug was high (93%, 95% Cl 90.6-
97.2). Specificity for ETH was similarly high but accuracy was poor for EMB where 85 of

334 susceptible stains were found to harbour mutations included in the curated library

of DR polymorphisms.
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Among the AMI drugs, accuracy was higher for AMK (sensitivity/specificity 82.9/98.3%)
and KAN (87.3/93.4%) than for CAP, where 35 of 89 resistant samples were not
detected by the in silico genome analysis. Testing for FLQ resistance was less
commonly reported and data for OFX was restricted to two studies (China and

Portugal) with a total of 313 samples tested.

Ten OFX-susceptible samples were found to harbour mutations associated with FLQ
resistance (94.4% specificity), and mutations were not identified in 17 resistant
samples (85.5% sensitivity). Of 42 samples tested for susceptibility to MOX, 10 were
reported as phenotypically resistant, of which 6 were recognized by the in silico
mutation analysis (60% sensitivity). Figure 4.3 summarises the mutations and multiple
loci associated with resistance to INH, RMP, FLQ and AMI and shows those found in
phenotypically determined XDR cases. Supplementary Figure 8 illustrates the loci
involved in resistance to each of the 11 drugs, the position of DR mutations in the
curated list within these loci, and DR mutations observed in phenotypically resistance
cases. The cumulative effect of these DR mutations on sensitivity and specificity for

each drug is shown in Supplementary Figure 9.

4.3.2 Comparison with commercial tests

Having assessed the diagnostic potential of the mutation library comparisons were
made with polymorphisms used in commercial molecular tests for DR. Results are
summarised in Figure 4.4. When screening for resistance to RMP there was no
significant difference between the performance of curated library and mutations

employed by the Xpert MTB/RIF and the LiPA MTBDRplus. However, 31 samples had

110



mutations predictive of resistance to INH not included in the line probe assay, resulting

in a 10% drop in sensitivity for MTBDRplus.

Sensitivity (%) Specificity (%)
o o o o o o o o o o o o
L 1 1 1 | | L 1 1 1 | |

92.8 100

INH : 826 INH 100

' 96.2 ; 98.1

95.5 98.1
88.7 746
EMB E 52.7 EMB 916
’ 60 68.8
MOX i 60 MOX : e
; 85.5 94.4
OFX i 829 OFX 95.9
: 82.9 T 98.3
60.7 ] 90.7

CAP : 60.7 CAP 911
: 87.3 ; 93.4

KAN ; 56.8 KAN 99
91.6 98.4
MDR ! 82.8 MDR 99.3
: 75.9 T 98.4
XDR : 352 XDR 99.8

@ Mutation library @ GenoType MTBDRplus @ Xpert MTB RIF
W GenoType MTBDRsl ® GenoType MTBDRplus + GenoType MTBDRsl

Figure 4.4 Inferred analytical accuracies of the DR curated mutation library and three
commercial molecular tests for resistance

In silico analysis of published sequence data using mutation libraries derived from MTBDRplus, MTBDRsl,
Xpert (Cepheid Inc, USA) MTB/RIF (Hain Life Sciences, Germany) and the curated whole genome library.
For each library, in silico inferred resistance phenotypes were compared to reported phenotypes
obtained from conventional DST. Sensitivity and specificity percentages are accompanied with 95%
confidence intervals.

111



The mutations concerned were mainly in the katG gene: S315N (n=9), S315G (n=1),
D419H (n=1), L378P (n=1), V1A (n=1), Y155C (n=3), W191R (n=5 and always with C-15T
inhA promoter), N138D (n=1, with T-8A inhA promoter) and T380I (n = 1, with C-15T
inhA promoter). There were also 6 samples with ahpC promoter mutations and 2
samples with inhA mutations (S94A and 1194T). No resistance mutations were

observed in INH susceptible strains (i.e. 100% specificity).

The curated library offered enhanced accuracy over the line probe mutations when
screening for MDR-TB (95.8 vs. 93.1 %; p<0.00042). Detection of resistance to EMB,
OFX, AMK and KAN was also enhanced by the whole genome analysis. A slight
reduction in specificity was observed for five drugs: EMB (91.6 vs. 74.6%, p<1.54e-08),
MOX (71.9 vs. 68.8%, p<0.32), OFX (95.9 vs. 94.4%, p<0.083), CAP (91.1 vs. 90.7%,
p<0.32), KAN (99.0 vs. 93.4%, p<0.00091). Less susceptibility data was available for the
second line drugs. For each of the FLQ and AMI the sensitivity of the curated DR library
was equal to, or greater than for the mutations employed in the LiPA MTBDRsl: MOX
(60% in both cases), OFX (85.4 vs. 82.9%, p<0.083), AMK (82.9 vs. 78.9%, p<0.083), CAP
(60.7% in both cases) and KAN (87.3 vs. 56.8%, p<1.97e-09). Overall when detecting
XDR-TB resistant cases the curated mutation library offered enhanced accuracy over

the line probe mutations (96.3 vs 93.7%; p<0.0047) (Figure 4.4).

4.3.3 Comparison with other drug resistance databases

The diagnostic accuracy of other DR mutation databases, namely TBDreaMDB
(Sandgren et al. 2009) and MUBII-TB-DB (Flandrois et al. 2014), was estimated and
compared to that obtained by the herein presented library. Accuracy for the detection

of RMP resistance did not differ significantly among the three databases (Figure 4.5).
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INH specificity was considerably lower (23.4%) when using TBDreaMDB markers,
mainly due to the presence of lineage-specific mutations, which have been historically
and mistakenly regarded as resistance associated mutations (e.g. R463L katG for non-

lineage 4 strains).

Sensitivity (%) Specificity (%)
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Figure 4.5 Diagnostic performance of the curated library versus alternative drug
resistance mutation databases

In silico analysis of published sequence data using mutation libraries derived from TBDreaMDB, MUBII-
TB-DB and the curated library. For each library, in silico inferred resistance phenotypes were compared
to reported phenotypes obtained from conventional DST. Sensitivity and specificity percentages are
accompanied by 95% confidence intervals (See Methods).
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Slightly more INH resistant cases could be correctly assigned (283/305, 92.8%
sensitivity) than MUBII-TB-DB (276/305, 90.5% sensitivity) without compromising
specificity (100% in both cases), and consequently more MDR cases too, 240/262
(91.6%) and 235/262 (89.7%) respectively. The diagnostic accuracy for other first-line
drugs (PZA and STR), not included in current molecular diagnostic tests, also improved

(Figure 4.5).

Of 110 PZA resistant samples, 78 (70.9% sensitivity) were detected compared to 50
(45.5%) and 64 (58.2%) identified by MUBII-TB-DB and TBDreaMDB respectively. While
specificity was relatively high for both ETH (93.3%) and PZA (93.9%), not all resistant
cases were found to harbour mutations in known genes (51 and 25 respectively).
Resistant clinical isolates lacking mutations in candidate genes have been extensively
reported for both ETH (Brossier et al. 2011) and PZA (Stoffels et al. 2012a). STR
specificity by TBDreaMDB was significantly low (40.8%) due to the presence of lineage-
specific SNPs in the gid gene (e.g. E92D for Modern Beijing and L16R for LAM), which
were found in both STR susceptible and resistant cases and therefore unlikely to be

involved in STR resistance.

Both MUBII-TB-DB and the curated library produced similar predictive performance for
most of second line drugs (OFX, MOX, AMK and CAP). TBDreaMDB reports several
mutations (E21Q, G668D and S95T in gyrA) that do not correlate with FLQ resistance
and were responsible for the very low specificity for FLQ resistance (Maruri et al.
2012). By including mutations at the eis promoter, 103 of 118 KAN resistant samples
were identified (87.3% sensitivity) compared to 67 (56.8%) and 77 (65.2%) predicted

by TBDreaMDB and MUBII-TB-DB respectively. Overall, the presented database
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outperformed both TBDreaMDB (75.9% vs. 44.4%, p<0.00021) and MUBII-TB-DB

(75.9% and vs. 42.6% p<2.21e-05) in the detection of XDR cases.

4.3.4 Online tool for predicting drug resistance and lineage information from

sequenced isolates

Having established a curated list of mutations for eleven anti-TB drugs, a web-based

tool to rapidly identify a DST and strain-type profile was developed. In addition, to

identifying known mutations, this research tool can identify novel mutations in the

candidate regions, thereby leading to further functional characterisation and update to

the curated list.

Table 4.3 Potentially novel DR mutations identified by TB profiler

DR Candidate . Number of Increased
Drug Mutations* samples s
Gene . sensitivity
(Population)
katG G/299/S, P/232/S, F/408/L, D/142/G,
G/120/S .
INH ! 7 (Ch 2.3%
CTCGGGT/2155245/C, D/189/A, D/419/G (China) °
ahpC promoter C/2726136/T
RMP rpoB S/450/Stop, CAGCCAGCTG/761087/C 2 (Karachi and 0.7%
Portugal)
embA promoter  C/4243225/T, G/4243190/C,
C/4243218/CTACCATCGAG 7 (6 from
EMB embA G/554/D, G/200/S China, 1 from 4.7%
embB A/679/T,Y/319/D, S/538/P, S/412/P, Portugal)
N/399/T
pncA V/130/M, G/2289011/GT, 1/133/S,
7 (6 from
PZA G/2288786/GGCCAAGCCAT (n=2), Karachi. 1 from 6.4%
G/2289011/GT Portu al) o
rpsA Q/410/R (n=2) &
STR - - - -
fabG1 promoter T/1673432/G, T/1673432/A
inhA 1/95/L, 1/194/T 9 samples (4
ETH ethA CT/4326393/C, GT/4327132/G, from China, 5 5.7%

A/4326800/AGC, C/403/R (n=2),
Y/143/Stop, P/51/S, P/149/S

from Portugal)

*Mutations not present in susceptible cases, which are not strain-specific SNPs or synonymous
SNPs and therefore more likely to be conferring DR. SNPs in coding regions are annotated with
the reference amino acid, codon number and alternative amino acid. SNPs in non-coding
regions and indels are annotated using the reference nucleotide allele, chromosome

coordinate and alternative allele as extracted from the VCFs.
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This approach called TB profiler aligns raw sequencing data to a small version of the
Mtb reference genome, consisting of 4% of the original chromosome size and
containing only DR candidate loci and regions harbouring strain-specific SNPs. TB
profiler processed FASTQ files at a rate of 80,000 sequence reads per second.
Application to the 792 samples led to the identification of 36 novel mutations (24
nsSNPs, 9 indels and 5 intergenic SNPs) in phenotypically resistant strains and absent
in susceptible ones, which could be potentially driving resistance (Table 4.3). The

online tool is available from http://tbdr.Ishtm.ac.uk/ (Figure 4.1).

4.4 DISCUSSION

The global emergence and amplification of resistance to anti-TB drugs has created a
need for improved detection tools. Conventional DST, which in this work is assumed to
be the reference standard, requires several weeks to complete and variation in both
protocols and MIC standardization can lead to inconsistent results. Therefore, point-of-
care diagnostic tests for rapid detection of all available anti-TB drugs are urgently
needed to guide treatment options for patients with MDR, XDR-TB and post XDR (TDR-
TB) disease. The potential of WGS to provide such a solution was assessed. A library of
approximately 1,300 mutations to predict resistance to eleven drugs was assembled.
This library has been incorporated into a rapid online tool to perform the analysis and
provide a DST and strain-type profiles. The presented library is the most complete and
updated database of its kind and gathers the state of the art on our understanding of

the genetic basis of DR in TB.

In situ analysis of sequence data was undertaken to validate the library. Sensitivity was

highest for RMP. The mode of action of this drug (Section 4.1.2) involves only one gene
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and is fully understood compared other TB drugs that have more complex modes of
action. Unsurprisingly the sensitivity was lower for drugs like PZA and ETH, for which
the understanding of the genetic basis of resistance is currently incomplete (Brossier et
al. 2011; Stoffels et al. 2012a). Further work is needed to determine additional
polymorphisms predictive of resistance to these drugs. As illustrated in Figure 4.2 and

Figure 4.3 a large number of loci are associated with MDR and XDR.

A limiting factor for this study is the reliability of culture-based susceptibility testing
methods and the lack of a gold standard with which to compare new tests. Previous
studies on discrepancies between mutation and culture derived phenotypes suggest
that molecular assessment may eventually become the gold standard for some drugs

(Rigouts et al. 2013; Van Deun et al. 2013).

In addition to assessing additional numbers of drugs, the sensitivity of the whole
genome mutation library was equal to, or greater than the mutations used in the
commercial LiPAs for all drugs examined, demonstrating the intrinsic advantage of a
whole genome approach over current LiPA tests, which include a limited number of DR
mutations. It was also found more accurate than previously reported databases, due to
increased numbers of polymorphisms strongly predictive of resistance and the absence
of mutations with weak or no supporting data, mainly strain-specific mutations. The
enhanced sensitivity was greatest for INH, KAN and for MDR and XDR-TB. Specificity
for RMP, INH, AMK, MDR and XDR-TB exceeded 98%. Results for EMB were less
promising as although a sensitivity of 88.5% was achieved, the specificity of 71.3% is
inadequate. These results are in line with different levels of EMB resistance being

acquired through mutations in multiple loci, some of which are currently unknown
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(Safi et al. 2013). Although the current state of knowledge does not allow EMB
resistance to be predicted at high precision, EMB resistant mutation in the curated list
can be helpful at pointing to strains with higher predisposition to develop such
resistance. It should be noted that high positive predictive value is crucial for DR tests
where the consequence of a false positive may be unnecessary isolation in specialist

containment facilities and prolonged treatment with drugs of increased toxicity.

The accuracy of the mutation analysis was observed to vary by geographic region
(Supplementary Figure 10). The isolates used in this dataset (WGS data set 3) were not
necessarily representative of the local population and geographic disparities in the
frequency of DR mutations may reflect the clonal nature of TB transmission, which is
entirely human-to-human. It has been suggested that emergence of resistance in Mtb
is associated with bacterial lineage and difference in the prevalence of polymorphisms
could relate to variance in Mtb lineage across regions but such conclusions cannot be

drawn from the present study as more appropriate sampling strategies are required.

Accuracy values also differed among drugs belonging to the same group. MOX
resistance was predicted using the same markers as OFX (FLQ markers) yielding overall
worse specificity (68.7 vs. 94.4%). There is considerable cross-resistance between FLQ
but MIC values can vary among members of this group. MOX generally presents lower
levels of resistance than OFX for the same mutations (Maruri et al. 2012), which would
explain its lower specificity. Strains having the same FLQ resistance-conferring
mutations are more likely to be regarded as sensitive (false positives) for MOX.
Sensitivity for MOX also needs to be improved (60%). The low number of MOX-

resistant cases (n=10) may be biasing the calculated sensitivity. Similarly, CAP
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specificity was lower than AMK (90.7 vs. 98.3%) and KAN (90.7% vs. 93.4%). 24 of the
269 CAP-susceptible strains had the A1401G rrs SNP, a frequently reported AMI-
resistance conferring mutation, also found in 50/89 CAP-resistant samples. The finding
of AMI-resistant mutations in CAP-susceptible samples (i.e. low specificity) has already
been observed and explained in terms of a high MIC cut-off recommended by the

WHO for CAP (Rodwell et al. 2013).

Not all drugs used in the treatment of TB were included in this study. Drugs were
omitted either because insufficient susceptibility data was available (e.g. CIP and
rifabutin (RFB)), or because the mechanism of action remains elusive and SNPs to
predict resistance have yet to be identified (e.g. cycloserine (CYS) and para-

aminosalicylic acid (PAS)).

Recent work has shown that pyrosequencing has sufficient sensitivity to test DR
susceptibility in Mtb clinical specimens, thereby significantly shortening the
turnaround time for obtaining molecular DST results to hours (Lin et al. 2013). These
assays focus on detecting only the most prevalent mutations within short sequences
(<50 bases) in limited numbers of genes. In contrast, WGS technologies allows
interrogation over all genes with sequencing of much longer segments, making it
possible to identify mutations spread across the locus as is the case in pncA gene. Low
frequency mutations, which may be predominant in certain geographical areas and
complex mechanisms of resistance involving multiple loci (e.g. EMB) are also accessible
using WGS. Potentially new DR-conferring mutations in candidate loci can also be
investigated as demonstrated in Section 4.3.4. Furthermore, newly identified DR loci

and mutations can easily be incorporated in the mutation library. Such flexibility will
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allow new drugs to be included, for example bedaquiline, which has recently been
found to have cross resistance with clofazimine through the mutations in the

transcriptional regulator Rv0687 (Hartkoorn et al. 2014).

Rapid WGS may not only replace current methods for identifying and typing MTBC, but
also has also the potential to detect DR TB (Sharon J. Peacock 2013). Phenotypic
susceptibility testing cannot still be replaced for all antibiotics since the genetic
mechanisms of resistance are not fully characterised. Future work is needed to identify
new loci closely associated with resistance to drugs like PZA, STR, ETH, EMB, MOX and
CAP, and recently licensed anti-TB drugs. Nevertheless, WGS can be used to rapidly
identify resistance when mutations proven to confer resistance are detected and

provide valuable clinical information to guide treatment.
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5 IDENTIFICATION OF NOVEL DRUG RESISTANCE ASSOCIATED
LOCI USING GENOME-WIDE ASSOCIATION ANALYSIS

A complete characterisation of the genetic determinants of DR is a prerequisite for
accurate genetic-based DSTs. As well as being a potential DR detection tool as shown
in the previous chapter, WGS can be used to characterise new genes involved in DR. In
this regard, this chapter explores the use of WGS to capture the natural genetic
variants of drug resistant and susceptible clinical strains and assess the association of

these with phenotypic DR.

5.1 INTRODUCTION

The emergence and spread of antimicrobial DR is an enormous public health concern.
Dissecting the genetic determinants of antibiotic resistance has important implications
in both diagnosis of resistance and development of effective alternative therapies. The
mutations found to be associated with DR can be incorporated into genotypic drug
susceptibility assays and facilitate tailored treatment (Lacoma et al. 2008). On the
other hand, the genes harbouring these mutations can provide insights into the
bacterial mechanisms that underlie DR and assist in the rational design of novel

antimicrobial agents (Lee et al. 2014).

Early attempts aimed at identifying DR mechanisms in Mtb consisted in studying
intrinsic drug susceptibility in other mycobacterial species (Mdluli et al. 1998;
Danilchanka et al. 2008). High-throughput mutagenesis approaches have been used to
discover mutated loci responsible for changes in drug tolerance, followed by

complementation with intact versions of these loci that restored the initial DR
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phenotype (Danilchanka et al. 2008; Ren & Liu 2006). In vitro drug exposure and
subsequent isolation of surviving resistant mutants, a process known as directed
evolution, has also been used to identify the genetic changes responsible for DR
acquisition (Hartkoorn et al. 2014; Safi et al. 2013). These studies have characterised
multiple DR acquisition pathways, including the role of cell-wall permeability and the
involvement of efflux pumps. Once DR genes are identified, allelic exchange
experiments have been extremely useful at establishing causality and elucidating the
mutation’s contribution to the DR phenotype (Nebenzahl-Guimaraes et al. 2014).
Although extremely successful, in vitro studies do not necessarily capture the genetic
causes of DR observed in clinical specimens. WGS enables the full characterisation of
naturally occurring genetic variation in clinical isolates which, coupled with an accurate
drug phenotype characterisation, can be a powerful approach to dissect the genetic

determinants of DR and other clinically important phenotypes.

Recent studies have applied genome-wide approaches to systematically search for
genes closely related to DR in Mtb (H. Zhang et al. 2013; S. Zhang et al. 2013; Farhat et
al. 2013; Casali et al. 2014). These studies employed WGS to genotype a panel of MTBC
clinical isolates with different resistance profiles. Subsequently, loci associated with DR
can be identified by genome sequence comparisons between susceptible and resistant
isolates. This approach allowed the identification of a new possible mechanism of PZA
resistance (S. Zhang et al. 2013). Genome-wide association analysis (GWAS) is a
powerful approach established in human disease (Anon 2007), with established
statistical techniques, which aims to measure the statistical significance of phenotype-

genotype associations. Since DR is generally a binary categorical variable (coded as
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resistant or susceptible), GWAS make use of a logistic regression framework, which can
include adjustment for confounders such as pre-existing DR or strain-type (population
structure). A recent study in 161 Mtb clinical samples (H. Zhang et al. 2013) across 8
drugs demonstrated the value of the GWAS approach. Whilst identifying established
DR loci, the multi-genic nature of some associations highlighted that the genetic basis
of DR may be more complex than previously anticipated. Despite the identification of a
set of new loci, the specific role of these genes in DR was not discussed. GWAS have
also been applied to dissect the genetic causes of DR (Alam et al. 2014) and virulence

phenotypes in other bacterial pathogens (Laabei et al. 2014).

In parallel, a novel method to identify genetic markers of resistance was recently
developed (Farhat et al. 2013) and applied to MTBC clinical strains with different
antibiograms. This method consists of sequencing the genomes of related strains with
different resistance phenotypes followed by a phylogenetic-based genome-wide scan
for positive selection. This approach (phyC) assumes that genetic variants associated
with DR are under convergent positive selection and therefore originate de novo
across independent lineages (i.e. branches of the phylogenetic tree). This test has
shown to be valuable as it identified well known DR markers in MTBC. The involvement

of drug efflux pumps and DNA repair genes in DR acquisition was also highlighted.

In addition to association studies, WGS can also shed light on the molecular
mechanisms underlying the transmissibility and persistence of DR strains in a
population. It is well known that DR acquired mutations may infer a fitness cost in the
absence of antibiotic pressure (de Vos et al. 2013). Compensatory mutations may then

arise and restore the fitness of resistant bacteria. This insight has important
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epidemiological consequences as MTBC DR clinical strains harbouring fitness-
compensatory mutations have been associated with higher transmissibility and

persistence in the population (de Vos et al. 2013; Casali et al. 2014).

A collection of 2765 MTBC isolates from 18 global populations and different
antibiograms (27.7% MDR, 17.1% XDR) has been used to identify novel mechanisms of
DR. Two complementary approaches were applied to this dataset: tree-based
convergent evolution (Farhat et al. 2013) and GWAS. Previously known resistance loci
were identified by the phyC analysis as well as PE/PPE genes and other potential
targets of convergent positive selection. The GWAS analysis identified all known drug-
targets and drug-converting enzymes, in addition to transporters, loci involved in

synthesis and regulation of cell wall components and genes of unknown function.

5.2 METHODS

5.2.1 Dataset, raw sequence alignment and SNP calling

A global dataset consisting of 2,902 MTBC clinical samples was compiled across
multiple populations from different geographical areas and with representation of all
main four lineages (1 to 4) (Table 5.1). Some of these datasets were downloaded from
the public domain when both WGS and phenotypic drug susceptibility data were made
publicly available. For the remaining ones, both the phenotypic and WGS data were

provided by collaborators (see WGS data set 3 description in Section 1.7).

The percentage of DR varied across populations and was particularly low in the

Vancouver and Karonga populations, which were included with the aim of having a
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good representation of pan-susceptible samples with diverse genetic backgrounds (i.e.

different lineages) in the final dataset.

Table 5.1 Summary of the global drug resistance dataset

N 0, 0, 0,
Population N (Post I\g((e)acn # SNPs Proportion of lineages a/:;; I\jlolgl]; )/(DDOII
Qc)

Brazil 108 106 110 7606 4 (100) 100 100 10.38
2 (5.88), 3 (5.88), 4

Bulgaria** 17 17 155 6329  (82.35), M. bovis (5.88) ND ND ND

China (H.

Zhang et al. 2(70.77),3 (1.54), 4

2013)* 161 130 106 16537 (26.92) 73.08 73.08 4.62

Colombia 15 15 111 2764 4 (100) 100 100 0

Vancouver

(Gardy et al.

2011)* 36 33 55 1035 4 (100) 0 0 0
1(26.67), 2 (6.67), 3 (40),

India 17 15 59 5878 4 (26.67) 13.33  13.33 0

Japan** 4 4 283 1603 4 (100) ND ND ND
1(11.90), 3 (78.57), 4

Karachi 42 42 485 7681 (9.52) 88.1 88.1 0
1(16.50), 2 (4.08), 3

Karonga (11.69), 4 (67.42), mixed

(Malawi) 1662 1642 99 43064 (0.18) 7.31 0.61 0

Lisbon

(Perdigdo et 2(7.14),3(1.43),4

al. 2013) 84 70 206 6518 (91.43) 72.86 54.29 1.43

Netherlands** 14 14 389 992 4 (100) ND ND ND

Peru 104 99 290 8700 2 (6.06), 4 (93.94) 61.62 27.27 0

Porto 131 128 292 8152  2(11.72),4(88.28) 84.38 39.84 6.25

Russia (Casali

&

Nikolayevskyy

2012)* 42 23 36 2524 2 (100) 65.22 52.17 8.7
1(0.58), 2 (31.98), 3

South Africa 174 172 188 15478 (5.81), 4 (61.63) 98.26 48.84 1.16

Kampala, 1(1.96),2(1.96),3

Uganda** 51 51 256 8019  (27.45), 4 (68.63) ND ND ND
1(36.17), 2 (44.68), 4

Vietnam 50 47 192 9256 (19.15) 53.19 40.43 0
1(9.55), 2 (23.57), 3

WHO-TDR** 190 157 123 21689 (3.18), 4 (63.69) ND ND ND
1(10.7), 2 (11.6), 3 (9.4),
4 (66.6), M. bovis (0.04)

Overall 2902 2765 136 107462 and mixed (1.7) 27.70 17.09 1.03

* Publicly available datasets ** Datasets with missing or unreliable phenotypic data

Overall 27.7% of the samples were resistant to at least one of the 11 drug tested (AMK,

CAP, EMB, ETH, INH, KAN, MOX, OFX, PZA, RMP and STR), 17.1% of samples were MDR

126



(i.e. resistant to both INH and RMP), and 1% were XDR-TB (MDR in addition to
resistance to any FLQ and AMI). It should be noted that each sample was tested for a
different number of drugs, where susceptibility to first-line treatments usually led to

no tests for second-line drugs.

The sequence data analysis procedures used are explained in Section 2.2.1. In brief,
after mapping the raw sequence data to the H37Rv reference genome, SNPs were
called and retained if present in unique regions of the genome resulting in 107,462
SNP sites. Samples were removed if they had more than 15% of SNP missing calls

(n=2,765/2,902).

5.2.2 Phylogenetic reconstruction and population structure

The best-scoring maximum likelihood phylogenetic tree was computed using RAXML
(Stamatakis et al. 2008) based on the 107,462 SNP sites spanning the whole genome
and the resulting tree rooted on M. canettii as described before (Section 3.2.4). All
isolates were in silico genotyped using SpolPred (Section 3.2.2). The proposed SNP
typing system described in Section 3.3.3 was employed to accurately genotype all
isolates at both lineage and sub-lineage levels. In addition, a principal components
analysis (PCA) was conducted to capture the population structure, as well as adjust for

it in the GWAS analysis.

5.2.3 Phylogenetic convergence test for selection

To identify SNPs enriched by convergent evolution, the phyC approach described in
(Farhat et al. 2013) was employed using the available implementation in (Alam et al.

2014). Briefly, the constructed RAXxML tree and the whole-genome SNP alighment were
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used as input to perform ancestral sequence reconstruction using available functions
in the R phangorn module (Schliep 2011). Mutations specifically enriched in branches
leading to resistant leaf nodes of the tree (i.e. samples) compared to susceptible ones
were identified and statistical significance measured using a Fisher’s exact test (Alam

et al. 2014).

5.2.4 Genome-wide association analysis

DR for each drug was a binary response variable (0 for susceptible, 1 for resistant, NA
or missing for non-determined). Logistic regression was used to estimate the strength
of association between each locus in the genome and resistance to each drug. SNP
mutations were aggregated by coding region, RNA loci and intergenic regions resulting
in a matrix of n x m, where n is the number of loci and m the number of samples. For
coding regions only non-synonymous mutation changes were aggregated. In addition,
SNPs were grouped by operons, functional units containing clusters of genes under the
control of the same promoter and generally involved in the same pathway or function.

Operon annotation was extracted from TBDB (Reddy et al. 2009).

Since resistance to anti-TB drugs originates on top of pre-existing DR, as a result of
current TB treatment regimens, the sequence of resistance accumulation was
estimated based on associations among resistance phenotypes. Logistic regression was
then performed adjusting for pre-existing DR as well as population structure, using the

first five principal components. Specifically the models fitted were of the form:

log =a+ [, SNP + [, Previous + B; PC1+ B, PC2+ Bs PC3 + (4 PC4

1-P

+ B; PC5,
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where P is the probability of resistance, log(P/1-P) refers to the log odds, SNP refers
to the number of mutations at the locus to be tested, Previous refers to the results for
other drugs tested, PC1 - PC5 are the principal components, and the alpha and betas
refer to log odds of intercept and the corresponding variables respectively. For
example, the model for estimating the association of resistance to PZA of Rv2043c
(pncA) used the number of nsSNPs for each sample within Rv2043c (SNP), INH, RMP,
STR, and EMB as binary variables indicating the results of these tests for samples
(Previous). Statistical significance of each variable was established using a Wald test.
Of most interest was the SNP effect, with its odds ratio and p-value. The standard
errors for the log odds ratios were estimated from the model, and used to construct

95% confidence intervals for the odds ratios.

5.3 RESULTS

5.3.1 Population structure

Genome analysis performed on 2,765 MTBC clinical isolates from 18 independent
populations revealed substantial genetic diversity, with 107,462 SNP sites in non-
repetitive regions of the genome relative to the H37Rv reference strain. Figure 5.1
shows the phylogenetic tree constructed using all 107k SNPs. In addition, samples
were classified using the 62 strain-specific SNP system (Section 3.3.3) and colour-coded
accordingly on the genome-wide phylogeny, and demonstrated perfect clustering of

lineage and sub-lineage groups as expected.
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Figure 5.1 Phylogeny of the global drug resistance MTBC samples

Maximum likelihood phylogenetic tree constructed with 2,765 MTBC samples and rooted on M. canettii.
The tips of the tree (i.e. samples) are colour-coded by lineage and sub-lineage based on the SNP typing
system presented in Section 3.3.3.

A total of 2,699 out of 2,765 samples (97.6%) were unambiguously classified at both
the lineage and sub-lineage levels, whereas a minority of 46 isolates (1.7%) presented
markers from multiple groups. These samples belonged predominantly to the Karonga
dataset (39/44) and harboured combinations of SNPs specific to different lineages (e.g.
1 and 4) or different sub-lineages of the same lineage (e.g. 4.3 and 4.6). The fact that
Karonga district in Malawi is an area of high TB prevalence and that these SNP patterns
are indeed combinations of markers from the most frequent circulating strain-types in
this population (Guerra-Assuncdo et al. 2014) supports the hypothesis of mixed
infection cases (Supplementary Table 9). A total of 20 samples from lineage4 (0.7%) did
not harbour sub-lineage specific SNPs.
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(A)

Pan Susceptible
INH Mono-Resistant
RMP Mono-Resistant
® MDR
@ XOR
Other
Non Determined

Figure 5.2 Phylogeny of the global drug resistance MTBC samples colour-coded by drug

resistance status

(A) Maximum likelihood phylogenetic tree constructed with 2,765 MTBC samples and rooted on M.
canettii. The tips of the tree (i.e. samples) are colour-coded by DR status. (B) Apparent absence of DR
transmission in samples from Karonga, Malawi (B) Plausible scenario of DR transmission among samples
from Lisbon and Porto populations.
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Follow-up investigation of these samples revealed that they belong to four potentially
novel sub-lineages consisting of 5, 5, 8 and 2 samples respectively. In total, and after
excluding potential mixed samples (n=46, 1.7%), representatives of lineagel (n=296,
10.7%) and all main three modern MTBC lineages (2, n=322, 11.6%; 3, n=259, 9.4%; 4,

n=1842, 66.6%) were reported.

In order to highlight possible cases of DR transmission, samples in the phylogenetic
tree were colour-coded by DR status (Figure 5.2A), namely as pan-susceptible (sample
susceptible to all drugs for which it was tested), INH mono-resistance, RMP mono-
resistance, MDR and XDR. Overall, 27.7% of samples were at least resistant to one anti-
TB drug, 17.1% were MDR and 1% XDR. Figure 5.2C shows a plausible scenario of
ongoing DR transmission among samples from Lisbon (Perdigdo et al. 2013) and Porto
populations, whereas Figure 5.2B illustrates the development of DR in multiple strains
independently and an apparent absence of DR transmission in samples from the

Karonga, Malawi, population.

5.3.2 Phenotypic drug resistance explained by known candidate genes

It was first determined whether phenotypic resistance could be explained by
mutations in previously described DR-associated genes. The compiled library of
putative DR mutations (Section 4.2.1) was used to infer an in silico DR phenotype from
the genomic data. These “inferred” phenotypes were then compared to those from
conventional culture-based DST, assuming the latter are the reference standard.
Samples without available DST phenotypes were excluded from the analysis. Figure 5.3
shows that the percentage of explained resistance varied per drug, with resistance to

first line drugs (INH, RMP and EMB) being genetically explained in a greater number of
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samples, with the exception of PZA (60.3%) and STR (70.9%). Genetically determined
resistance to second line drugs (ETH, OFX, AMK and CAP) was commonly lower, with
the exception of OFX (83.3%) and KAN (82.7%). Having found that some drugs were
not explained well by the mutation library, the focus shifted to drug-resistant samples
lacking known DR-associated genetic markers, and the presence of unreported
mutations in candidate genes (see Table 4.1 in Section 4.2.1 for a complete list of DR

candidate genes).
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[28.8%, [223%, [322%, [21%, [316%, [18.4%, [364%, [231%, [284%, [21.1%, [30.8%,
712%] 77.7%] 67.8%]  79%]  68.4%] 816%] 63.6%] 769%] 716%] 789%]  69.2%)

Figure 5.3 Percentage of resistance cases explained by known DR markers

The percentage of phenotypically resistant cases harbouring known DR mutations is indicated at the top
of each bar. The number of samples tested is indicated in parenthesis at the bottom of each bar, as well
as the proportion of resistant and susceptible cases among tested samples (enclosed in square
brackets).

For each drug, Table 5.2 includes the number of DR samples lacking known DR
mutations (column 2), and the subset of these (column 5) harbouring mutations in

candidate genes that could potentially be the cause of resistance (column 3).

For example, of the 100 INH® isolates without known resistance markers, 10 harboured
mutations in katG (4 indels and 9 nsSNPs) that can potentially explain the resistant

phenotype. Strain specific mutations, sSNPs and mutations present in susceptible
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samples were not regarded as potentially DR-conferring mutations. Still, 46 potentially

novel ones (35 nsSNPs + 11 indels) could be added to the library of DR mutations

(Section 4.2.1) currently containing 1276 SNPs and indels. These mutations would

explain an extra 1.5, 0.7, 4, 5.7, 4.4 and 1.1% of phenotypic resistance for INH, RMP,

EMB, PZA, ETH and OFX respectively.

Table 5.2 Previously unreported mutations in candidate genes

Drug N * (%) Non-strain specific mutations b Strain specific SNPs N€
F657L_katG, TC2156070T_katG, R463L_katG,
L159F katG, G120S_katG, G2726105A_ahpCpromoter
INH 100 CTCGGGT2155245C_katG, D189A_katG, 10
(14.5) DA419G_katG, GCGC2155747G_katG,
P232S_katG, F408L_katG, T667P_katG,
TCG2156104T_katG, D142G_katG
GACCAGA761109G_rpoB, S450* _rpoB, A1075A_rpoB, G876G_rpoB,
RMP 60 CAGCCAGCTG761087C_rpoB, V113l_rpoB  A542A_rpoC, G594E_rpoC, 4
(11.2) R173R_rpoC, A172V_rpoC,
P601L_rpoC
N399T_embB, G200S_embaA, C76C_embA, V981L_embC,
S538P_embB, L304L_embB, S412P_embB, R927R_embC,
EMB 37 T546l_embB, Q445R_embB, C4243225T_embApromoter, 9
(16.7) G4243190C_embApromoter, A1092A_embA
C4243218CTACCATCGAG_embApromoter,
A679T_embB, G554D_embA
V130M_pncA, S164* pncA, 1133S_pncA, R212R_rpsA
PZA 56 C2289056CT_pncA, D12G_pncA, 3
(39.7) C2289136CCAGGTAGTCGCTG_pncA,
V260I_rpsA, Q410R_rpsA
96 - -
STR (29.1) 0
T1673432G_fabGlpromoter, -
ETH 44 CT4326393C_ethA, C403R_ethA, -
(27.7)  195L_inhA, P51S_ethA, 1194T_inhA,
P149S_ethA, A4326800AGC_ethA
OFX 30 R448H_gyrA, R592S_gyrA G668D_gyrA, E21Q_gyrA, 5
S95T_gyrA
G668D_gyrA, E21Q_gyrA,
MOX  3(33.3) S95T gyrA 0
25 - -
AMK (23.2) 0
43 - C1472337T_rrs, L11L_tlyA
CAP (42.6) 0
22 - -
KAN (17.3) 0

a Phenotypically resistant samples without known DR-associated mutations. b Potentially new DR-

associated mutations, found in resistant strains and absent in susceptible ones. Strain-specific SNPs and

sSNPs were discarded.  Number of phenotypically resistant samples harbouring new DR-associated

mutations, i.e. potential new cases of genetically explained DR.
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GWAS results

Some resistant strains lack mutations in known DR genes (encoding for protein targets

of the drug or drug-metabolizing enzymes), highlighting that the genetic mechanisms

of resistance are not fully characterised, or that some of the phenotypes may not be

robust. In order to improve the understanding of the genetic basis of DR in Mtb a

GWAS was used to identify novel loci closely associated with resistance.
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Figure 5.4 Principal Components Analysis for the global drug resistance data set

The 2,765 MTBC samples in the global drug resistance data set are plotted along PCs 1 to 5. Samples are
colour-coded by lineage and sub-lineage based on the SNP typing system presented in Section 3.3.3. The
first three components separate samples by main lineages (1 to 4) while PCs 4 and 5 provide sub-lineage

separation.
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As the population structure may confound the outcome of a GWAS, a PCA was
conducted. The first three principal components (PCs) captured 73.2 % of the variance
and as expected they distinguished the four main lineages (1 to 4) unambiguously. PCs
4 and 5 provided further sub-division at the sub-lineage level, particularly within
lineage 4. These five PCs captured 82.1 % of the variance all together and were used

directly as covariates in the logistic regression models (Figure 5.4).

Another expected confounder is the background DR, namely the existence of
resistance to other drugs other than the one being tested for association. Figure 5.5A
and Figure 5.5C show the GWAS results for INH before and after adjusting for
overlapping resistance respectively. Figure 5.5B shows the number of INH® samples
being also resistant to other drugs. Well-known DR loci (katG, inhA, fabG1 promoter,
rpoB, embB, pncA and rpsL) were found to be strongly associated with INH? (Figure
5.5A). The strength of association of genes not involved in INH® dropped significantly
after adjusting for background resistance (Figure 5.5C), while katG and fabG1
promoter, known to be associated with INH?, remained high. These results exemplify
the confounding effects of background resistance and highlight the need of adjusting

for it.

In addition to considering coding and intergenic regions independently, the GWAS was
additionally performed at the operon level. As genes in the same operon are co-
transcribed and generally participate in the same function, certain DR acquisition
pathways may involve mutations in multiple genes (including the promoter) of the
same operon. By aggregating SNPs by these functional units (e.g. genes or operons),

the association signal could be boosted.
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Figure 5.5 Locus GWAS results for isoniazid

(A) INH GWAS performed for both coding and intergenic regions. The y-axis is the log10 p-value. For
example, a value of 2 refers to a p-value of 0.01. Loci are colour-coded by functional category and
plotted along the chromosome (x-axis). (B) Venn diagrams represent the number of samples being
resistant to each pair of drugs. (C) INH GWAS for both coding and intergenic regions after adjusting for

overlapping DR.
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Figure 5.6 Locus GWAS results for rifampicin
See footnote in Figure 5.5 for a description of this plot
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The majority of well-known DR loci were identified (Figure 5.5-5.14) which
demonstrates the robustness of the GWAS approach and its implementation in this
study. Loci (i.e. coding and intergenic regions) are colour-coded by functional category
(see legend in Figure 5.5) in the Manhattan plots. There were a few notable absences
though, including rpsA (Shi et al. 2011) and panD (S. Zhang et al. 2013), two recently
proposed PZAR-associated genes, as well as rrs (absent in the STR GWAS), ethA (ETH"-
associated gene), rpoC (RMPR-associated) and gyrB (FLQ"-associated). In addition to
the classical DR genes encoding for drug-targets and drug-converting enzymes, a group
of highly and intermediately DR-associated loci were also identified. Characterised
transporters (e.g. dppC, Rv1668c, mmpL3, ugcC and Rv0194), probable transmembrane
proteins (e.g. Rv3061, Rv3069, Rv0143c, Rv0037c, Rv2799 and Rv0235c), PE/PPE genes
(e.g. PE34, PPE55, PPE57, PE_PGRS28, PE_PGRS7, PE_PGRS43 and PE_PGRS18) and
other cell wall-related loci were particularly overrepresented within this group
(Supplementary Table 10). The role of Rv0194 in ETH® deserves greater attention given
its strong association with ETH® and its documented function as multidrug efflux pump
in Mtb (Danilchanka et al. 2008). The unexpected detection of putative transcriptional
regulatory proteins (Rv1816, Rv3736, Rv0275c and Rv2736c¢) is an intriguing finding as
they may underlie more complex mechanisms of DR. Indeed, these transcriptional
regulators were found to be intermediately associated with resistance to multiple
drugs (Supplementary Table 10) with the exception Rv1816, being strongly associated

with ETH® (Figure 5.11).

The operon-based GWAS (Supplementary Table 11) yielded results comparable with

the locus-based ones, as operons containing known DR genes showed the highest level
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of association. For instance, the fabG1-hemZ operon (which includes fabG1 promoter
and inhA) was closely related to INH and ETH resistance as expected, Rv1907c-furA
(containing katG and katG promoter) to INH, embA-embB to EMB, Rv2037c-pncA to
PZA and rpsL-rpsG to STR. In addition to these expected hits, the operon GWAS
revealed potentially new players involved in DR including the ugpC-ugpA operon,
which encodes for an ABC transporter; Rv1635c, possibly involved in the biosynthesis
of lipoarabinomannan; pstB-pstS1, an ABC-type lipoprotein transporter; and other
functionally uncharacterised operons (Rv2295, Rv2203, Rv3528c, ccrB-Rv3071,
Rv2313c-Rv2315, Rv3067). These results demonstrate the usefulness of an operon-

based GWAS approach to discover functionally-related regions associated with DR.

PhyC results

If hits established using association methods are also under selective “convergent
evolution” pressure, then this provides strong evidence of their role in resistance. The
phylogenetic converge test indentified the vast majority of known resistance
determinants (Figure 5.15, in red; Supplementary Table 10, grey background rows);
recently described DR-associated genes: folC (Zhao et al. 2014) and ubiA (Safi et al.
2013); and other targets of independent mutation (TIM) in both coding and intergenic
regions. A sizeable number of TIMs mapped to the large family of PE/PPE genes (Figure
5.15, in blue). A few cases of genes involved in cell wall biosynthesis or remodelling
were found (lppB, IprP, mmplL12, pks7, pks12 and pksl5). Despite the proven
usefulness of the phyC test for uncovering genetic determinants of DR, there are
several inherent limitations to this approach (Farhat et al. 2013). First, the detection

power drops significantly for drugs with high proportion of missing (i.e. non-
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determined) cases. This may result in statistically non-significant results for second-line
drugs. Secondly, the background resistance confounding effects cannot be adjusted,
meaning that drug-specific mutations are challenging to dissect in the presence of
close associations among resistance phenotypes. The strength of the phyC approach

compared to GWAS, is the detection of other potential targets of convergent evolution

due to selective pressures other than antibiotic exposure.
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Figure 5.15 PhyC results

Loci harbouring more than one PhyC SNP hit (p-value < 0.05) are shown, or at least one nsSNP in coding
regions. Coding and intergenic regions are placed along the Mtb chromosome in this Circos
representation and colour-coded in red if previously described to be involved in DR, in blue if they

belong to the PE/PPE gene category, or in black if otherwise.

143



DISCUSSION

Improving our understanding of the relationship between the genotype and the DR
phenotype in Mtb will aid in the development of more accurate molecular diagnostics
for drug-resistant TB. Such insights may be used to overcome or complement the
limitations of phenotypic susceptibility testing. The identified associations can shed
light on the molecular mechanisms underlying DR and assist in the design of novel

antibiotics (Lee et al. 2014).

WGS offers the opportunity to capture the genomic diversity of Mtb clinical specimens
which, coupled with an accurate phenotype characterisation, can be used to dissect
the genetic determinants of DR. In this context, it may be challenging to pin down new
DR loci because of the diverse genetic background of clinical strains (S. Zhang et al.
2013). To overcome this limitation, a large collection of whole-genome sequenced Mtb
clinical isolates (n=2,765) was employed in this work, covering the four major Mtb
lineages and progressively resistant isolates from independent studies. It was also
ensured that the final dataset had a sizable representation of pan-susceptible samples

with diverse genetic backgrounds.

First, the proportion of samples with mutations in known DR candidate genes that
could explain the observed phenotypic resistance was calculated. This preliminary
analysis showed that a subset of resistant strains lacked mutations in these genes, in
line with previous observations (Bhuju et al. 2013; Brossier et al. 2011; Safi et al. 2010),
and emphasises the need of improving our understanding of the genetic basis of DR.
With this aim in mind, a genome-wide association analysis was conducted to identify

new loci closely associated with DR.
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Rather than testing each mutation independently for association, genomic variants
(SNPs) were aggregated by gene and intergenic region (only nsSNPs in the case of
protein coding regions). As a complementary approach, SNPs were also aggregated by
operon in order to assess the combined contribution of SNPs in multiple genes (and

promoter) likely to be acting within the same biological pathway.

Both locus and operon-based GWAS proved to be successful at identifying well-known
DR determinants, which validates the use and implementation of these approaches. In
addition to classical DR genes, other classes of genes and operons likely to confer,
contribute to or compensate for phenotypic resistance were also identified. The
discovery of membrane transporters and efflux pumps is not accidental, as their
activity is expected to affect drug transport and therefore drug susceptibility (Black et
al. 2014; Balganesh et al. 2012; Machado et al. 2012; Danilchanka et al. 2008).
Although comprehensively studied in vitro, the precise role of these transporters in
clinically resistant isolates is controversial (Black et al. 2014). The strong association of
Rv0194 with ETH® provides evidence of a multidrug efflux pump (Danilchanka et al.
2008) potentially conferring DR in clinical isolates. The use of inhibitors of efflux pumps
has been advocated for preventing the emergence of MDR-TB during treatment

(Machado et al. 2012).

An intrinsic resistance mechanism to antibiotics results from reduced permeability of
the bacterial cell wall. Genes belonging to ‘lipid metabolism’ and ‘cell wall and cell
processes’ categories are particularly enriched among GWAS and phyC hits, including
the PE/PPE genes (which encode for a group of secreted proteins), lipoproteins,

integral membrane proteins and membrane proteins involved in lipid transport (mmplL
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genes). These hits are of notable interest given their potential influence in cell wall
permeability and fluidity, which in turn determines drug susceptibility (Mdluli et al.
1998; Danilchanka et al. 2008). On the other hand, it cannot be discounted that these
genes are involved in compensatory mechanisms trying to ameliorate the effects of
anti-TB drugs on cell wall integrity, as some of the cell wall biosynthetic pathways are

indeed targeted by current TB drugs (e.g. INH, ETH or EMB).

The unexpected observation of putative transcriptional regulatory proteins (Rv1816,
Rv3736, Rv0275c and Rv2736c) associated with DR is an intriguing finding. These
transcriptional regulators are found to be intermediately associated with resistance to
multiple drugs with the exception of Rv1816, being strongly associated with ETH".
Further work should find out which genes are under their transcriptional control

(Galagan et al. 2013) as they may underlie more complex mechanisms of DR.

An inherent limitation of this study is the accuracy of phenotypic DSTs, whose results
may be unreliable or inconsistent among laboratories. For instance, the great majority
of INH® isolates without known INH®-conferring mutations (n=90) belong to South
Africa (n=56), which may reflect problems in DST determination for this particular
population. Still, the finding of well-known DR loci demonstrates the robustness of the

analysis to overcome these limitations.

A challenge in DR loci discovery when using Mtb clinical isolates is the confounding
effect of background resistance. Development of resistance in Mtb occurs with the
stepwise use of drugs, in response to increasingly resistant TB. Unlike the phyC
approach, logistic regression adjusted for overlapping resistance managed to remove

most of the associations that were likely due to confounding resistance. It should be
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noted though, that a drawback of adjusting for co-occurring resistance can be the non-
detection of shared DR mechanisms, or removal of signals if the overlap is high. For
instance, the association of rpoC with RMP® was lost after adjusting for INH®
(Supplementary Table 10). gid and ethA genes were intermediately associated with
INH and RMP resistance before adjusting for overlapping resistance. However, they
were not found to be significantly associated with STR and ETH respectively by neither
the GWAS nor the phyC approaches. The fact that these two genes are thought to
cause intermediate levels of resistance (Morlock & Metchock 2003; Perdigdo et al.
2013) may explain why there were not detected. DR is frequently treated as a binary
variable (resistance or susceptible) although a range of MIC values are indeed
measured in clinical isolates. Samples with intermediate levels of resistance, i.e. with
MIC values around the cut-off used to determine resistance, may be equally classified
as resistant or susceptible. Therefore, the employed association analyses will have
limited statistical power to detect loci involved in low or intermediate levels of
resistance. The use of quantitative values of DR, i.e. MIC values, and linear regression
rather than logistic regression could potentially be more powerful to assess DR

phenotype-genotype associations.

Future work could consider approaches that are complementary to GWAS, such as
pathway-based methods to assess the combined contribution of multiple genes acting
within canonical biological pathways (Eleftherohorinou et al. 2009), and logistic
regression models including gene epistatic interactions as predictors of DR. Small
indels and larger structural variants must also be incorporated in the GWAS. Although

systematically neglected in Mtb WGS studies, this type of polymorphisms are likely to
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have major functional consequences, also in DR (Machado et al. 2012), and must
therefore be taken into account. Irrespective, any genetic mutations found to be
associated with resistance to a specific drug should then be experimentally validated.
Functional genetic experiments, like allelic exchange, can establish the casual
relationship and elucidate the contribution of each candidate mutation to the DR

phenotype (Nebenzahl-Guimaraes et al. 2014).
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Discussion and Further Work
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6 DISCUSSION AND FURTHER WORK

High throughput sequencing technologies can provide large volumes of WGS data that
is complex to analyse and, when combined with meta data, provide epidemiological,
antibiotic susceptibility and other clinically-relevant insights. The current state of
sequencing technology imposes bioinformatic challenges that need to be addressed in
order to allow the transition of bacterial WGS from the research laboratory to a clinical
setting (Fricke & Rasko 2013). There is a need for automated bioinformatic workflows
that can process the millions of short reads generated by NGS sequencing platforms.
While bioinformatic tools for the identification of SNPs and small indels (i.e. shorter
than the read length) are now relatively established, the discovery and genotyping of
SVs has lagged behind because it is fundamentally more difficult (Alkan et al. 2011). As
a result, this type of genomic variation has been systematically neglected in Mtb WGS
studies although it may have greater functional impact due to their larger size. This
work describes the implementation of a bioinformatic workflow to effectively extract
genetic polymorphisms from WGS data of Mtb clinical isolates (Section 2.2.1). In
addition to SNPs and small indels, large deletions were discovered by detecting
multiple signals in alignment files (i.e. DOC, read-pair and split-read) to increase

sensitivity. Although large chromosome rearrangements are rare in MTBC genomes
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(Shitikov et al. 2014), large insertions (i.e. longer than the read length) are expected to
be found in clinical isolates with respect to the H37Rv reference strain. Transposon
insertions are a well-known source of genomic variation in MTBC (Reyes et al. 2012).
The detection of these repetitive elements using short reads is difficult, and they are a
known cause of false positive deletions (Alkan et al. 2011) . Still, a few algorithms have
been developed to specifically detect them albeit specific for the human genome
(Hormozdiari et al. 2010). Novel insertions (i.e. sequences absent in the reference
genome) cannot be identified using reference-based mapping approaches. Future
work should investigate the accuracy of a whole-genome de novo assembly approach
for the characterisation of all types of SVs in MTBC strains (Li 2012). Also, such work
should attempt to confirm all or a subset of observed variation using another
technology, e.g. capillary sequencing. Although, this was not possible in this work
because all DNA was used in sequencing, the high coverage achieved and quality

control means that the false positive rate is expected to be low.

Some regions of the genome were excluded from analysis. PE and PPE genes are
generally excluded from genome analyses because of their high GC content and their
repetitive nature (McEvoy et al. 2012; Adindla & Guruprasad 2003; Mukhopadhyay &
Balaji 2011), which make sequencing and genome assembly difficult. GC-rich regions
are under-sampled by Illumina sequencers, resulting in coverage gaps and lower
confidence in these regions. In addition, mapping of reads from the PE and PPE genes
to the reference genome is prone to errors as the regions are not unique and can
result in artefacts, e.g. false positive SNP calls (Nielsen et al. 2011). A de novo assembly
approach would be better at resolving these genes provided that enough depth of
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coverage is achieved. A recent study (Bryant, Harris, et al. 2013) demonstrated that a
large proportion of PE and PPE genes (86%) can be assembled and their genetic
variants discovered. Despite accounting for almost 10% of the coding capacity of the
genome, the function of PE and PPE genes remains elusive (Mukhopadhyay & Balaji

2011).

The work describes data from first (Sanger capillary) and second-generation (lllumina)
sequencing technologies, but a third generation of platforms is under development.
Technologies such as Oxford Nanopore (Branton et al. 2008; Timp & Mirsaidov 2010)
and Single Molecule Real Time (SMRT) PacBio sequencing (Liu et al. 2012) promise to
deliver longer and more accurate reads at high throughput and reduced costs. The
average read length achieved by PacBio sequencers (Pacific Bioscience, California, USA)
is 1,300 bp, longer than any current NGS platform (Glenn 2011). As a consequence,
algorithms and workflows for sequence analysis will have to be adapted and evolve to
accommodate these changes (Satou et al. 2014; Boetzer & Pirovano 2014). It can be
foreseen that, if these new platforms are increasingly adopted, long-read alignment
algorithms (like those employed for capillary sequencing reads) and de novo assembly
algorithms will become crucial (H. Li & Homer 2010). Longer and more complex SVs,
insertion elements and PE/PPE genes will be resolved with better accuracy. Despite the
limitations of current lllumina sequencers, 98% of the Mtb genome can be mapped
uniquely using 75 bp-long reads (compared to 83.1% of the human genome) (Derrien
et al. 2012). With read lengths of up to 250 bp currently available, an even greater
proportion of the Mtb genome will be accessible using lllumina sequencers in the near

future.
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Despite the growing amount of genomic data being generated from Mtb clinical
isolates, a repository of genetic polymorphisms derived from WGS projects was
lacking. In this context, PolyTB aims to bring together all existing genomic diversity into
an integrated database and make it available for the TB community. Annotation of DR
mutations (Section 4.2.1) and strain-specific SNPs (Section 3.2.4) will further enhance
the usefulness of PolyTB. A database like PolyTB should also allow users to upload their
own sequenced samples. Genetic variants could be annotated, including DR and strain-
specific mutations, and compared to those already present in the database.
Functionality enabling the phylogenetic positioning of uploaded samples, i.e. reporting
the genetically closest sample in the database, would be a potentially useful addition

to the tool.

The high global burden of TB requires new control insights from the increasing number
of Mtb WGS studies. Knowledge of the genetic diversity across populations, among
other factors, will assist in the understanding of Mtb biology, required to develop new
drugs and novel vaccines. Strain-specific genomic diversity in MTBC is an important
factor in pathogenesis that may affect virulence (Nahid et al. 2010; Thwaites et al.
2008; Caws et al. 2008), transmissibility (Kato-Maeda & Kim 2010), host response
(Lopez et al. 2003) and emergence of DR (Ford et al. 2013). Several systems have been
proposed to classify MTBC strains into distinct lineages and families, using molecular
genotypes (Kamerbeek et al. 1997; Supply et al. 2001), regions of difference (Gagneux
et al. 2006) and SNPs. However, classical genotyping lacks robust phylogenetic markers
(Comas et al. 2009; Roetzer et al. 2013) and alternative classification systems based on
SNPs lack resolution (Stucki et al. 2012) or do not capture known circulating strain-
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types (Homolka et al. 2012). The SNP barcode developed in this work is the first to
cover all main lineages, including the recently discovered lineage 7 (Firdessa et al.
2013), and classifies a greater number of sub-lineages than current alternatives. It also
outperforms the other SNP systems. One of the latest published SNP sets (Homolka et
al. 2012) was employed in recent studies to type Mtb strains after undergoing WGS
(Casali et al. 2014; Chernyaeva et al. 2014). Still, 36% of isolates could not be classified
(Casali et al. 2014), particularly those from the Euro-American lineage, for which the
global diversity is not fully captured by this scheme. All samples in that study could be
unambiguously classified using the SNP barcode in this work (Section 3.3.4).
Furthermore, the presented classification scheme is fully compatible with the gold-
standard RD system and is comparable with spoligotypes (Table 3.3). The SNP barcode
developed has the potential to be applied in epidemiological and surveillance settings,
but this would require the markers to be incorporated into genotyping platforms, such
as multiplex ligation-dependent probe amplification (MLPA) assays (Bergval et al.
2012; Sengstake et al. 2014), multiplexed oligonucleotides ligation PCR (MOL-PCR)
(Deshpande et al. 2010), or TagMan real-time PCR (Stucki et al. 2012). Since these
methods differ in their technical requirements, different SNP sets may be required
depending on the particular platform (Kim & Misra 2007). Still, given the redundancy
of phylogenetically informative SNPs discovered in this work (for both lineages and
sub-lineages), different phylogenetically equivalent SNP sets could be chosen for each

SNP-typing platform.
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The proposed barcode could also be used to inform genotype-phenotype association
studies such as those investigating host-pathogen interactions during TB infection,
wherein strain-type is likely to be an important factor in pathogenesis. It is known that
population structure can lead to false positive associations when considering
phenotypes like drug resistance, and knowledge of strain-specific markers can
minimise the spurious findings. In the context of clinical trials, the barcode could be
applied to evaluate new TB vaccines whose protective efficacy may vary by the

genotype of the infecting strain (Lépez et al. 2003).

Despite the limitations of current genotyping techniques (i.e. spoligotyping, MIRU-
VNTR and RFLP) compared to SNP-typing, they are still broadly employed in reference
and research laboratories. There are available databases with hundreds of MTBC
isolates typed using classical genotyping (Demay et al. 2012), and their strain
nomenclature widely employed in the literature (e.g. LAM, Haarlem or Beijing).
SpolPred has proved to be a useful tool to predict spoligotype from WGS data. In
addition to being used throughout this work, it has been employed by others. For
example, in epidemiological studies where experimental genotypic data may be
present (Guerra-Assuncgao et al. 2014), thus a source of confirmation, or absent (Liu et
al. 2014; Rashdi & Jadhav 2014) where a strain-type needs to be identified. Future
work may consider predicting MIRU-VNTR patterns from WGS data. Their in silico
determination from short sequencing reads is expected to be computationally
challenging as the current read lengths (50-100 bp) may not span multiple VNTR
repeats. Determination of RFLP patterns would rely on an accurate reconstruction of
the whole genome, followed by in silico ‘digestion’ of the WGS with the restriction
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enzyme and estimation of the bands length. Irrespective, in silico typing approaches
for Mtb could be tested and validated as datasets with both the experimentally
determined genotype and WGS are available (Pérez-Lago et al. 2014; Bryant, Harris, et
al. 2013; Guerra-Assuncdo et al. 2014). Similar approaches, particularly aimed at
predicting multi-locus sequence types (MLST) from short reads, have also been

developed for other bacterial genomes (Inouye et al. 2012).

Combining strain identification with drug susceptibility determination will further
enhance the usefulness of the barcode. Genetic profiles of resistance are valuable
clinical information to design tailored drug regimens. Knowledge of the genetic
background of circulating strains can provide insights into DR emergence and spread.
In that respect, the identification of similar strains in more than one patient sharing DR
mutations is likely to reflect transmission of DR between them, and allow early
interventions to avoid onward transmission. In addition, associations of particular
strain types and/or DR profiles with poor treatment outcomes or mortality could also
be determined. A rapid genetic test incorporating strain-specific and DR mutations
(using WGS or another genotyping platform) would be beneficial for therapeutic

selection, clinical management of patients and infection control measures.

Current phenotypic DSTs require isolation from sputum and culture of Mtb followed by
exposure to anti-TB drugs, a process that may take weeks or months and requires high
levels of microbiological safety. Phenotypic DSTs are technically complex, which can
lead to variable reliability among laboratories. Rapid molecular assays are now

available for some key drugs. They examine a limited number of loci and normally the
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most frequent DR mutations only, which may result in low sensitivity, especially in
certain geographical regions where the most common DR mutations are less prevalent.
This observation is the case for INH detection using MDRTBplus (Jin et al. 2012; Akpaka
et al. 2008). Furthermore, they do not differentiate silent mutations from those
conferring resistance (Alonso et al. 2011; Jin et al. 2013; Aubry et al. 2014), which will

lead to false positives.

Development of new and more accurate genetic DSTs will rely on the understanding of
the relationships between the genotype and DR phenotype. This means that
phenotypic DSTs are not replaceable for drugs without fully characterised genetic
mechanisms of resistance and for recently licensed drugs like bedaquiline, for which
DR mutations in clinical samples have not been established. Nevertheless, WGS can be
used to rapidly identify resistance when mutations known to be associated with
resistance are detected. In this regard, the presented library of DR mutations (Section
4.2.1) is the most complete and updated database of its kind. The DR markers in this
list can be then used to diagnose DR-TB from WGS data as shown (4.3.1) or be

incorporated in alternative genotyping platforms for the same purpose.

In addition to its potential as a diagnostic tool, WGS opens the possibility of
deciphering novel mechanisms of antibiotic resistance. The complementary GWAS and
selection detection methodology described in this work to assess genotype-phenotype
association identified well-known drug targets and drug-converting enzymes. It
appears that potential compensatory mechanisms (e.g. rpoC) may be better detected

using the phylogenetic-based selection metrics. This work, as well as (Farhat et al.
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2013; H. Zhang et al. 2013; Safi et al. 2013), identifies new resistance-associated loci
and expands our understanding of the genetic diversity underlying DR (Warner &
Mizrahi 2013). It further highlights that the genetic basis of DR phenotypes can be
more complex than previously anticipated, and the phenotype may develop through
the contribution of multiple loci, resulting in a range of drug susceptibilities (Safi et al.
2013). In light of these observations, the binary classification of Mtb as either
susceptible or resistance, rather than consideration as a continuous spectrum, is an
oversimplification as it does not account for different levels of resistance present in
clinical strains, and complicates DR association analyses. Future work should consider
using quantitative values of DR, such as MIC values. A linear regression rather than
logistic regression would be used to assess DR associations between mutations and
loci. Additional analysis could also take association p-values and look for biological
pathways that may be over-represented. However, such analysis is dependent on well-

characterised pathway information in Mtb.

WGS offers the opportunity to capture the natural genetic variation in clinical
specimens and identify the genetic mutations associated with a specific trait, which
can be then experimentally validated. Allelic exchange experiments can follow GWAS
to establish the casual relationship and elucidate the contribution of each mutation to
the DR phenotype (Nebenzahl-Guimaraes et al. 2014). This approach is more likely to
succeed than performing directed evolution experiments to characterise in vitro

acquired DR mutations, which may not be ever observed in clinical samples.
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The combination of genomics with other ‘omic’ approaches, such as proteomics or
metabolomics, opens the door to the study of more complex phenotypes, including
host-pathogen interactions. These interactions are likely to be complex, between
genes that are not apparent from the genome sequence alone. Transcriptional
profiling of wild-type and mutant strains — initially performed using microarrays
(Butcher 2004) and more recently with RNA-seq - has been extensively applied to
study the adaptive responses of Mtb. In particular, adaptations under certain
experimental conditions, such as antibiotic stress (Waddell & Butcher 2010), uptake by
macrophages (Monahan et al. 2001) or reduction of oxygen and other nutrients
(Rodriguez & Herndndez 2014). RNA-seq has facilitated the mapping of transcriptional
start sites (TSSs) (Cortes et al. 2013) and identification of non-coding RNAs in the Mtb
genome (Miotto et al. 2012). A recent study used ChlIP-seq (Chromatin
Immunoprecipitation and Sequencing) in Mtb to map transcription factor binding sites
across the genome for the first time (Galagan et al. 2013), resulting in a far more
complex and interconnected regulatory network than previously anticipated. The
combination of RNA-seq with ChIP-seq (Uplekar et al. 2013) and proteomics (Cortes et
al. 2013) can shed light on more complex mechanisms of transcriptional and post-
transcription regulation of gene expression. Systems biology approaches can provide a
deeper understanding of pathogen-host interactions, especially those involved in
latency, reactivation and immune response - needed to develop better TB drugs and

more effective vaccines.

Rapid, low-cost genome sequencing is having a big impact on molecular epidemiology,
evolution and diagnosis of bacterial infections, enabling researchers and clinicians to
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gain insights at the patient, community and global levels. The potential application of
WGS to diagnose antibiotic resistance and other clinically-relevant phenotypes is an
area of active research. Given the cost decline witnessed in recent years (Sboner et al.
2011) and advances in sequencing directly from clinical samples (Késer et al. 2013), it is
foreseen that WGS will be eventually a technology of choice in clinical settings. In this
new paradigm, the presented work will facilitate the transition to and applications of
WGS in clinical settings as an important tool for TB control. These possibilities have
special significance in regions of the world, such as southern Africa, where TB

continues to claim thousands of lives every year.
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SUPPLEMENTARY MATERIAL

Supplementary Table 1 Mtb complete genomes used to generate a set of validated
SNP, indel and large deletion loci.

Genome name (Genbank SNPs SNPs Indels Indels Large Large Del.
Accession Number) (n) (% (n) (% Del. (n) (%
observed) observed) observed)

7199, 99 (NC_020089) 1,013 72.75 108 70.37 12 41.67
CAS/NITR204 (NC_021193) 4,620 23.79 1,963 4.12 2 100
CCDC5079 (NC_017523) 2,131 60.39 385 25.97 11 54.54
CCDC5180 (NC_017522) 1,751 71.50 185 55.67 13 46.15
CDC1551 (NC_002755) 1,222 66.77 207 36.71 15 46.67
CTRI, 2 (CP002992) 983 79.14 99 69.70 14 42.86
EAI5/NITR206 (NC_021194) 2,187 58.71 251 29.08 11 72.73
F11 (NC_009565) 986 80.16 92 75.00 8 37.50
KZN 1435 (NC_012943) 1,005 78.50 113 55.75 7 42.86
KZN 4207 (NC_016768) 994 79.48 93 67.74 6 66.67
KZN 605 (NC_018078) 1,019 78.02 112 56.25 6 50.00
RGTB327 (CP003233) 1,145 56.33 1,821 2.58 7 0.00
RGTB423 (NC_017528) 2,615 71.59 2,027 4.53 4 0.00
Beijing/NITR203 (NC_021054) 2,338 56.97 198 39.89 0 0.00
Erdman (AP012340) 1,159 70.06 114 61.40 25 32.00
UT205 (NC016934) 808 79.83 94 62.76 13 69.23
Overall 12,887 6,749 95

Summary of genetic variation extracted for a set of 16 Mtb complete genomes downloaded from
Genbank. Genetic variation across all 16 genomes was derived with respect to the H37Rv reference
genome (Genbank accession number NC_000962.3). The number of SNPs, indels and large deletions per
genome are shown in columns 2, 4 and 6 respectively. The percentage of variants also observed in the
WGS public dataset (namely present in at least one of the 1,470 isolates in the WGS data set 1 after
sample filtering) are indicated in columns 3, 5 and 7. Overall values represent the total number of
variant sites discovered across all 16 genomes.
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Supplementary Table 2 Experimental spoligotyping and Spo/Pred results for the 51

Ugandan samples

Experimental Results SpolPred Results
Isolate Octal Code SIT Spoligotype Octal Code SIT Spoligotype
number number number
18 477777777413771 | 126 EAIS 477777777413771 | 126 EAIS
48 777746777760771 | 1721 X1 777756777760771 | 302 X1
47 777756777760771 | 302 X1 777756777760771 | 302 X1
10 717776777760771 | 2356 X1 717776777760771 | 2356 X1
30 717776777760771 | 2356 X1 717776777760771 | 2356 X1
38 777777477760771 | 451 T-H37Rv 777777477760771 | 451 T-H37Rv
25 777767601560751 | - 0} 777777603560771 | 228 T1
35 777777607760771 | 42 LAM9 777777607760771 | 42 LAM9
27 777777606060771 | 59 LAM11_ZWE | 777777606060771 | 59 LAM11_ZWE
34 777777606060771 | 59 LAM11_ZWE | 777777606060771 | 59 LAM11 _ZWE
42 777777606060771 | 59 LAM11_ZWE | 777777606060771 | 59 LAM11_ZWE
36 777777606060771 | 59 LAM11_ZWE | 777777606060771 | 59 LAM11_ZWE
2 Not determined - - 777737606060760 | - (0]
1 Not determined - - 777737606060760 | - (0]
Not determined - - 777737606060760 | - (0]
4 Not determined - - 777737606060760 | - (0]
17 775777606060731 | 1549 LAM11_ZWE | 775777606060731 | 1549 LAM11_ZWE
7 Not determined - - 775777606060731 | 1549 LAM11 ZWE
31 777777777760771 | 53 T1 777777777760771 | 53 T1
16 777777777760771 | 53 T1 777777777760771 | 53 T1
39 777777777760771 | 53 Tl 777777777760771 | 53 T1
43 777777777760771 | 53 T1 777777777760771 | 53 T1
20 000000007760771 | - 0] 000000007760771 | - (0]
51 000000007760731 | 125 LAM3 000000007760731 | 125 LAM3
000000007760771 | - 0} 000000007760771 | - o]
6 000000007760771 | - 0] 000000007760771 | - (o]
37 637774777760730 | 420 T2-Uganda 637774777760730 | 420 T2-Uganda
45 777777777760731 | 52 T2 777777777760731 | 52 T2
9 Not determined - - 777777775760731 | 2867 T2
11 777777777760731 | 52 T2 777777777760731 | 52 T2
22 777777777760731 | 52 T2 777777777760731 | 52 T2
23 777777777760731 | 52 T2 777777777760731 | 52 T2
44 777777777760731 | 52 T2 777777777760731 | 52 T2
24 777777777760731 | 52 T2 777777777760731 | 52 T2
46 777777403760731 | - 0} 777777403760731 | - 6]
28 777777403760731 | - 0] 777777403760731 | - (o]
41 000000000003771 | 1 BEUJING 000000000003771 | 1 BEIJING
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40 703767600001771 | - 0] 703777600001771 | 356 CAS1_DELHI
32 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
29 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
33 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
14 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
12 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
13 703777740003771 | 26 CAS1_DELHI | 703777740003771 | 26 CAS1_DELHI
21 703377400001771 | 21 CAS1_KILI 703377400001771 | 21 CAS1_KILl
26 703367400001771 | 1675 CAS1_KILl 703377400001771 | 21 CAS1_KILI

8 700377740003771 | 288 CAS2 700377740003771 | 288 CAS2

49 700367700003771 | - 0] 700377740003771 | 288 CAS2

50 700377740003771 | 288 CAS2 700377740003771 | 288 CAS2

15 700377740003771 | 288 CAS2 700377740003771 | 288 CAS2

16 Not determined - - 700377740003771 | 288 CAS2

Experimental spoligotype results and SpolPred predicted ones for 51 Ugandan MTBC isolates.

Supplementary Table 3 Lineage composition of the WGS data set 2 populations

Study

# SNPs

Lin.1 | Lin.2
% %

Lin. 3

Lin.4 | Lin.
% % 5
%

Lin. 6
%

Lin. 7 M.
% bovis
%

Canada (Gardy
et al. 2011)

19

1,021

0 100 0

China (H. Zhang
etal. 2013)

161

19,314

0 75.8

1.2 23.0 0

Global (Comas
etal. 2013)

166

30,770

14.5 34.9

12.7 241 7.8

5.4

Malawi
(Guerra-
Assuncdo et al.
2014)

338

19,240

18.9 5.6

14.8 60.7 0

Netherlands
(Bryant,
Schiirch, et al.
2013)

125

8,635

4.0 16.8

0.8 78.4 0

Portugal
(Perdigdo et al.
2013)

81

7,163

1.2 92.6 0

Russia (Casali &
Nikolayevskyy
2012)

259

18,699

1.5 58.7

1.9 35.9 0.4

Uganda (Clark
etal. 2013)

51

8,019

2.0 2.0

27.5 68.6 0

UK (Walker et
al. 2013)

390

19,408

5.9 2.6

24.4 65.1 0.5

Ethiopia
(Firdessa et al.
2013)

2345

100 0

Djibouti (Blouin

5445

0 28.6

14.3

28.6

28.6 0
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etal. 2012)

Overall

1,601 | 91648

7.5

24.4

11.8

53.4 1.1

0.7

0.4

0.7

Supplementary Table 4 The set of 62 phylogenetically informative SNPs for MTBC

typing
lineage Position* S;:: cNI;rg ES:Sn Codon chg. ?:g Locus Id g::fe
lineagel 615938 1104 G/A 368 GAG/GAA E/E | Rv0524 hemL
lineagel.1 4404247 | 1056 G/A 352 CTG/CTA L/L Rv3915 -
lineagel.1.1 3021283 | 711 G/A 237 CGG/CGA R/R | Rv2707 -
lineagel.1.1.1 3216553 | 339 G/A 113 GTC/GTT V/V | Rv2907c | rimM
lineagel.1.2 2622402 | 51 G/A 17 GCC/GCT A/A | Rv2343c | dnaG
lineagel.1.3 1491275 | 1038 G/A 346 CAC/CAT H/H | Rvl326c | glgB
lineagel.2.1 3479545 | 375 C/A 125 GCC/GCA A/A | Rv3111l moaCl
lineagel.2.2 3470377 | 303 C/T 101 CAG/CAA Q/Q | Rv3101c | ftsX
lineage2 497491 810 G/A 270 GAC/GAT D/D | Rv041lc | glnH
lineage2.1 1881090 | 5787 C/T 1929 GGC/GGT G/G | Rvl661 pks7
lineage2.2 2505085 | 615 G/A 205 GCC/GCT A/A | Rv2231c | cobC
lineage2.2.1 797736 804 Cc/T 268 CTC/CTT L/L Rv0697 -
lineage2.2.1.1 4248115 | 1602 Cc/T 534 GAC/GAT D/D | Rv3795 embB
lineage2.2.1.2 3836274 | 618 G/A 206 TTC/TTT F/F | Rv3417c | groEL1
lineage2.2.2 346693 1059 G/T 353 TCG/TCT S/S Rv0284 eccC3
lineage3 3273107 | 894 C/A 298 GCC/GCA A/A | Rv2936 drrA
lineage3.1.1 1084911 | 840 G/A 280 TAC/TAT Y/Y Rv0973c | accA2
lineage3.1.2 3722702 | 930 G/C 310 CTC/CTG L/L Rv3336¢c | trpS
lineage3.1.2.1 1237818 | 375 C/G 125 CTG/CTC L/L Rvlllic | -
lineage3.1.2.2 2874344 | 2142 G/A 714 CGC/CGT R/R | Rv2555c | alaS
lineaged** 931123 171 T/C 57 TAT/TAC Y/Y | Rv0835 InqgQ
lineage4.1 62657 2262 G/A 754 CCG/CCA P/P | Rv0058 dnaB
lineage4.1.1 514245 1077 C/T 359 GTG/GTA V/V | Rv0425c | ctpH
lineage4.1.1.1 1850119 | 1917 C/T 639 ACG/ACA T/T | Rvl640c | lysX
lineage4.1.1.2 541048 444 T/G 148 TCA/TCC S/S Rv0450c | mmplL4
lineage4.1.1.3 4229087 | 741 C/T 247 AAC/AAT N/N | Rv3782 glfT1
lineage4.1.2 891756 514 A/G 172 TTG/CTG L/L Rv0798c | cfp29
lineage4.1.2.1 107794 195 C/T 65 GCC/GCT A/A | Rv0098 fcoT
lineage4.2 2411730 | 393 G/C 131 TCC/TCG S/S | Rv2152c | murC
lineage4.2.1 783601 1117 A/C 373 AGG/CGG R/R | Rv0684 fusAl
lineage4.2.2 1487796 | 636 C/A 212 ATC/ATA 1/1 Rv1324 -
lineage4.2.2.1 1455780 | 286 T/C 96 TTG/CTG L/L | Rv1299 prfA
lineage4.3 764995 1626 C/G 542 GCC/GCG A/A | Rv0668 rpoC
lineage4.3.1 615614 780 C/A 260 GCC/GCA A/A | Rv0524 hemL
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lineage4.3.2 4316114 | 483 G/A 161 GCC/GCT A/A | Rv3843c | -
lineage4.3.2.1 3388166 | 705 C/G 235 ACG/ACC T/T | Rv3029c | fixA
lineage4.3.3 403364 2478 G/A 826 CCc/cCT P/P | Rv0338c | -
lineage4.3.4 3977226 | 165 G/A 55 TTG/TTA L/L Rv3538 -
lineage4.3.4.1 4398141 | 1545 G/A 515 TCG/TCA S/S | Rv3910 -
lineage4.3.4.2 1132368 | 744 C/T 248 ACC/ACT T/T | Rv1013 pks16
lineage4.3.4.2.1 1502120 | 522 C/A 174 ACC/ACA T/T | Rv1333 -
lineage4.4 4307886 | 1029 G/A 343 CGC/CGT R/R | Rv3834c | serS
lineage4.4.1 4151558 | 660 G/A 220 GGC/GGT G/G | Rv3708c | asd
lineage4.4.1.1 355181 684 G/A 228 AAG/AAA K/K | Rv0291 mycP3
lineage4.4.1.2 2694560 | 405 G/C 135 CTC/CTG L/L Rv2397c | cysAl
lineage4.4.2 4246508 | 3276 G/A 1092 GCG/GCA A/A | Rv3794 embA
lineage4.5 1719757 | 1032 G/T 344 CCG/CcCT P/P | Rvl524 -
lineage4.6 3466426 | 666 G/A 222 GTC/GTT V/V | Rv3097c | lipY
lineage4.6.1 4260268 | 879 G/C 293 GCC/GCG A/A | Rv3800c | pksi3
lineage4.6.1.1 874787 555 G/A 185 CCG/CCA P/P | Rv0781 ptrBa
lineage4.6.1.2 1501468 | 543 G/C 181 CCcG/ccc P/P | Rv1332 -
lineage4.6.2 4125058 | 642 G/C 214 CGG/CGC R/R | Rv3683 -
lineage4.6.2.1 3570528 | 684 C/G 228 CGG/CGC R/R | Rv3198c | uvrD2
lineage4.6.2.2 2875883 | 603 C/T 201 CTG/CTA L/L Rv2555c | alaS
lineage4.7 4249732 | 3219 C/G 1073 GCC/GCG A/A | Rv3795 embB
lineage4.8 3836739 | 153 G/A 51 GAC/GAT D/D | Rv3417c | groElL1l
lineaged.9** 1759252 | 1572 G/T 524 TCG/TCT S/S Rv1552 frdA
lineage5 1799921 | 339 C/A 113 GGC/GGA G/G | Rv1599 hisD
lineage6 1816587 | 399 C/G 133 GTC/GTG V/V | Rvl6l7 pykA
lineage?7 1137518 | 543 G/A 181 AAC/AAT N/N | Rv1018c | gimU
lineageBOV 2831482 | 1110 A/G 370 GGT/GGC G/G | Rv2515c | -
lineageBOV_AFRI 1882180 | 477 c/T 159 GCC/GCT A/A | Rv1662 pks8

Minimum set of 62 SNPs for MTBC typing. SNPs are annotated using their chromosome coordinate on
the H37Rv reference NC_000962.3 (*). The alternative allele (right hand nucleotide in column four) is
the one specific to the lineage or sub-lineage, with the exception of two cases (**), lineage 4 and 4.9, in
which the reference allele is the one specific to the lineage. SNPs are annotated providing the locus tag,
gene name, gene coordinate, codon number, nucleotide change, codon change and resulting amino acid
change.
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Supplementary Table 5 Lineage predictions for a set of reference genomes

Predicted .
. . . . Known lineage, sub-
Species Strain Accession lineage and sub- R
. lineage (reference)**
lineage*
M. africanum GMO041182 NC_015758.1 | 6, BOV_AFRI Mycobacterium
africanum West African
2 (Bentley et al. 2012)
M. bovis BCG strain Korea CP003900.2 BOV, BOV_AFRI Mycobacterium bovis
1168P BCG (Joung et al. 2013)
M. bovis BCG strain Mexico NC_016804.1 | BOV, BOV_AFRI Mycobacterium bovis
BCG (Ordufia et al. 2011)
M. bovis BCG strain Moreau AMA412059.2 | BOV, BOV_AFRI Mycobacterium bovis
RDJ BCG (Gomes et al. 2011)
M. bovis BCG strain Pasteur NC_008769.1 | BOV, BOV_AFRI Mycobacterium bovis
1173P2 BCG (Brosch et al. 2007)
M. bovis BCG strain Tokyo NC_012207.1 | BOV, BOV_AFRI Mycobacterium bovis
172 BCG (Seki et al. 2009)
M. tuberculosis | 7199, 99 NC_020089.1 | 4,4.1, 4.1.2, Hamburg clone,
4.1.2.1 Haarlem lineage
(Roetzer et al. 2013)
M. tuberculosis | BT1 CP002883.1 2,22, 221 Beijing/W
M. tuberculosis | BT2 CP002882.1 2,22, 221 Beijing/W
M. tuberculosis | CAS NITR204 NC_021193.1 | 3 CAS strain (Narayanan &
Deshpande 2013)
M. tuberculosis | CCDC5079 NC_017523.1 | 2, 2.2, 2.2.1 Beijing family (Y. Zhang
et al. 2011)
M. tuberculosis | CCDC5180 NC_017522.1 | 2, 2.2, 2.2.1 Beijing family (Y. Zhang
et al. 2011)
M. tuberculosis | CDC1551 NC_002755.2 | 4,4.1, 4.1.1, Euro, American lineage
41.1.3 strain, X family (Peterson
et al. 2002)
M. tuberculosis | CTRI-2 CP002992.1 4,43, 433 Euro, American lineage 4
strain, LAM family, LAM9
(lina et al. 2013)
M. tuberculosis | EAIS CP006578.1 1, 11 East African Indian
lineage 1, EAIS (Rashdi &
Jadhav 2014)
M. tuberculosis | EAI5 NITR206 NC_021194.1 | 1, 1.1 East African Indian
lineage 1, EAIS
(Narayanan &
Deshpande 2013)
M. tuberculosis | F11 NC_009565.1 | 4,4.3, 4.3.2, Euro, American lineage 4
43.2.1 strain, LAM family, LAM3
(Gagneux & Small 2007)
M. tuberculosis | HKBS1 CP002871.1 2,22, 221 Beijing/W Lineage
M. tuberculosis | KZN1435 NC_012943.1 | 4,4.3, 433 Euro, American lineage 4
strain, LAM family
(Feuerriegel et al. 2010)
M. tuberculosis | KZN4207 NC_016768.1 | 4,4.3, 4.3.3 Euro, American lineage 4
strain, LAM family
(Feuerriegel et al. 2010)
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M. tuberculosis | KZN605 NC_018078.1 | 4,4.3, 4.3.3 Euro, American lineage 4
strain, LAM family
(Feuerriegel et al. 2010)
M. tuberculosis | RGTB327 CP003233.1 4,43, 434 Not reported
(Madhavilatha et al.
2012)
M. tuberculosis | RGTB423 NC_017528.1 | 1, 1.2.2 Not reported
(Madhavilatha et al.
2012)
M. tuberculosis | Strain Beijing NC_021054.1 | 2, 2.2, 2.2.1, Beijing strain (Narayanan
NITR203 2.2.1.1 & Deshpande 2013)
M. tuberculosis | Strain Erdman AP012340.1 4,41, 4.1.2, Euro, American lineage 4
ATCC35801 4.1.2.1 strain, Haarlem strain
(Alix et al. 2006)
M. tuberculosis | Strain Haarlem CP001664.1 4,41, 4.1.2, Euro, American lineage 4
4.1.2.1 strain, Haarlem strain
M. tuberculosis | UT205 NC016934.1 4,43, 434, Euro, American lineage 4
4342 strain, LAM family (Isaza
etal. 2012)

Set of 27 MTBC complete genomes downloaded from GenBank. The species, strain name and GenBank
accession numbers are provided in columns 1 to 3. The predicted lineages based on the presence of
strain-specific SNPs (*) in the whole genome matches the ones reported in the literature (**).

Supplementary Table 6 Lineage, specific SNPs at drug resistance genes

Drug | Gene Lineage Position** | Gene | Allele | Codon Codon AA Locus
name Coor. | Chg. Num. Chg. Chg. Tag
INH katG 4 2154724* | 1388 | C/A 463 CGG/CTG | R/L Rv1908c
INH katG BOVAFRI | 2155503 609 G/A 203 ACC/ACT | T/T Rv1908c
INH inhA 6 1674434 233 T/C 78 GTG/GCG | V/A Rv1484
INH ahpC 3 2726105* | - G/A - - - -
promoter
INH kasA 433 2518919 805 G/A 269 GGT/AGT | G/S Rv2245
INH ndh 4.4.1 2102990 53 A/G 18 GTG/GCG | V/A Rv1854c
INH ndh 5 2101921 1122 c/T 374 TCG/TCA | S/S Rv1854c
INH ndh 7 2102218 825 G/A 275 GTC/GTT | V/V Rv1854c
EMB | embA 1 4245969 2737 c/T 913 CCG/TCG | P/S Rv3794
EMB | embA 1.1 4243848 616 G/A 206 GTG/ATG | V/M Rv3794
EMB | embA 1.21 4244420 1188 G/C 396 GTG/GTC | V/V Rv3794
EMB | embA 2.1 4246088 2856 A/G 952 CAA/CAG | Q/Q Rv3794
EMB | embA 2.2 4243460* | 228 C/T 76 TGC/TGT | C/C Rv3794
EMB | embA 4.4.2 4246508 3276 G/A 1092 GCG/GCA | A/A Rv3794
EMB | embA 4.6.1.2 4245055 1823 | C/A 608 ACC/AAC | T/N Rv3794
EMB | embB 2211 4248115 1602 c/T 534 GAC/GAT | D/D Rv3795
EMB | embB 4.1.1.2 4246930 417 G/C 139 CAG/CAC | Q/H Rv3795
EMB | embB 4.4.1.2 4249012 2499 G/A 833 CTG/CTA L/L Rv3795
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EMB | embB 4.7 4249732 3219 | C/G 1073 GCC/GCG | A/A Rv3795

EMB | embB 7 4248073 1560 | C/T 520 ACC/ACT | T/T Rv3795

EMB | embB BOVAFRI | 4246864 351 c/T 117 GTC/GTT | V/V Rv3795

EMB | embC 1 4241042 1180 | A/G 394 AAC/GAC | N/D Rv3793

EMB | embC 3 4242075% | 2213 | G/A 738 CGG/CAG | R/Q Rv3793

EMB | embC 3.11 4241562 1700 | G/A 567 CGC/CAC | R/H Rv3793

EMB | embC 4.1 4242803* | 2941 | G/C 981 GTG/CTG | V/L Rv3793

EMB | embC 41.11 4240897 1035 | C/G 345 CGC/CGG | R/R Rv3793

EMB | embC 46.2.1 4242883 3021 | C/T 1007 ccc/ccTt | P/P Rv3793

EMB | embC 4.9 4242643 2781 | C/T 927 CGC/CGT | R/R Rv3793

EMB | embC 7 4240153 201 G/A 97 TCG/TCA | S/S Rv3793

EMB | embR 1 1417019 329 C/T 110 TGC/TAC | C/Y Rv1267c
EMB | embR 4.6.1.2 1416410 938 A/C 313 CTG/CGG | L/R Rv1267c
EMB | embR 46.2.1 1416702 646 A/G 216 TAC/CAC | Y/H Rv1267c
EMB | embR 7 1416977 371 T/C 124 CAC/CGC | H/R Rv1267c
EMB | ubiA 4.4.2 4268928 906 G/A 302 GGC/GGT | G/G Rv3806¢
EMB | ubiA 4.4.2 4269375 459 c/T 153 GTG/GTA | V/V Rv3806c¢
EMB | ubiA BOVAFRI | 4269351 483 G/A 161 GCC/GCT | A/A Rv3806c
EMB | aftA 1.2.2 4238120 189 G/A 63 CAG/CAA | Q/Q Rv3792

EMB | aftA 4.1.2.1 4239298 1367 | C/T 456 GCC/GTC | A/V Rv3792

EMB | aftA 4.4 4238963 1032 | C/T 344 CAC/CAT | H/H Rv3792

EMB | aftA 5 4239843 1912 | A/C 638 AAG/CAG | K/Q Rv3792

EMB | aftA 7 4238778 847 G/A 283 GTG/ATG | V/M Rv3792

EMB | nuoD 2.1 3513538 201 A/T 67 GAA/GAT | E/D Rv3148

EMB | nuoD 43.4.2 3514512 1175 | G/C 392 GGT/GCT | G/A Rv3148

RMP | rpoB 3 762434 2628 | T/G 876 GGT/GGG | G/G Rv0667

RMP | rpoB 4 763031 3225 | T/C 1075 GCT/GCC | A/A Rv0667

RMP | rpoC 1 763884 515 c/T 172 GCC/GTC | A/V Rv0668

RMP | rpoC 1 763886 517 C/A 173 CGG/AGG | R/R Rv0668

RMP | rpoC 11 765171 1802 | C/T 601 CCG/CTG | P/L Rv0668

RMP | rpoC 113 765230 1861 | G/A 621 GCG/ACG | A/T Rv0668

RMP | rpoC 4.1 765150 1781 | G/A 594 GGG/GA G/E Rv0668

G

RMP | rpoC 4.3 764995 1626 | C/G 542 GCC/GCG | A/A Rv0668

RMP | rpoC 764013 644 A/C 215 GAG/GCG | E/A Rv0668

RMP | rpoC 766955 3586 | G/A 1196 GAG/AAG | E/K Rv0668

STR rrs 4.3.2 1472337 - c/T - - - -

STR gid 1 4407873 330 C/A 110 GTG/GTT | V/V Rv3919c
STR gid 113 4407780 423 c/T 141 GCG/GCA | A/A Rv3919c
STR gid 2.2 4407927 276 T/G 92 GAA/GAC | E/D Rv3919c
STR gid 4 4407588 615 T/C 205 GCA/GCG | A/A Rv3919c
STR gid 4.3 4408156 47 A/C 16 CTT/CGT | L/R Rv3919c
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FLQ | gyrA 1 8452 1151 [ ¢/T | 384 GCA/GTA | A/V | Rv0006
FLQ | gyrA 1.21 9260 1959 | G/C | 653 cTG/cTC | LL Rv0006
FLQ | gyrA 3.1.2.2 | 9611 2310 | ¢/T | 770 GAC/GAT | D/D | Rv0006
FLQ | gyrA 433 8040 739 | G/A | 247 GGC/AGC | G/S | Rv0006
FLQ | gyrA 45 7892 591 | G/A | 197 CTG/CTA | L/L Rv0006
FLQ | gyrA 46.1 7539* 238 | A/G |80 ACC/GCC | T/A | Rv0006
FLQ | gyrA 5 9566 2265 | C/T | 755 TAC/TAT | Y/Y | Rv00O6
FLQ | gyrA 7 8876 1575 | ¢/T | 525 TAC/TAT | Y/Y | RvO0O6
FLQ | gyrB 1 6112 873 | G/c |20 ATG/ATC | M/l | Rv0005
FLQ | gyrB 1.1.2 6124 885 | C/T |295 GCC/GCT | A/A | Rv0005
FLQ | gyrB 4321 |5520 281 | /T |94 CCG/CTG | P/L | Rv0005
FLQ | gyrB 4321 | 7222 1983 | C/T | 661 AGC/AGT | /s | Rv0005
PZA | rpsA 2 1834177* | 636 | A/C | 212 CGA/CGC | R/R | Rv1630
PZA | rpsA 7 1834916 | 1375 | A/C | 459 Acc/ccc | T/P | Rv1630
ETH | ethA 1.2.2 4326439 | 1035 | G/T | 345 AAC/AAA | N/K | Rv3854c
ETH | ethA 3.1.2.2 | 4326176 | 1298 | T/G | 433 GAG/GCG | E/A | Rv3854c
ETH | ethA 4622 |4326739 | 735 |G/Cc | 245 CGC/CGG | R/R | Rv3854c
ETH | ethR 4622 4328004 |456 |G/A | 152 GTG/GTA | V/V | Rv3855
ETH | inhA 6 1674434 | 233 |T/c |78 GTG/GCG | V/A | Rv1484
AMI | rrs 432 1472337 | - o1 |- - - -

AMI | gid 1 4407873* [ 330 |c/A | 110 GTG/GTT | V/V | Rv3919c
AMI | gid 1.13 4407780 | 423 | /T | 1m GCG/GCA | A/A | Rv3919¢c
AMI | gid 2.2 4407927* | 276 | T/G |92 GAA/GAC | E/D | Rv3919c
AMI | gid 4 4407588* | 615 | T/C | 205 GCA/GCG | A/A | Rv3919c
AMI | gid 43 4408156* | 47 A/C |16 CTT/CGT | L/R | Rv3919c
CAP | rrs 432 1472337 | - o1 |- - - -

KAN | rrs 432 1472337 | - R - - -

AMK | rrs 432 1472337 | - o1 |- - - -

CAP | tlyA 7 1918281 | 342 |A/C | 114 GGA/GGC | G/G | Rv1694

Lineage and sub-lineage specific SNPs found in DR genes. SNPs are annotated using their chromosome
coordinate on the H37Rv reference NC_000962.3 (**). The alternative allele (right hand nucleotide in
column four) is the one specific to the lineage or sub-lineage, with the exception of two cases (**),
lineage 4 and 4.9, in which the reference allele is the one specific to the lineage. SNPs are annotated
providing the locus tag, associated lineage/sub-lineage, gene name, gene coordinate, codon number,
nucleotide change, codon change and resulting amino acid change. SNPs described in (Feuerriegel et al.
2014), a recent study reporting phylogenetic SNPs in DR genes in MTBC, are also indicated (*).
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Supplementary Table 7 Non-synonymous lineage-specific SNPs at known epitopes in

H37Rv
Epitope Id Start End Locus Id Amino acid sequence Lineage_SNP
7000006195549910 | 157070 157129 Rv0129c | AAVGLSMSGGSALILAAYYP 3_157129
7000006195549960 | 2952682 | 2952741 | Rv2626c | DDDRLHGMLTDRDIVIKGLA 7_2952738
7000006195549960 | 2952712 | 2952771 | Rv2626¢ | DRDIVIKGLAAGLDPNTATA 7_2952738
7000006195549960 | 2955088 | 2955147 | Rv2628 IRAVGPYAWAGRCGRIGRWG 7_2955128
7000006195549970 | 2955358 | 2955417 | Rv2628 DWPAAYAIGEHLSVEIAVAV 7_2955392
7000006195549970 | 2955058 | 2955117 | Rv2628 MSTQRPRHSGIRAVGPYAWA 4.8_2955061
7000006195549970 | 2955118 | 2955177 | Rv2628 | GRCGRIGRWGVHQEAMMNLA 7_2955128
7000006195549980 | 1403228 | 1403287 | Rv1255c | RRARWVVRMLTSLLMFPGRD 5_1403266
7000006195550000 3079639 | 3079698 | Rv2770c | VANRALLAELTATNILGQNV 1.1.1.1_3079685
7000006195550000 | 3079669 | 3079728 | Rv2770c | TATNILGQNVSAIAATEARY 1.1.1.1_3079685
7000006195550000 | 3079819 | 3079878 | Rv2770c | SHITNPAGLAHQAAAVGQAG 43079877
7000006195550020 | 2955058 | 2955102 | Rv2628 MSTQRPRHSGIRAVG 4.8_2955061
7000006195550020 | 2955088 | 2955132 | Rv2628 IRAVGPYAWAGRCGR 7_2955128
7000006195550020 | 2955103 | 2955147 | Rv2628 PYAWAGRCGRIGRWG 7_2955128
7000006195550020 | 2955118 | 2955162 | Rv2628 GRCGRIGRWGVHQEA 7_2955128
7000006195550040 | 2955358 | 2955402 | Rv2628 DWPAAYAIGEHLSVE 7_2955392
7000006195550040 | 2955373 | 2955417 | Rv2628 | YAIGEHLSVEIAVAV 7_2955392
7000006195549590 | 4352424 | 4352468 | Rv3874 | AQAAVVRFQEAANKQ 7_4352439
7000006195549590 | 4352439 | 4352483 | Rv3874 VRFQEAANKQKQELD 4.1.2.1_4352475
7_4352439
7000006195549590 | 4352454 | 4352498 | Rv3874 | AANKQKQELDEISTN 4.1.2.1_4352475
7000006195549590 | 4352469 | 4352513 | Rv3874 KQELDEISTNIRQAG 4.1.2.1_4352475
7000006195549600 | 686965 | 687012 Rv0589 | VAFRAGLVMEAGSKVT 4.9 686972
7000006195549610 | 4351141 | 4351194 | Rv3873 PMLAAAAGWAQTLSAALDA 4.1.2.1_4351160
7000006195549620 | 4351723 | 4351776 | Rv3873 GPMQQLTQPLQQVTSLFS 1_4351759
7000006195549620 | 4351753 | 4351806 | Rv3873 QQVTSLFSQVGGTGGGNP 1_4351759
7000006195549640 | 352028 | 352081 Rv0288 | AMEDLVRAYHAMSSTHEA 6_352058
7000006195549640 | 352058 | 352111 Rv0288 | AMSSTHEANTMAMMARDT 6_352058
7000006195549640 | 3378771 | 3378830 | Rv3019c | YAGTLQSLGADIASEQAVLS 1_3378828
7000006195549640 | 3378801 | 3378860 | Rv3019c | DIASEQAVLSSAWQGDTGIT 13378828
7000006195549650 | 3378921 | 3378980 | Rv3019c | SMSGTHESNTMAMLARDGAE 7_3378952
7000006195549650 | 3378951 | 3378998 | Rv3019c | MAMLARDGAEAAKWGG 7_3378952
7000006195549670 | 4352418 | 4352462 | Rv3874 | TAAQAAVVRFQEAAN 7_4352439
7000006195549670 | 4352430 | 4352474 | Rv3874 | AAVVRFQEAANKQKQ 7_4352439
7000006195549670 | 4352442 | 4352486 | Rv3874 RFQEAANKQKQELDE 4.1.2.1_4352475
7000006195549670 | 4352466 | 4352510 | Rv3874 | QKQELDEISTNIRQA 4.1.2.1_4352475
7000006195549690 | 4352424 | 4352483 | Rv3874 | AQAAVVRFQEAANKQKQELD 4.1.2.1_4352475
7_4352439
7000006195549690 | 4352454 | 4352513 | Rv3874 | AANKQKQELDEISTNIRQAG 4.1.2.1_4352475
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7000006195549730 | 1020433 | 1020477 | Rv0915c | LGQNSAAIAATQAEY 51020452

7000006195549780 | 4352409 | 4352483 | Rv3874 AAGTAAQAAVVRFQEAANKQKQELD | 4.1.2.1_4352475
7_4352439

7000006195549780 | 4352454 | 4352528 | Rv3874 AANKQKQELDEISTNIRQAGVQYSR 4.1.2.1_4352475

7000006195549790 | 3187480 | 3187554 | Rv2875 GASVTVTGQGNSLKVGNADVVCGGV | 4.3.1_3187535

7000006195549790 | 3187525 | 3187599 | Rv2875 GNADVVCGGVSTANATVYMIDSVLM | 4.3.1_3187535

7000006195549810 | 4357092 | 4357151 | Rv3878 AAELAPRVVATVPQLVQLAP 4.1_4357123
7000006195549820 | 4266002 | 4266061 | Rv3804c | FYSDWYQPACGKAGCQTYKW 4.4.1.2_4266036
7000006195549820 | 4266032 | 4266091 | Rv3804c | GKAGCQTYKWETFLTSELPG 4.4.1.2_4266036
7000006195549850 | 4265981 | 4266040 | Rv3804c | PVGGQSSFYSDWYQPACGKA 4.4.1.2_4266036
7000006195549850 | 4266011 | 4266070 | Rv3804c | DWYQPACGKAGCQTYKWETF 4.4.1.2_4266036
7000006195549570 | 2227288 | 2227359 | Rv1983 NGIVTAPTAVNVVLLSIPTSPFAI 7_2227339

7000006195549570 | 3351437 | 3351508 | Rv2994 PSWGLVVTMFAWGYLLDHVGERMV 13351472

7000006195549580 | 4357107 | 4357175 | Rv3878 PRVVATVPQLVQLAPHAVQMSQN 4.1_4357123

List of epitopes extracted from Immune Epitope Database (www.iedb.org) containing lineage specific
SNPs. The last column indicates the lineage and SNP chromosome coordinate found within each
epitope.
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Supplementary Table 8 Sub-lineage proportions observed in the Russian dataset

(n=850) (Casali et al. 2014) when using the 62-SNPs classification scheme.

Sub-lineage Frequency
2.2.1 (Modern Beijing) 518

4.8 (T spoligotype, RD219) 71

4.2.1 (Ural) 68
4.3.3 (LAM, RD115) 57
4.1.2.1 (Haarlem, RD182) 36
4.1.2

4.1 (X, type)

3 (CAS, Delhi)

4.9 (H37Ry, like)
BOV (M. bovis)
4.3.4.1 (LAM, RD174)
4.3.4.2 (LAM, RD174)
4.4.1.1 (S type)

4.7

5 (West, Africa 1)

6 (West, Africa 2)
1.1.2 (EAI5, EAI3)
1.1.3 (EAI6)

2.2.1.1 (Beijing, RD150)
4.5 (RD122)

Probable mixed infections*

=
w

R lRr (RPN W lw|w lw|d | |u]|w

IS
=

*The most frequent combinations of strain types were: Modern Beijing (2.2.1) with LAM (4.3.3) (n=8),
Modern Beijing with Ural (4.2.1) (n=8), Modern Beijing with Haarlem (4.1.2.1) (n=4), Modern Beijing
with 4.8 (n=3), and Ural with 4.8.
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Supplementary Table 9 Probable cases of Karonga-Malawian mixed samples

alsczlsastice)n SpolPred-derived SZ::?J:: Median Predicted lineages and sub-lineages
number octal code spoligotype boc

ERR036233 | 477777777673771 Orphan 82 1,1.1,1.1.2,43,43.4,43.4.1

ERR036248 | 777777777700371 T 108 4,434,43.4.2.1,48

ERRO37469 | 777777777473771 Manul 351 1,1.2.2,43,43.4,43.4.2,43.4.2.1

ERR161049 | 777777606060771 LAM11-ZWE 69 2.2.1,4,43,43.4,43.4.2,434.2.1

ERR161050 | 000000200003771 Orphan 53 2,2.2,2.2.1,43,43.4,43.4.2,
43.4.2.1

ERR161071 | 713777753003771 Orphan 154 3, BOV-AFRI

ERR161077 | 721777746413771 Orphan 72 1,1.1,1.1.3,4.1,41.1,41.1.3

ERR161078 | 773777777773771 Orphan 69 1,1.1,1.1.3,4.1,41.1,41.1.3

ERR161123 | 757777737450031 Orphan 89 1,1.2.2,43,43.4.2,43.4.2.1

ERR163947 | 404077777413771 Orphan 57 1,1.1,1.1.2,1.2.2

ERR164021 | 777777777473771 Manul 188 1,1.2.2,43,43.4,43.4.2,43.4.2.1

ERR176549 | 000000004060731 Orphan 62 4,42,43,43.4,43.4.2,43.4.2.1,
4.6.1,4.6.2.1,4.6.2.2

ERR176611 | 000000000003771 Beijing 68 2,2.2,2.2.1,43.4.2

ERR176616 | 777777606060771 LAM11-ZWE 60 1,1.1,1.1.3,43,43.4,43.4.2,
434.2.1

ERR176620 | 777764207360771 Orphan 60 4,43,43.3,43.4,43.4.2,43.4.2.1

ERR176652 | 700777746003371 Orphan 40 1,1.1,1.1.3,43.4

ERR176653 | 700076777360771 Orphan 50 4,41,41.1,4.1.1.3,43,43.4.2.1

ERR176661 | 477477777410571 Orphan 47 1,1.1,1.1.2,46

ERR176709 | 503377400041771 Orphan 53 3,3.1.1,43,434,43.42,43.4.2.1

ERR181686 | 777777606060771 LAM11-ZWE 79 3.1.1,43,43.4,43.4.2,434.2.1

ERR181705 | 777777616462671 Orphan 108 1,1.2.2,4,43,43.4,434.2,
4.3.4.2.1

ERR181782 | 703377404001771 Orphan 130 3,3.1.1,411

ERR181811 | 700777747433771 Orphan 52 1,1.1,1.1.3,4.1,41.2,41.2.1

ERR181813 | 777777706473771 Orphan 66 1,1.1,1.1.3,43,4.3.4,43.4.2,
43421

ERR181974 | 777777606060771 LAM11-ZWE 66 4,43,434,43.42,43.4.2.1,
4.6.1.1

ERR181977 | 477740017453731 Orphan 90 1,1.1,1.1.2,4.1.2

ERR182003 | 000000007760771 Orphan 89 4,4.3,43.3,4.9

ERR182015 | 777777775760731 T2 71 4,43,4.6,4.6.1,4.6.1.2

ERR182026 | 720777746013771 Orphan 72 1,1.1,1.1.3,4.1

ERR182027 | 777737777760731 AmbiguousT3- | 82 4,41,41.2,43,43.4.2

T2

ERR182041 | 637774777760730 T2-Uganda 73 4,43.4.2,46,4.6.1,4.6.1.1

ERR190343 | 703777740003771 CAS1-Delhi 93 3,4.3,434,434.2.1

ERR190379 | 577761377410771 Orphan 89 1,1.1,1.1.2,43,4.3.4,43.4.2,

43.4.2.1
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ERR212005 | 727377404001771 Orphan 59 3,3.1.1,43,434

ERR212098 | 000036500003771 Orphan 134 1,2,2.2,2.21

ERR216914 | 777753777760671 Orphan 50 4,43,43.4,43.42,43.4.2.1,4.4,
44.1,44.1.2

ERR221561 | 777777607760731 LAM4 58 4,43,433,43.4,43.4.2

ERR221567 | 700777747413771 EAI6-BGD1 63 1,11,1.13,43.4.2.1

ERR245754 | 777777777763771 Manu2 200 2,2.2,2.21,41,4.1.2

ERR245795 | 777377407761771 Orphan 132 3,3.1.1,43,43.2,43.2.1

ERR245797 | 677777607760771 LAM1 175 4,43,43.4,43.41,434.2,
43.4.2.1

Possible cases of mixed samples, i.e. harbouring lineage-specific SNPs from multiple sub-lineages or

lineages.

Supplementary Table 10 Locus-based GWAS top hits

Drug/ Locus Gene P-value Functional Function/Product
Model name category
TILEE, Catalase-peroxidase-
Rv1908c katG 2.91E-115 detoxification, . p
. peroxynitritase T KatG
adaptation
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
R 7 B 4.56E-108
v066 PO > 0 pathways beta chain) (RNA polymerase
beta subunit)
cell wall and cell Integral membrane
Rv3795 embB 4.27E-81 indolylacetylinositol
processes .
arabinosyltransferase EmbB
intermediary . . L .
Rv2043c pncA SEOEEE  mebaliameny] e MO iTeCeee
.. PncA (PZase)
respiration
3-oxoacyl-[acyl-carrier protein]
RV1482¢- fabG1 lipid reducta,?e FabGl' (3-ketoacyl-
INH/A 2.78E-48 . acyl carrier protein reductase)
Rv1483 promoter metabolism . .
(mycolic acid biosynthesis a
protein)
inf i
Rv0682 rpsL 2.66E-40 information 30S ribosomal protein S12 RpsL
pathways
RV3919¢ gid 2 55E-39 cell wall and cell Prol:.)a-b!e qucosg-lnhlb.lted
processes division protein B Gid
RV1816 i 2 91E-34 reguIaFory Possible transcrlptlpnal
proteins regulatory protein
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
Rv1484 nhA 2.54E-32
v ! metabolism (NADH-dependent enoyl-ACP
reductase)
intermediary
Rv3854c ethA 3.57E-30  metabolism and Monooxygenase EthA

respiration
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rrs rrs 7.08E-29 stable RNAs Ribosomal RNA 16S
RV3069 i 6.15E-27 cell wall and cell Probable conserved-
processes transmembrane protein
RV3746¢ PE34 1.32E-26 PE/PPE Probable P.E family proteln.PE34
(PE family-related protein)
Rv2202c- Rv2203 cell wall and cell ~ Possible conserved membrane
1.47E-25 .
Rv2203 promoter processes protein
cell wall and cell Probable dipeptide-transport
Rv3664c dppC 5.92E-24 integral membrane protein ABC
processes
transporter DppC
vl e, Catalase-peroxidase-
Rv1908c katG 6.28E-47 detoxification, . p
. peroxynitritase T KatG
adaptation
3-oxoacyl-[acyl-carrier protein]
ductase FabG1 (3-ket I-
Rv1482c-  fabGl lipid reductase FabG1 (3-ketoacy
5.43E-22 . acyl carrier protein reductase)
Rv1483 promoter metabolism R .
(mycolic acid biosynthesis a
INH/B protein)
RVO671 lpgP 4.77E-14 cell wall and cell  Possible conserved lipoprotein
processes LpgP
RV3746¢ PE34 7 76E-12 PE/PPE Probable P.E family proteln.PE34
(PE family-related protein)
regulator Possible transcriptional
Rv0275c - 8.42E-12 Eoteinsy regulatory protein (possibly
P TetR-family)
intermediary Probable phosphoglucomutase
Rv3068c pgmA 2.61E-11 metabolism and PgmA (glucose phosphomutase)
respiration (PGM)
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
Rv0667 rpoB 9.26E-11 pathways beta chain) (RNA polymerase
beta subunit)
RV3919c gid 9.83E-11 cell wall and cell Prol?a.b!e glucosg-lnhll?lted
processes division protein B Gid
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
Rv0667 B 4.97E-120
v po pathways beta chain) (RNA polymerase
beta subunit)
virulence, Catalase-peroxidase-
Rv1908c katG 1.24E-102 detoxification, . p
. peroxynitritase T KatG
adaptation
Integral membrane
cell wall and cell indolylacetylinositol
Rv3795 embB 1.30E-88 arabinosyltransferase EmbB
RMP/A processes . . L
(arabinosylindolylacetylinositol
synthase)
intermediary . . L. .
Rv2043c pncA QRS meebdlamen) o eI i
.. PncA (PZase)
respiration
3-oxoacyl-[acyl-carrier protein]
B R s 3.61E-51 L2 arce ﬂuc(:?r?:rFaﬁaGt;:13;5252::;/2)
Rv1483 promoter ’ metabolism ¥ P
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information

Rv0682 rpsL 5.83E-51 30S ribosomal protein S12 RpsL
pathways
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
Rv1484 inhA 4.40E-40 metabolism (NADH-dependent enoyl-ACP
reductase)
RV1816 i 5 67E-31 regulat.ory Possible transcnptpnal
proteins regulatory protein
DNA-directed RNA polymerase
information (beta' chain) RpoC
Rv0668 C 1.63E-30
v o pathways (transcriptase beta' chain) (RNA
polymerase beta' subunit).
RV3919¢ i 5.40E-29 cell wall and cell Prol?a'b!e glucosg-inhib.ited
processes division protein B Gid
Rv2904c- IppW 1.08E-26 cell wall and cell  Probable conserved alanine rich
Rv2905 promoter ’ processes lipoprotein LppW
rrs rrs 2.04E-26 stable RNAs Ribosomal RNA 16S
Rv2202c- Rv2203 2 20E-26 cell wall and cell ~ Possible conserved membrane
Rv2203 promoter ’ processes protein
intermediary
Rv3854c ethA 2.60E-26 metabolism and Monooxygenase EthA
respiration
Rv2000 - 9.14E-26 conserved Unknown protein
hypotheticals
RV3069 i 1.50E-25 cell wall and cell Probable conserved-
processes transmembrane protein
intermediary .
Rv0751c mmsB 1.77E-25 metabolism and Probable 3—hydroxy|sobu.tyrate
I dehydrogenase MmsB (hibadh)
respiration
RV3792 aftA 1.82E-25 cell wall and cell Arabinofuranosyltransferase
processes AftA
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
RMP/B Rv0667 rpoB 2.22E-05
/ v P pathways beta chain) (RNA polymerase
beta subunit)
Integral membrane
cell wall and cell indolylacetylinositol
Rv3795 embB 3.72E-25 arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
intermediary . . N .
P d t d
Rv2043c pncA 2.33E-24 metabolism and e e
. PncA (PZase)
respiration
DNA-directed RNA polymerase
EMB/A information (beta chain) RpoB (transcriptase
Rv0667 rpoB 1.63E-16 pathways beta chain) (RNA polymerase
beta subunit)
Integral membrane
indolylacetylinositol
Rv3793- il 1.36E-12 CRRENENLICLE arabinosyltransferase EmbA
Rv3794 promoter processes . . L
(arabinosylindolylacetylinositol
synthase)
RV1908c katG 7 15E-11 virulence, Catalase-peroxidase-

detoxification,
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adaptation
intermediary

Rv0187 - 1.33E-06 metabolism and Probable O-methyltransferase
respiration
Rv0870c- fadE10 4.15E-06 lipid Probable acyl-CoA
Rv0871 promoter ’ metabolism dehydrogenase FadE10
Methylated-DNA--protein-
cysteine methyltransferase Ogt
RV1316c ogt 5 23E-06 information (6-O-methylguanine-DNA
pathways methyltransferase) (O-6-
methylguanine-DNA-
alkyltransferase)
intermediary
RVO819  mshD  7.926-06  metabolism and GCNS-related N-
. acetyltransferase, MshD
respiration
Rv0365c¢ - 9.55E-06 conservgd Conserved protein
hypotheticals
cell wall and cell Integral membrane
Rv3795 embB 9.90E-05 indolylacetylinositol
processes .
arabinosyltransferase EmbB
Integral membrane
r:"’?;: rzr:*::er 0.001265 el v:jlleaszssce” indolylacetylinositol
P P arabinosyltransferase EmbA
Rv0035-
RV0036¢ - 0.002221 - -
intermediary . . L .
P d t d
Rv2043c pncA 0.00248 metabolism and R RS e e
. PncA (PZase)
respiration
EMB/B Rv1452c- PE PGRS28 0.004056 cell wall and cell PE-PGRS family protein PE
Rv1453 promoter ’ processes PGRS28
cell wall and cell Probable first part of macrolide-
Rv1668c - 0.008609 transport ATP-binding protein
processes
ABC transporter
conserved . .
Rv0061c - 0.008997 hypotheticals Hypothetical protein
Rv1418- IprH cell wall and cell . .
RV1419 promoter 0.009261 processes Probable lipoprotein LprH
intermediary . . .. .
Rv2043c pncA 8.15E-36 metabolism and b leziiaile e (i I EaEs
. PncA (PZase)
respiration
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
Rv0667 rpoB 2.82E-35 pathways beta chain) (RNA polymerase
beta subunit)
cell wall and cell Integral membrane
PZA/A Rv3795 embB 9.23E-30 indolylacetylinositol
processes .
arabinosyltransferase EmbB
RV1179c- papA3 lipid Probable conseryed polyket.lde
1.97E-19 . synthase associated protein
Rv1180 promoter metabolism
PapA3
3-oxoacyl-[acyl-carrier protein]
Rv1482c- fabG1 1.78E-18 lipid reductase FabG1 (3-ketoacyl-
Rv1483 promoter ’ metabolism acyl carrier protein reductase)
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protein)

i, Catalase-peroxidase-
Rv1908c katG 1.19€-17 detoxification, . p
. peroxynitritase T KatG
adaptation
inf i
Rv0682 rpsL 1.55E-16 information 30S ribosomal protein S12 RpsL
pathways
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
Rv1484 hA 1.92E-16
v n metabolism (NADH-dependent enoyl-ACP
reductase)
Rv3475-
RV3476¢ - 4.51E-15 - -
RV1816 i 1.57E-14 regula’fory Possible transcrlptl'onal
proteins regulatory protein
PE-PGRS family protein PE
Rv1452c¢  PE PGRS28 1.59E-14 PE/PPE PGRS28
RVO143c i 1.92E-14 cell wall and cell Probable conserved.
processes transmembrane protein
intermediary . . .. .
Rv2043c pncA 5.41E-05 metabolism and P eIl £ e T e
.. PncA (PZase)
respiration
Rv3347c PPE55 0.000495 PE/PPE PPE family protein PPE55
PE-PGRS family protein PE
Rv1091 PE PGRS22 0.001347 PE/PPE PGRS22
PE-PGRS family protein PE
Rv0980c  PE PGRS18 0.001424 PE/PPE PGRS18
Rv2294-  Rv2295 Conserved . .
PZA/B RV2295  promoter 0.00156 hypothetical Conserved hypothetical protein
PE-PGRS famil tein PE
RVO578c  PEPGRS7  0.001877 PE/PPE amly protein
PGRS7
Rv2736¢ recX 0.004461 information Regulatory protein RecX
pathways
PE-PGRS family protein PE
Rv2490c  PE PGRS43 0.004543 PE/PPE PGRS43
conserved . .
Rv0104 - 0.007272 hypotheticals Conserved hypothetical protein
d
Rv2059 - 0.008331 conserv.e Conserved hypothetical protein
hypotheticals
RV0682 rpsL 4.68E-37 IEITTEE e el s 512 el
pathways
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
Rv0667 rpoB 2.308-33 pathways beta chain) (RNA polymerase
beta subunit)
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
STR/A Rv1484 hA 1.18E-26
/ v n metabolism (NADH-dependent enoyl-ACP
reductase)
3-oxoacyl-[acyl-carrier protein]
F 1(3- -
RV1482¢- fabG1 lipid reductaée abG .(3 ketoacyl
2.36E-26 . acyl carrier protein reductase)
Rv1483 promoter metabolism N .
(mycolic acid biosynthesis a
protein)
Rv2202c- Rv2203 2.77E-25 cell wall and cell  Possible conserved membrane
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Rv2203 promoter processes protein
Integral membrane
indolylacetylinositol
Il wall and cell
Rv3795 embB 1.17E-24 cell waltand ce arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
RVO143c i 5 87E-23 cell wall and cell Probable conserved.
processes transmembrane protein
RV1816 i 316E-22 regulat.ory Possible transcnptpnal
proteins regulatory protein
RV3792 aftA 3.44E-20 cell wall and cell Arabinofuranosyltransferase
processes AftA
VI, Catalase-peroxidase-
Rv1908c katG 1.09E-19 detoxification, . p
. peroxynitritase T KatG
adaptation
RV3069 ) 4.50E-19 cell wall and cell Probable conserved'
processes transmembrane protein
Probable iron-regulated
. . phosphoenolpyruvate
intermediary .
boxyk GTP] PckA
Rv0211 pckA 4.756-19  metabolism and carboxykinase [GTP] P
respiration (phosphoenolpyruvate
P carboxylase) (PEPCK)(pep
carboxykinase)
Probable potassium-
transporting ATPase a chain
KdpA (potassium-translocating
Rv1029 kdpA 9.81E-19 cell wall and cell ATPase a chain) (ATP.
processes phosphohydrolase [potassium-
transporting] a chain)
(potassium binding and
translocating subunit A)
Rv1148c - 1.82E-18 Insertion seqs Conserved hypothetical protein
and phages
RV0682 rpsL 205607 MOrMANoN 340 i ocomal protein $12 Rps
pathways
intermediary Probable PHOH-like protein
Rv2368c phoH1 6.24E-06 metabolism and PhoH1 (phosphate starvation-
respiration inducible protein PSIH)
intermediary .
Probabl t
Rv3318 sdhA 1.326-05  metabolism and robable succinate
- dehydrogenase
respiration
Ph hate-t t ATP-
Rv0932c- pstB cell wall and cell . .osp @ e. ranspor
RV0933 romoter 2.06E-05 rocesses binding protein ABC transporter
STR/B P P PstB
Rv3822 - 2.15E-05 conserv.ed Conserved hypothetical protein
hypotheticals
intermediary Probable aldehyde
Rv0147 - 2.50E-05 metabolism and dehydrogenase (NAD+)
respiration dependent
RV3132c  devS 2.97E-05 regulatory Twa component sensor
proteins histidine kinase DevS
intermediary
Rv0303 - 3.16E-05  metabolism and Probable

respiration

dehydrogenase/reductase
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3-oxoacyl-[acyl-carrier protein]
reductase FabG1 (3-ketoacyl-

Rv1482c-  fabGl lipid
v ¢ a 5.30E-43 L . acyl carrier protein reductase)
Rv1483 promoter metabolism . .
(mycolic acid biosynthesis a
protein)
RV1816 i 9.05E-35 regulat.ory Possible transcnptpnal
proteins regulatory protein
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
Rv1484 hA 3.10E-33
v n metabolism (NADH-dependent enoyl-ACP
reductase)
DNA-directed RNA polymerase
information (beta chain) RpoB (transcriptase
R 7 B .94E-32
v066 po >-94E-3 pathways beta chain) (RNA polymerase
beta subunit)
ETH/A Integral membrane
cell wall and cell indolylacetylinositol
Rv3795 embB 6.19E-29 arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
Rv2202c- Rv2203 cell wall and cell ~ Possible conserved membrane
7.37E-26 .
Rv2203 promoter processes protein
intermediary .
Probable 3-hyd butyrat
Rv0751c mmsB 1.68E-25 metabolism and robable S-nyaroxylso u. yrate
- dehydrogenase MmsB (hibadh)
respiration
Rv0682 rpsL 1.95E-25 information 30S ribosomal protein S12 RpsL
pathways
RVO143c i 4.58E-25 cell wall and cell Probable conserved.
processes transmembrane protein
d
Rv2000 - 6.80E-25 conserve Unknown protein
hypotheticals
RV1816 i 0.000557 regula?ory Possible transcrlptl_onal
proteins regulatory protein
NADH-dependent enoyl-[acyl-
. lipid carrier-protein] reductase InhA
Rv14s4 inhA 0.000587 metabolism (NADH-dependent enoyl-ACP
reductase)
RV0194 i 0.000782 cell wall and cell Probat.)le transmembrane
processes multidrug efflux pump
3-oxoacyl-[acyl-carrier protein]
RV1482c- fabG1 i reductaée FabGll (3-ketoacyl-
Rv1483 S 0.001545 metabolism acyl carrier protein reductase)
ETH/B P (mycolic acid biosynthesis a
protein)
RV0037c i 0.008639 cell wall and cell Probable conserved |thegraI
processes membrane protein
ey Probable NADH dehydrogenase
inD D DH-
Rv3148 nuoD 0.008639  metabolism and | (chain D) NuoD (NADH
Casniration ubiquinone oxidoreductase
P chain D)
Rv1872c-
RvV1873 - 0.01181 - -
Rv2124c metH 0.012309 intermediary 5-methyltetrahydrofolate--

metabolism and
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respiration MetH (methionine synthase,
vitamin-B12 dependent
isozyme) (ms)
Rv3897c - 0.012757 conservgd Conserved hypothetical protein
hypotheticals
intermediary
Rv0946¢ pgi 0.013046  metabolism and Proba.ble glucose—6.—phosphate
I isomerase Pgi (GPI)
respiration
DNA gyrase (subunit A) GyrA
information (DNA topoisomerase (ATP-
Rv0006 gyrA 2.55E-12 J— hydrolysing)) (DNA
P ¥ topoisomerase Il) (type || DNA
topoisomerase)
Integral membrane
cell wall and cell indolylacetylinositol
Rv3795 embB 1.48E-11 arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
intermediary . . N .
Rv2043c pncA 8.36E-10 metabolism and Pl £ e T e
.. PncA (PZase)
respiration
Integral membrane
indolylacetylinositol
Rv3793- bA Il wall and cell
v em 6.87E-09 cell wall and ce arabinosyltransferase EmbA
Rv3794 promoter processes . . L.
(arabinosylindolylacetylinositol
synthase)
OFX/A 3-oxoacyl-[acyl-carrier protein]
ductase FabG1 (3-ket I-
Rv1482c-  fadGl lipid reductase FabG1 (3-ketoacy
9.12E-08 . acyl carrier protein reductase)
Rv1483 promoter metabolism . L .
(mycolic acid biosynthesis a
protein)
virulence Enhanced intracellular survival
Rv2416c- eis !
v : 1.39E-07 detoxification, protein Eis, GCN5-related N-
Rv2417c promoter .
adaptation acetyltransferase
NADH-dependent enoyl-[acyl-
: lipid carrier-protein] reductase InhA
Rv1484 LS 3.01E-07 metabolism (NADH-dependent enoyl-ACP
reductase)
intermediary
Rv3423c alr 6.93E-07 metabolism and Alanine racemase Alr
respiration
RV3069 i 3.48E-05 cell wall and cell Probable conserved-
processes transmembrane protein
RV1816 i 4.91E-05 regulat.ory Possible transcrlptlpnal
proteins regulatory protein
DNA gyrase (subunit A) GyrA
information (DNA topoisomerase (ATP-
Rv0006 gyrA 0.012655 S hydrolysing)) (DNA
P ¥ topoisomerase Il) (type Il DNA
OFX/B topoisomerase)
lipid Probable polyketide synthase
Rv1663 pks17 0.021396 metabolism Pks17
Rv2799 - 0.021031 Cellwallandcell e membrane protein
processes
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cell wall and cell

Possible conserved

Rv0206¢ mmplL3 0.026943 transmembrane transport
processes .
protein MmpL3
Rv3425 PPE57 0.027406 PE/PPE PPE family protein PPE57
RV2416c- cis virulence, Enhanced intracellular survival
0.028844 detoxification, protein Eis, GCN5-related N-
Rv2417c promoter .
adaptation acetyltransferase
intermediary .
Probabl lactok GalK
Rv0620 galK 0.034167  metabolism and robabie galac o.lnase @
o (galactose kinase)
respiration
conserved . .
Rv1830 - 0.035624 hypotheticals Conserved hypothetical protein
. G
Rv3428c - 0.038173 insertion seqs Possible transposase
and phages
conserved Unknown alanine and valine
Rv3090 - 0.042676 . . .
hypotheticals rich protein
rrs rrs 7.65E-17 stable RNAs Ribosomal RNA 16S
Integral membrane
cell wall and cell indolylacetylinositol
Rv3795 embB 7.45E-14 arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
RV2181 i 1.60E-11 cell wall and cell Alpha(1-
processes >2)mannosyltransferase
regulator Transcriptional regulatory
Rv3736 - 2.47E-11 & . y protein (probably AraC/XylS-
proteins )
family)
intermediary
AMK/A Rv3378c - 5.53E-11 metabc')lisr.n and Diterpene synthase
respiration
intermediary Probable GTP-binding protein
Rv2404c lepA 6.09E-11 metabolism and LepA (GTP-binding elongation
respiration factor)
intermediary . .
Rv2195 gcrA 8.98E-11 metabolism and Probable rleske iron-sulfur
- protein QcrA
respiration
Il wall and cell
Rv1698 mctB 1.72E-10 cell wall and ce Outer membrane protein MctB
processes
Rv1311- Rv1312 2 07E-10 cell wall and cell Conserved hypothetical
Rv1312 promoter ’ processes secreted protein
Rv2075c- Rv2075c cell wall and cell  Possible hypothetical exported
2.07E-10 .
Rv2076¢ promoter processes or envelope protein
rrs rrs 5.77E-09 stable RNAs Ribosomal RNA 16S
intermediary
Rv3378c - 6.67E-06 metabolism and Diterpene synthase
respiration
Integral membrane
indolylacetylinositol
AMK/B Il wall and cell
/ Rv3795 embB 2.00E-05 cell walland ce arabinosyltransferase EmbB
processes . . L
(arabinosylindolylacetylinositol
synthase)
RV2181 i 2 A4E-05 cell wall and cell Alpha(1-
processes >2)mannosyltransferase
Rv3736 - 2.59E-05 regulatory Transcriptional regulatory
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proteins

intermediary

protein (probably AraC/XylS-
family)
Probable GTP-binding protein

Rv2404c lepA 5.60E-05 metabolism and LepA (GTP-binding elongation
respiration factor)
virulence,
Rv2190c - 6.02E-05 detoxification, Conserved hypothetical protein
adaptation
intermediary Probable aspartate
Rv0337c aspC 6.18E-05 metabolism and aminotransferase AspC
respiration (transaminase A) (ASPAT)
Probable Sn-glycerol-3-
cell wall and cell phosphate transport ATP-
2832 .18E-
Rv2832c ugpC 7-18E-05 processes binding protein ABC transporter
UgpC
intermediary Probable riboflavin biosynthesis
Rv1940 ribAl 8.49E-05 metabolism and protein RibAl (GTP
respiration cyclohydrolase Il)
cell wall and cell [ e
Rv3795 embB 1.65E-12 indolylacetylinositol
processes .
arabinosyltransferase EmbB
rrs rrs 3.33E-11 stable RNAs Ribosomal RNA 16S
Rv3793- embA cell wall and cell .Integral membra.ne
RvV3794 S 4.30E-11 rocesses indolylacetylinositol
P P arabinosyltransferase EmbA
3-oxoacyl-[acyl-carrier protein]
Rv1482c- fabG1 i reducta§e FabGll (3-ketoacyl-
5.26E-10 . acyl carrier protein reductase)
Rv1483 promoter metabolism A .
(mycolic acid biosynthesis a
protein)
intermediary . .
. Probable rieske iron-sulfur
CAP/A Rv2195 gcrA 1.14E-09 metabrjvllsr.n and protein QcrA
respiration
regulator Transcriptional regulatory
Rv3736 ; 2.41E-09 guiatory protein (probably AraC/XylS-
proteins .
family)
intermediary Possible anthranilate synthase
Rv0013 trpG 2.06E-08 metabolismand  component Il TrpG (glutamine
respiration amidotransferase)
Rv2312-
RV2313c - 2.12E-08 - -
intermediary Probable riboflavin biosynthesis
Rv1940 ribAl 2.22E-08 metabolism and protein RibAl (GTP
respiration cyclohydrolase I1)
RV2181 NA 5 34E-08 cell wall and cell Alpha(1-
processes >2)mannosyltransferase
rrs rrs 7.26E-07 stable RNAs Ribosomal RNA 16S
3-oxoacyl-[acyl-carrier protein]
RV1482¢- fabG1 lipid reductaée FabGll (3-ketoacyl-
2.15E-06 . acyl carrier protein reductase)
CAP/B Rv1483 promoter metabolism N .
(mycolic acid biosynthesis a
protein)
Rv3793- embA cell wall and cell Integral membrane
2.57E-06 . L
Rv3794 promoter processes indolylacetylinositol
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intermediary

arabinosyltransferase EmbA

Probable rieske iron-sulfur

Rv2195 qcrA 2.29E-05 metabolism and .
- protein QcrA
respiration
reulator Transcriptional regulatory
Rv3736 NA 3.85E-05 gularory protein (probably AraC/Xyls-
proteins .
family)
intermediary Probable riboflavin biosynthesis
Rv1940 ribAl 0.000119  metabolism and protein RibAl (GTP
respiration cyclohydrolase Il)
intermediary Possible anthranilate synthase
Rv0013 trpG 0.000137 metabolism and component Il TrpG (glutamine
respiration amidotransferase)
RV1816 i 0.000171 reguIaFory Possible transcrlptl'onal
proteins regulatory protein
RV0235¢ i 0.00018 cell wall and cell Probable conserved'
processes transmembrane protein
Il wall Il
Rv1230c - 0.000188 CREIEI IO Possible membrane protein
processes
T Probable NADH dehydrogenase
| (chain D) NuoD (NADH-
Rv3148 nuoD 0.000258  metabolism and (chain D) NuoD (
respiration ubiquinone oxidoreductase
P chain D)
cell wall and cell Integral membrane
Rv3795 embB 0.00029 indolylacetylinositol
processes .
arabinosyltransferase EmbB
rrs rrs 5.97E-13 stable RNAs Ribosomal RNA 16S
Rv2416¢ eis virulence, Enhanced intracellular survival
6.65E-12 detoxification, protein Eis, GCN5-related N-
Rv2417c promoter .
adaptation acetyltransferase
cell wall and cell I Tl L
Rv3795 embB 1.12E-11 rocesses indolylacetylinositol
KAN/A P arabinosyltransferase EmbB
intermediary . . - .
Rv2043c pncA 2.30E-09 metabolism and ez s (e B R
L. PncA (PZase)
respiration
Int I b
Rv3793- embA cell wall and cell .n e me”." ra.ne
Rv3794 — 1.03E-07 rocesses indolylacetylinositol
P P arabinosyltransferase EmbA
rrs rrs 1.24E-08 stable RNAs Ribosomal RNA 16S
Rv2416c- eis virulence, Enhanced intracellular survival
1.51E-07 detoxification, protein Eis, GCN5-related N-
Rv2417c promoter .
adaptation acetyltransferase
d
Rv3067 - 9.19E-06 conserv.e Conserved hypothetical protein
hypotheticals
KAN/B Rv3899c - 9.75E-06 h;sgtslferi(/i?:gls Conserved hypothetical protein
Rv3189 - 1.59E-05 conservgd Conserved hypothetical protein
hypotheticals
infi i Possible al ive RNA
RvV1189 sigl 1.65E-05 information ossible a t'ernatlve '
pathways polymerase sigma factor Sigl
intermediary Probable aldehyde
Rv0147 - 2.14E-05 metabolism and dehydrogenase (NAD+)

respiration
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Rv0963c - 2.70E-05 conserv.ed Conserved hypothetical protein
hypotheticals
intermediary

Rv1988 erm(37) 3.06E-05 metabolism and

respiration
Drug/A: without adjusting for overlapping resistance; Drug/B: adjusting for overlapping resistance. Loci
with grey background were also identified by phyC. Locus and gene names in bold indicate known DR

loci.

Probable 23S rRNA
methyltransferase Erm(37)

Supplementary Table 11 Operon-based GWAS top hits

Drug/ Operon name p_value Coding regions and intergenic regions contained in the
model operon
Rv1907c-furA 5.71E-121 Rv1907c, Rv1907c-Rv1908c, katG, katG_promoter,
furA, Rv1909c-Rv1910c
rpoB-rpoB 3.57E-110 Rv0666-Rv0667, rpoB
embA-embB 7.22E-65 embA_promoter, embA, Rv3794-Rv3795, embB
Rv1482c-Rv1482c 5.97E-59 Rv1482c
INH/A Rv2037c-pncA 1.14E-58 Rv2037c, Rv2037c-Rv2038c, Rv2038c, Rv2038c-
Rv2039c, Rv2039c, Rv2039c-Rv2040c, Rv2040c,
Rv2040c-Rv2041c, Rv2041c, Rv2041c-Rv2042c,
Rv2042c, Rv2042c-Rv2043c, pncA, Rv2043c-Rv2044c
fabG1l-hemz 3.09E-49 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
rpsL-rpsG 3.27E-44 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
Rv1816-Rv1816 4.21E-36 Rv1815-Rv1816, Rv1816
Rv1907c-furA 1.09E-43 Rv1907c, Rv1907c-Rv1908c, katG, katG_promoter,
furA, Rv1909c-Rv1910c
Rv1482c-Rv1482c 1.16E-17 Rv1482c
fabG1l-hemz 2.61E-16 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
INH/B  pgmA-pgmA 2.50E-12 pgmA
rpsS-rpsQ 1.23E-11 Rv0704-Rv0705, rpsS, Rv0705-Rv0706, rplV, Rv0706-

Rv0707, rpsC, Rv0707-Rv0708, rplP, Rv0708-Rv0709,
rpmC, Rv0709-Rv0710, rpsQ

end-lpgP 2.38E-11 end, Rv0670-Rv0671, IpgP

pckA-pckA 1.36E-25 Rv0210-Rv0211, pckA

ctpl-ctpl 7.73E-21 ctpl, Rv0107¢c-Rv0108c

Rv0147-Rv0147 8.86E-20 Rv0146-Rv0147, Rv0147

yrbE1A-Rv0178 4.80E-19 Rv0166-Rv0167, yrbE1A, Rv0167-Rv0168, yrbE1B,

Rv0168-Rv0169, mcelA, Rv0169-Rv0170, mcelB,
Rv0170-Rv0171, mcelC, Rv0171-Rv0172, mcelD,
Rv0172-Rv0173, IprK, Rv0173-Rv0174, mcelF, Rv0174-
RMP/A Rv0175, Rv0175, Rv0175-Rv0176, Rv0176, Rv0176-
Rv0177, Rv0177, Rv0177-Rv0178, Rv0178
Rv0143c-Rv0143c 1.55E-18 Rv0143c

rpsR-dnaB 2.34E-13 Rv0054-Rv0055, rpsR1, Rv0055-Rv0056, rpll, Rv0056-
Rv0057, Rv0057, Rv0057-Rv0058, dnaB

Rv0023-Rv0025 5.24E-11 Rv0023, Rv0023-Rv0024, Rv0024, Rv0024-Rv0025,
Rv0025

mmpL3-mmplL3 2.31E-09 mmplL3, Rv0206c-Rv0207c
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Rv0205-Rv0205 3.08E-09 Rv0205
PE_PGRS2- 3.43E-09 Rv0123-Rv0124, PE_PGRS2
PE_PGRS2
RMP/B rpoB-rpoB 1.68E-05 Rv0666-Rv0667, rpoB
embA-embB 2.12E-24 embA_promoter, embA, Rv3794-Rv3795, embB
rpoB-rpoB 4.31E-15 Rv0666-Rv0667, rpoB
Rv2037c-pncA 5.57E-13 Rv2037c, Rv2037c-Rv2038c, Rv2038c, Rv2038c-
Rv2039c¢, Rv2039c, Rv2039c-Rv2040c, Rv2040c,
Rv2040c-Rv2041c, Rv2041c, Rv2041c-Rv2042c,
Rv2042c, Rv2042c-Rv2043c, pncA, Rv2043c-Rv2044c
Rv0818-Rv0819 1.37E-08 Rv0818, Rv0818-Rv0819, mshD
EMB/A
/ Rv1907c-furA 1.33E-07 Rv1907c, Rv1907c-Rv1908c, katG, katG_promoter,
furA, Rv1909c-Rv1910c
cspB-cspB 1.53E-06 cspB
moaD2-Rv0870c 2.45E-06 moaD2, Rv0868c-Rv0869¢c, moaA2, Rv0869c-Rv0870c,
Rv0870c
rpsL-rpsG 3.29E-06 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
Rv0726¢-Rv0726¢ 6.11E-06 Rv0726¢, Rv0726¢-Rv0727c
embA-embB 1.87E-05 embA_promoter, embA, Rv3794-Rv3795, embB
ugpC-ugpA 0.005977 ugpC, Rv2832c-Rv2833c, ugpB, Rv2833c-Rv2834c,
ugpE, Rv2834c-Rv2835c, ugpA, Rv2835c-Rv2836¢
gpsA-gpsA 0.008341 gpdAl, Rv0564c-Rv0565c, gpdA2
EMB/B cyp139-Rv1668c 0.008609 cyp139, Rv1666¢c-Rv1667¢c, Rv1667¢c, Rv1667c-Rv1668c,
Rv1668c
atpA-Rv1312 0.009098 Rv1307-Rv1308, atpA, Rv1308-Rv1309, atpG, Rv1309-
Rv1310, atpD, Rv1310-Rv1311, atpC, Rv1311-Rv1312,
Rv1312
PE15-PPE20 0.009489 Rv1385-Rv1386, PE15, Rv1386-Rv1387, PPE20
rpoB-rpoB 3.89E-35 Rv0666-Rv0667, rpoB
fabG1l-hemz 1.06E-19 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
pks3-pks3 2.28E-18 pks3
Rv1482c-Rv1482c 2.49E-18 Rv1482c
rpsL-rpsG 2.29E-14 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
PZA/A Rv1179c-Rv1179c 4.94E-14 Rv1179c
PE_PGRS28- 1.56E-13 PE_PGRS28
PE_PGRS28
Rv1148c-Rv1148c 2.95E-12 Rv1148c
rpoC-rpoC 5.30E-11 Rv0667-Rv0668, rpoC
kdpF-kdpC 6.20E-11 kdpF, Rv1028A-Rv1029, kdpA, Rv1029-Rv1030, kdpB,
Rv1030-Rv1031, kdpC
Rv2037c-pncA 0.000389 Rv2037c, Rv2037c-Rv2038c, Rv2038c, Rv2038c-
Rv2039c, Rv2039c, Rv2039c-Rv2040c, Rv2040c,
Rv2040c-Rv2041c, Rv2041c, Rv2041c-Rv2042c,
Rv2042c, Rv2042c-Rv2043c, pncA, Rv2043c-Rv2044c
PZA/B PPE55-PPE5S5 0.000495 PPES5
Rv2295-Rv2295 0.001133 pncA_promoter, Rv2295
PE_PGRS22- 0.001293 Rv1090-Rv1091, PE_PGRS22
PE_PGRS22
PE_PGRS7- 0.003927 PE_PGRS7
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PE_PGRS7

PE_PGRS43- 0.004543 PE_PGRS43
PE_PGRS43
Rv0104-Rv0104 0.00739 Rv0104
PE_PGRS3- 0.00858 PE_PGRS3, Rv0278c-Rv0279c
PE_PGRS3
rpsL-rpsG 4.78E-49 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
rpoB-rpoB 1.50E-32 Rv0666-Rv0667, rpoB
fabG1l-hemz 4.69E-31 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
Rv1482c-Rv1482c 5.30E-25 Rv1482c
Rv0143c-Rv0143c 4.12E-23 Rv0143c
STR/A pckA-pckA 1.50E-19 Rv0210-Rv0211, pckA
Rv1816-Rv1816 1.60E-18 Rv1815-Rv1816, Rv1816
Rv1998c-Rv1998c 1.61E-18 Rv1998c, Rv1998c-Rv1999c
Rv1148c-Rv1148c 1.74E-18 Rv1148c
Rv0947c-Rv0948c 1.75E-18 Rv0947c, Rv0947c-Rv0948c, Rv0948c
rpsL-rpsG 1.70E-06 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
Rv2595-Rv2596 1.83E-05 vapB40, Rv2595-Rv2596, vapC40
Rv0147-Rv0147 2.50E-05 Rv0146-Rv0147, Rv0147
Rv0302-Rv0303 2.67E-05 Rv0301-Rv0302, Rv0302, Rv0302-Rv0303, Rv0303
STR/B  pknD-pstS2 2.68E-05 pknD, Rv0931c-Rv0932c, pstS2
Rv0963c-Rv0963c 2.68E-05 Rv0963c, Rv0963c-Rv0964c
Rv2629-Rv2630 2.83E-05 Rv2628-Rv2629, Rv2629, Rv2629-Rv2630, Rv2630
Rv3728-Rv3728 2.86E-05 Rv3727-Rv3728, Rv3728
pgsA3-pgsA3 3.15E-05 pgsA3
rpoB-rpoB 3.54E-32 Rv0666-Rv0667, rpoB
aspC-Rv0338c 2.59E-25 aspC, Rv0337c-Rv0338c, Rv0338c, Rv0338c-Rv0339c
Rv0147-Rv0147 1.60E-24 Rv0146-Rv0147, Rv0147
pckA-pckA 1.60E-24 Rv0210-Rv0211, pckA
Rv0143c-Rv0143c 3.99E-24 Rv0143c
ETH/A Rv0276-Rv0276 6.20E-24 Rv0276
pknD-pstS2 3.66E-22 pknD, Rv0931c-Rv0932c, pstS2
rpsL-rpsG 8.01E-22 Rv0681-Rv0682, rpsL, Rv0682-Rv0683, rpsG
phoR-phoR 9.26E-21 Rv0757-Rv0758, phoR
Rv0302-Rv0303 9.58E-21 Rv0301-Rv0302, Rv0302, Rv0302-Rv0303, Rv0303
fabG1-hemz 0.000518 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
Rv1816-Rv1816 0.000674 Rv1815-Rv1816, Rv1816
Rv0194-Rv0194 0.000842 Rv0194
Rv1482c-Rv1482c 0.000979 Rv1482c
ETH/B metH-metH 0.005044 metH
fadD11.1-plsB1 0.010402 fadD11.1, Rv1549-Rv1550, fadD11, Rv1550-Rv1551,
plsB1
Rv2075c-Rv2075c¢ 0.011742 Rv2075c, Rv2075c-Rv2076¢
Rv1873-Rv1873 0.01181 Rv1873
Rv3915-Rv3915 0.013046 Rv3914-Rv3915, Rv3915
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Rv3654c-Rv3659c 0.014992 Rv3654c, Rv3654c-Rv3655c, Rv3655¢c, Rv3655c¢-
Rv3656c, Rv3656¢c, Rv3656¢c-Rv3657c, Rv3657c,
Rv3657c-Rv3658c, Rv3658c, Rv3658c-Rv3659c,
Rv3659c, Rv3659c-Rv3660c
embA-embB 9.13E-15 embA_promoter, embA, Rv3794-Rv3795, embB
gyrB-gyrA 7.95E-11 Rv0004-Rv0005, gyrB, Rv0O005-Rv0006, gyrA
Rv1482c-Rv1482c 4.94E-09 Rv1482c
fabG1-hemz 9.67E-09 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
OFX/A ccrB-Rv3071 1.65E-07 Rv3069, Rv3069-Rv3070, Rv3070, Rv3070-Rv3071,
Rv3071
eis-eis 1.56E-06 eis, eis_promoter
gcp-alr 8.81E-06 gcp, Rv3419c¢-Rv3420c, riml, Rv3420c-Rv3421c,
Rv3421c, Rv3421c-Rv3422c, Rv3422c, Rv3422c-
Rv3423c, alr, Rv3423c-Rv3424c
gyrB-gyrA 0.013219 Rv0004-Rv0005, gyrB, RvO005-Rv0006, gyrA
Rv1635c-Rv1635¢ 0.017087 Rv1635c
mmpL3-mmplL3 0.026943 mmplL3, Rv0206c-Rv0207c
Rv3224-Rv3224B 0.034723 Rv3224, Rv3224-Rv3224A, Rv3224A, Rv3224A-
Rv3224B, Rv3224B
mprA-mprB 0.039519 mprA, Rv0981-Rv0982, mprB
Rv3090-Rv3091 0.042676 Rv3089-Rv3090, Rv3090, Rv3090-Rv3091, Rv3091
OFX/8 PE_PGRS18- 0.04297 PE_PGRS18
PE_PGRS18
pks7-pks9 0.051017 Rv1660-Rv1661, pks7, Rv1661-Rv1662, pks8, Rv1662-
Rv1663, pks17, Rv1663-Rv1664, pks9
PPE35-PPE35 0.051095 PPE35, Rv1918c-Rv1919c
PPEl-nrp 0.052266 PPE1, Rv0096-Rv0097, Rv0097, Rv0097-Rv0098, fcoT,
Rv0098-Rv0099, fadD10, Rv0099-Rv0100, Rv0100,
Rv0100-Rv0101, nrp
atpA-Rv1312 1.56E-11 Rv1307-Rv1308, atpA, Rv1308-Rv1309, atpG, Rv1309-
Rv1310, atpD, Rv1310-Rv1311, atpC, Rv1311-Rv1312,
Rv1312
uvrC-whiA 6.85E-11 Rv1419-Rv1420, uvrC, Rv1420-Rv1421, Rv1421,
Rv1421-Rv1422, Rv1422, Rv1422-Rv1423, whiA
bioB-Rv1591 1.42E-10 bioB, Rv1589-Rv1590, Rv1590, Rv1590-Rv1591, Rv1591
Rv1697-Rv1698 1.72E-10 Rv1696-Rv1697, Rv1697, Rv1697-Rv1698, mctB
AMK/A  Rv1137¢-Rv1139c 2.74E-10 Rv1137c, Rv1137c-Rv1138c, Rv1138c, Rv1138c-
Rv1139c¢, Rv1139c
Rv1959¢-Rv1960c 5.76E-10 parEl, Rv1959¢-Rv1960c, parD1
Rv1140-Rv1140 1.21E-09 Rv1140
Rv0613c-Rv0613c 1.39E-09 Rv0613c
Rv1065-Rv1066 1.07E-08 Rv1065, Rv1065-Rv1066, Rv1066
Rv1004c-Rv1004c 2.17E-08 Rv1004c, Rv1004c-Rv1005c
embA-embB 8.46E-06 embA_promoter, embA, Rv3794-Rv3795, embB
Rv2181-Rv2181 2.44E-05 Rv2181
AMK/B ugpC-ugpA 2.59E-05 ugpC, Rv2832c-Rv2833c, ugpB, Rv2833c-Rv2834c,
ugpE, Rv2834c-Rv2835c, ugpA, Rv2835c-Rv2836¢
deoD-pmmB 2.69E-05 deoD, Rv3307-Rv3308, pmmB
Rv3182-Rv3183 4.97E-05 Rv3182, Rv3182-Rv3183, Rv3183
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IppR-lepA 5.60E-05 IppR, Rv2403c-Rv2404c, lepA

atpA-Rv1312 6.04E-05 Rv1307-Rv1308, atpA, Rv1308-Rv1309, atpG, Rv1309-
Rv1310, atpD, Rv1310-Rv1311, atpC, Rv1311-Rv1312,
Rv1312
Rv1482c-Rv1482c 9.84E-10 Rv1482c
fabG1l-hemz 2.78E-09 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
Rv0573c-Rv0574c 3.21E-08 pncB2, Rv0573c-Rv0574c, Rv0574c, Rv0574c-Rv0575c¢
Rv1140-Rv1140 7.31E-08 Rv1140
trcS-trcR 9.20E-08 trcS, Rv1032c¢-Rv1033c, trcR, Rv1033c-Rv1034c
CAP/A Rv1697-Rv1698 1.07E-07 Rv1696-Rv1697, Rv1697, Rv1697-Rv1698, mctB
Rv0148-Rv0149 1.17E-07 Rv0147-Rv0148, Rv0148, Rv0148-Rv0149, Rv0149
atpA-Rv1312 2.02E-07 Rv1307-Rv1308, atpA, Rv1308-Rv1309, atpG, Rv1309-
Rv1310, atpD, Rv1310-Rv1311, atpC, Rv1311-Rv1312,
Rv1312
Rv0613c-Rv0613c 3.43E-07 Rv0613c
Rv0818-Rv0819 8.06E-07 Rv0818, Rv0818-Rv0819, mshD
embA-embB 6.43E-08 embA_promoter, embA, Rv3794-Rv3795, embB
Rv1482c-Rv1482c 7.46E-06 Rv1482c
fabG1l-hemz 1.11E-05 fabG1, Rv1483-Rv1484, inhA, Rv1484-Rv1485, hemZ
CAP/B Rv3182-Rv3183 9.90E-05 Rv3182, Rv3182-Rv3183, Rv3183
mrp-Rv1230c 0.000125 mrp, Rv1229¢-Rv1230c, Rv1230c, Rv1230c-Rv1231c
Rv0148-Rv0149 0.000214 Rv0147-Rv0148, Rv0148, Rv0148-Rv0149, Rv0149
embA-embB 3.23E-13 embA_promoter, embA, Rv3794-Rv3795, embB
KAN/A eis-eis 1.07E-10 eis, eis_promoter
Rv2075c-Rv2075¢ 8.66E-07 Rv2075c, Rv2075c-Rv2076c¢
Rv2313c-Rv2315c¢ 6.42E-06 Rv2313c, Rv2313c-Rv2314c, Rv2314c, Rv2314c-
Rv2315c, Rv2315c
Rv3067-Rv3067 6.56E-06 Rv3066-Rv3067, Rv3067
KAN/B eis-eis 1.01E-05 eis, eis_promoter
pstB-pstS1 1.53E-05 pstB, Rv0933-Rv0934, pstS1
Rv1988-Rv1988 1.91E-05 Rv1987-Rv1988, erm(37)
Rv0963c-Rv0963c 2.50E-05 Rv0963c, Rv0963c-Rv0964c

Drug/A: without adjusting for overlapping resistance; Drug/B: adjusting for overlapping resistance.
Operon annotation was extracted from TBDB (Reddy et al. 2009). The forth column includes the name of
coding and intergenic regions operons are composed of.
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Supplementary Figure 1 Proportion of missed call across all samples
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The proportion of missed calls (i.e. SNP alleles that could not be called due to low coverage) is ordered
and plotted for all samples. An inflexion point is observed at 0.15 (15%) and used to filter out bad
quality samples.
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Supplementary Figure 2 SNP Allele Frequency Spectrum
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The allele frequency (x-axis) refers to the number of samples across the whole data set sharing a
particular SNP. The first bar represents the percentage of SNPs (y-axis) (out of 91,648) present in only
one sample and absent in the rest, i.e. private SNPs. The second bar presents the percentage of SNPs

harboured by two different samples, and so on.
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Supplementary Figure 3 Global phylogeny of 1,601 MTBC isolates colour, coded by
spoligotype
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Spoligotypes families generally cluster within specific SNP, defined clades, as it is the case for Beijing,
CAS, EAI, AFRI_1, AFRI_2, BOV, X and S. However, there is evidence of homoplasy particularly in lineage
4, among T, H and LAM spoligotypes.
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Supplementary Figure 4 Global phylogeny constructed using the 62 SNP typing system
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Global phylogeny (WGS data set 2; n=1,601 samples) constructed using only the proposed minimum set
of 62 SNPs separates all 1,601 samples into their corresponding lineage and sub- lineage.
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Supplementary Figure 5 Global phylogeny constructed using the 45 SNP typing system

proposed by Filliol et al. 2006
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Global phylogeny (WGS data set 2; n=1,601 samples) constructed using the set of 45 SNPs proposed by
(Filliol et al. 2006) yielded an incompatible classification compared to that obtained by Comas93
(Supplementary Figure 6) and Homolka71 (Supplementary Figure 7). The MTBC lineages could not be
unambiguously separated (lineages 1, 5, 6 and M. bovis) or were spread across multiple clades (lineages

2,3 and 4).
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Supplementary Figure 6 Global phylogeny constructed using the 93 SNP typing system

proposed by Comas et al. 2009
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A global phylogeny (WGS data set 2; n=1,601 samples) constructed using the 93 lineage-specific SNPs
proposed by (Comas et al. 2009) shows all 6 MTBC main lineages and M. bovis unambiguously separated
in different clades. Samples from sub-lineage 2.1 (non-Beijing), 2.2 (Beijing), 4.3 (LAM), 4.1.1 (X-family),
4.1.2.1 (Haarlem), 4.6.2.2 (Cameroon) and 4.6.1 (Uganda) were all constrained to specific clades.
However, the markers lacked resolution at a sub- lineage level, with the majority being unresolvable.
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Supplementary Figure 7 Global phylogeny constructed using the 71 SNP typing system
proposed by Homolka et al. 2012
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Global phylogeny constructed (WGS data set 2; n=1,601 samples) using the 71 phylogenetically
informative SNPs proposed by (Homolka 2012). The phylogeny is largely congruent with that built using
Comas93 SNP set, all main seven MTBC lineages are clearly separated. Samples belonging to sub-
lineages 4.2.1 (Ural), 4.2.2.1 (TUR), 4.3 (LAM), 4.4.1.1 (S-type), 4.1.2.1 (Haarlem) and 4.6.2.2 (Cameroon)
are all restricted to specific clades. However other sub-lineages (particularly from lineage 4) were not
congruent with the RD system with some samples with the same RD (e.g. RD115 for 4.3.3 sub-lineages)
spread across different clades.
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Supplementary Figure 8 Loci involved in drug resistance

(A) Loci involved in isoniazid resistance and mutations observed in isoniazid resistant

isolates
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Summary of DR-associated genes and mutations in the curated library for INH (296 variable sites, 350
SNPs and 25 indels, in 4 genes and 3 promoters) and mutations observed in phenotypically INH resistant
samples. Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of
each of these bars a grey histogram shows the mutation density derived from the curated list of DR-
associated mutations. These grey areas highlight the presence of DR-associated regions in candidate
genes. Vertical black lines indicate the frequency of mutations observed in phenotypically resistance
isolates. Internal black lines show co-occurring mutations both within and between genes. The thickness
of these lines is proportional to the frequency of the mutations appearing together.
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(B) Loci involved in rifampicin resistance and mutations observed in rifampicin

resistant isolates

§
N

godi

Dod)

57510

\f’i\\\

‘
Y
o

Summary of DR-associated genes and mutations in the curated library for RMP (97 variable sites, 143
SNPs and 19 indels, in 2 genes) and mutations observed in phenotypically RMP resistant samples.
Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of each of
these bars a grey histogram shows the mutation density derived from the curated list of DR-associated
mutations. These grey areas highlight the presence of DR-associated regions in candidate genes. Vertical
black lines indicate the frequency of mutations observed in phenotypically resistance isolates. Internal
black lines show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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(C) Loci involved in ethambutol resistance and mutations observed in ethambutol

resistant isolates
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Summary of DR-associated genes and mutations in the curated library for EMB (180 variable sites, 213
SNPs and 1 indel, in 4 genes and 1 promoter) and mutations observed in phenotypically EMB resistant
samples. Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of
each of these bars a grey histogram shows the mutation density derived from the curated list of DR-
associated mutations. These grey areas highlight the presence of DR-associated regions in candidate
genes. Vertical black lines indicate the frequency of mutations observed in phenotypically resistance
isolates. Internal black lines show co-occurring mutations both within and between genes. The thickness
of these lines is proportional to the frequency of the mutations appearing together.
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(D) Loci involved in pyrazinamide resistance and mutations observed in pyrazinamide

resistant isolates
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Summary of DR-associated genes and mutations in the curated library for PZA (225 variable sites, 280
SNPs and 64 indels, in 2 genes and 1 promoter) and mutations observed in phenotypically PZA resistant
samples. Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of
each of these bars a grey histogram shows the mutation density derived from the curated list of DR-
associated mutations. These grey areas highlight the presence of DR-associated regions in candidate
genes. Vertical black lines indicate the frequency of mutations observed in phenotypically resistance
isolates. Internal black lines show co-occurring mutations both within and between genes. The thickness
of these lines is proportional to the frequency of the mutations appearing together.
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(E) Loci involved in streptomycin resistance and mutations observed in streptomycin

resistant isolates
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Summary of DR-associated genes and mutations in the curated library for STR (35 variable sites, 44
SNPs, in 2 genes) and mutations observed in phenotypically STR resistant samples. Colour-coded bars in
the Circos plot represent genes described to be involved in DR. On top of each of these bars a grey
histogram shows the mutation density derived from the curated list of DR-associated mutations. These
grey areas highlight the presence of DR-associated regions in candidate genes. Vertical black lines
indicate the frequency of mutations observed in phenotypically resistance isolates. Internal black lines
show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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(F) Loci involved in ethionamide resistance and mutations observed in ethionamide
isolates
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Summary of DR-associated genes and mutations in the curated library for ETH (43 variable sites, 41 SNPs
and 5 indels, in 3 genes and 1 promoter) and mutations observed in phenotypically ETH resistant
samples. Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of
each of these bars a grey histogram shows the mutation density derived from the curated list of DR-
associated mutations. These grey areas highlight the presence of DR-associated regions in candidate
genes. Vertical black lines indicate the frequency of mutations observed in phenotypically resistance
isolates. Internal black lines show co-occurring mutations both within and between genes. The thickness
of these lines is proportional to the frequency of the mutations appearing together.
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(G) Loci involved in fluoroquinolones resistance and mutations observed in ofloxacin

and moxifloxacin isolates
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Summary of DR-associated genes and mutations in the curated library for FLQ (38 variable sites, 52
SNPs, 2 genes) and mutations observed in phenotypically FLQ resistant samples. Colour-coded bars in
the Circos plot represent genes described to be involved in DR. On top of each of these bars a grey
histogram shows the mutation density derived from the curated list of DR-associated mutations. These
grey areas highlight the presence of DR-associated regions in candidate genes. Vertical black lines
indicate the frequency of mutations observed in phenotypically resistance isolates. Internal black lines
show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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(H) Loci involved in amikacin resistance and mutations observed in amikacin isolates
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Summary of DR-associated genes and mutations in the curated library for AMK (8 variable sites, 9 SNPs,
in 1 gene) and mutations observed in phenotypically AMK resistant samples. Colour-coded bars in the
Circos plot represent genes described to be involved in DR. On top of each of these bars a grey
histogram shows the mutation density derived from the curated list of DR-associated mutations. These
grey areas highlight the presence of DR-associated regions in candidate genes. Vertical black lines
indicate the frequency of mutations observed in phenotypically resistance isolates. Internal black lines
show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.

232



(1) Loci involved in capreomycin resistance and mutations observed in capreomycin

resistant isolates
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Summary of DR-associated genes and mutations in the curated library for CAP (29 variable sites, 22 SNPs
and 10 indels, in 2 genes) and mutations observed in phenotypically CAP resistant samples. Colour-
coded bars in the Circos plot represent genes described to be involved in DR. On top of each of these
bars a grey histogram shows the mutation density derived from the curated list of DR-associated
mutations. These grey areas highlight the presence of DR-associated regions in candidate genes. Vertical
black lines indicate the frequency of mutations observed in phenotypically resistance isolates. Internal
black lines show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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(J) Loci involved in kanamycin resistance and mutations observed in kanamycin

resistant isolates
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Summary of DR-associated genes and mutations in the curated library for KAN (12 variable sites, 14
SNPs, in 1 gene and 1 promoter) and mutations observed in phenotypically KAN resistant samples.
Colour-coded bars in the Circos plot represent genes described to be involved in DR. On top of each of
these bars a grey histogram shows the mutation density derived from the curated list of DR-associated
mutations. These grey areas highlight the presence of DR-associated regions in candidate genes. Vertical
black lines indicate the frequency of mutations observed in phenotypically resistance isolates. Internal
black lines show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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Supplementary Figure 9 Cumulative sensitivity and specificity of drug resistance

markers

(A) Cumulative sensitivity and specificity of isoniazid resistance markers
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The x-axis contains DR associated mutations in the curated list observed in the overall population (WGS
data set 3). Dotted lines represent sensitivity while solid lines specificity (y-axis). Lines are colour-coded
by population. The plot shows the cumulative effect on sensitivity and specificity of adding a new DR
mutation at a time. Mutations are ordered in the x-axis by locus and sensitivity (meaning that mutations

observed more frequently are placed before in the axis).
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See footnote in Supplementary Figure 9A for a description of this plot.



W Overall

W China

B Karachi
B Malawi

@ Portugal
B Russia

O Vancouver

— JRUwUL ygwe 1¢10

b~ saowoxd yqwe 191D

L sowosd yaws v 10

— OgweTlpzL

- ¥awe NRa

— BOWS HIEIN

- 8QWe 0907

,
[ - Bawe vi62S
H - BgwE N6YD
( — - Bowe ¥ZBOIL

I~ BQWe d/6YD

- BOWe HZO0IH
\ : - BQWe DBIEA
- Bqwe ABZEQ

- 8Que VB/E3

I~ BIUE HI6YD
- BOwe 908N
- BQWs 59070
I~ Bqwe Q90rD
- 8aueNrZ01a
- Bqwe Y90rD
t- B YrSea
- BOWS L/6Ed

i ' - Bqwe isoen

TR L gousns0en

100% -

(C) Cumulative sensitivity and specificity of ethambutol resistance markers

80% -
60% -
40% —
20%
0% —

237

See footnote in Supplementary Figure 9A for a description of this plot.



(D) Cumulative sensitivity and specificity of pyrazinamide resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(E) Cumulative sensitivity and specificity of streptomycin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(F) Cumulative sensitivity and specificity of ethionamide resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(G) Cumulative sensitivity and specificity of moxifloxacin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(H) Cumulative sensitivity and specificity of ofloxacin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(1) Cumulative sensitivity and specificity of amikacin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(J) Cumulative sensitivity and specificity of capreomycin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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(K) Cumulative sensitivity and specificity of kanamycin resistance markers
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See footnote in Supplementary Figure 9A for a description of this plot.
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Supplementary Figure 10 Diagnostic accuracy across populations
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d) Pyrazinamide
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g) Moxifloxacin
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j) Capreomycin
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The sensitivity and specificity (i.e. diagnostic accuracy) of DR mutations in the curated list is calculated
for each drug, both within each population and overall. The point estimates are represented by solid
rectangles with size proportional to the population size, where horizontal lines represent the 95%
confidence intervals. The overall estimate is represented by a diamond with width representing the 95%
confidence interval. Dotted vertical lines are drawn at the overall estimates. The data presented in this
supplementary figure correspond to that of Table 4.2.
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